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• VOCs and eBC personal exposure was
investigated in children.

• Biological monitoring was applied to
assess urinary benzene and MTBE

• Determinants of exposure were related to
meteorological information, traffic, mo-
bility and passive smoking.

• Being transported by car affected air pol-
lutants and urinary benzene.

• eBC and VOCs, as well as biomarkers,
were well correlated.
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An ever-growing burden of scientific evidence links air pollution to different aspects of human health even at very low
concentrations; the impact increases for those living in urban environments, especially the youngest and the elderly.
This study investigated the exposure to air pollution of urban school children ofMilan, Italy, by personal and biological
monitoring, in the frame of the MAPS-MI project.
A total of 128 primary school children (7–11 years) were involved in a two-season monitoring campaign during spring
2018 and winter 2019. Personal exposure to airborne VOCs and eBC, and biological monitoring of urinary benzene
(BEN-U) and methyl-tert-butyl ether (MTBE-U) were performed. Time-activity patterns, environmental tobacco smoke
(ETS), spatial, and meteorological information were evaluated as determinants in mixed effects regression analysis.
Children personal exposure was mostly quantifiable with median (5th–95th percentile) levels 1.9 (0.8–7.5) μg/m3 for
eBC, and 1.1 (<0.6–3.4) and 0.8 (0.3–1.8) μg/m3 for benzene and MTBE, respectively; with values 2–3-fold higher in
winter than in spring. In urine, median (5th–95th) BEN-U and MTBE-U levels were 44.9 (25.7–98.6) and 11.5
(5.0–35.5) ng/L, respectively. Mixed effect regression models explained from 72 to 93 % of the total variability for
air pollutants, and from 58 to 61 % for biomarkers. Major contributors of personal exposure were season, wind
speed, mobility- or traffic-related variables; biomarkers were mostly predicted by airborne exposure and ETS.
Our results suggest that traffic-mitigation actions, together with parents' educational interventions on ETS and com-
muting mode, should be undertaken to lower children exposure to air pollution.
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1. Introduction

An ever-growing body of scientific evidence links ambient and indoor
air pollution to different aspects of human health (Dhital and Rupakheti,
2019; Sun and Zhu, 2019). The recent update of the World Health
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Organization's air quality guidelines remarks that the associations be-
tween exposure and all-cause or respiratory mortality and respiratory
and cardiocirculatory hospital admissions are valid for different pollut-
ants even at very low concentrations (WHO, 2021). The magnitude of
this impact increases for those who spend their lifetime in polluted en-
vironments and for the susceptible individuals. The living environment
may affect especially the youngest, who inhale in a lower breathing
zone than adults, often closer to sources of pollution, and present faster
metabolic rate and still immature and more fragile organs (Etzel, 2020).
Natural barriers against exogenous stressors, such as nasal epitheliums
and blood-brain barrier, have been shown to be altered in children liv-
ing in a polluted urban environment (Calderón-Garcidueñas et al.,
1999, 2015).

In metropolitan areas, air pollution is mainly driven by combustion pro-
cesses linked to transportation and heating systems. In these environments,
individuals are more likely to experience exposure peaksmainly influenced
by the time spent in or nearby traffic (Dons et al., 2019; Boniardi et al.,
2021a). Traffic-related air pollution (TRAP) is a peculiar mixture of both
gaseous and particulate pollutants that mostly derives from the primary
emissions of motor vehicles plus other non-combustion emissions (e.g.
road and brakes dust). Among others, there are gaseous contaminants
such as the volatile organic compounds (VOCs) benzene, toluene, ethylben-
zene and xylene (BTEX), methyl-tert-butyl ether (MTBE), ethyl tert-butyl
ether (ETBE) and tert-Amylmethyl ether (TAME). BTEX are well known ar-
omatic compounds, present in gasoline, while MTBE, ETBE and TAME are
oxygenated gasoline additives improving octane number; all are emitted
with traffic exhausts. Among the particulate fraction, equivalent black
carbon (eBC) represents fine and ultrafine particles strictly linked with
fuel and biomass combustion. Numerous studies have shown significant
associations between exposure to TRAP and negative outcomes for the re-
spiratory system of children like asthma, reduced lung function, or cardio-
vascular endpoint (Khreis et al., 2017; Gehring et al., 2013; Provost et al.,
2017; Pieters et al., 2015). Long-term exposure can be also associated
with neurological and behavioral outcomes (Newman et al., 2013; Suglia
et al., 2008). Moreover, Filippini et al. (2019) in a recent meta-analysis
found an association between exposure to benzene and childhood acute
myeloid leukaemia, with no indication of a threshold effect (Filippini
et al., 2019). These epidemiological studies take advantage from a model-
based exposure approach that helps to overcome the lack of information
and resources when the aim is to assign exposure values to a high number
of individuals. However, the lack of insights about time-activity patterns,
contribution of indoor air pollution, and/or the use of aggregated data af-
fects the accuracy of estimates by increasing exposure attribution bias
(Sheppard et al., 2012). In the study of human exposure, the combination
of environmental personal monitoring and time-activity analysis still repre-
sents the most accurate approach, offering the opportunity to study expo-
sure determinants, and to promote possible mitigation interventions.
Besides, biological monitoring allows the assessment of the internal dose
of pollutants integrating all exposure sources and routes, taking into ac-
count the interaction between the individual and the environment
(Fustinoni et al., 2010). In the last decades, personal exposure of school-
age children has been the focus of numerous scientific contributions, how-
ever only a few of them simultaneously considered ambient and biological
monitoring (Minoia et al., 1996; Park and Jo, 2004; Lagorio et al., 2013;
Pilia et al., 2021). Nevertheless, none of these contributions reported
information or analyzed the influence of children time-activity patterns
on exposure.

