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Abstract. We determine which codimension two Hodge classes on J × J , where J is
a general abelian surface, deform to Hodge classes on a family of abelian fourfolds of Weil
type. If a Hodge class deforms, there is in general a unique such family. We show how to
determine the imaginary quadratic field acting on the fourfolds of Weil type in this family
as well as their polarization. There are Hodge classes that may deform to more than one
family. We relate these to Markman’s Cayley classes.
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1 Introduction

The Hodge conjecture asserts that for any smooth complex projective variety X and any non-
negative integer p the vector space Bp(X) := H2p(X,Q)∩Hp,p(X) of Hodge classes is spanned
by the classes of algebraic cycles.

From a study of the Mumford Tate groups of abelian fourfolds, Moonen and Zarhin [11, 12],
obtained the result that if the Hodge conjecture holds for abelian fourfolds of Weil type, then
it holds for all abelian fourfolds. An abelian fourfold is of Weil type if it has an imaginary
quadratic field in its endomorphism algebra and each non-rational element in that field has
two eigenvalues on H1,0 with the same multiplicity. Such fourfolds are parametrized by four-
dimensional subvarieties in the moduli space of all abelian fourfolds with a fixed polarization.

The first results on the Hodge conjecture for fourfolds of Weil type were obtained by Chad
Schoen [15, 16]. The paper [17] provides an alternative construction of algebraic cycles repre-
senting ‘exceptional’ Hodge classes in one of the cases considered in [15] and might have much
wider applications. Starting from a certain reducible surface S ⊂ J×J , where J is the Jacobian
of a general genus two curve, he shows that S deforms in a specific four-dimensional family of
abelian fourfolds of Weil type. This verifies the Hodge conjecture for these abelian fourfolds.
The general deformation of S, now called a Schoen surface, was studied in [1, 14] and a rather
explicit description of these surfaces can be found there.

In this paper we consider more generally the question of which Hodge classes in B2(J × J)
can be deformed to an abelian fourfold of Weil type, and which is the imaginary quadratic field
acting on such a fourfold. We provide answers to these questions in Section 4. In particular,
such a Hodge class must be contained in a determinantal cubic fourfold Z ⊂ PB2(J × J) ∼= P5

which is the secant variety of a Veronese surface. This Veronese surface is the singular locus
of Z. A Hodge class in Z, but not in Sing(Z), will deform in at most one family. A Hodge class
in Sing(Z) may deform to infinitely many families with distinct quadratic fields. This rather
curious fact is also the reason we restrict ourselves to fourfolds in the last sections. In case
dim J = n > 2 the deformation of a Hodge class to a family of Weil type, if it exists, seems to
be unique. However, a good description of the subvariety of PBn(J × J) of classes that admit
such deformations is much harder to find.
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In his recent paper [10], E. Markman proved the Hodge conjecture for the abelian fourfolds
of Weil type, with a polarization having trivial discriminant, using methods from deformation
theory of hyperkähler manifolds. He also uses specific Hodge classes, called Cayley classes, that
deform in Weil type families for any imaginary quadratic field. We briefly discuss the relation
with our results in Section 5.

In Section 6, we discuss the Hodge classes defined by certain algebraic cycles from the pa-
pers [17] and [4]. In Section 7, we show that the discriminants of the polarized abelian fourfolds
of Weil type we consider are trivial.

2 Hodge classes on abelian fourfolds of Weil type

2.1 Abelian varieties of Weil type

Let A be an abelian variety and let K = Q
(√
−d
)
, with d ∈ Z>0, be an imaginary quadratic

field. An abelian variety of Weil type (with field K) is a pair (A,K), where A is an abelian
variety and K ↪→ EndQ(A) is a subalgebra, such that for all k ∈ K the endomorphism of T0A
defined by the differential of k = a+b

√
−d ∈ K has eigenvalues k = a+b

√
−d and k̄ = a−b

√
−d

with the same multiplicity. Equivalently, the eigenvalues of any k ∈ K on H1,0 have the same
multiplicity. In particular, if (A,K) is of Weil type, then dimA is even.

Given an abelian variety of Weil type (A,K), there exists a polarization ωK ∈ B1(A) on A
such that for all k ∈ K one has

k∗ωK = Nm(k)ωK , Nm(k) = kk̄,

where Nm(k) is the norm of k ∈ K (see [3, Lemma 5.2.1]). We call such a 2-form a polarization
of Weil type and (A,K, ωK) is called a polarized abelian variety of Weil type.

2.2 The Weil classes

For a general (in particular A is not decomposable) abelian variety of Weil type (A,K) with
dimension 2n, the spaces of Hodge classes have dimensions [18] (see also [3, Theorem 6.12]):

dimBp(A) = 1, p 6= n, dimBn(A) = 3.

Since dimB1(A) = 1, any ω ∈ B1(A), ω 6= 0, defines (up to sign) a polarization on A which will
be of Weil type. Writing ωK := ω, the p-fold exterior product of this class with itself, denoted
by ωpK ∈ ∧pB1(A) ⊂ Bp(A), is non-zero for any p ≤ 2n. Using the action of the multiplicative
group K× := K−{0} on H2n(A,Q), there is a natural two-dimensional subspace WK in Bn(A)
which is a complement of QωnK :

Bn(A) = QωnK ⊕WK , dimWK = 2.

To define WK we use that for all k ∈ K× the eigenvalues of k∗ on H1(A,Q) are k, k̄, each
with multiplicity 2n. Let

H1(A,K) = H1(A,Q)⊗Q K = V+ ⊕ V−, k∗ = diag
(
k, k̄
)

be the direct sum decomposition into 2n-dimensional, conjugate, eigenspaces V± of K×. The
eigenvalues of k∗ on H1,0(A) (and on H0,1(A)) are k, k̄ each with multiplicity n, so V+, V− both
have Hodge numbers h1,0 = h0,1 = n. Since H2n(A,Q) = ∧2nH1(A,Q), we get

H2n(A,K) = ⊕2n
m=0

(
∧2n−mV+

)
⊗
(
∧mV−

)
,
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and the eigenvalues of k∗ on the m-th summand are k2n−mk̄m. The one-dimensional subspaces
∧2nV+ and ∧2nV− are of Hodge type (n, n) and their direct sum is defined over Q since they are
conjugate. That is, there is two-dimensional subspace WK ⊂ H2n(A,Q) such that

WK ⊗Q K = ∧2nV+ ⊕ ∧2nV−, WK ⊂ H2n(A,Q) ∩Hn,n(A) = Bn(A).

We give another definition of WK . Notice that if k ∈ K×, and k2n = a + b
√
−d ∈ K, with

a, b ∈ Q, then k2n, k̄2n are the roots of the polynomial P (T ) := T 2 − 2aT + a2 + db2 ∈ Q[T ].
Let WK be the kernel of the linear map P (k∗) ∈ End(H2n(A,Q)), for any general k ∈ K× (i.e.,
such that k2n, k2n−1k̄, . . . , k̄2n are distinct). Then WK ⊗QK is the span of the eigenspaces of k∗

with eigenvalues k2n, k̄2n. Hence WK ⊗Q K = ∧2nV+ ⊕ ∧2nV− as before, so dimQWK = 2 and
the classes in WK are of Hodge type (n, n).

Definition 2.1. Let (A,K, ωK) be a 2n-dimensional abelian variety of Weil type. The two-
dimensional subspace WK = WK,A of Bn(A) is called the space of Weil classes of (A,K).

This subspace is characterized by WK⊗QK = WK,+⊕WK,− where WK,+,WK,− are the (one-
dimensional) eigenspaces of the K× action on H2n(A,K), with eigenvalues k2n, k̄2n respectively,
for all k ∈ K× where K× := K − {0} be the multiplicative group of K.

The space of Hodge classes of (A,K, ωK) is the three-dimensional subspace Bn
K,A of the space

of Hodge classes Bn(A) defined as

Bn
K,A := QωnK ⊕WK .

