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BOUNDEDNESS OF ELLIPTIC CALABI–YAU THREEFOLDS

STEFANO FILIPAZZI, CHRISTOPHER D. HACON, AND ROBERTO SVALDI

Abstract. We show that elliptic Calabi–Yau threefolds form a bounded family. We also show that the
same result holds for minimal terminal threefolds of Kodaira dimension 2, upon fixing the rate of growth of
pluricanonical forms and the degree of a multisection of the Iitaka fibration. Both of these hypotheses are
necessary to prove the boundedness of such a family.
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1. Introduction

Throughout this paper, we work over the field of complex numbers C.
Normal projective varieties with numerically trivial canonical bundle (in short, K-trivial varieties) and

mild singularities are one of the fundamental building blocks in the birational classification of projective
varieties and they play a prominent role in many areas of research. It is well known that their birational
geometry is rather rich and subtle, and many phenomena in this context are yet to be fully understood.
Among K-trivial varieties, an important and rich class that still defies our understanding is given by Calabi–
Yau varieties, i.e., projective varieties X with Q-factorial terminal singularities, KX ∼ 0 and hi(OX) = 0
for 0 < i < dimX .

A fundamental and long-standing question, originally due to S.-T. Yau [Yau09], is whether Calabi–Yau
threefolds have finitely many topological types. From the point of view of birational geometry, one could
try to answer affirmatively the above question by showing that Calabi–Yau threefolds are parametrized
by finitely many algebraic families of deformations. In general, K-trivial varieties certainly do not form
finitely many algebraic families: in dimension three, it suffices to consider, for example, the case of products
of K3 surfaces and elliptic curves. Hence, we cannot drop the condition on the vanishing of the middle
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2 S. FILIPAZZI, C.D. HACON, AND R. SVALDI

cohomology of the structure sheaf. An interesting and important result towards a definitive answer to Yau’s
question is due to Gross [Gro94]: he showed that there exist finitely many projective families Xi → Si → Ti
over finite type schemes Ti such that for any elliptic Calabi–Yau fibration f : X → S, whose base S is a
rational surface, there is a closed point t in some Ti such that X (resp. S) is birationally isomorphic to
the fiber Xt (resp. St) over t and these birational isomorphism can be chosen so that they identify f with
the induced fibration Xt → St. Even better, it is not hard to show that the birational map X 99K Xt is an
isomorphism in codimension one, and hence can be decomposed into a finite sequence of flops. We summarize
this property by saying that elliptic Calabi–Yau threefolds form a bounded family modulo flops. Recently,
Wilson [Wil17,Wil20] has proven some new results in the context of boundedness of Calabi–Yau threefolds
at large.

The class of elliptic Calabi–Yau threefolds is of central importance in the study of Calabi–Yau threefolds
in general: indeed, it is expected, based on known examples, that Calabi–Yau threefolds of large Picard
rank are always elliptically fibered, perhaps after flopping a finite number of curves. Thus, this approach
may eventually show that Calabi–Yau threefolds of large Picard rank have finitely many topological types.
When the base S of an elliptic Calabi–Yau f : X → S is not rational, then it is birational to a (possibly
singular) Enriques surface and f is isotrivial, see [Gro94, Prop. 2.10]. Thus, the birational geometry of these
fibrations is well understood. Even better, by work of Kollár and Larsen [KL09, Theorem 14], it is known
that X becomes a product of a K3 or Abelian surface with an elliptic curve, after a quasi-étale cover, see
also [Nak88, Appendix].

Since Calabi–Yau threefolds may have infinitely many models that are isomorphic in codimension one, it
is not clear whether the result of Gross implies the boundedness of topological types for these Calabi–Yau
varieties. However, another celebrated conjecture, the Kawamata–Morrison Conjecture, predicts that the
isomorphism types of such models are just finitely many distinct ones. Kawamata [Kaw97] proved a weaker
version of this conjecture in the elliptically fibered case: given an elliptic threefold f : X → S, he showed
that, up to isomorphism over S, there are only finitely many models of f over S isomorphic in codimension
one, cf. Theorem 3.4. Hence, Kawamata’s result offers a first hint towards proving boundedness of the
topological types elliptic Calabi–Yau varieties starting from Gross’s theorem.

In this paper, we give a complete and affirmative answer to Yau’s question for elliptic Calabi–Yau three-
folds. Our result includes also the case of those elliptic fibrations whose base is non rational; in such case, the
bases of the fibration is a surface with at worst Du Val singularities whose minimal resolution is an Enriques
surface. Following the philosophy introduced above, we show that there exist a finite number of algebraic
families such that any elliptic Calabi–Yau threefold appears as the fiber of one of the families.

Theorem 1.1. The set F3
CY, ell of elliptic Calabi–Yau threefolds forms a bounded family.

Theorem 1.1 immediately yields the following important corollary proving the finiteness of the topological
types of elliptic Calabi–Yau threefolds, answering a classical question in string theory.

Corollary 1.2. There are only finitely many topological types of elliptic Calabi–Yau threefolds.

Most of the methods developed to tackle Theorem 1.1 can be used to study the boundedness of elliptically
fibered varieties in general. For instance, they naturally apply to minimal n-folds X with κ(X) = n − 1,
as their Iitaka fibration f : X → Y is an elliptic fibration. This circle of ideas has been explored by the
first-named author in [Fil20], where necessary and sufficient conditions for boundedness modulo flops are
settled. By further exploring the methods of the proof of Theorem 1.1, we are also able to improve the
criteria in [Fil20] to criteria for honest boundedness in the case of threefolds of Kodaira dimension 2. Let

us recall that for a divisor D on a normal algebraic variety, we define volk(D) = limm→∞
h0(X,mD)

mk

k!

and this

value is strictly positive (and finite) exactly when the Iitaka dimension of D is k.
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Theorem 1.3. Fix a positive integer d and a positive real number v. The set

F
3,v,C
κ=2 :=

{
X

∣∣∣∣
X is a projective Q-factorial terminal threefold, KX is nef, κ(KX) = 2,
vol2(KX) = v, and the Iitaka fibration of X admits a degree C rational multisection

}

forms a bounded family.

We stress that the conditions in Theorem 1.3 are necessary. Indeed, as discussed in [Fil20, §3], given a
family π : X → T of minimal n-folds of Kodaira dimension n − 1, up to a stratification of T , their Iitaka
fibrations deforms along the family, that is, π factors as X → Y → T and for any t ∈ T , Xt → Yt is the Iitaka
fibration of Xt. Consequently, up to a further stratification, Kodaira’s formula for the canonical bundle of
Xt → Yt is obtained by restriction of the formula for X → Y. Furthermore, up to an additional stratification,
a rational multisection of X → Y induces a rational multisection of Xt → Yt.

In the following, we show that these conditions are not vacuously satisfied, but they need to be imposed
and they are independent of each other. In particular, the conditions in Theorem 1.3 are optimal.

Example 1.4. In this example, we produce an unbounded class of smooth minimal threefolds of Kodaira
dimension 2 with bases belonging to a bounded family. The unboundedness will follow from the fact that
the elliptic threefolds in our construction do not admit a multisection of bounded degree, and vol2(X) does
not belong to a finite set.

Fix an elliptic curve E. Let us consider the diagonal action of Z/nZ on E × P1 given as the translation
by an element of order n on E and the action of a primitive n-th root of unity on P1. Then, the induced
action on E × P1 has no fixed points and we obtain the following commutative diagram

E × P1 φ
//

f

��

Sn := (E × P1)/(Z/nZ)

gn

��
P1 ψ

// P1 = P1/(Z/nZ).