Given this picture, this study aimed at taking a step forward in the
knowledge of children exposure to traffic-related air pollution by involving
128 elementary school-age children (7–11 years) living in the city of Milan,
Italy, in a two-season monitoring campaign during spring 2018 and winter
2019 in the frame of the project MAPS-MI (“Mapping Air Pollution in a
School catchment area of Milan”). In this contribution, the focus is placed
on personal exposure to airborne VOCs and eBC, and biological monitoring
of urinary benzene and MTBE, taking into account the children's time-
activity patterns.
2

2. Material and methods

2.1. Study design and study population

Subjects recruited for this study participated in the MAPS-MI project
aimed to study the exposure to air pollution of schoolchildren in Milan,
using spatial models, air pollutant personal monitoring, and biological
monitoring techniques with a participatory approach (Boniardi et al.,
2019a, b, 2021a, b). The study population consisted of 128 school-age chil-
dren (7–11 years old) from a primary school in Milan, Italy, who were in-
volved in two campaigns, Spring 2018 (20th April–8th June 2018) and
Winter 2019 (8th January–13th March 2019). The study was approved
by the school board and by the ethics committee of the University of
Milan and all the participants, children and their parents, were informed
about the aims and the contents of the research. The study has been carried
out in accordance with the Code of Ethics of theWorld Medical Association
(Declaration of Helsinki) for experiments involving humans. During the
year, children and their teachers were involved in a series of educational ac-
tivities on air pollution themes (including laboratories, frontal teaching,
and experimental measures in the school neighborhood). After the first
month of activities (Spring 2018), children and their family were invited
to participate to the field study involving the personal environmental and
biological monitoring of exposure to a panel of air pollutants. Through
the school diary, an invitation letter was given, together with a leaflet illus-
trating the MAPS-MI project. Only parents answering positively to the invi-
tation letter were telephonically contacted to arrange for an informative
meeting at school and for the sampling day. During the first meeting, chil-
dren and their parents were informed about the project and, as required by
the General Data ProtectionRegulation of the EuropeanUnion (EU) (2016),
were asked to sign three forms: 1) an informed consent sheet about the pro-
ject specifically prepared to be understood by children; 2) an informed con-
sent sheet about the project for parents or legal guardians; and 3) a consent
sheet to process personal data. The same procedure was repeated for the
winter monitoring campaign. Participating children were asked: 1) to
wear a GPS device, 2) to complete a time-activity diary (TAD) with the
help of their parents to collect information on their activities and locations,
and 3) to wear a shoulder bag equipped with a series of samplers among
which a Radiello sampler to measure personal exposure to VOCs and a
micro-aethalometer to measure eBC (Boniardi et al., 2019a, b). A brief
training on how to handle the equipment during the personal monitoring
was given as well, to both children and their parents: for instance, they
were asked to wear the bag as long as possible during their activities, to
leave it in their proximity if they were involved in outdoor activities or in
the dressing room if theywent swimming or performed other indoor sports,
and to leave the bag near their bed during the night (all samplers were si-
lent). Moreover, children were warned on the importance of leaving the
equipment in an open environment (i.e. not locked in a wardrobe) and
with the inlet tube free from obstruction. No formal protocol compliance
data was collected, but children and parents were asked to report any in-
conveniences they had noticed. Finally, parents were asked to fill in a per-
sonal information questionnaire.

All the logistic operations linked to the monitoring campaign were car-
ried out in the former infirmary room of the school. Starting on Monday af-
ternoon and up to Thursday afternoon, each day, at 4 pm, a group of 4–5
children was enrolled in the study and wore the equipped shoulder bag;
then, after the home-to-school commuting of the next day, from 8 to 9 am,
children returned the shoulder bag and collected a spot urine sample.

2.2. Questionnaire, GPS and time-activity diary

A questionnaire was completed by children's parents to collect informa-
tion on children personal and lifestyle characteristics, home characteristics,
and parent smoking status, while a time-activity diary was completed by
children and parents to describe the activities carried out by children dur-
ing the monitored period. Data derived from the GPS device worn by
children were manually checked and used to confirm TAD information.
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Material and methods including the TAD are reported and described in
more detail in Boniardi et al. (2021).

2.3. Personal air sampling and analysis

Personal exposure to airborne benzene (BEN-A), toluene (TOL-A), ethyl-
benzene (EtBEN-A), o-xylene (o-XYL-A), m+ p-xylene (m+ p-XYL-A) (all
together BTEX-A), methyl tert-butyl ether (MTBE-A), ethyl tert-butyl ether
(ETBE-A), and ter-amyl methyl ether (TAME-A) were monitored during a
16-h period (starting at 4:00–4:30 p.m. and ending the following morning
at 8:00–9:00). Air was sampled using the passive sampler Radiello
equipped with a 35–50 mesh charcoal cartridge (Supelco, Sigma-Aldrich,
Milano, Italy). Children wore the sampler on their upper chest, near their
respiratory zone. At the end of the sampling period, the cartridge was
sealed in the proper glass tube, and kept in a clean box at room temperature
until analysis, which occurred within 30 days from the collection, accord-
ing to the manufacturer's instruction.

Airborne VOCs were measured by gas chromatography coupled to mass
spectrometry (GC–MS) (Fustinoni et al., 2010; Cattaneo et al., 2021) Quan-
tification limit (LOQ) was 8 μg/L for all analytes. Considering the average
sampling time and the uptake rates of each analyte, this concentration
was estimated to correspond to airborne levels of 0.2 μg/m3 for MTBE-A,
ETBE-A, TAME-A, TOL-A, EtBEN-A, o-XYL-A and LIM-A, 0.3 μg/m3 for
m + p-XYL-A, and 0.6 μg/m3 for BEN-A.

Equivalent black carbon (eBC) levels were detected by means of micro-
aethalometer AE51 (AethLabs, California, United States). Raw data were
post-processed to smooth background noise (Hagler et al., 2011), to ac-
count for difference between the devices, and to correct the concentration
underestimate linked with the loading effect of the particulate matter col-
lected on the filter (Virkkula et al., 2007). The post processing method ap-
plied for this study is described in detail in Boniardi et al. (2021a).

2.4. Urine sample collection and analysis

Urine spot samples were collected in the morning within 10 min of the
end of the air sampling. Urinewas collected in disposable polyurethane bot-
tles, and then, using a disposable syringe, a 7 mL aliquot was immediately
poured into an 8-mL pre-evacuated storage vial for the determination of uri-
nary VOC (Fustinoni et al., 2007). A 20 mL aliquot was stored in a polyeth-
ylene tube for creatinine analysis. After collection, the specimens were
immediately stored at −20 °C and analyzed, according to their stability,
within 60 days.