2.3 Families of abelian varieties of Weil type

Let (A,K, ωK) be a polarized abelian variety of Weil type of dimension 2n. Then A is a complex
torus, A = C2n/Λ. Intrinsically, Λ = π1(A) = H1(A,Z) and C2n = Λ ⊗Z R = H1(A,R), with
a certain complex structure I ∈ End(H1(A,R)), so I2 = −Id. This complex structure induces
one on the dual vector space H1(A,R) which has eigenspaces H1,0(A), H0,1(A). These again
determine the Hodge decomposition on all Hk(A), since Hk(A,Z) = ∧kH1(A,Z). The embed-
ding K ↪→ EndQ(A) determines (and is determined by) an embedding K ↪→ EndQ(Λ⊗Z Q) and
the polarization ωK ∈ H2(A,Q) is an alternating 2-form on Λ⊗Z Q.

To deform (A,K, ωK) to other abelian varieties of Weil type, one changes the complex struc-
ture I in such a way that K still acts by C-linear maps on Λ ⊗Z R and such that ωK still
satisfies the Riemann conditions for a polarization (cf. [3, Section 5]). In this way one obtains
an n2-dimensional family of abelian varieties of Weil type parametrized by a bounded Hermitian
domain.

For each (A′,K, ωK) in this family there is a natural identification Hk(A′,Q) = Hk(A,Q)
since only the complex structure varies. As the K-action is fixed, both ωK (and thus also ωnK)
and the space of Weil cycles is fixed (WK,A′ = WK,A) as is the spaces of Hodge classes of
(A′,K, ωK) (Bn

K,A′ = Bn
K,A = QωnK ⊕WK,A) under the identification H2n(A′,Q) = H2n(A,Q).

In this paper we consider, for a decomposable abelian 2n-fold J × J , with J general, and
all imaginary quadratic subfields K ⊂ EndQ

(
J2
)
, the corresponding three-dimensional spaces

Bn
K,J2 ⊂ Bn

(
J2
)
. In case n = 2, we will see that the intersection between these subspaces is

non-trivial.

3 Weil classes for decomposable abelian varieties

3.1 General polarized abelian varieties

We fix a general abelian variety J of dimension n. In particular J has endomorphism algebra
EndQ(J) = Q and dimB1(J) = 1 (so J has a unique polarization up to scalar multiple).
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Let ωJ ∈ B1(J) be the class of an ample divisor, we denote by (J, ωJ) the corresponding
polarized abelian variety. We choose a basis of 1-forms dtj , j = 1, . . . , 2n, of H1(J,Q) such that

ωJ = dt1 ∧ dt2 + · · ·+ dt2n−1 ∧ dt2n.

Then we obtain a basis of H1
(
J2,Q

) ∼= H1(J,Q)⊕2 given by the dxj = π∗1dtj , dyj := π∗2dtj ,
j = 1, . . . , 2n, where the πi : J

2 → J , i = 1, 2, are the projections on the factors.
The following proposition determines the dimensions, as well as bases, for the spaces of Hodge

classes for the product variety J × J .

Proposition 3.1. For a general abelian n-fold J and for 1 ≤ p ≤ n we have

dimB1
(
J2
)

= 3, Bp
(
J2
) ∼= SympB1

(
J2
)
, so dimBp

(
J2
)

=

(
p+ 2

2

)
.

A basis of B1(J × J) is given by the following three 2-forms

ω1 = dx1 ∧ dx2 + · · ·+ dx2n−1 ∧ dx2n,

ω2 = dy1 ∧ dy2 + · · ·+ dy2n−1 ∧ dy2n,

ωσ = dx1 ∧ dy2 − dx2 ∧ dy1 + · · ·+ dx2n−1 ∧ dy2n − dx2n ∧ dy2n−1.

A basis of B2(J × J) is thus given by the following six 4-forms (where we write ωθ for ω ∧ θ):

ω2
1, ω1ω2, ω1ωσ, ω2

2, ω2ωσ, ω2
σ

(
∈ B2

(
J2
))
.

Proof. Since J is general, the Hodge group, also known as the special Mumford–Tate group,
of V := H1(J,Q) is Sp(V ) ∼= Sp2n, the symplectic group of ωJ . The spaces of Hodge classes
Bp
(
J2
)

are obtained as the invariants (for the diagonal action):

Bp
(
J2
)

=
(
∧2p
(
V ⊕2

))Sp(V )
= ⊕2p

k=0

((
∧kV

)
⊗
(
∧2p−kV

))Sp(V )
.

Interchanging ∧kV and ∧2p−kV shows that we only need to find the invariants for k ≤ p. The
symplectic form ωJ induces a duality ∧kV ∼=

(
∧kV

)∗
and thus((

∧kV
)
⊗
(
∧2p−kV

))Sp(V ) ∼= HomSp(V )

(
∧kV,∧2p−kV

)
.

For each k, with 0 ≤ k ≤ n, the Sp(V )-representation ∧kV is a direct sum of k/2 + 1,
(k + 1)/2, with k even and k odd respectively, irreducible Sp(V )-representations, each with
multiplicity 1. These representation are denoted by V (k−2i), 0 ≤ i ≤ k/2 in [2, Theorem 17.5]
and ∧kV ∼= V (k) ⊕ ∧k−2V . In this way one obtains the Lefschetz decomposition [6, p. 122] of
Hk(J,Q) = ∧kV .

Notice that the number of these representations depends only on k and not on n. We denote
by dk this number of irreducible subrepresentations of ∧kV , so dk = 1, 1, 2, 2, 3, 3, 4, . . . for
k = 0, 1, 2, 3, 4, 5, 6, . . . .

If k ≤ p, ∧kV is isomorphic to the Sp(V )-subrepresentation ωp−kJ ∧
(
∧kV

)
⊂ ∧2p−kV . By

Schur’s lemma, the dimension of HomSp(V )

(
∧kV,∧2p−kV

)
is then equal to the number of ir-

reducible Sp(V )-representations in ∧kV . In particular dimB1
(
J2
)

= 1 + 1 + 1 = 3 and
dimB2

(
J2
)

= 1 + 1 + 2 + 1 + 1 = 6. More generally, for 0 ≤ k ≤ p,

dimBp
(
J2
)

=

2p∑
k=0

dk = 2

p−1∑
k=0

dk + dp = dimBp−1(J2
n

)
+ dp−1 + dp.

Since dp−1 + dp = p+ 1 and dimB0
(
J2
)

= 1, we find dimBp
(
J2
)

=
(
p+2
2

)
.
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According to Hazama [8, Proposition 1.6] the ring of Hodge classes B∗
(
J2
)

= ⊕Bp
(
J2
)

is
generated by B1

(
J2
)
, so the cup product SympB1

(
J2
)
→ Bp

(
J2
)

is surjective. Comparing
dimensions we get SympB1

(
J2
) ∼= Bp

(
J2
)
.

Notice that ωj = π∗jωJ , hence they are in B1
(
J2
)
. Using the addition map

σ : J × J −→ J, (x, y) 7−→ t = x+ y,

one finds ωσ ∈ B1
(
J2
)

from

σ∗ωJ = ω1 + ω2 + ωσ
(
∈ B1

(
J2
))
.

Since dimB1
(
J2
)

= 3, these three 2-forms are a basis of B1
(
J2
)
. The six 4-forms are obviously

a basis of Sym2B1
(
J2
)

= B2
(
J2
)
. �

3.2 The GL2-action on the Hodge cycles

As EndQ(J) = Q, we have EndQ

(
J2
)

= M2(Q) (we write (x, y) ∈ J2 as a column vector). We
will first consider the induced action of GL2 on the Hodge cycles Bp

(
J2
)
. Since for pull-backs,

(gh)∗ = h∗g∗ where g, h ∈ M2(Q), to get a representation of GL2 on the cohomology we define
g · ω := (tg)∗ω for ω ∈ H∗

(
J2,Q

)
. We denote the standard two-dimensional representation

of GL2 by V1. Then we have H1
(
J2,Q

) ∼= H1(J,Q)⊗ V1 and the GL2 action is on the second
factor.