By construction, gn has fibers of multiplicity n over {0} and {∞}. Thus, Kodaira’s canonical bundle
formula for surfaces implies that KSn

∼Q g∗n(KP1 + (1 − 1
n )({0} + {∞})). Let C be a genus 2 curve

obtained by as a degree 2 cover h : C → P1 branched away from {0} and {∞}. Taking the base change
of gn by h, we obtain a surface Tn := Sn ×P1 C with a morphism ln : Tn → C such that κ(Tn) = 1 and
KT ∼Q h

∗(KC +(1− 1
n )(p+ q+ r+ s)), where p, q, r, s are the preimages of {0} and {∞} on C. The divisor

KC + (1 − 1
n )(p + q + r + s) has degree 2 + 4(1 − 1

n ). As mentioned above, when considering the Iitaka
fibration in a bounded family of minimal models, Kodaira’s formula for the canonical bundle is obtained
by restriction, up to a suitable stratification. Thus, the fact that the log pairs (C, (1 − 1

n )(p + q + r + s))
have coefficients varying in an infinite set implies that corresponding surfaces Tn do not belong to a bounded
family. As the fibration Tn → C has fibers of multiplicity n, that cannot admit a multisection of degree less
than n. Thus, as n varies, the fibrations gn do not admit a common upper bound for the minimal degree
of a multisection. Then, taking the product of Tn → C with C, we get an example of a smooth minimal
threefold Xn with κ(Xn) = 2 and with the same properties as above. Indeed, if Wn is a multisection of
Xn → C×C, for a general choice of c ∈ C, Wn induces a multisection of Xn×C×C {c}×C → {c}×C which
is isomorphic to Tn → C. Hence, although the bases of the Iitaka fibrations of the Xn are all isomorphic and
thus trivially belong to a bounded family, on the other hand, vol2(Xn) does attain infinitely many distinct
values, and there is no lower bound for the degree of a rational multisection of Xn → C × C.

Example 1.5. In this example, we show that the conditions of Theorem 1.3 are independent of each other.
Let Cn be a smooth curve of genus n, and let E be an elliptic curve. Then, Cn × Cn × E → Cn × Cn

is a smooth minimal elliptic threefold of Kodaira dimension 2 admitting a section. Furthermore, vol2(Cn ×
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Cn × E) = (2n − 2)2 depends on n. Thus, the set of the varieties Cn is not bounded, showing that it is
not sufficient to just assume the existence of an upper bound on the degree of a multisection of the Iitaka
fibration to prove the boundedness of the minimal terminal n-folds of Kodaira dimension n− 1.

Fix a curve C with g(C) ≥ 2, and let E be an elliptic curve. Then, by [Fil20, Example 3.1], there exists
a set of smooth surfaces fn : Sn → C with the following properties: fn is smooth, isotrivial, and fn does
not admit a multisection of degree less than n. Setting Xn := Sn × C and gn : Xn → C × C the induced
map, then Xn is a smooth minimal threefold with κ(Xn) = 2, vol2(KXn

) = (2g(C)− 2)2 fixed, whereas Xn

does not admit a rational multisection of degree less than n. Hence, this example in turn shows that it is
not sufficient to just assume the existence of an upper bound on voln−1(Y ) to prove the boundedness of the
minimal terminal n-folds Y of Kodaira dimension n− 1.

Strategy of proof. In the context of Theorem 1.1 and Theorem 1.3, we shall consider a set of ellipti-
cally fibered varieties F that is known to be bounded modulo flops. Furthermore, we can assume that
these flops preserve the elliptic fibration. More precisely, we shall assume that there exists a family

π : X
f̃

// S
g̃

// T of projective morphisms of quasi-projective varieties such that π is a flat family
of threefolds, g is a flat family of surfaces, and for every fibration f : X → S ∈ F, there exists t ∈ T such
that the following diagram holds

X
sequence of KX -flops

//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴

f

��

Xt

f̃ |Xt

��
S

isomorphism
// St.

In this setup, Kawamata [Kaw97] showed that each X → S admits only finitely many relatively minimal
models over S, up to isomorphism. That is, while there may be infinite sequences of flops over S and thus
infinitely many marked minimal models, these models belong to finitely many isomorphism classes of S-
schemes. In view of this, our strategy will be to show that also X → S admits only finitely many relatively
minimal models, up to isomorphism over S, and that every X → S in F appears as a fiber of one of those
finitely many models of X → S. More precisely, we shall prove the following two steps:

(i) generalize the results of [Kaw97] to relatively minimal elliptic fibrations of arbitrary dimension; and
(ii) argue that, under suitable geometric assumptions, every sequence of KXt

-flops Xt 99K X ′
t relative to

St can be lifted to a sequence of KX -flops X 99K X ′ relative to S.

Step (i) guarantees that X → S admits only finitely many relatively minimal models, X1, . . . ,Xk, up to
isomorphism over S, see §3. Then, step (ii) guarantees that each fibration in F appears as the fiber over a
closed point of Xi → T for some 1 ≤ i ≤ k. Indeed, let X → S be an element of F. Then, by assumption,
there is a closed fiber Xt → St such that St = S and Xt 99K X decomposes as a sequence of KXt

-flops over
S = St. Then, by (ii), we can lift this sequence as a sequence of KX -flops X 99K X ′ over S. Then, by
construction, we have that X is isomorphic to the fiber X ′

t . Since X ′ is isomorphic over S, and hence over
T , to Xi for some 1 ≤ i ≤ k, it follows that X is isomorphic to Xi,t, showing boundedness as desired.

In general, it is hard to show that a flop can be lifted from a special fiber of a family, as the Picard rank
of the fibers can jump countably many times. On the other hand, the Calabi–Yau condition guarantees
that, under a suitable base change, the Picard rank remains constant in a family, allowing for identification
between the relative Néron–Severi group and the Néron–Severi group of each fiber. This is worked out in
§5. The results of §3 and §5 are then combined to prove Theorem 6.18, which represents a general criterion
to prove boundedness for Calabi–Yau varieties that form a bounded family up to flops. Then, Theorem 1.1
immediately follows from Theorem 6.18.
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The case of Theorem 1.3 is different, as it is not true in general that threefolds of Kodaira dimension 2
have locally constant Picard rank. To circumvent this issue, we shall use results of Kollár and Mori showing
that flops of terminal threefolds are locally unobstructed, see [KM92, Theorem 11.10]. Thus, while Theorem
1.1 relies on arguments that are valid in higher dimension, the proof of Theorem 1.3 is special to the case of
threefolds.

Acknowledgements. The authors would like to thank Burt Totaro for kindly suggesting the proof of
Theorem 5.1, which is a generalization of [Tot12, Theorem 4.1]. The authors wish to thank Joaqúın Moraga
for reading a preliminary draft of this work.

2. Preliminaries

2.1. Terminology and conventions. Throughout this paper, we will work over C. For anything not
explicitly addressed in this subsection, we refer the reader to [KM98,Kol13].

2.2. Contractions and fiber spaces. A contraction is a projective morphism f : X → Z of quasi-projective
varieties with f∗OX = OZ . If X is normal, then so is Z and the fibers of f are connected.

A fiber space is a contraction f : X → Y of normal quasi-projective varieties with dimX > dimY . Given
a fiber space f : X → Y , we define

Bir(X/Y ) := {φ ∈ Bir(X) | f ◦ φ = f} and Aut(X/Y ) := {ψ ∈ Aut(X) | f ◦ ψ = f} .