Urinary benzene (BEN-U) and methyl tert-butyl ether (MTBE-U) were
determined by headspace solid-phase microextraction (HS-SPME) followed
by GC–MS analysis according to published methods (Fustinoni et al., 1999,
2010; Scibetta et al., 2007) with somemodifications (Fustinoni et al., 2010;
Cattaneo et al., 2021). The LOQ was 10 ng/L.

The quality control of the method to quantify BEN-U is guaranteed
by the successful participation twice a year to the German External Quality
Assessment Scheme (G-EQUAS) for analyses in biological materials
(G-EQUAS, 2009). To our knowledge, no external quality control for the
analysis of MTBE-U is available.

Urinary creatinine (crt) was determined using Jaffe's colorimetric
method (Kroll et al., 1986). No criteria of acceptability based on urine dilu-
tion was applied.

2.5. Statistical analysis

Statistical analysis and data treatmentwere performed by using R studio
(Bates et al., 2015; R Core Team, 2013; Wickham et al., 2019). Descriptive
analyses were used to obtain the medians, ranges, and percentiles of ambi-
ent and biological analytes. Additional statistical analysis was performed on
decimal log-transformed data to obtain the normal distribution. The raw
values calculated from the integration of analytical peaks were used un-
changed instead of applying substitution methods (e.g. using fractions of
the quantification limit) to avoid substantial bias by substitution (Helsel,
3

2006). Data with zero values were substituted with a value corresponding
to the half of the lowest detectable values. Comparisons were performed
by Student's t-test for independent or partially dependent samples, where
required. Seasonal differences were investigated with Wilcoxon test.
Pearson's correlationswere used tomeasure the associations between quan-
titative variables. A p-value < 0.05 was considered statistically significant.

The main regression analysis reported in this contribution regards all
the collected data pooled together. In this way, since data were clustered
by days and id, multiple linear random intercept models were developed
to investigate the association between ambient and biological markers
(decimal log transformed mean values) and a set of possible explanatory
variables. The latter are reported in the supplementary materials
(Table S1) and can be classified in: socio-economic variables (e.g. scholar
level of the parent who filled the questionnaire); personal characteristic
of children (e.g. BMI); ETS information (e.g. urine cotinine levels);meteoro-
logical information (e.g. the average wind speed during the monitoring ses-
sion); home features (e.g. type of cooking stoves, daily number of vehicles
in a certain circular buffer); mobility habits (e.g. home to school transport
mode, time spent being transported by cars); other microenvironments
(e.g. time spent outdoor); and airborne analytes (only to explain the quan-
tified levels of urinary analytes). These variables were collected from the
TAD, the GPS device and the family questionnaires. Besides, wind speed
values were obtained from the nearest (about 1 km from the school) air
quality network station run by the Regional Environmental Protection
Agency (ARPA), while the height of the mixed layer was estimated for the
city of Milan by the Regional Environmental Protection Agency of Emilia
Romagna (ARPAE). Finally, spatial variables (e.g. home-road distance)
were elaborated by using Quantum GIS (QGIS Development Team, 2022)
based on children's home address and traffic layers from the Municipality
of Milan.

To develop themultiple regression, thefirst stepwas to check all the col-
lected variables in a single-variable mixed-effect model controlled by the
education level of the parent who filled in the questionnaire, the sex of
the child, and the number of members of the family plus age, BMI, and
creatinine levels for urinary markers. The use of creatinine as independent
variable in the multiple regression model allows the urinary marker con-
centration to be adjusted appropriately for urinary creatinine and the statis-
tical significance of other variables in the model to be independent of
effects of creatinine concentration (Barr, Wilder et al. 2005). Only the pre-
dictors with p-value < 0.1 and having an expected direction of effect were
selected. As a second step, we introduced the variables one by one in an
empty new model, again controlled by the education level of the parent
who filled in the questionnaire, the sex of the child, and the number of
members of the family plus age, BMI, and creatinine levels for urinary
markers. We started from the predictors with the lowest p-value. For each
iteration, the new variable was retained if the related p-value was <0.1,
and the Akaike Information Criterion (AIC) of themodel decreased. The sig-
nificance (p < 0.1) was tested by comparing the previous step model AIC
with the newone, bymeans of Analysis of Variance (ANOVA) test. Whether
this approach could not be used (e.g. different number of cases due to differ-
ent variables retained), we selected the model with the highest coefficients
of determination (R2). Marginal and conditional coefficients of determina-
tion (R2

m and R2
c) were computed following Nakagawa and Schielzeth

(2013). To give predictors rank of importance, the relative amount of ex-
plained variability was calculated separately for each fixed effect in
single-predictormixed-effect regression analysis. To identify the proportion
of the total variability explained by the random effects, the Intra-Class Cor-
relation coefficient (ICC)was computed as the ratio between the random ef-
fect variance and the total variance. Finally, to better understand the
influence of seasons on predictors of exposure, the same explanatory vari-
ables selected in the main pooled data analysis were tested in new seasonal
models. In particular, new mixed-effect regression models were developed
for each analyte using separately spring and winter data. For this analysis,
the “season” explanatory variable previously tested for the pooled data
models was discarded and the date of monitoring remained as the only
tested random effect.
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3. Results

3.1. Study population

The main characteristics of the study population are given in Table 1.
Out of invited children (n = 128), 85 (66 %) and 109 (85 %) expressed
their interest to be involved in the Spring 2018 andWinter 2019 field cam-
paigns, respectively. Three children in Spring 2018 and 11 in Winter 2019
did not confirm their participation (reasons: unavailability or illness), so the
actual participants were 82 in Spring 2018 and 98 inWinter 2019. One par-
ticipant from theWinter campaign was excluded from this analysis because
the questionnaire was not complete, so the actual participants in this study
were 82 and 97 during Spring 2018 and Winter 2019, respectively, 76
repeated in the two seasons. Not all the different kind of samples were
available for each participant: urine samples and eBC measurements
were available for 81 and 95 children, while VOC measurements for 82
and 89 children, in Spring 2018 and Winter 2019, respectively. Either
way, females were the majority (55–52 %). On average, children lived
in families composed of 4 members, in apartments at the second
floor equipped with gas stoves (86 %), in urban areas with busy roads
and <1 km far from school. Children living with parents who smoke or
vape were 29 (36 %) in spring and 26 (27 %) in winter. While involved
in the monitoring campaign, children spent most of their time at home,
while only a few spent some time outdoor after school. Children spent on
average 41 and 47 min commuting respectively during spring and winter,
and those who were transported at least one time by car were 56 (68 %)
and 57 (59 %).
Table 1
Characteristics of the study participants, stratified by campaign (Spring 2018, Winter 20