Recall that SL2 has a unique irreducible representation of dimension m for any m ≥ 1. There
is an isomorphism Sym2 V1 ∼= B1

(
J2
)

which simplifies some of the arguments in the rest of the
paper.

Proposition 3.2. The vector spaces Bp
(
J2
)

are GL2-representations in which the center Q×

of GL2 acts by scalar multiplication by t2p on Bp
(
J2
)
. As representation for the subgroup SL2,

the space B1
(
J2
)

is the irreducible three-dimensional representation of SL2. Moreover, if e+, e−
are the standard basis of V1, then there is an isomorphism of GL2-representations

Sym2 V1
∼=−→ B1

(
J2
)
,


e2+ 7−→ ω1,

e+e− 7−→ 1
2ωσ,

e2− 7−→ ω2.

The space B2
(
J2
)

= Sym2B1
(
J2
)

is the direct sum of the two irreducible SL2-subrepresenta-
tions V0, V4 of B2

(
J2
)

of dimension 1 and 5:

V0 :=
〈
Ω := 4ω1ω2 − ω2

σ

〉
, V4 =

〈
ω2
1, ω1ωσ, 2ω1ω2 + ω2

σ, ω2ωσ, ω
2
2

〉
.

Proof. Since t ∈ Q× acts multiplication by t on H1
(
J2,Q

)
and Hk

(
J2,Q

)
= ∧kH1

(
J2,Q

)
, it

acts as t2p on Bp
(
J2
)
.

The diagonal matrix diag
(
t, t−1

)
∈ SL2 acts as diag

(
t2, 1, t−2

)
on the basis ω1, ωσ, ω2 of

B1
(
J2
)

which proves that B1
(
J2
)

is the three-dimensional irreducible representation of SL2.
This representation is also isomorphic to Sym2 V1. Using the eigenvectors of the diagonal ma-
trices we see that, up to scalar multiples, the isomorphism is as in the proposition. We fix the
isomorphism by imposing that e2+ 7→ ω1. We define

S :=

(
0 1
−1 0

)
, T :=

(
1 1
0 1

) (
∈ SL2).

Then Se+ = e− and thus Se2+ = e2−, therefore e2− maps to Sω1 = ω2. Finally we have Te+e− =
e+(e+ + e−) = e2+ + e+e− and we know that e+e− maps to aωσ for some constant a. Thus T
maps aωσ to ω1 +aωσ. An explicit computation shows that (tT )∗ωσ = 2ω1 +ωσ, hence a = 1/2.

From the basis of B2
(
J2
)

given in Proposition 3.1 one sees that B2
(
J2
)

= Sym2B1
(
J2
)

and
thus B2

(
J2
)

is the sum of the irreducible five and one-dimensional representations of SL2. With
standard Lie algebra computations one finds the explicit decomposition. �
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3.3 Homomorphisms K ↪→ EndQ

(
J2
)

For any imaginary quadratic field K, there are embeddings K ↪→ EndQ

(
J2
) ∼= M2(Q), here an

embedding is an injective homomorphism of rings. For example,

φ : K ↪→M2(Q), φ
(
a+ b

√
−d
)

=

(
a −db
b a

)
.

Such an embedding gives a homomorphism (of algebraic groups defined over Q) K× → GL2.
The image of K× is a diagonalizable two-dimensional abelian subgroup of GL2, so it is a Cartan
subgroup of GL2.

In particular, K has two eigenvectors v± ∈ V1 ⊗Q K on which it acts as k · v+ = kv+ and
k · v− = k̄v−. Conversely, given a basis of conjugated vectors v± of V1 ⊗Q K, one finds an
embedding K ↪→ M2(Q). Such a pair of vectors can be chosen as v± = (α±, 1) ∈ K2 with
α+ = α−. We can thus parametrize all embeddings of K by α+ ∈ K −Q.

3.4 Cartan subalgebras

We identify the Lie algebra of GL2 with M2. Then a subfield K ⊂M2(Q) is a Cartan subalgebra
of M2, that is a diagonalizable two-dimensional subalgebra. More generally, we will consider
Cartan subalgebras, still denoted by K, in M2(C). Such a Cartan subalgebra determines, and
is determined by, a basis (of eigenvectors) of V1⊗Q C. Only rather special bases will correspond
to imaginary quadratic subfields of M2(Q), but it is still convenient to consider all of them as
we do from now on. The complexification of the space of Hodge cycles Bp

(
J2
)

is denoted simply
by Bp:

Bp := Bp(J × J)⊗Q C.

We refer to the eigenspaces and eigenvalues of the multiplicative group K× of K as the eigen-
spaces and eigenvalues of K.

The following lemma collects some explicit computations on the differential forms that are
eigenvectors of a Cartan subalgebra K ↪→M2(C), where K is determined by a pair of indepen-
dent eigenvectors v± ∈ C2.

Lemma 3.3. Let v± = (α±, 1) ∈ V1 ⊗Q C = C2 and let K ↪→M2(C) be the Cartan subalgebra
with these eigenvectors.

1. A basis of eigenvectors of K in B1 is

ω± := α2
±ω1 + α±ωσ + ω2, and ωK := 2α+α−ω1 + (α+ + α−)ωσ + 2ω2.

2. Let K be an imaginary quadratic field. Then the eigenvalues of K on ω+, ω−, ωK are k2,
k̄2, kk̄ respectively. Moreover,

(
J2,K, ωK

)
is an abelian variety of Weil type. The space

of Weil cycles WK ⊂ H2n
(
J2,Q

)
of
(
J2,K, ωK

)
is spanned (over K) by ωn+ and ωn−:

WK ⊗Q K = Kωn+ ⊕Kωn−,

and Bn
K,J2 = QωnK ⊕WK (cf. Definition 2.1).

Proof. Writing v± = α±e+ + e− we get v2± = α2
±e

2
+ + 2α±e+e−+ e2−, which are eigenvectors of

the K× action on Sym2 V1. The isomorphism Sym2 V1 ∼= B1
(
J2
)

maps these to the 2-forms in
this lemma. Similar for 2v+v− which is a third eigenvector in Sym2 V1.

Let k ∈ K×, it has eigenvalues k, k̄ on v+, v−, respectively, hence the eigenvalues of k on
B1
(
J2
) ∼= Sym2 V1 are k2, k̄2, Nm(k). The K× eigenspace in B1

(
J2
)

with eigenvalue Nm(k) is
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thus one-dimensional and therefore ωK is unique up to scalar multiple, hence it is (up to sign)
an ample class (see [4, Lemma 5.2]). Restricting ωK to the first factor of J2 we conclude that ωK
is in fact ample. Thus ω2n

K 6= 0. So
(
J2,K, ωK

)
is an abelian variety of Weil type.

Since k∗ω+ = k2ω+ we find k∗ωn+ = k2nωn+ and similarly k∗ωn− = k̄2nωn−. As SymnB1
(
J2
) ∼=

Bn
(
J2
)
, the forms ω±n are non-zero. Definition 2.1 then shows that WK is spanned by ωn+

and ωn−. �

By Lemma 3.3 (2), any embedding K ↪→ EndQ

(
J2
)

of an imaginary quadratic field defines
a polarized abelian variety, of dimension 2n, of Weil type

(
J2,K, ωK

)
, which is unique up to

multiplication of ωK by a positive rational number. In particular, the embedding determines an
n2-dimensional family of abelian fourfolds of Weil type as in Section 2.3 by changing the complex
structure on H1

(
J2,R

)
. For any member A in this family there is a natural identification of the

three-dimensional vector space of Hodge classes Bn
K,A ⊂ H2n(A,Q) of (A,K, ωK) with Bn

K,J2 .