There exists a natural identification Bir(X/Y ) = Bir(Xη), where η is the generic point of Y , see [Han91] –
Bir(X/Y ) is denoted by BirY (X) in [Han91]. More precisely, the k-points of Bir(X/Y ) are identified with
the k(Y )-points of Bir(Xη). Hence, if f : X → Y is an elliptic fibration, then Bir(X/Y ) = Autk(Y )(Xη).

We will need the following simple result.

Lemma 2.1. Let f : X → Y be a contraction of normal varieties. Assume that that f admits a factorization

X
g

//

f

&&
Y ′ h // Y

where h : Y ′ → Y be a birational contraction. Then, Bir(X/Y ) = Bir(X/Y ′) and Aut(X/Y ) = Aut(X/Y ′).

Proof. Fix φ ∈ Bir(X/Y ). Since f = h ◦ g, then Bir(X/Y ′) ⊂ Bir(X/Y ) – this inclusion holds even when
Y ′ → Y is not a birational morphism. Let U ⊂ Y be an open subset over which h is an isomorphism
and let XU := X ×Y U . Then, by construction, g = g ◦ φ on XU . Thus, φ ∈ Bir(X/Y ′). This proves
Bir(X/Y ) = Bir(X/Y ′). Finally, Aut(X/Y ) = Aut(X/Y ′) follows immediately. �

2.3. Divisors. Let K denote Z, Q, or R. We say that D is a K-divisor on a variety X if we can write
D =

∑n
i=1 diPi where di ∈ K, n ∈ N and the Pi are prime Weil divisors on X for all i = 1, . . . , n. We

say that D is K-Cartier if it can be written as a K-linear combination of Z-divisors that are Cartier. The
support of a K-divisor D =

∑n
i=1 diPi is the union of the prime divisors appearing in the formal sum

Supp(D) =
∑n
i=1 Pi. In all of the above, if K = Z, we will systematically drop it from the notation.

Given a K-divisor D and a prime divisor P in the support of D, we denote by µP (D) the coefficient of
P in D. Given D =

∑
P prime µPi

(D)Pi on a normal variety X , and a morphism π : X → Z, we define the

vertical (resp. horizontal) part Dv (resp. Dh) of D by

Dv :=
∑

π(Pi)$Z

µPi
(D)Pi, Dh :=

∑

π(Pi)=Z

µPi
(D)Pi.

Let D1 and D2 be K-divisors on X and let π : X → Z be a projective morphism of normal varieties. We
write D1 ∼K,π D2 if there is a K-Cartier divisor L on Z such that D1 −D2 ∼K f

∗L. Equivalently, we may
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also write D1 ∼K,Z D2, or D1 ∼K D2 over Z. Similarly, if Z = Spec(k), where k is the ground field, we omit
Z from the notation. In case D1 and D2 are K-Cartier, we say that D1 and D2 are numerically equivalent
over Z if D1 · C = D2 · C for every curve C ⊂ X such that π(C) is a point, and we write D1 ≡π D2, or,
alternatively, D1 ≡Z D2. If K = Z, we omit it from the notation.

2.4. Cones of divisors. Let f : X → Y be a projective morphism of varieties. We denote by N1
R(X/Y ) the

real vector space generated by Cartier divisors on X modulo numerical equivalence on curves in X that are
contracted by f . It is a finite-dimensional vector space, and its dimension is denoted by ρ(X/Y ).
We denote by V (X/Y ) the R-subspace of N1

R(X/Y ) generated by the classes of vertical divisors and by
v(X/Y ) its dimension.
We denote by A(X/Y ) the cone of f -ample divisors and by A(X/Y ) its closure, that is, the cone of f -nef
divisors. Similarly, we denote by B(X/Y ) the cone of f -big divisors and by B(X/Y ) its closure, that is, the
cone of f -pseudo-effective divisors.
A Cartier divisor D on X is f -movable if we have f∗OX(D) 6= 0 and the codimension of the support of
coker(f∗f∗(OX(D)) → OX(D)) is at least 2. We denote by M(X/Y ) the closed cone of f -movable divisors:
this cone is the closure of the cone generated by f -movable divisors.
We denote by Be(X/Y ) the cone of f -effective divisors, and we set Ae(X/Y ) := A(X/Y ) ∩ Be(X/Y ) and
M e(X/Y ) :=M(X/Y ) ∩Be(X/Y ).

Lemma 2.2. Let f : X → Y and g : Y → Z be contractions of normal varieties. Let L be a line bundle on
X that is movable over Z. Then, L is movable over Y .

Proof. We wish to show that the cokernel of the natural morphism f∗f∗L→ L is supported in codimension
at least 2. By assumption, f∗L is a coherent sheaf on Y , and there is a natural morphism

(2.1) g∗g∗(f∗L) → f∗L.

By assumption, the cokernel of the natural morphism

(2.2) (g ◦ f)∗(g ◦ f)∗L→ L

has codimension at least 2. By (2.1), the morphism in (2.2) factors as

f∗g∗g∗f∗L→ f∗f∗L→ L,

and the claim follows. �

Lemma 2.3. Let f : X → Y be a contraction of normal varieties. Let L be a line bundle on X that is
movable over Y . Let H be a general member of a basepoint-free linear system on Y , and let XH := X×Y H.
Then, L|XH

is movable over H.

Proof. Let us consider the Cartesian diagram

XH
v //

g

��

X

f

��
H

u // Y.

By assumption, the natural morphism

f∗f∗L→ L
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is surjective outside a subset V ⊂ X of codimension at least 2. Since H is a general element of a basepoint-
free linear series, the same holds for XH by the projection formula. Thus, we may assume that V ∩XH has
codimension at least 2 in XH . By construction, we have LXH

:= L|XH
= v∗L, and we need to show that

g∗g∗LXH
→ LXH

is surjective outside a set of codimension 2. Since the pull-back is a right exact functor, we have that

v∗f∗f∗L→ v∗L

is surjective outside V ∩XH , which has codimension at least 2 in XH .
Since f ◦ v = u ◦ g, we have that v∗f∗f∗L = g∗u∗f∗L. By cohomology and base change [Har77, Remark

III.9.3.1], there is a natural morphism

u∗f∗L→ g∗v
∗L.

Thus, if we consider the pull-back to XH , we have morphisms

v∗f∗f∗L = g∗u∗f∗L→ g∗g∗v
∗L→ v∗L.

Since the composition is surjective outside of V ∩ XH , then so is g∗g∗v
∗L → v∗L. This concludes the

proof. �

Lemma 2.4. Let f : X → Y be a contraction of quasi-projective varieties. Let γ ∈ B(X/Y ), and let
(γi)i∈N ⊂ N1

R(X/Y ) be a sequence converging to γ. Then, there exist Weil R-divisors D and Di, i ∈ N, such
that:

(1) [D] = γ, [Di] = γi;
(2) there exists a reduced divisor Θ such that for all i ∈ N, the support of Di is contained in Θ;
(3) (Di)i∈N converges to D in the vector space of R-Weil divisors;
(4) D ≥ 0 and Di ≥ 0 for i≫ 0.

Moreover, if X is Q-factorial and (X, 0) is klt, then there exists a positive real number ǫ such that (X, ǫD)
is klt and for all i≫ 0, (X,Di) is klt.