Characteristics

Personal Age (years), mean (min–max)
Gender, N (%)

BMI (kg/m2), median (25th–75th)
Family Number of family members, mean (min–max)

Number of children, mean (min–max)
Questionnaire responder, N (%)

Responder education, N (%)

ETS exposure Living with smokers or vapers, N (%)

Home Gas stoves, N (%)
Internal fireplace, N (%)
Internal boiler, N (%)
Use of aroma burners (candles, incense), N (%)
Home height, (m), median (25th–75th)
Distance to school (meters), median (25th–75th)
Distance to the first road (m)1, median (25th–75th)
Daily number of vehicles in a 50-m radius buffer around home, N med

Time-activity information Time at home (min), median (25th–75th)
Time at home while cooking (minutes), median (25th–75th)
Time at home while internal boiler working (min), median (25th–7
Number of children commuting by car, N (%)
Time commuting by car (min), median (25th–75th)
Time walking (min), median (25th–75th)
Total commuting (min), median (25th–75th)
Number of children commuting from home to school, N (%)

Meteorological variables Wind speed (m/s), median (25th–75th)

ETS = environmental tobacco smoke.
1 The first road with >1000 Veh/day.
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3.2. Personal exposure to air pollutants

Descriptive statistics of the monitored air pollutants are reported in
Table 2. Considering airborne particles, eBC personal concentrations were
always detectable with values about 3 times higher inwinter than in spring.
For what concerns airborne VOCs, with the exception of ETBE-A and
TAME-A, that were almost never detected in both seasons, the percentage
of detection for airborne BTEX and MTBE-A was about 100 % in both sea-
sons, with the notable exception of BEN-A, for which it was as low as
52 % in spring.

Except for TAME-A and ETBE-A, personal exposure to airborne VOCs
was >2-fold higher in winter than in spring.

3.3. Urinary biomarkers of exposure

Urinary BEN-U andMTBE-U results are reported in Table 2. During both
seasons, BEN-U was quantifiable in 100 % of the samples, while MTBE-U
samples above the LOQ passed from 82 % in winter to 42 % in spring. Sea-
sonal differences were found, with both BEN-U andMTBE-U higher in win-
ter than in spring.

3.4. Correlation analysis

The two correlograms reported in Fig. 1 show p- and r values related to
the Pearson's correlation tests performed between pollutants. All the air-
borne VOCs showed mid to strong positive correlations with each other
with r values ranging from 0.63 (o-XYL-A vs. MTBE-A, p < 0.001) to 0.94
19).

Study campaign

Spring
(N = 82)

Winter
(N = 97)

8 (7–10) 9 (7–11)
Males 37 (45 %) 47 (48 %)
Females 45 (55 %) 51 (52 %)

16.2 (15.0–17.2) 15.9 (15.0–17.7)
4 (2–8) 4 (2–8)
2 (1–6) 2 (1–6)

Mother 67 (82 %) 75 (77 %)
Father 15 (18 %) 21 (22 %)
Missing / 1 (1 %)
High school or less 22 (27 %) 29 (30 %)
University or higher 60 (73 %) 67 (69 %)
Missing 0 1 (1 %)
Yes 29 (36 %) 26 (27 %)
No 53 (64 %) 71 (73 %)

74 (90 %) 77 (83 %)
1 (<1 %) 1 (<1 %)
43 (52 %) 47 (48 %)
1 (<1 %) 2 (<1 %)
6 (3–12) 6 (3–15)
690 (510–1045) 754 (520–1057)
15 (11–24) 15 (11–25)

ian (25th–75th) 11,732 (1822–30,384) 11,712 (1560–28,649)
806 (784–860) 828 (789–877)
27 (0–36) 30 (12–40)

5th) 0 (0–0) 0 (0–15)
56 (68 %) 57 (59 %)
29 (15–45) 24 (15–44)
20 (7–33) 24 (14–36)
41 (29–54) 47 (32–59)

On foot 39 (48 %) 53 (55 %)
By car 33 (40 %) 29 (30 %)
Other 10 (12 %) 15 (15 %)

1.4 (1.2–1.7) 1.2 (1.1–1.6)



Table 2
Children personal exposure to eBC, airborne VOCs and VOC urinary levels stratified by campaign (Spring 2018, Winter 2019). Results are reported as median (5°–95°
percentiles) of the mean personal exposure.

Personal exposure
Median (5°–95°); % > LOQa

Airborne particles (μg/m3) Spring (N = 81) Winter (N = 95) All (N = 176)

eBC⁎⁎⁎ 1.4 (0.7–2.3); 100 3.9 (1.1–8.7); 100 1.9 (0.8–7.5); 100

Airborne VOCs Spring (N = 82) Winter (N = 89) All (N = 176)

BEN-A⁎⁎⁎ 0.6 (<0.6–1.3); 52 1.9 (0.8–3.5); 98 1.1 (<0.6–3.4); 76
TOL-A⁎⁎⁎ 4.3 (1.7–9.0); 100 9.9 (4.0–66.9); 100 5.9 (2.2–23.8); 100
EtBen-A⁎⁎⁎ 0.7 (0.3–2.0); 100 1.6 (0.7–3.1); 100 1.0 (0.3–3.0); 100
m + p-XYL-A⁎⁎⁎ 2.0 (0.8–6.2); 99 4.6 (2.3–10.8); 100 3.0 (1.0–8.4); 100
o-XYL-A⁎⁎⁎ 0.8 (0.4–2.0); 99 1.6 (0.8–3.5); 100 1.2 (0.4–3.4); 100
MTBE-A⁎⁎⁎ 0.5 (0.3–1.6); 99 1.1 (0.4–2.2); 100 0.8 (0.3–1.8); 100
ETBE-A <0.2 (<0.2–0.2); 7 <0.2 (<0.2 to <0.2); 7 <0.2 (<0.2 to <0.2); 7
TAME-A <0.2 (<0.2 to <0.2); 0 <0.2 (<0.2 to <0.2); 0 <0.2 (<0.2 to <0.2); 0