More generally, we define analogous complex subspaces in the Bp (the complexification of
the Bp

(
J2
)
) for any Cartan subalgebra.

Definition 3.4. Let K ↪→ M2(C) be a Cartan subalgebra with eigenvectors v± = (α±, 1) ∈
V1⊗Q C = C2. With the notation from Lemma 3.3 (1) we define a two-dimensional subspace of
Bn = Bn

(
J2
)
⊗Q C by

WK := Cωn+ ⊕Cωn− (⊂ Bn),

and we define a three-dimensional subspace Bn
K of Hodge classes of J2 by

Bn
K := CωnK ⊕WK (⊂ Bn).

3.5 The invariant conic in B1

There is a curious (if well-known) geometrical relation between the three points in PB1 ∼= P2,
where B1 := B1

(
J2
)
⊗Q C determined by the K×-eigenvectors ωK , ω+, ω− ∈ B1.

The Veronese image of PV1, where V1 is the standard representation of GL2, is a conic C2 in
P
(
Sym2V1

) ∼= PB1. This conic is thus invariant under the action of GL2 on PB1. It contains
the points ω± = v2± where v± are eigenvectors of K× acting on V1. From the Lemma 3.3 one
then finds:

C2 =
{

[aω1 + bωσ + cω2] ∈ PB1 : b2 − ac = 0
}
.

Let p ∈ PB1 be the point of intersection of the tangent lines to C2 in the two points de-
fined ω±. Since these two points are fixed by the action of K× on B1, also the point p is fixed
by K×. Since there are only three fixed points in B1 by Lemma 3.3 it follows that p must be
the point defined by ωK .

Conversely, given ωK , one finds ω± (up to permutation) as the points of intersection of the
(two) lines through p which are tangent to C2 with C2 itself.

3.6 The invariant conic and Pfaffians

This invariant conic also has another description in terms of the two-forms in B1 = B1
(
J2
)
⊗QC.

The Pfaffian Pfaff(θ) ∈ C of a two-form θ ∈ B1 is defined by

∧2nθ = ((2n)!) Pfaff(θ)dx1 ∧ · · · ∧ dy2n
(
∈ H4n

(
J2,C

) ∼= C
)
.

Since the Pfaffian is essentially invariant under GL2, its zero locus is a union of GL2-orbits
in B1. There are only two GL2(C)-orbits on PB1 and, since Pfaff(ωσ) 6= 0 but Pfaff(ω1) = 0,
for θ ∈ B1 we must have Pfaff(θ) = e

(
b2 − ac

)n
for some non-zero constant e.
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4 The Hodge classes of
(
J2,K

)
when n = dim J = 2

4.1 The Hodge classes B2
K

For a general abelian surface J , an embedding of an imaginary quadratic field K ↪→ EndQ

(
J2
)

=
M2(Q) determines an abelian fourfold of Weil type

(
J2,K, ωK

)
. The space of Hodge classes of(

J2,K, ωK
)

is the three-dimensional subspace of B2
(
J2
)
⊂ H4

(
J2,Q

)
, see Definition 2.1,

B2
K,J2 := Qω2

K ⊕WK,J2 , with WK,J2 ⊗Q K = Kω2
+ ⊕Kω2

−.

As observed in Section 2.3,
(
J2,K, ωK

)
determines a four-dimensional family of abelian varieties

of Weil type by changing the complex structure on H1

(
J2,R

)
. For any A in this family the

three-dimensional space of Hodge classes B2
K,A of (A,K, ωK) is the same as B2

K,J2 .

To study the subspaces of Hodge classes B2
K as K ⊂ M2(Q) varies over the imaginary

quadratic subfields, it is convenient to complexify and projectivize. In that way, as K varies
over the Cartan subalgebras of M2(C), we obtain a two-dimensional family of complex projective
planes PB2

K , with B2
K as in Definition 3.4, in the complex projective space PB2 = P5.

First of all we show that any two PB2
K ’s have a non-empty intersection.

Proposition 4.1. Given two distinct Cartan subalgebras K1, K2 of M2(C), the intersection of
their spaces of Hodge classes B2

K1
∩ B2

K2
⊂ B2 is one-dimensional and thus PB2

K1
∩ PB2

K2
is

a point.
Let K be a Cartan subalgebra, then the union of the points of intersection PB2

K ∩ PB2
K′,

where K ′ runs over the Cartan subalgebra’s distinct from K, is a conic, denoted by CK , in PB2
K .

Proof. The action of GL2(C) on the Cartan subalgebras by conjugation is transitive, since any
element in GL2(C) that maps the eigenvectors of K1 to those of K2 will conjugate K1 to K2.
So we may assume that K is the Cartan subalgebra of diagonal matrices. The corresponding
eigenvectors in B1 are θ+ := ω1, θ− := ω2 and θK := ωσ (where we wrote θ rather than ω), so
they are the standard basis of B1. Therefore B2

K is spanned by ω2
1, ω2

σ, ω2
2 and an element in B2

lies in B2
K iff in the standard basis of B2 (given in Proposition 3.1) the coefficients of ω1ωσ,

ω2ωσ, ω1ω2 are zero.
For the Cartan subalgebra K ′, K ′ 6= K, determined by v± := (α±, β±) ∈ C2, the eigenforms

ω±, ωK′ are given in Lemma 3.3 (we assumed there that β± = 1 but it is easy to homogenize
the expressions). Computing their squares, one finds that the 3× 3 matrix of their coefficients
of ω1ωσ, ω2ωσ, ω1ω2 has rank two. It is then easy to find the intersection:

B2
K ∩B2

K′ =
〈
2α2
−β

2
+ω

2
1 − α+α−β+β−ω

2
σ + 2α2

+β
2
−ω

2
2

〉
.

In particular, the corresponding point aω2
1 + bω2

σ + cω2
2 ∈ PB2

K lies on the conic CK defined by

4b2 = ac. (This conic is not the one defined by the condition θ2 = 0, in fact
(
aω2

1+bω2
σ+cω2

2

)2
= 0

in H8
(
J2
)

iff 3b2 = −ac.) �

4.2 The union Z of the planes of Hodge classes PB2
K

Using the basis for B2
(
J2
)

given in Proposition 3.1, any element θ ∈ B2 in its complexification
is a linear combination

θ = x0ω
2
1 + x1ω1ω2 + x2ω

2
2 + x3ω1ωσ + x4ω2ωσ + x5ω

2
σ

(
∈ B2

)
,

with (x0, . . . , x5) ∈ C6. The following theorem identifies the union Z of all the projective planes
PB2

K as K varies over the Cartan subalgebras of M2(C). For dimension reasons we expect all
these projective planes to be contained in a hypersurface. It should be noticed that the surface
S = Sing(Z) is not the Veronese surface of PB1.
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Theorem 4.2. Let Z be the Zariski closure in PB2 ∼= P5 of the union ∪KPB2
K , where the

union is over all diagonalizable 2-dimensional Cartan subalgebras K ↪→M2(C):

Z := ∪KPB2
K

(
⊂ PB2 ∼= P5

)
.

Then Z is a cubic fourfold in PB2 defined by the determinant of a symmetric matrix MG:

Z = (G = 0), G = detMG, MG :=

 2x0 −x3 x1 − 4x5
−x3 x1 x4

x1 − 4x5 x4 2x2

 .

The singular locus of Z is a Veronese surface S (∼= P2) and Z is the secant variety of S.
A parametrization of S is given by

ν ′ : P2 ∼=−→ S := Sing(Z),

(s : t : u) 7−→ (x0 : · · · : x5) :=
(
s2 : 2u2 : t2 : −2us : 2ut : 1

2

(
−st+ u2

))
.