Proof. Since f is projective and N1
R(X/Y ) is finite-dimensional, we may choose a basis [H1], . . . , [Hk] for

N1
R(X/Y ) such that each Hj is ample and effective. Since bigness is an open condition, up to rescaling,

we may assume that γ −
∑k

j=1[Hj ] is big over Y . Thus, since γ −
∑k
j=1[Hj ] is big over Y , there exists a

divisor G ≥ 0 representing γ −
∑k

j=1[Hj ] that is big on X . We set D := G +
∑k

j=1Hj . Since γi → γ and

[H1], . . . , [Hk] constitute a basis for N1
R(X/Y ), then, for i≫ 0, γi is contained in



γ +

k∑

j=1

aj [Hj ]

∣∣∣∣∣∣
∀j,−1 ≤ aj ≤ 1



 .

Thus, for i≫ 0, γi can be represented by the divisor Di := G+
∑k
j=1 λi,jHj, where 0 ≤ λi,j ≤ 2 and λi,j → 1

for all j.
We now prove the last claim. Since we can assume that X is Q-factorial and (X, 0) is klt, then there

exists ǫ > 0 such that (X, ǫ(G+
∑k
j=1 2Hj)) is klt. In particular, for any of choice of real numbers cj ∈ [0, 2],

j = 1, . . . , k, then also (X, ǫ(G +
∑k
j=1 cjHj)) is klt. Taking cj = 1 ∀j and taking cj = λi,j , for all i ≫ 0

show that the last claim holds. �
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Lemma 2.5. Let (X,∆) be a klt pair and f : X → Y be a contraction of normal varieties. Assume that

KX +∆ ∼Q,f 0 and that f factors as X
g
−→ Y ′ π

−→ Y , where π is a birational morphism of normal varieties.
Then, there is a short exact sequence

0 → N1
R(Y

′/Y ) → V (X/Y ) → V (X/Y ′) → 0.

Proof. The morphism V (X/Y ) → V (X/Y ′) is naturally induced by the equivalence relations of numerical
equivalence over Y and Y ′, respectively, as any curve C ⊂ X that is vertical over Y ′ is also vertical over Y .
Since a divisor on X is vertical over Y if and only if it is vertical over Y ′, this morphism is clearly surjective.

The morphism N1
R(Y

′/Y ) → V (X/Y ) is induced by g∗. By considering curves in X that are vertical for
π ◦ g but not for g, and using the projection formula, it follows that N1

R(Y
′/Y ) → V (X/Y ) is injective. It

also follows immediately that g∗N1
R(Y

′/Y ) is contained in ker(V (X/Y ) → V (X/Y ′)).
Now, let D be a divisor such that [D] ∈ ker(V (X/Y ) → V (X/Y ′)): to conclude, we need to show that

[D] ∈ g∗N1
R(Y

′/Y ). By the definition of the relative Néron–Severi group, without loss of generality, we may
assume that D is a Q-divisor vertical over both Y and Y ′. Possibly adding the pull-back of a sufficiently
ample divisor on Y , we may assume that D is effective. Hence, for 0 < ǫ ≪ 1, the log pair (X,∆ + ǫD)
is klt and KX + ∆ + ǫD ≡ 0/Y ′. Thus, X is a minimal model for (X,∆ + ǫD) over Y ′. Since D is
vertical and KX +∆ ∼Q,g 0, it follows from [HX13, Theorem 1.1] and [Lai11, Proposition 2.4], that X is a
good minimal model for (X,∆+ ǫD): in particular, D is semi-ample over Y ′, and thus, D ∼Q,g 0. Hence,
[D] ∈ g∗N1

R(Y
′/Y ). �

2.5. Boundedness. Here we recall the notion of boundedness for a set of log pairs, and we introduce a
suitable notion of boundedness for fibrations. First, we recall the notion of log pair. A log pair (X,B) is
the datum of a normal quasi-projective variety and an R-divisor B, called boundary, such that KX + B is
R-Cartier and 0 ≤ B ≤ Supp(B).

Definition 2.6. Let D be a set of projective log pairs.

(1) We say that D is log bounded if there exist a log pair (X ,B) and a projective morphism π : X → T ,
where T is of finite type, such that for any log pair (X,B) ∈ D there exist a closed point t ∈ T and
an isomorphism ft : Xt → X such that (ft)∗Bt = B.

(2) We say that D is log birationally bounded if there exist a log pair (X ,B) and a projective morphism
π : X → T , where T is of finite type, such that for any log pair (X,B) ∈ D there exist a closed point
t ∈ T and a birational map ft : Xt 99K X such that Supp(Bt) = Supp((f−1

t )∗ Supp(B) + E), where
E is the exceptional divisor of ft.

(3) If D is log birationally bounded and for any log pair (X,B) ∈ D the map ft in (2) is an isomorphism
in codimension 1, then we say that D is log bounded in codimension 1.

When a set D of log pairs is a set of varieties, i.e., ∀(X,∆) ∈ D, ∆ = 0, we say that D is bounded, (resp.
birationally bounded, bounded in codimension 1 ) rather than log bounded, (resp. log birationally bounded, log
bounded in codimension 1 ).

Definition 2.7. Let F be a set of triples ((X,B), (Y,D), φ), where (X,B) and (Y,D) are projective log pairs
and φ : X → Y is a contraction.

(1) We say that F is log bounded if there exist log pairs (X ,B), (Y,D), a variety of finite type T , and a
commutative diagram of projective morphisms

X
σ //

π

��❅
❅❅

❅❅
❅❅

❅ Y
ρ

��⑧⑧
⑧⑧
⑧⑧
⑧

T

(2.3)
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such that for any ((X,B), (Y,D), φ) ∈ F, there is a closed point t ∈ T together with morphisms
ft : Xt → X and gt : Yt → Y inducing a commutative diagram

Xt
ft //

σ|Xt

��

X

φ

��
Yt

gt // Y

such that (X,B) ∼= (Xt,Bt) and (Y,D) ∼= (Yt,Dt).
(2) We say that F is log birationally bounded if there exist log pairs (X ,B), (Y,D), a variety of finite

type T , the same commutative diagram as in (2.3) holds and for any ((X,B), (Y,D), φ) ∈ F, there
is a closed point t ∈ T together with birational morphisms ft : Xt 99K X and gt : Yt 99K Y inducing
a commutative diagram

Xt
ft //❴❴❴❴❴❴

σ|Xt

��

X

φ

��
Yt

gt //❴❴❴❴❴❴ Y

such that Supp(Bt) contains the strict transform of Supp(B) and all the ft exceptional divisors) and
Supp(Dt) contains the strict transform of Supp(D) and all the gt exceptional divisors.

(3) If F is log birationally bounded and the maps ft, gt in (2) are isomorphisms in codimension 1, we
say that F is log bounded in codimension 1.

When in a set F of triples, ∀((X,B), (Y,D), φ) ∈ F, B = 0 = D, then we say that F is bounded, (resp.
birationally bounded, bounded in codimension 1 ) rather than log bounded, (resp. log birationally bounded, log
bounded in codimension 1 ).

2.6. Crepant birational models. The following statement is known to the experts and follows from
[BCHM10, Theorem E]. For the reader’s convenience, we include a short proof.

Lemma 2.8 (Finiteness of crepant models). Let (Y,∆) be a klt pair and consider the set M of all ν : Ŷ → Y
projective birational morphisms of normal varieties such that if KŶ + ∆Ŷ = ν∗(KY + ∆Y ), then ∆Ŷ ≥ 0.
Then M is finite.