Urinary biomarkers (ng/L) Spring (N = 81) Winter (N=951) All (N = 1762⁎)

BEN-U⁎⁎ 41.8 (24.4–73.0); 100 51.1 (27.9–113.1); 100 44.9 (25.7–98.6); 100
MTBE-U⁎⁎⁎ <10 (<10–18.8); 42 15.1 (<10–47.2); 82 11.5 (5.0–35.5); 37

Wilcoxon test Winter versus Spring.
a Limit of quantification.
1 94 urine samples were available for MTBE-U.
2 175 urine samples were available for MTBE-U.
⁎ p < 0.05.
⁎⁎ p < 0.01.
⁎⁎⁎ p < 0.001.
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(o-XYL-A vs. m+ p-XYL-A, p < 0.001). Considering also airborne particles,
eBCwas positively correlatedwith all VOCswith r values ranging from0.62
(eBC vs. o-XYL-A, p < 0.001) to 0.86 (eBC vs. BEN-A, p < 0.001, Fig. S1).

For biomarkers, BEN-U showed a weak positive correlationwithMTBE-
U (r = 0.19, p < 0.01). Besides, BEN-U was positively correlated with all
airborne pollutants with r values ranging from 0.17 (BEN-U vs. m +
p-XYL-A, p < 0.05) to 0.35 (BEN-U vs. MTBE-A, p < 0.05); the correlation
with EtBEN-A and o-XYL-A was not statistically significant (p = 0.11
and p = 0.12). The correlation between BEN-U and BEN-A was positive
(r = 0.31, p < 0.001). Finally, MTBE-U was positively correlated with all
the airborne contaminants with r values ranging from 0.44 (MTBE-U vs.
o-XYL-A, p < 0.001) to 0.57 (MTBE-U vs. MTBE-A, p < 0.001). Both BEN-
U and MTBE-U were also correlated with eBC, with r values 0.32 and
0.48 (p < 0.001), respectively.
Fig. 1. Correlograms reporting p- and r values of the Pearson's correlation tests perform
Pearson's correlation p-values: *p < 0.05, **p < 0.01, and ***p < 0.001.
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3.5. Exposure covariates

3.5.1. Mixed-effect models for airborne VOCs and eBC
A summary of selected parameters for the mixed-effect models for air-

borne VOCs and eBC is reported in Table 3. Overall, the models explained
from 72 % (o-XYL-A) to 93 % (eBC) of the total measured variability
(R2

c) of the personal exposure,while themarginal effects of the explanatory
variables (R2

m) explained from24% (o-XYL-A) to 64% (BEN-A). According
to the single-variable mixed-effect models reported in Table S2, the season
of monitoring (Season) was the most predictive covariate for all the
analytes, explaining from 19.3 % (MTBE-A) to 56.9 % (BEN-A) of the mea-
sured variability. The average wind speed during the day of monitoring
(Wind speed), i.e., the second most predictive covariate, entered all the
models but those for EtBEN-A and o-XYL-A, explaining from 12.4 %
ed between pollutants.



Table 3
Ambient mixed-effect random intercepts multiple regressions. All models were controlled by the education level of the parent who filled the questionnaire, the sex of the
child, and the number of members of the family. Predictors are reported when p < 0.1.

eBC BEN-A TOL-A EtBen-A m + p-XYL-A o-XYL-A MTBE-A

R2
c
1 0.93 0.91 0.85 0.74 0.75 0.72 0.77

R2
m
1 0.55 0.64 0.39 0.34 0.37 0.24 0.39

RMSE1 0.068 0.074 0.11 0.13 0.12 0.12 0.10
VIF1 1.14 1.13 1.06 1.02 1.08 1.02 1.12
All observations 174 171 169 171 171 171 169
All groups (date) 43 42 42 42 42 42 42
All groups (id) 98 99 97 99 99 99 97
ICC1 (date) 0.80 0.60 0.68 0.45 0.39 0.45 0.18
ICC1 (id) 0.034 0.16 0.078 0.15 0.21 0.18 0.45

Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI) Estimate (95 % CI)

Intercept 3.17⁎⁎
(3.02; 3.31)

−0.31⁎⁎⁎
(−0.48; −0.14)

0.59⁎⁎⁎
(0.36; 0.81)

−0.24⁎
(−0.44;−0.037)

0.32⁎⁎
(0.089; 0.54)

−0.13
(−0.33; 0.081)

−0.12
(−0.32; 0.08)

Season: winter
ref: spring

0.39⁎⁎⁎
(0.28; 0.51)

0.52⁎⁎⁎
(0.42; 0.63)

0.39⁎⁎⁎
(0.25; 0.54)

0.36⁎⁎⁎
(0.24; 0.47)

0.35⁎⁎⁎
(0.24; 0.46)

0.28⁎⁎⁎
(0.17; 0.40)

0.23⁎⁎⁎
(0.13; 0.33)

Wind speed (m/s) −0.78⁎⁎
(−1.19; −0.36)

−0.59⁎⁎
(−1.01; −0.16)

−0.67⁎
(−1.27; −0.070)

−0.41
(−0.86; 0.033)

−0.89⁎⁎⁎
(−1.31; −0.47)

Time in car (min) 0.0014⁎⁎
(7.50 × 10−4;
0.0021)

0.0014⁎⁎
(4.83 × 10−4;
0.0023)

0.0015⁎
(2.95 × 10−4;
0.0025)

0.0014⁎
(1.95 × 10−5;
0.0026)

0.0016⁎
(3.01 × 10−4;
0.0028)

0.0013⁎
(1.65 × 10−4;
0.0024)