The intersection of the space of Hodge classes B2
K of

(
J2,K

)
with S is the conic CK from

Proposition 4.1:

PB2
K ∩ S = CK .

Proof. For a general Cartan subalgebra K we may assume that its eigenvectors are of the form
v± = (α±, 1) ∈ C2. These eigenvectors determine the classes ω±, ωK ∈ B1 as in Lemma 3.3.
Any element in B2

K can then be written as

ω(α+, α−, r, s, t) := rω2
+ + sω2

K + tω2
−

(
∈ B2

K ⊂ B2
)
,

for a certain (r, s, t) ∈ C3. So the problem is to determine the image of C5, with coordinates α+,
α−, r, s, t, in PB2 under this map. We used a computer to find the polynomial G defining Z
and the singular locus of Z. (The ‘difference’ between the Veronese surface of PB1 in PB2,
which is

{
ω2 ∈ PB2 : ω ∈ B1

}
and which lies in Z, and S is only in the component along V0 in

the decomposition B2
(
J2
)

= V4⊕V0 in Proposition 3.2.) Choosing K to be the diagonal Cartan
subalgebra as in the proof of Proposition 4.1, the plane PB2

K is defined by x1 = x3 = x4 = 0.
The 2 × 2 minors of MG, which define S, restrict to multiples of 4x25 − x0x2, which is thus the
equation of CK . Using the SL2-action, the same result then holds for any K.

More intrinsically, the second Veronese map ν2 : PB1 → PB2, with ν2(ω) = ω2, maps the
invariant conic C2 ⊂ PB1 to a quartic rational normal curve C4 = ν2(C2) which is the inter-
section of the Veronese surface ν2

(
PB1

)
with a hyperplane H ⊂ PB2 (this hyperplane is the

projectivization of the subrepresentation V4). The plane PB2
K is spanned by ω2

K , ω2
+, ω2

− where
ω+, ω− ∈ C2. Hence PB2

K intersects H in the line spanned by ω2
+, ω2

−. Thus Z ∩H is the secant
variety of C4, which is a cubic (determinantal) threefold (cf. [7, Proposition 9.7]). Therefore Z
is a cubic fourfold.

Since the planes PB2
K intersect in points, the variety Z is singular and dim Sing(Z) ≥ 2. Any

secant line of Sing(Z) intersects Z with multiplicity at least four, hence it lies in Z. Thus Z is
the secant variety of Sing(Z). The intersection of Sing(Z) with H is the curve C4, hence Sing(Z)
is a surface of degree four in P5. Since Z contains the Veronese surface of PB1, it cannot be the
secant variety of a rational normal scroll and thus it is the secant variety of a Veronese surface
by [6, Proposition, p. 525]. �

Remark 4.3. For a Cartan subalgebra K, the conic CK = S ∩PB2
K is a conic in the Veronese

surface S = ν ′
(
P2
)

and thus CK = ν ′(LK) for a line LK ⊂ P2. If K ′ is another Cartan
subalgebra, then the lines LK and LK′ intersect in a point p ∈ P2. Then ν ′(p) ∈ CK ∩ CK′ ⊂
PB2

K ∩ PB2
K′ . Thus we find another proof, besides Proposition 4.1, of the fact that any two

planes B2
K intersect, see also Section 5.
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4.3 The rational curve C4 in the two Veronese surfaces

In PB2 there are two ‘natural’ Veronese surfaces. One is the image of ν2 : PB1 → P Sym2
(
B1
)

= PB2 and the other is the singular locus S of Z which is the image of a Veronese map ν ′ : P2

→ PB2. The intersection of these two surfaces turns out to be a smooth rational curve which
we denote by C4. Given a general point c ∈ ∪KPB2

K ⊂ Z, this curve allows us to determine the
Cartan algebra K such that c ∈ B2

K , see Section 4.4. We apply this in Section 6.

Lemma 4.4. The intersection of the two Veronese surfaces ν2
(
PB1

)
and ν ′

(
P2
)

is a smooth
rational normal curve C4 of degree four

C4 = ν2
(
PB1

)
∩ ν ′

(
P2
)
.

The curve C4 is the image under ν2 and ν ′ of the following conics:

C4 = ν2(C2) = ν ′
({

(s : t : u) ∈ P2 : u2 = st
})
,

where C2 ⊂ PB1 is the invariant conic. The intersection of C4 and PB2
K , for a Cartan subal-

gebra K ⊂M2(C), consists of the two eigenvectors of K× in PB2
K :

C4 ∩PB2
K =

{
ω2
+, ω

2
−
}
.

Proof. The invariant conic C2 can be parametrised by ω = (xe+ + ye−)2 = x2ω1 + xyωσ +
y2ω2 ∈ PB1 with (x, y) ∈ C2. Then ν2(C2) is a rational normal quartic curve parametrised
by the ω2 ∈ PB2. Similarly, the conic defined by u2 = st in P2 can be parametrised by
(s : t : u) =

(
x2 : y2 : xy

)
. One verifies that its image under ν ′ is ν2(C2), hence we found a curve

C4 ⊂ ν2(B1) ∩ ν ′
(
P2
)
. A computer verified that there are no other points in the intersection.

From Theorem 4.2, we know that the intersection of PB2
K with the singular locus S = ν ′

(
P2
)

of Z is the conic CK ⊂ PB2
K defined in Proposition 4.1. The group K× fixes B2

K and has
three orbits on C4 = ν2(C2) = ν4(PV1), the fourth Veronese map, they are the eigenvectors
ω2
± = ν4(v±) and their complement. The eigenvectors are in C4 ∩ PB2

K , but since C4 spans
a P4, the third orbit cannot intersect PB2

K . �

Remark 4.5. We discuss another aspect of the relation between the Veronese surfaces ν2(PB
1),

with ν2(θ) := θ2 ∈ PB2, and S = ν ′
(
P2
)

= Sing(Z). For a Cartan subalgebra K, the plane of
Hodge classes PB2

K is the span of the three points ω2
+, ω2

− and ω2
K in ν2

(
PB1

)
. The closure

of the union of these planes is the cubic fourfold Z which turned out to have another Veronese
surface S as singular locus. We showed that Z is the secant variety of S and that the intersection
of ν2

(
PB1

)
and S is the quartic normal curve C4 = ν4(PV1).

One can recover the Veronese surface ν2
(
PB1

)
from the secant variety Z of S and the curve C4

as follows: the varieties PB2 ⊃ Z ⊃ S parametrize the conics, those of rank at most two and
those of rank one in a P2. The duality map g : PB2 → P5 is the birational map defined by
duality of conics. It sends the symmetric 3× 3 matrix defining the conic to its adjoint and the
base locus of g is S. The image of Z is a Veronese surface S∨ ⊂ P5. The image of a rank 2
conic, so the union of two distinct lines in P2, is the intersection point of these two lines in P2.
The fiber of g|Z−S over p consists of all (unordered) pairs of distinct lines which intersect in p,

so it is the complement of the diagonal in Sym2 P1 ∼= P2. The closure of this fiber is a plane P2
p

in PB2 which intersects S along a conic Cp that parametrizes the double lines that contain p.
Recall that also the plane PB2

K intersects S along a conic CK . As a plane intersecting S
along a conic is the span of ν ′(L) for a line L in P2, there is only a two-dimensional family of
such planes and thus the general P2

p is a PB2
K .

To recover ν2
(
PB1

)
we recall that PB2

K intersects C4 in the two points ω2
±. By the proof of

Proposition 4.1, CK is the conic in PB2
K = P

{
aω2

+ + bω2
K + cω2

−
}

defined by 4b2 = ac. Thus the
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tangent lines to CK in the two points ω2
± intersect in ω2

K . As any point in ν2
(
PB1

)
, not on C4,

is a ω2
K for a suitable K, we recover this Veronese surface from S and C4 as follows: in P2

p we
consider the conic Cp = S ∩P2

p and the two points p+, p− ∈ Cp ∩ C4. Let qp ∈ P2
p be the point

of intersection of the tangent lines to Cp in p±. The image of the map S∨ → Z ⊂ P5, p 7→ qp is
the Veronese surface ν2

(
PB1

)
. This map is a section of the duality map.