Proof. Let (Y ′,∆′) be a Q-factorial terminalization of (Y,∆). Then, any model ν : Ŷ → Y in M is obtained

from Y ′ via a rational contraction. It is easy to see that (Ŷ ,∆Ŷ ) is a weak log canonical model for (Y ′,∆′)
over Y . The claim now follows from [BCHM10, Theorem E]. �

Proposition 2.9. Let X be a projective klt variety admitting an elliptic fibration f : X → Y . Assume that
KX ∼Q,Y 0. There exist finitely many birational morphisms hi : Yi → Y , i = 1, . . . , n such that the following
property holds:
given a commutative diagram

X
φ

//❴❴❴❴❴❴❴

f

��❅
❅❅

❅❅
❅❅

❅ X ′

f ′

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ g

  ❇
❇❇

❇❇
❇❇

❇

Y Y ′

h
oo

(2.4)

where φ is an isomorphism in codimension 1 over Y , and h is birational, then there exists 1 ≤ i ≤ n such
that Y ′ = Yi and h = hi.
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Proof. The canonical bundle formula, see, for example, [Amb05], guarantees the existence of a generalized
log pair1 (Y,BY +MY ) with generalized klt singularities such that KX ∼ f∗(KY +BY +MY ). Furthermore,
given a commutative diagram as in (2.4), then

(1) there exists an effective Q-divisor N ∼Q MY independent of Y ′ such that, for ∆Y := BY + N ,
(Y,∆Y ) is klt; and

(2) the log pull-back (Y ′,∆Y ′) of (Y,∆Y ) to Y
′ satisfies ∆Y ′ ≥ 0.

To achieve that, it suffices to pass to a resolution Y ′′ // Yterm // Y of a terminalization Yterm of the

generalized pair (Y,BY +MY ) where the trace MY ′′ of the moduli part on Y ′′ descends to a semi-ample
divisor. By [PS09, Example 7.16], 12MY ′′ is globally generated divisor on Y ′′: choosing a general element
N ′′ ∈ |12MY ′′ |, by Bertini’s theorem, the pushforward N of N ′′ on Y will do.

In particular, as (Y,∆Y ) is klt, it follows from Lemma 2.8, that there are finitely many log pairs (Y ′,∆Y ′)
that can arise in the above construction. �

Lemma 2.10. Let π : Y ′ → Y be a birational contraction, where Y ′ is Q-factorial. Assume there exists a
boundary ∆′ ≥ 0 on Y ′ such that (Y ′,∆′) is klt and KY ′ +∆′ ∼Q,π 0. Then, M(Y ′/Y ) =M(Y ′/Y ).

Proof. Let [D′] ∈ M(Y ′/Y ). Since π is birational, D′ is relatively big and we may assume that D′ ≥ 0.
Since [D′] ∈M(Y ′/Y ), there exists a sequence of divisors D′

i ≥ 0 such that [D′
i] ∈M(Y ′/Y ) and [D′

i] → [D′]
in N1

R(Y
′/Y ). For 0 < ǫ≪ 1, the log pair (Y ′,∆′ + ǫD′) is klt, and

KY ′ +∆′ + ǫD′ ∼Q,π ǫD
′.

In particular, we may run a D′-MMP with scaling over Y , and this terminates with a good model Y ′′ → Y ,
since π is birational. Let D′′ be the push-forward of D′ to Y ′′. Thus, D′′ is semi-ample over Y and
[D′′] ∈M(Y ′′/Y ).

To conclude, it suffices to show that Y ′
99K Y ′′ is an isomorphism in codimension 1. For this purpose, we

observe that, as the MMP Y ′
99K Y ′′ has finitely many steps, and since [D′

i] converges to [D′] in N1
R(Y

′/Y ),
it follows that Y ′

99K Y ′′ is a composition of steps of the D′
i-MMP over Y , for all i ≫ 1. Since each [D′

i] is
in M(Y ′/Y ), the MMP is forced to be an isomorphism in codimension 1. �

Lemma 2.11. Let π : Y ′ → Y be a birational contraction of Q-factorial normal varieties. Assume there
exists a boundary ∆′ ≥ 0 on Y ′ such that (Y ′,∆′) is klt and KY ′ + ∆′ ∼Q,π 0. Let E′

1, . . . , E
′
k denote

the prime π-exceptional divisors. Then, the classes of the E′
i form a basis of N1

R(Y
′/Y ). Furthermore, if

[D′] ∈M(Y ′/Y ), and we write [D′] =
∑
ai[E

′
i], then ai ≤ 0 for all i.

Proof. For 0 < ǫ ≪ 1, the log pair (Y ′,∆′ +
∑k

i=1 ǫE
′
i) is klt and big over Y ; therefore it admits a good

minimal model Ỹ over Y . Since the E′
i are contained in the stable base locus of KY ′ + ∆′ +

∑k
i=1 ǫE

′
i, it

follows that Ỹ → Y is a small birational morphism of Q-factorial varieties and hence an isomorphism. But
then ρ(Y ′/Y ) = k as it is well known that every divisorial contraction contracts an irreducible exceptional
divisor.

Fix [D′] ∈ M(Y ′/Y ). We can write D′ =
∑
aiE

′
i. As D′ is movable and KY ′ + ∆′ ∼Q,π 0, up to

replacing Y ′ with a model that is isomorphic in codimension 1, we may assume that D′ is semi-ample over
Y . Then, since D′ is supported on the exceptional locus of Y ′ → Y , by the negativity lemma, it follows that
D′ ≤ 0. �

1For the theory of generalized log pairs and their canonical bundle formula we refer the reader to [FS20b].
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2.7. Calabi–Yau fiber spaces. Let X and Y be normal quasi-projective varieties, and let f : X → Y be
a projective morphism. We say that f : X → Y is a Calabi–Yau fiber space if the following conditions hold:

(CYF1) X is terminal and Q-factorial;
(CYF2) f is a contraction; and
(CYF3) KX ≡f 0.

Remark 2.12. In view of [Gon13, Theorem 1.2], [HX13, Theorem 1.1], and [Lai11, Proposition 2.4], condi-
tion (CYF3) is equivalent to KX ∼Q,f 0.

For a given Calabi–Yau fiber space f : X → Y , a relatively minimal model of X over Y (or, of f) is a
contraction f ′ : X ′ → Y such X ′ is terminal, Q-factorial, KX′ ≡f ′ 0, and X ′ is birationally equivalent to X .
It is a well-known fact that, if f ′ : X ′ → Y is a relatively minimal model of f , then X and X ′ are isomorphic
in codimension 1. Furthermore, X and X ′ are connected by a sequence of KX -flops over Y , see [Kaw08].

Given two Calabi–Yau fiber spaces f : X → Y , f ′ : X ′ → Y with X,X ′ birationally equivalent, let
α : X ′

99K X be the isomorphism in codimension one over Y . We refer to α as the marking of the minimal
model f ′. A marked minimal model of f is the datum of an ordered couple (f ′ : X ′ → Y, α) where f ′ is a
relatively minimal model of f together with the marking α.

Let f : X → Y be a Calabi–Yau fiber space and (f ′ : X ′ → Y, α) be a marked minimal model. Then, α∗

induces an isomorphism between N1
R(X

′/Y ) and N1
R(X/Y ) such that

α∗B(X ′/Y ) = B(X/Y ), α∗M(X ′/Y ) =M(X/Y ), and α∗V (X ′/Y ) = V (X/Y ).

We define

A(X/Y, α) := α∗A(X
′/Y ), A(X/Y, α) := α∗A(X

′/Y ), and Ae(X/Y, α) := α∗A
e(X ′/Y ).

By [Kaw97, Lemma 1.5], A(X/Y, α) ∩ A(X/Y ) 6= ∅ if and only if α is an isomorphism.
Having introduced this notation, it is easy to show that

M(X/Y ) =
⋃

α

A(X/Y, α),(2.5)

where α runs over all Q-factorial relatively minimal models α : X ′
99K X over Y .