Parents who smoke: yes
ref: no

0.065⁎⁎⁎
(0.029; 0.100)

0.11⁎⁎⁎
(0.058; 0.16)

0.0072⁎
(0.092; 0.13)

Height of home (m) −0.0031⁎
(−0.0053;
−8.47 × 10−4)

−0.0035
(−0.074;
3.50 × 10−4)

−0.0055⁎
(−0.0095;−0.0014)

Distance home-school (m) 6.83 × 10−5⁎
(1.35 × 10−5;
1.25 × 10−4)

5.54 × 10−5

(−3.87 × 10−6;
1.17 × 10−4)

Distance home-road (m) −0.0011⁎
(−0.0022;
−8.27−4)

Home-school mode: car
ref: walk

0.063⁎
(0.010; 0.12)

0.073⁎
(0.0061; 0.14)

1 R2
c = conditional R2, R2

f = marginal R2, VIF = highest Variance Inflation Factor, RMSE = Root Mean Square Error, ICC = Interclass Correlation Coefficient.
⁎ p < 0.05.
⁎⁎ p < 0.01.
⁎⁎⁎ p < 0.001.
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(TOL-A) to 21.7 % (MTBE-A). Other important covariates were: the total
time spent in car during the day of monitoring (Time in car), that entered
all the models, but EtBEN-A, explaining from 2.8 % (eBC) to 7.9 % (m +
p-XYL-A) of the total measured variability; the presence of parents who
smoke (Parents who smoke), that explained from 1.4 % (TOL-A and eBC)
to 6.7 % (BEN-A); the height of children's dwellings (Height of home)
that explained from 0.8 % (eBC) to 2.0 % (TOL-A); the distance from
home to school (Distance home-school) that explained 9.8 % and 10.2 %
for EtBEN-A and m + p-XYL-A, respectively; the distance of the first road
to the children's dwellings (Distance home-road) that entered only the
eBC model explaining 1.8 % of the measured variability; and the mode of
transportation during home-school commuting (Home-school mode) that
explained the 5.2 % and the 7.9 % for BEN-A and MTBE-A, respectively.

A summary of selected parameters (beta and p-value) of the explanatory
variables reported aswinter, spring, and pooled datamodels are reported in
supplementary materials (Table S3). The direction of the effect was consis-
tent between seasons, while the statistical significance of the variables was
not always kept.

3.5.2. Mixed-effect models for urinary benzene and methyl tert-butyl ether
A summary of selected parameters for the mixed-effect models for BEN-

U andMTBE-U is reported in Table 4. Themodels explained 61% and 58%
of the total measured variability (R2

c) respectively for BEN-U andMTBE-U,
while the marginal effects of the explanatory variables (R2

m) explained
27 % and 41 %. According to the single-variable mixed-effect models re-
ported in Table S2, airborne benzene (BEN-A) and methyl tert-butyl ether
(MTBE-A) were the most predictive variables, explaining 26.6 % and
34.9 % of the measured variability of BEN-U andMTBE-U. Other important
6

covariates for BEN-Uwere the presence of parentswho smoke (Parents who
smoke) and whether children were transported by car during the day of
monitoring (Transported by car) that explained respectively the 18.9 %
and the 16.8 % of the measured variability. Important covariates for
MTBE-U were the season of monitoring and the ratio between the daily es-
timated vehicles on the nearest road from children's dwellings and its dis-
tance (Traffic on nearest road/Distance home-road) that explained
respectively 20.7 % and 2.2 % of the measured variability.

Table S3 reports a summary of parameters (beta and p-value) of the ex-
planatory variables reported as winter, spring, and pooled data models. As
observed for the airborne analytes, the direction of the effect was consistent
between seasons, while the statistical significance of the variables was not
always maintained.

4. Discussion

In this paper, the exposure to several traffic related pollutants was
assessed by environmental and biological monitoring in a group of
schoolchildren living in the city of Milan, Italy. Moreover, the determinants
of exposure were studied, with a focus on traffic exposure and personal
habits in commuting. The investigation of a typical weekday in two differ-
ent periods of the year (spring andwinter) allowed us obtaining the real-life
exposure.

The levels of children personal exposure were generally low, in the
range of some μg/m3, but still mostly quantifiable and with higher values
in winter than in spring. In particular, if considering airborne benzene,
the overall median level was 1.1 μg/m3, five times below the level enforced
as amean calendar year limit in the EU (5 μg/m3). The levels here found for



Table 4
Urinary mixed-effect random intercepts multiple regressions. All models were con-
trolled by the education level of the parent who filled the questionnaire, plus age,
sex, BMI and creatinine levels of the child and finally the number of members of
the family. Predictors are reported when p < 0.1.

BEN-U MTBE-U

R2
c
1 0.61 0.58

R2
m
1 0.27 0.41

RMSE1 0.10 0.18
VIF1 1.21 1.45
all observations 167 166
All groups (days) 42 42
All groups (id) – 97
ICC1 (date) 0.46 0.02
ICC1 (id) – 0.27

Estimate (95 % CI) Estimate (95 % CI)

Intercept 2.02⁎⁎⁎
(1.65; 2.39)

1.20⁎⁎⁎
(0.54; 1.86)

Sex: M
ref: F

0.044⁎
(0.0018; 0.086)

Age −0.039⁎
(−0.075; −0.0033)

Number of members of the family −0.030⁎
(−0.056; −0.0035)

Creatinine 0.29⁎⁎⁎
(0.17; 0.41)

Season: winter
ref: spring

0.17⁎⁎⁎
(0.081; 0.26)

BEN-A 0.12⁎⁎
(0.027; 0.22)

MTBE-A 0.54⁎⁎⁎
(0.40; 0.69)

Parents who smoke: yes
ref: no

0.048⁎
(0.044; 0.092)

Transported by car: yes
ref: no

0.060⁎⁎
(0.017; 0.10)

Traffic on nearest road/distance
home-road

9.91 × 10−6⁎
(1.81 × 10−6; 1.78 × 10−5)

⁎ p < 0.05.
⁎⁎ p < 0.01.
⁎⁎⁎ p < 0.001.