4.4 Finding K

Given a codimension two Hodge class c ∈ ∪PB2
K ⊂ Z ⊂ PB2, we want to determine a Cartan

subalgebra K such that c ∈ PB2
K . This K will be unique if c is general. The case where K is

not unique is discussed in the next section and occurs only if c ∈ S, the singular locus of Z (see
Proposition 4.1 and Theorem 4.2).

As in Remark 4.5, a point c ∈ Z − S corresponds to a reducible conic L ∪M in a P2, which
is the dual of the domain of ν ′, whereas a point q ∈ S = ν ′(P2) corresponds to a double line in
this P2. The pencil sc+ tq lies in Z iff all conics in it are reducible, so iff the double line which
corresponds to q passes through the point of intersection of L and M . There are two lines passing
through this point that are tangent to the conic whose (double) tangent lines parametrize C4.
Thus for a given c ∈ Z−S we find two points q on C4 such that the lines 〈c, q〉 are contained in Z.

From Lemma 4.4, we know that there are exactly two points ω2
± ∈ C4 in any PB2

K and these
points in fact determine K. In particular the two lines spanned by c and ω2

± lie in PB2
K and

thus lie in Z. We therefore consider the following procedure.
Let q(x, y), for (x, y) ∈ C2, be the parametrization of C4 given by the composition PV1 →

P Sym2(V1) ∼= PB1 ν2→ PB2:

q : P(V1 ⊗Q C)
∼=−→ C4, q(xe+ + ye−) =

(
x2ω1 + xyωσ + y2ω2

)2
.

The line spanned by c and q(x, y) is parametrized by sc+ tq(x, y). As C4 ⊂ S, the singular locus
of Z, and Z is defined by the cubic polynomial G = 0, we must have

G(sc+ tq(x, y)) = f(x, y)2s2t,

for some polynomial f ∈ C[x, y], homogeneous of degree 2. In case f(x, y) = 0, the line
sc+ tq(x, y) lies in Z. Thus we conclude that for these (x, y) the points q(x, y) = (xe+ + ye−)4

are the points ω2
±. Hence K is determined by the two eigenvectors xe+ + ye− ∈ V1 ⊗Q C where

the points (x : y) are the zeroes of f .
The next theorem summarizes the main results we obtained.

Theorem 4.6. A Hodge class in Z − Sing(Z) deforms in at most one four-dimensional family
of abelian fourfolds of Weil type, whereas a Hodge class in Sing(Z) may deform in infinitely
many four-dimensional families of Weil type with distinct imaginary quadratic fields.

Proof. For c ∈ ∪PB2
K ⊂ Z, c 6∈ S = Sing(Z), there is a unique Cartan subalgebra K such

that c ∈ PB2
K , see Section 4.4. If K is the complexification of an imaginary quadratic field

embedded in M2(Q), then c deforms in a family of Weil type with that field. If c ∈ S then c
lies in infinitely many PB2

K , see also Section 5. �

5 The Cayley classes

5.1 The Hodge classes in Sing(Z)

Combining Theorem 4.2 and Remark 4.3 we conclude that any point c ∈ S = Sing(Z) lies
in PB2

K for a one-dimensional family of Cartan subalgebras K. Such classes, which we will call
Cayley classes following [10], are thus of special interest.
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For a fixed Cayley class c ∈ S we want to find all Cartan subalgebras K such that c ∈ B2
K .

For this it is convenient to use the parametrization ν ′ : P2 → S given in Theorem 4.2. The plane
of Hodge classes PB2

K intersects S along a conic CK (see Proposition 4.1) and the inverse image
LK := ν−1(CK) is a line in P2 which is easily computed:

CK = ν ′(LK), LK : s− α+α−t+ (α+ + α−)u = 0
(
⊂ P2

)
,

where v± = (α±, 1) are the eigenvectors of K. So if p ∈ P2 is such that c = ν ′(p) then c ∈ B2
K

iff p ∈ LK .

It is not always the case that a Cayley class in the Q-vector space B2
(
J2
)

underlying B2 lies
in a B2

K , where K is an imaginary quadratic field (rather than a Cartan subalgebra of M2(C)).
Taking for example the point p = (n : 1 : 0) ∈ P2 we find that that it lies in LK iff α+α− = n
(cf. Proposition 5.2), but for an imaginary quadratic field we must have α+ = α− ∈ K and then
α+α− > 0. So for n < 0 the Cayley class ν ′(p) does not deform to a Hodge class in any family
of Weil type.

Example 5.1. We consider a Hodge class Cφ ∈ PB2 which lies in S:

Cφ = ω2
σ + 4ω1ω2 = (0 : 1 : 0 : 0 : 0 : 4) = ν ′((0 : 0 : 1)).

The corresponding Cartan subalgebras are thus the K ⊂ M2(C), determined by v± = (α±, 1),
such that the point p = (s : t : u) = (0 : 0 : 1) lies on the line LK , equivalently, α+ + α− = 0.

In particular, for any d > 0, the Cartan algebra defined by the embedding φ : K = Q
(√
−d
)

↪→ M2(Q) given in Section 3.3, which is determined by the eigenvectors v± = (α±, 1) with
α± = ±

√
−d, has this Cayley class in B2

K . Thus there are infinitely many, four-dimensional,
families of abelian varieties of Weil type with the property that Cφ lies in the space of their
Hodge classes.

5.2 Markman’s Cayley class

Markman in [10] proves the Hodge conjecture for all abelian fourfolds of Weil type with trivial
discriminant. For a fixed integer n ≥ 2 he considers a five-dimensional family of four-dimensional
complex tori T with H1(T,Z) = V , where V := H1(X,Z)⊕H1

(
X̂,Z

)
for an abelian surface X

and X̂ is the dual abelian surface. The complex structure on T is determined by the sub-
space H1,0(T ) in the complexification of V .

He shows that a certain class Cn ∈ ∧4V = H4(T,Z) remains of Hodge type (2, 2) for all
members of the family. Moreover Cn is shown to be the second Chern class of a complex vector
bundle ET over T using deformation theory in the hyperkähler context. The general torus in
the family is not an abelian variety, but for each imaginary quadratic field K there is a four-
dimensional subfamily of abelian fourfolds of Weil type, with trivial discriminant, with this field.
Thus Cn is algebraic, being a Chern class. Using the K×-action on B2

K one finds that all classes
in B2

K are algebraic for any of these fourfolds of Weil type.

We will now assume that X = J , and that ωJ defines a principal polarization on J . Then
we may identify J2 with X × X̂ and H1

(
J2,Z

)
with V . The four-dimensional families of

Weil type will in general not contain the three-dimensional subfamilies of tori T with H1,0(T ) =
H1,0(J)×H1,0(J), where J varies over the principally polarized abelian surfaces. They will often
intersect this family in codimension one and for the corresponding J ’s one has EndQ(J) 6= Q, see
Remark 5.3. The same is true for the similar families considered by O’Grady [13, Theorem 5.1].

The following proposition identifies the cases in which the four-dimensional families do con-
tain all such decomposable abelian fourfolds of Weil type and their deformations. It shows that
Markman’s Cayley classes Cn are indeed Cayley classes as defined above. Moreover, it identifies
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the corresponding imaginary quadratic fields and their embeddings into End
(
J2
)
. The proposi-

tion shows that there must exist an α+ ∈ K with conjugate α− := α+ and Nm(α+) = n, which
is quite restrictive (for example if p ≡ 3 mod 4 is a prime number then there is no α ∈ Q

(√
−1
)

with αᾱ = p). This reflects the fact that the Néron Severi group of J must have rank two in the
other cases.