Notation 2.13. We call the decomposition in (2.5) the chamber decomposition of M(X/Y ). We call each
cone A(X/Y, α) in (2.5) a chamber of the decomposition.

Let f : X → Y be a Calabi–Yau fiber space, and let

X
g

//

f

%%
W

h // Y

be a factorization of f such that h is a contraction of normal varieties which is not an isomorphism. In
particular, g is itself a Calabi–Yau fiber space. Moreover, g∗ : N1

R(W/Y ) → N1
R(X/Y ) is injective, and

g∗A(W/Y ) = g∗N1
R(W/Y ) ∩ A(X/Y ) is an extremal face of A(X/Y ). Analogously, if (f ′ : X ′ → Y, α) is a

marked minimal model of f factoring as

X ′ g′
//

f ′

&&
W ′ h′

// Y ,(2.6)

where h′ is a contraction of normal varieties which is not an isomorphism, then α∗ ◦ (g′)∗ : N1
R(W

′/Y ) →
N1

R(X/Y ) is injective. If dim(X ′) > dim(W ′) or if g′ is a birational morphism that contracts at least one

divisor, α∗((g
′)∗A(W ′/Y )) = α∗((g

′)∗N1
R(W

′/Y )) ∩M(X/Y ) is an extremal face of M(X/Y ). If g′ is a
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small birational morphism, α∗((g
′)∗A(W ′/Y )) is a cone intersecting the interior of M(X/Y ) and is called

wall. The terminology comes from the following observation: if g′ : X ′ → W ′ is a small contraction with
ρ(X ′/W ′) = 1, then α∗((g

′)∗A(W ′/Y )) is the wall separating the chambers corresponding to (f ′ : X ′ → Y, α)
and ((f ′)+ : (X ′)+ → Y, α+), where (g′)+ : (X ′)+ →W ′ is the flop of g′.

Notation 2.14. With the notation and assumptions introduced above, if g′ in (2.6) is a birational morphism
that contracts at least a divisor, we say that α∗((g

′)∗A(W ′/Y )) is an extremal face ofM(X/Y ) corresponding
to a birational contraction. If dimX ′ > dimW ′, we say that α∗((g

′)∗A(W ′/Y )) is an extremal face of
M(X/Y ) corresponding to a fiber space structure.

If f : X → Y is a Calabi–Yau fiber space, asX is terminal and minimal over Y , then for any φ ∈ Bir(X/Y ),
φ : X 99K X is a small birational map over Y . Hence, φ∗ induces a bijection on the lattice of Weil divisors
and on its quotient modulo numerical equivalence {Weil divisors on Y }/ ≡Y⊂ N1

R(X/Y ). Thus, there exists
a natural induced representation

σ : Bir(X/Y ) // GL(N1
R(X/Y ),Z)

φ
✤ // φ∗.

Moreover, φ∗ preserves the subspace V (X/Y ) and permutes the chambers of the partition ofM(X/Y ) given
in (2.5).

The following result shows that the chamber decomposition of M(X/Y ), cf. (2.5), is well behaved in the
part of the movable cone of a Calabi–Yau fiber space consisting of big divisors. The result generalizes [Kaw97,
Theorem 2.6].

Lemma 2.15. Let f : X → Y be a Calabi–Yau fiber space. Then, the decomposition

M e(X/Y ) ∩B(X/Y ) =M(X/Y ) ∩B(X/Y ) =
⋃

(X,α)

Ae(X/Y, α) ∩B(X/Y )

is locally finite in the open cone B(X/Y ).

By local finiteness of the decomposition M(X/Y ) ∩ B(X/Y ) =
⋃

(X,α)A
e(X/Y, α) ∩B(X/Y ) we simply

mean that if Σ is a closed convex cone contained in {0} ∪ B(X/Y ), then there exist only finitely many
relatively minimal models (f ′

i : X
′
i → Y, αi), i = 1, . . . , k such that the cones Ae(X/Y, αi) ∩ ({0} ∪B(X/Y ))

intersect Σ.

Proof. By definition, M e(X/Y ) ⊃ M(X/Y ). Therefore, the inclusion M e(X/Y ) ∩ B(X/Y ) ⊃ M(X/Y ) ∩
B(X/Y ) is clear, so we will prove the reverse inclusion. Suppose that [D] ∈ M e(X/Y ) ∩ B(X/Y ), we
must show that [D] ∈ M(X/Y ). Since [D] ∈ Be(X/Y ), there is ∆ ≥ 0 so that ∆ ∼R,Y αD, for some
positive real number α, and (X,∆) is terminal. Then, for a general point y ∈ Y , the divisor ∆y is f -
big and KXy

+ ∆y ∼Q ∆y. By [BCHM10], the general fiber (Xy,∆y) has a good minimal model. By
[HMX18, Theorem 1.2] and [HX13, Theorem 1.1], (X,∆) has a good minimal model φ : X 99K X ′ for (X,∆)
over Y and in particular φ∗D is semi-ample over Y . By continuity, there is a movable divisor D′ (sufficiently
close to D in N1

R(X/Y )) such that φ is given by a sequence of D′-flips and divisorial contractions. Suppose
that φ contracts a divisor F ; then F is in the stable base locus of D′, which is impossible as D′ is movable.
Thus φ is small and hence D = φ−1

∗ φ∗D is also movable.
Hence, if [D] ∈ Σ, then [D] is contained in the interior of a rational polyhedral cone spanned by effective

big Q-divisors Di such that ǫDi ∼Q,Y ∆i for some rational number 0 < ǫ≪ 1 where (X,∆i) is klt. Thus, we
may apply finiteness of models [BCHM10, Theorem E]. Since, for all i, Di is relatively movable if and only
if the corresponding minimal models do not contract any divisors, then the claim now follows easily. �
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The following result is a generalization of [Kaw97, Lemma 3.3.(2)].

Lemma 2.16. Let X be a Q-factorial terminal variety, and let f : X → Y be a Calabi–Yau fiber space
of relative dimension one. There exists a marked minimal model (f ′ : X ′ → Y, α) of f together with a
factorization

X ′ g′
//

f ′

&&
Y ′ h′

// Y

such that

(1) Y ′ is Q-factorial;
(2) h′ is birational; and
(3) every prime divisor in X ′ vertical over Y ′ dominates a divisor in Y ′.

Proof. We will proceed by induction on the relative Picard number ρ(X/Y ). If ρ(X/Y ) = 1 there is nothing
to prove, as every vertical prime divisor is relatively numerically trivial and, thus, it is numerically the
pull-back of a Q-divisor on Y . Thus, we can assume that ρ(X/Y ) > 1 and that the conclusions of the lemma
hold for all Calabi–Yau fiber spaces of Picard rank lower than ρ(X/Y ).