1 R2
c = conditional R2, R2

f = marginal R2, VIF = highest Variance Inflation
Factor, RMSE= Root Mean Square Error, ICC= Interclass Correlation Coefficient.
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benzene are similar to those reported for children living in an industrial
area in Sardinia (Italy) in 2016 (median 1.6 μg/m3) (Pilia et al., 2021)
and higher than those reported for children living in South Korea in 2008
(median 0.3 μg/m3) (Byun et al., 2010). Children exposure to benzene
and to the other studied VOCs was also similar to or lower than that ob-
served in our previous study on adults living and working in Milan (median
for BEN-A 2.3 μg/m3) (Cattaneo et al., 2021). However, if we consider that
benzene is a Group 1 carcinogen (IARC, 2018) which possibly affects health
even at very low concentrations (Filippini et al., 2019), and that children
are deemed to be among the most susceptible, our results stress the need
for actions to lower their exposure in the city of Milan.

To the best of our knowledge, this is the first time that the personal expo-
sure of children to oxygenated additives to fuels, such as MTBE, ETBE, and
TAME, has been studied. Previous measures have been scarce and limited
to occupational exposure (Vainiotalo et al., 2006; Campo et al., 2011,
2016a) or to adults (Cattaneo et al., 2021). Among airborne ethers, only
MTBE was always quantifiable, showing a diffuse exposure for children, sim-
ilar to that found in adults in the same city of Milan (median 0.8 μg/m3)
(Cattaneo et al., 2021).

Determinants of exposure to air pollutants in children were identified
by using mixed effect regression models (Tables 3 and S2), that explained
from 72 % (o-XYL-A) to 93 % (eBC) of the total measured variability of
the personal exposure. Major contributions were given by the season,
explaining up to 57 % of the variability, and the wind speed, explaining
up to 22 % of the total variability. As regards the season, 2- to 3-fold higher
values were observed for all analytes in winter than in spring, and for BEN-
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A also the percentage of positive samples doubled in winter. This is an ex-
pected pattern for the pollutant distribution in this area, as the season ac-
counts for several meteorological variables and concomitant causes that
can play a key role. Among the others, the lower mixing height in winter
which hinders the dispersion of pollutants, and the lower outdoor temper-
ature togetherwith the lower photochemical activitywhich slows down the
removal of chemicals from the atmosphere (Masiol et al., 2017). Moreover,
some personal habits, such as the commutingmode, are affected by the sea-
son, with a higher number of vehicles in urban areas in the cold than in the
warm season. At the same time, also indoor exposure should be considered,
taking into account that study children spent most of the monitored time at
home. For VOC in particular, higher levels are generally found indoor in the
cold season, due to the reduced indoor ventilation and the consequent accu-
mulation of pollutants.

The season may act as a modulator on the role of predictors in explaining
personal exposure to air pollution. However, according to the seasonal beta
values reported in Table S3, the direction of effect of the predictors were con-
sistent in both spring and winter seasons, even if the statistical significance
was not always maintained. This could be linked to the lower statistical
power of the seasonal models due to the reduced amount of data.

As regards indoor pollution, the sources can be both external, such as
road traffic, and internal, including smoking and cooking habits
(Vardoulakis et al., 2020). However, in our study the variables related to
cooking, such as the time spent at homewhile cooking, were not significant
in single regression analysis and were not included in the final models. The
lack of significance here found is consistent to what previously observed
(Cattaneo et al., 2021). Besides, since the great majority of study house-
holds (86 %) hosted gas stoves, the influence of the type of stove could
not be tested. The presence of an internal boiler and its use were not signif-
icant too. Finally, it was not possible to test the influence of other possible
source of indoor pollution like the use of aroma burners (candles, incense)
or internal fireplaces since these variables were under-represented.

Other significant determinants of exposurewere related to the commut-
ing mode of children, and in particular the use of car along the whole mon-
itored period increased all analytes, but EtBEN-A, with an estimated
increase of about 0.3 % for each minute spent in car. Even if the time ded-
icate to home-school commuting was very short in comparison with the
total monitored time, as children mostly lived in the close proximity to
the school (median home-school distance about 700 m), this had a great im-
pact on children exposure, aswalking instead of using car along this route de-
creased their exposure to BEN-A and MTBE-A by 16 and 18 %, respectively.
In addition, a longer home-school distance resulted associated with a higher
exposure to EtBEN-A and tom+p-XYL-A. These results were expected, since
the morning rush hour in Milan is the most critical time-window of the day
for traffic-related air pollution (Boniardi et al., 2019a, b).

In a recent paper, we highlighted the impact of environmental tobacco
smoke (ETS) on children by quantifying cotinine in urine samples (Campo
et al., 2021). In this contribution, we show that children exposure to ETS
significantly affects their exposure to eBC and BEN-A, with respectively
16% and 29%higher values in children exposed than in those not exposed.
As it iswidely recognized, the exposure to ETS causes the exposure to amix-
ture of hundreds of chemicals, among which at least 70 carcinogenic sub-
stances (IARC, 2004), such as benzene. In children, ETS exposure has
been associated with an increased risk of developing asthma, sudden infant
death syndrome, ear and respiratory infections, neurodevelopment disor-
ders, obesity, and premature atherosclerosis (IARC, 2009; WHO, 1999;
U S Department of Health and Prevention, 2014; Braun et al., 2020).

Biological monitoring of VOC exposure of the general population and of
children in particular has been very limited, maybe for the difficulties en-
countered in involving children in a biomonitoring study. In this sense, a
significant result of this study is the relatively high participation rate,
which benefited from the participatory approach of the study, as showed
by the increased participation in the second campaign (Boniardi et al.,
2021a). The overall BEN-Umedian level (44.9 ng/L) was similar to that re-
ported for Italian children living in Central Italy in 2017 (winter mean
41.1 ng/L) (Antonucci et al., 2021), higher than in children living near or
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far from a petrochemical plant in Sardinia (Italy) in 2016 (10 ng/L) (Pilia
et al., 2021), and much lower than in children living near or far from a pet-
rochemical plant in Sicily in 2015 (Italy) (200 ng/L) (Andreoli et al., 2015),
or in a urban area in Thailand in 2004 (70 ng/g creatinine) (Buthbumrung
et al., 2008). BEN-U median levels were also slightly lower than in non-
smoking adults in Milan (67 ng/L) (Cattaneo et al., 2021). As regards
MTBE-U, overall median levels (11.5 ng/L) weremuch lower than data pre-
viously reported for children in Italy (70–800 ng/L) (Andreoli et al., 2015;
Antonucci et al., 2021) and in a selected population of Milan policemen ex-
posed to traffic during work shifts (147 ng/L) (Campo et al., 2011).