Proposition 5.2. The Cayley class in [10, Proposition 11.2] can also be written as

Cn = n
(
−nω2

σ + 2n2ω2
1 + 2ω2

2

)
and Cn ∈ Sing(Z). For any Cartan subalgebra K ↪→M2(Q) with eigenvectors v± = (α±, 1) such
that α+α− = n we have Cn ∈ B2

K . In fact

(α+ − α−)2Cn = n
(
−α+α−ω

2
K + 2α2

−ω
2
+ + 2α2

+ω
2
−
) (

∈ B2
K

)
.

Proof. The Cayley class from [10, Proposition 11.2] is

Cn := n
(
−nc1(P)2 + 4n2π∗1[ptX ] + 4π∗2[ptX̂ ]

)
,

where P is the normalized Poincaré bundle over X × X̂. Under the isomorphism J2 → X × X̂
we have ω2

1 = 2π∗1[ptX ] and ω2
2 = 2π∗2[ptX̂ ]. The isomorphism J = X → X̂ induces the map on

lattices Λ = H1(J,Z) → Λ̂ = H1

(
X̂,Z

)
, λ′ 7→ ωJ(−, λ′). The Chern class c1(P) is the 2-form

on Λ × Λ̂ defined by ((λ, l), (µ,m)) := m(λ) − l(µ). One finds that c1(P) pulls back to ωσ and
that the first expression for Cn holds.

To find all Cartan subalgebras K ⊂ M2(Q) for which Cn is a Hodge class in B2
K , it is

convenient to identify the point in P2 which maps to Cn under the Veronese map v′:

Cn = n
(
−nω2

σ + 2n2ω2
1 + 2ω2

2

)
=
(
2n2 : 0 : 2 : 0 : 0 : −n

)
= ν ′((n : 1 : 0)) ∈ S = Sing(Z).

Thus Cn ∈ B2
K iff (s : t : u) = (n : 1 : 0) ∈ LK , which is equivalent to α+α− = n. The last

equality is easy to verify. �

Remark 5.3. We discuss the fact that in Proposition 5.2 one doesn’t find all imaginary
quadratic fields. With the notation from [10, Section 12], the five-dimensional family is pa-
rametrized by Ωw⊥ and w ∈ S+ determines the class Cn. The four-dimensional subfamilies
are parametrized by Ω{w,h}⊥ and consist of the four dimensional tori T` with ` ∈ Ω{w,h}⊥ , in

particular (h, `) = 0 for a class h ∈ w⊥ ∩ S+ with (h, h)S+ < 0 (cf. [10, formula (12.6), Corol-
lary 12.9]). The imaginary quadratic field K ⊂ EndQ(T`) is generated by an endomorphism
Θ′h ∈ End(T`) [10, Lemma 12.5]. One can find such h for which not all periods ` ∈ Ωw⊥ in the
three-dimensional family parametrizing the abelian fourfolds T` ∼= J × J will satisfy (h, `) = 0.
For such an h and any ` ∈ Ω{w,h}⊥ such that T` ∼= J ×J , the endomorphism Θ′h of J ×J cannot
be in M2(Q), since it does not deform to all selfproducts. Therefore EndQ(J) 6= Q. From this
one can deduce that the Picard number of J cannot be one.

6 Applications to algebraic cycles

6.1 Jacobians of genus two curves

We consider two cases, [17] and [4], where explicit Weil classes on decomposable fourfolds A =
J × J are given in order to illustrate our results.

In both cases, the abelian surface J is the Jacobian of a general genus two curve C. After fixing
a base point on C, the Abel–Jacobi image of C ↪→ J , which we denote by C again, is a divisor
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which defines a principal polarization. Using the notation from Section 3.1, ωJ ∈ H2(J,Q) is
the class of C ⊂ J . We now consider some codimension two classes defined by surfaces in J2.
Recall that translations act trivially on the cohomology of abelian varieties.

The diagonal S1 := ∆ = {(x, x) : x ∈ J×J} is a codimension two subvariety. It is the inverse
image of the point 0 ∈ J along the difference map:

S1 := ∆ := δ−10, δ : J × J −→ J, (x, y) 7−→ x− y.

Its class [S1] is thus the pull-back along δ of the class of a point on J . Since the intersection
of C with a general translate consists of two points (in fact ω2

J = 2dx1 ∧ · · · ∧ dy2), we find
2[S1] = δ∗

(
ω2
J

)
and hence

[S1] = [∆] = 1
2δ
∗(ω2

J

)
= 1

2(ω1 + ω2 − ωσ)2
(
∈ B2

(
J2
))
.

The surface S2 := C × C ⊂ J × J is the intersection of the divisors C × J and J × C, these
divisors have classes ω1, ω2 respectively and thus

[S2] = [C × C] = ω1ω2

(
∈ B2

(
J2
))
.

6.2 The class of the Schoen surface

As in [17], we consider the 2-cycle S := S1 + S2 in J × J with S1, S2 as in Section 6.1. We will
use our results to show that its class in H4

(
J2,Q

)
lies in a unique B2

K . We also determine K
as well as the type of the (essentially unique) polarization ωK of Weil type. The class of S is
given by

2[S] = 2([S1] + [S2]) = ω2
1 + 4ω1ω2 + ω2

2 − 2ω1ωσ − 2ω2ωσ + ω2
σ.

It is easy to check that [S] lies on the cubic fourfold Z = ∪B2
K . To find the subalgebra

K ⊂ M2(Q) such that [S] ∈ B2
K we consider the intersection of the line in P5 spanned by

c := 2[S] and a general point q(x, y) = (xe+ + ye−)4 ∈ C4 as in Section 4.4. A computation
shows that

G(sc+ tq) = 8
(
x2 + xy + y2

)2
s2t, hence x2 + xy + y2 = (x− α+y)(x− α−y),

with α± =
(
−1 ±

√
−3
)
/2. The Cartan subalgebra K is determined by the eigenvectors v± =

(α±, 1) and thus the field is K = Q
(√
−3
)
. The eigenvectors also determine the embedding

K ↪→M2(Q):

K = Q
(√
−3
)
↪→M2(Q),

−1 +
√
−3

2
7−→

(
−1 −1

1 0

)
.

With this embedding of K, the Hodge class [S] lies in B2
K and will therefore deform to

a (unique) family of abelian fourfolds of Weil type with this field K.
The polarization ωK is (up to scalar multiple) equal to ωK and we choose (cf. Lemma 3.3)

ωK = 2ω1 − ωσ + 2ω2, Pfaff(ωK) = (1− 2 · 2)2 = 9.

Notice that in [17, proof of Lemma 10.4] one finds an ample line bundle L on a general defor-
mation of Weil type which has h0(L) = Pfaff(c1(L)) = 9, our computation is consistent with
this. A further computation shows that the elementary divisors of the alternating form defined
by ωK on Z8 are (1, 1, 3, 3).

In [17], Schoen proved that actually the surface S1 ∪ S2 in J2 deforms in a family of abelian
varieties of Weil type with field Q

(√
−3
)
. These deformations were further studied in [1] and [14].
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6.3 The field Q(i)

In [4] one finds a four-dimensional family of principally polarized abelian fourfolds of Weil type
with field K = Q

(√
−1
)
. There is a rational dominant map from such a fourfold A (in general

with 16 base points) A→ Q, where Q ⊂ P5 is a smooth four-dimensional quadric. The pull-back
to A of a plane P2 ⊂ Q is shown to be an exceptional cycle c (i.e., its class lies in B2(A) but is
not a scalar multiple of ω2

K). The class of this cycle was not completely determined in [4], but
it can be easily done now.

In the proof of Theorem 3.7 of [4] it is shown that, for some a, b ∈ Z, the class c of the
pull-back of a certain plane to J × J is

c = [T ] + a[S1] + b[S−1], [T ] = [(2C)× (2C)] = 4[S2],

S−1 := {(x, y) ∈ J × J : x+ y = 0}.