Let E ⊂ X be a prime divisor such that codim(f(E)) ≥ 2. Let us consider a sufficiently positive very
ample divisor A on Y . Fix a general element H of the non-complete sub-series V ⊂ |A| of divisors in |A|
containing f(E). Passing to a higher multiple of A, if needed, we may assume that the sub-series V is
non-empty and has no fixed divisor. Writing f∗H = D1 + D2, where each component of D1 dominates a
divisor on Y , while the image of each prime component of D2 has codimension at least 2 on Y , then, D1 6= 0,
and E ≤ D2. By construction, D1 is f -movable, as it is a general member of the moving part of the linear
series obtained by pull-back.2 Thus, by running a (KX + ǫD1)-MMP over Y , where 0 < ǫ ≪ 1, this must

terminate with a model f̃ : X̃ → Y where the strict transform D̃1 of D1 is relatively nef over Y . Since

dim(Y ) = dim(X̃) − 1, then D̃1 is semi-ample over Y , cf. [Fil20, Theorem 1.5]. In particular, D̃1 induces

a morphism g̃ : X → Ỹ over Y : as D̃1 is vertical over Y , then Ỹ → Y is birational and D̃1 is trivial over

Ỹ . Since [D1] 6= 0 ∈ N1
R(X/Y ), then Ỹ is not isomorphic to Y . Thus, ρ(X/Y ) = ρ(X̃/Y ) > ρ(X̃/Ỹ ), and

the claim follows by the inductive hypothesis applied to X ′ → Y ′. Finally, the Q-factoriality of Y ′ follows
from [Fil20, Proposition 2.9]. �

Lemma 2.17. Let (X,∆) be a Q-factorial log canonical pair and let f : X → Y be a contraction. Assume
that KX +∆ ∼Q,f 0 and that f admits a factorization

X
g

//

f

%%
Z

h // Y .

Let γ : X 99K X ′ be a sequence of (KX+∆)-flops over Z, and let f ′ : X ′ → Y and g′ : X ′ → Z be the induced
morphisms. Then,

g∗N1
R(Z/Y ) = γ−1

∗ ((g′)∗N1
R(Z/Y )).

Furthermore, all the cones inside N1
R(Z/Y ) are identified by this identity.

2To see this, it suffices to consider the linear series |W | = f∗|V |: two general elements T1, T2 ∈ |W | have the same
multiplicity along any prime divisor D on X such that f(D) ⊆ f(E) and they share no other component; thus, T1 = F1 + D2

and T2 = F2 + D2, where the support of D2 is mapped to f(E); hence, T1 ∼ T2 and they share no prime divisor, hence |T1| is
movable. It then suffices to take D1 := T1.
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Proof. By induction, it suffices to show the statement for one flop. Thus, we may assume that X admits
a small contraction φ : X → X ′′ over Z such that γ : X 99K X ′ arises as the flop of φ. Let g′′ : X ′′ → Z,
ψ : X ′ → X ′′ be the induced morphisms. Since g∗ = φ∗ ◦ (g′′)∗ and (g′)∗ = ψ∗ ◦ (g′′)∗, it suffices to show
that, if D is an R-Cartier divisor on X ′′, then ψ∗D = α∗φ

∗D, which follows at once from the construction.
This equality also implies the claim about the cones of N1

R(Z/Y ). �

Lemma 2.18. Let f : X → Y be a Calabi–Yau fiber space. Assume that f admits a factorization

X
g

//

f

%%
Ỹ

h // Y

such that h is a birational contraction with Ỹ Q-factorial. Let (Ỹ ,∆Ỹ ) be a klt log pair such that KX ∼R

g∗(KỸ + ∆Ỹ ), and let β : Ỹ 99K Ỹ + be a (KỸ + ∆Ỹ )-flop over Y . Then, there exists a marked minimal
model (f+ : X+ → Y, α) of f together with a commutative diagram

X+ α //❴❴❴❴❴❴❴❴❴❴❴❴❴

g+

��

X

g
��

Ỹ + β−1

//❴❴❴❴❴❴❴❴❴❴❴❴❴

h+

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆ Ỹ

h
xxqqq

qq
qq
qq
qq
qq

Y.

(2.7)

In particular, g∗N1
R(Ỹ /Y ) = α∗((g

+)∗N1
R(Ỹ

+/Y )) ⊂ N1
R(X/Y ).

Proof. The existence of the marked minimal model and of the diagram in (2.7) follows from [Fil20, Propo-
sition 2.9].

To prove the final claim, it suffices to notice that the linear map α∗ : N
1
R(X

+/Y ) → N1
R(X/Y ) is an

isomorphism, as α is an isomorphism in codimension 1; similarly, β∗ : N
1
R(Ỹ /Y ) → N1

R(Ỹ
+/Y ) is also an

isomorphism; the conclusion then follows from the commutativity of (2.7). �

Corollary 2.19. Let f : X → Y be a Calabi–Yau fiber space of relative dimension one. There exist only
finitely many extremal faces of M(X/Y ) corresponding to fibre space structures.

Let us recall, cf. Notation 2.14, that, since the relative dimension of f is one, an extremal face ofM(X/Y )
corresponding to a fibre space structure is an extremal face ofM(X/Y ) of the form α∗((g

′)∗A(Y ′/Y )), where
(f ′ : X ′ → Y, α) is a marked minimal model of X → Y together with a factorization

X ′

f ′

%%g′
// Y ′ h′

// Y

such that h′ is birational.

Proof. By Proposition 2.9, there exist finitely many birational morphisms Ỹ → Y such that, if X̃ is a

relatively minimal model for X → Y , then X̃ → Y factors through Ỹ .

Fix one such choice of X̃ and Ỹ , and let g : X̃ → Ỹ be the corresponding morphism. By Lemma 2.1,

g∗A(Ỹ /Y ) ⊂ N1
R(X/Y ) is invariant under the action of Bir(X/Y ); notice that here we are identifying

N1
R(X/Y ) and N1

R(X̃/Y ). By Lemma 2.17, if h : X̂ → Ỹ is another model whose structure morphism over

Y factors through Ỹ , we have h∗A(Ỹ /Y ) = g∗A(Ỹ /Y ). Then, by the finiteness of the models Ỹ , the claim
follows. �
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2.8. Calabi–Yau varieties. A normal projective variety X is a Calabi–Yau variety if

(CY1) KX ∼ 0;
(CY2) X has terminal Q-factorial singularities; and
(CY3) hi(X,OX) = 0, for 0 < i < dim(X).

Some authors define Calabi–Yau varieties using instead of (CY1) the slightly weaker condition that the
canonical bundle is a torsion rank one divisorial sheaf. Passing to the index 1 cover of such variety, one
can always reduce to the case where the canonical bundle is trivial. Nonetheless, this reduction may affect
conditions (CY2-3).

In our treatment, the condition (CY1) will be used to guarantee that any elliptic Calabi–Yau f : X → S
can be reconstructed via the Tate–Shafarevich group (over a big open set of S) of the associated Jacobian
fibration j : J(X) → S, see §6. In order to do that, we need to know that over any codimension one point
of S the general fibre is not a multiple one, which is implied by adjunction and the fact that KX is linearly
equivalent to 0 rather than torsion, cf. Remark 6.8.

2.9. The cone conjecture. Consider a Calabi–Yau fiber space f : X → Y . Then, as explained in §2.7,
the movable cone M(X/Y ) admits a decomposition into chambers A(X/Y, α), where α : X 99K X ′ is some
marked minimal model of X over Y . Under this decomposition, either A(X/Y, α) = A(X/Y ) and α is
an isomorphism, or α∗Int(A(X/Y )) ∩ Int(A(X ′/Y )) = ∅, where Int indicates the interior of a set, see
[Kaw97, Lemma 1.5].

Therefore, to study all the possible minimal models of f : X → Y we can analyze the cones M(X/Y )
and A(X/Y ). It can happen that a minimal model X ′ is isomorphic to X , while the rational map over
Y, α : X 99K X ′ is not an isomorphism [Kaw97, Example 3.8.(2)]. Thus, we may have more chambers corre-
sponding to the same isomorphism class of varieties. Therefore, if we are only interested in the isomorphism
classes as schemes over Y of the relative minimal models of X 99K Y , we should study when different marked
minimal models are actually isomorphic over Y .