Both Pearson's correlation and mixed effect regression models showed
that urinary biomarkers were significantly associated with their respective
airborne levels, with r=0.31 (BEN-Uvs. BEN-A) and r=0.57 (MTBE-U vs.
MTBE-A) (Fig. 1). The correlation found for benzene is similar to that found
in our previous studies in the general population (Fustinoni et al., 2010;
Cattaneo et al., 2021). The relatively low correlation coefficients found
are justified, considering that multiple confounders may affect the relation-
ship between air and urinary analytes, also considering their low levels.
Among the others, smoking is a relevant contributor to benzene intake.
The regression models (Tables 4 and S2) highlighted indeed that living
with smoking parents was the major determinant of BEN-U excretion,
explaining 19 % of the total variability of BEN-U and with 12 % higher
levels in exposed than in not exposed children.

The second major determinant to BEN-U was being transported by car,
that contributed 17 % to the total BEN-U variability. This is in line with re-
sults for airborne benzene and confirms that BEN-U, although impacted by
tobacco smoke exposure, is a reliable marker of exposure to traffic, as
shown by a few previous studies showing associations between BEN-U
and different surrogates of traffic exposure, such as using car for commut-
ing (Cattaneo et al., 2021), time spent in urban traffic (Lovreglio et al.,
2011), and residence in urban areas (Protano et al., 2010; Campagna
et al., 2014). Also, this is in line with a recent study conducted in Milan
which showed that the exposure to benzene is higher in car commuters if
compared to other type of commuters (Boniardi et al., 2021b).

For MTBE-U, we previously reported an excellent association with
MTBE-A in petrol station attendants (Campo et al., 2016b), while this is
the first time that a significant correlation is reported in the general popu-
lation. Moreover, MTBE-U was better associated to all airborne pollutants
(0.44< r< 0.52) than BEN-U (0.14< r< 0.35), showing that this biomarker
is useful to assess the exposure not only to MTBE, but also to other pollut-
ants related with fuel emissions. A reason for the better association may
be that MTBE-U, differently from BEN-U, is not affected by tobacco
smoke exposure, as already observed in occupational scenarios (Campo
et al., 2011, 2016a). Among the tested variables, only the season, the per-
sonal exposure to MTBE-A and, to a minor extent the ratio between the
daily estimated vehicles on the nearest road from children's dwellings and
its distance, were significant determinants for MTBE-U excretion.

To investigate the role of personal characteristics on biomarkers excre-
tion, gender, age, BMI, and urinary creatinine were introduced in the re-
gression models. As we previously observed, BEN-U was associated with
creatinine and sex, whileMTBE-Uwas not associated to any of these param-
eters (Cattaneo et al., 2021; Campo et al., 2011).

To the best of our knowledge, we report here for the first time significant
correlations between personal eBC and VOC exposure, with the highest corre-
lation coefficients with BEN-A (r= 0.86) and MTBE-A (r= 0.73). The high
correlation found between eBC and BEN-A highlights their common sources,
mainly represented, in the urban environment, by fuel combustion and to-
bacco smoke. The importance of traffic-related sources is confirmed by the
high correlation between eBC and MTBE-A. These evidences are confirmed
also by the significant correlations between eBC and urinary benzene and
MTBE.

The main limitation of this study is the relatively low number of children
and their recruitment on a voluntary base, whichmakes our results not gener-
alizable to the entire population. However, the participatory approach
allowed us obtaining a high participation rate, so it is likely that it is represen-
tative, at least, of the studied area. Besides, the low number of children
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hindered the investigation of some under-represented variables, mostly re-
lated to indoor sources of pollution. Another limitation is that the personal
air monitoring had a relatively short duration and children spent most of the
monitored time indoors. However, the study design was based on the reason-
able assumption that children activities, and thus their exposure, is roughly
constant along the days. Moreover, the investigated time-window included
both the evening and morning rush hours, so allowed us to investigate these
critical times of the day.

The investigation of general population exposure by using a combined ap-
proach of personal air monitoring and biological monitoring is very limited in
the literature, especially if considering studies involving children. The main
strength of this study is the investigation of such an expanded panel of pollut-
ants in two different seasons by using a multidisciplinary approach that in-
cludes personal air monitoring, biological monitoring, and up-to-date
statistical analysis. Moreover, the collection of information from different
sources, including questionnaires, time-activity-diary, and spatial variables,
allowed us to highlight the different factors contributing to children exposure.

In conclusion, this study investigated the exposure to several VOCs and
eBC in school-age children living in Milan. The personal exposure was
mainly related to meteorological and seasonality factors, but an important
role was played also by traffic related variables andmobility habits, includ-
ing the time spent in a car, the home-school mode, and the exposure to pas-
sive smoke. As regards biological monitoring, the internal dose of benzene
was mainly determined by commuting by car and passive smoke exposure.

Our results have some implications for environmental epidemiology. The
overall high correlation coefficients found among both VOCs, eBC, as well
as biomarkers, suggests the importance of a multi-pollutant approach for a
proper exposure assessment in the study of air pollution health effects
(Dominici et al., 2010). Besides, the impact ofmobility-related habits on expo-
sure suggest the opportunity to incorporate such kind of variables in exposure
assessment analysis (Khreis andNieuwenhuijsen, 2017). Finally, fromapublic
health perspective, the results of this study show that traffic-mitigation actions
focused especially on morning rush hour and home-to school commuting
paths, together with personal choices in commuting mode, could be effective
in lowering the personal exposure of children to several air pollutants. At the
same time, educational interventions aimed to make smoking parents aware
of risks connected with passive smoking should be promoted.
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