The class of S−1 is obviously (1,−1)∗[S1], hence

[S−1] = 1
2(ω1 + ω2 + ωσ)2.

To determine a, b we recall from [4] that the family contains fourfolds A = J × J , with J
a general abelian surface as before, the polarization ωK is the product polarization ω1 + ω2 and
the embedding of the field is

K = Q(
√
−1) ↪→M2(Q),

√
−1 7−→

(
0 −1
1 0

)
.

This embedding has the eigenvectors v± = (∓i, 1). From Lemma 3.3 one finds that B2
K is

spanned by

ω2
K = 4(ω1 + ω2)

2, ω2
+ = (ω1 + iωσ − ω2)

2, ω2
− = (ω1 − iωσ − ω2)

2.

It is now easy to check that

[T ] + a[S1] + b[S−1] ∈ B2
K ⇐⇒ a = b = 1,

thus we determined the class of the exceptional cycle: c = [T ] + [S1] + [S−1].

7 The discriminant of the polarization

7.1 The discriminant

Let (A,K,E) be a polarized abelian variety of Weil type with imaginary quadratic field K =
Q
(√
−d
)

and dimA = n. The Q-bilinear alternating form E on H1(A,Q) satisfies E(kx, ky) =
Nm(k)E(x, y) for x, y ∈ H1(A,Q) and k ∈ K, where Nm(k) = kk̄ ∈ Q is the norm of k. Then
H1(A,Q) is a K-vector space and E defines a K-valued Hermitian form H on this K-vector
space by:

H : H1(A,Q)×H1(A,Q) −→ K, H(x, y) := E
(
x,
(√
−d
)
∗y
)

+
√
−dE(x, y).

If Ψ ∈Mn(K) is the Hermitian matrix defining H w.r.t. some K-basis of H1(A,Q) then det(Ψ) ∈
Q× = Q−{0} and the class of det(Ψ) ∈ Q×/Nm(K×) is independent of the choice of the basis,
it is called the discriminant of (A,K,E).
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7.2 Trivial discriminant for selfproducts

Let A = J × J , for an abelian surface J and let K ⊂ EndQ(A) = M2(Q) be an imaginary
quadratic field. Let ωK ∈ H2(A,Q) be the unique (up to scalar multiple) K-invariant polariza-
tion as in Lemma 3.3 on the abelian fourfold of Weil type (A,K). We show in Proposition 7.1
that the discriminant of (A,K, ωK) is trivial, and we briefly discuss more general decomposable
abelian fourfolds of Weil type in Remark 7.3.

Proposition 7.1. Let J be a general abelian surface, let A = J × J , and let (A,K, ωK) be an
abelian fourfold of Weil type. Then the discriminant of (A,K, ωK) in Q×/Nm(K×) is trivial.

Proof. Recall the basis dti, i = 1, . . . , 4, of H1(J,Q) from Section 3.1. Let f1, . . . , f4 be the
dual basis of H1(J,Q), so that dti(fj) = δij , where δkl is Kronecker’s delta. Then H1(A,Q) =
H1(J,Q)⊕2 and, since EndQ(J) = Q, the vectors (f1, 0), . . . , (f4, 0) are a K-basis of H1(A,Q).

In view of the definitions given in Proposition 3.1, for i, j = 1, . . . , 4, we find the following
table:

ω1((fi, 0), (fj , 0)) = ωJ(fi, fj), ω1((fi, 0), (0, fj)) = 0,

ω1((0, fi), (0, fj)) = 0,

ω2((fi, 0), (fj , 0)) = 0, ω2((fi, 0), (0, fj)) = 0,

ω2((0, fi), (0, fj)) = ωJ(fi, fj),

ωσ((fi, 0), (fj , 0)) = 0, ωσ((fi, 0), (0, fj)) = ωJ(fi, fj),

ωσ((0, fi), (0, fj)) = 0,

here one computes (with σ as in the proof of Proposition 3.1):

ωσ((fi, 0), (0, fj)) = σ∗ωJ((fi, 0), (0, fj))

since σ∗ωJ = ω1+ω2+ωσ and ω1, ω2 are zero on ((fi, 0), (0, fj)), and finally σ∗ωJ((fi, 0), (0, fj))=
ωJ(σ(fi, 0), σ(0, fj)) = ωJ(fi, fj).

The action of K ⊂M2(Q) on H1(A,Q) = H1(J,Q)⊗V1 is determined by a, b ∈ Q such that√
−d∗(fi, 0) = (afi, bfi), for i = 1, . . . , 4. The polarization is a linear combination

ωK = a1ω1 + aσωσ + a2ω2, a1, aσ, a2 ∈ Q.

The Hermitian form H is determined by its matrix Ψ = (Ψij) on the K-basis of H1(A,Q) given
above:

Ψij := ωK((fi, 0), (afj , bfj)) +
√
−dωK((fi, 0), (fj , 0)).

From the table we see that

ωK((fi, 0), (fj , 0)) = a1ωJ(fi, fj), ωK((fi, 0), (0, fj)) = aσωJ((fi, 0), (0, fj))

and thus

Ψij =
(
a1
(
a+
√
−d
)

+ baσ
)
ωJ(fi, fj).

Since H is a Hermitian form, we have Ψij = Ψji and using ωJ(fi, fj) = −ωJ(fj , fi) we get
aa1 + baσ = 0. Therefore Ψij =

(
a1
√
−d
)
ωJ(fi, fj). Since the fi are a symplectic basis of

H1(J,Q) we get det(ωJ(fi, fj)) = 1. Thus det(Ψ) = a41d
2 = Nm

(
a21d
)

is the norm of an element
in Q ⊂ K, so the discriminant of (A,K, ωK) is trivial. �
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7.3 General discriminants

Whereas J2, with EndQ(J) = Q, only has structures of Weil type with trivial discriminant, for
example the self product E4 of an elliptic curve E with CM by K admits polarizations with
any discriminant. In fact, if EndQ(E) = K, then the embedding K ↪→ EndQ

(
E4
)

= M4(K)
given by k 7→

(
k, k, k̄, k̄

)
defines an abelian fourfold of Weil type. Let ωE be a polarization

on E (it is unique up to scalar multiple). Let f be a K-basis of H1(E,Q) ∼= K and let
b := ωE

(
f,
√
−df

)
∈ Q.

For any a ∈ Q>0 the polarization ωa ∈ ∧2H1
(
E4,Q

)
on E4 defined by

ωa((x1, . . . , x4), (y1, . . . , y4)) = ωE(x1, y1) + · · ·+ ωE(x3, y3) + aωE(x4, y4),

where xi, yi ∈ H1(E,Q), satisfies ωa(k ·x, k ·y) = k2k̄2ωa(x, y). The matrix of the associated Her-
mitian form on the K-basis (f, 0, 0, 0), . . . , (0, 0, 0, f) of H1

(
E4,Q

)
is given by diag(b, b,−b,−ab)

and thus it has determinant ab4. Hence the discriminant of the polarized abelian variety of Weil
type

(
E4, ωa,K

)
is a. The dimension of B2

(
E4
)

is however much larger than 6 and the study
of the limits of spaces of Weil classes is thus more complicated.

Remark 7.2. The Hodge conjecture for abelian fourfolds of Weil type with fields Q
(√
−3
)
,

Q
(√
−1
)

and any discriminant has been proven in [15], [16] and [9], respectively. The method
for both results is the same: one verifies the Hodge conjecture for a family of abelian six-folds of
Weil type with the same field and trivial discriminant. Then one specializes to a product J ×B,
where B is a general abelian fourfold of Weil type and the discriminant of B can be arbitrary.
A variant of this method, using abelian varieties with quaternionic multiplication, was proposed
in [5] but thus far has not had any applications.
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