The so-called Kawamata–Morrison cone conjecture [Tot10, Conjecture 2.1] addresses the discrepancy
mentioned above between isomorphism classes of varieties X ′ that appear as total spaces of a relatively
minimal model f ′ : X ′ → Y of f and isomorphism classes over Y of relatively minimal models of f .

Cone conjecture (Kawamata–Morrison). Let f : X → Y be a projective morphism with connected fibers
between normal varieties. Let (X,∆) be a klt pair such that KX +∆ ≡ 0/Y . Let Ae(X/Y ) and M e(X/Y )
be as in §2.4. Then, the following holds.

1 The number of Aut(X/Y,∆)-equivalence classes of faces of the cone Ae(X/Y ) corresponding to
birational contractions or fiber space structures is finite. Moreover, there exists a rational polyhedral
cone Π which is a fundamental domain for the action of Aut(X/Y,∆) on Ae(X/Y ) in the sense that

a Ae(X/Y ) =
⋃
g∈Aut(X/Y,∆) g∗Π; and

b IntΠ ∩ g∗IntΠ = ∅ unless g∗ = 1.
2 The number of PsAut(X/Y,∆)-equivalence classes of chambers Ae(X/Y, α) inM e(X/Y ) correspond-

ing to marked small Q-factorial modifications X ′ → Y of X → Y is finite. Equivalently, the number
of isomorphism classes over Y of small Q-factorial modifications of X over Y (ignoring the bira-
tional identification with X) is finite. Moreover, there exists a rational polyhedral cone Π′ which is
a fundamental domain for the action of PsAut(X/Y,∆) on M e(X/Y ).

In the statement of the conjecture, PsAut(X/Y,∆) denotes the gorup of pseudo-automorphisms of the
pair (X,∆) relative to Y . Here, pseudo-automorphism means a birational automorphism that does not
contract nor extract any divisor. In particular, if X → Y is a Calabi–Yau fiber space as defined in §2.7, we
have Bir(X/Y ) = PsAut(X/Y ), see [Kaw97, §1].
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This is a very deep conjecture connecting the birational geometry of a log Calabi–Yau fibration to the
structure of the (birational) automorphism group. The intuition behind such connection is rooted in mirror
symmetry and physics, see, for example [Mor93], but it is still unclear how exactly to determine the existence
of automorphism starting from the geometry of the cone of divisors. Conjecture 2.9 is known to hold just in
very few cases: Totaro proved it in dimension 2 [Tot10], Kawamata proved the relative case (i.e., dimY > 0)
for threefold Calabi–Yau fiber spaces [Kaw97], and there are a few other cases known in dimension > 2.

3. Finiteness of models for elliptic Calabi–Yau fiber spaces

The results in this section are a higher-dimensional generalization of the results of [Kaw97, §3], originally
stated for elliptic threefolds. The main subtlety in passing to dimension higher than three is that the base
of the elliptic fibration has a more complicated birational geometry: in particular, such base may admit
birational modifications in codimension 2, while in the case of elliptic threefolds the base is a surface and its
birational geometry is completely determined by the set of exceptional divisors in the birational morphisms
of interest.

Lemma 3.1. Let f : X → Y be a Calabi–Yau fiber space of relative dimension 1. Let (f ′ : X ′ → Y, α) be a
marked minimal model of f . Assume that there exists a factorization

X ′ g′
//

f ′

&&
Y ′ h′

// Y

satisfying the conclusions of Lemma 2.16. Then, the following hold:

(1) there exists a uniquely determined factorization X
g

// Y ′′ h // Y , where g is a Calabi–Yau
fiber space and h is a projective birational morphism, which is maximal among those providing a

factorization of this type; that is, any other such factorization X // Y ′′′ // Y factors through

Y ′′, X
g

// Y ′′ // Y ′′′ // Y ;
(2) there exists a birational contraction β : Y ′

99K Y ′′ making the following diagram commutative

X ′ α //❴❴❴❴❴❴❴❴❴

g′

��

X

g

��
Y ′ β

//❴❴❴❴❴❴❴❴❴ Y ′′.

Furthermore, up to replacing g′ : X ′ → Y ′ with another Calabi–Yau fiber space g : X → Y which
satisfies the same properties and assumptions of the lemma, and such that X (resp. Y ) is isomorphic
in codimension 1 to X ′ (resp. Y ′), then we can assume the map β above is a morphism;

(3) any two models Ỹ and Ŷ satisfying the conclusions of Lemma 2.16 are isomorphic in codimension
1. In particular, if they are Q-factorial, they are connected by a sequence of flops over Y ; and

(4) if D′ is a g′-vertical prime divisor and [D′] 6= 0 ∈ N1
R(X

′/Y ′), then D′ is the exceptional divisor of
a birational contraction of X ′ over Y ′.

Proof. (1) Since f : X → Y is a Calabi–Yau fiber space of relative dimension 1, a divisor is f -semi-ample
if and only if it is f -nef and f -effective. Furthermore, if two f -semi-ample divisors are not f -big,
neither is their sum, as f -bigness is characterized by the intersection with a general fiber. Thus,
if D1 and D2 are f -semi-ample divisors that are not f -big, then so is D1 + D2. Thus, D1 + D2

gives a factorization that dominates the ones induced by D1 and D2, respectively. In particular, any
two factorizations X → Y1 → Y and X → Y2 → Y , where Yi is birational to Y , are dominated by
a third factorization X → Y3 → Y . This shows the uniqueness of the maximal element. Assume
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that X → Ŷ → Y is a non-trivial factorization, where Ŷ → Y is birational. Then, it follows that

ρ(X/Ŷ ) < ρ(X/Y ). Since the relative Picard number can drop finitely many times, a maximal
element must exist.

(2) Let H ′′ be a relatively ample divisor on Y ′′ over Y . Setting M := α−1
∗ g∗H ′′, then M is movable

over Y , as g∗H ′′ is semi-ample and α is a small birational map; a fortiori, M is movable also over
Y ′, see Lemma 2.2. Therefore, there is a sequence of flops γ : X ′

99K X ′′ over Y ′ making the strict

transform of M on X ′′ nef and hence semi-ample over Y ′. Let X ′′ → Ỹ → Y ′ be the corresponding
morphism. Since every divisor that is vertical for X ′ → Y ′ dominates a divisor in Y ′, and since γ
is a small birational map, then any divisor that is vertical for X ′′ → Y ′ dominates a divisor on Y ′.

Then, for dimensional reasons, the morphism Ỹ → Y ′ cannot contract any divisor. So, Ỹ → Y ′

is a small birational morphism. Since Y ′ is Q-factorial, it follows that Ỹ → Y ′ is an isomorphism.
But then M = (g′)∗H ′ for some divisor H ′ on Y ′. As M is movable over Y , the same holds for H ′.
Let (Y ′,∆′) be a klt pair induced by the canonical bundle formula for g′ : X ′ → Y ′; in particular
KY ′ +∆′ ∼Q,Y 0. Then, as H ′ is movable over Y , running a (KY ′ +∆′ + ǫH ′)-MMP, for 0 < ǫ≪ 1,

there is a sequence of (KY ′ +∆′)-flops Y ′
99K Y over Y making the strict transform H of H ′ on Y

semi-ample over Y . In particular, Y ′
99K Y is a birational contraction. By construction, taking the

relatively ample model of H over Y induces a morphism Y → Y ′′.
Furthermore, by repeatedly applying [Fil20, Proposition 2.9], there exists a Q-factorial Calabi–Yau

fiber space g : X → Y and X is isomorphic to X ′ in codimension 1.

(3) Let Ỹ and Ŷ be two models satisfying the conclusions of Lemma 2.16. As a Q-factorialization is an
isomorphism in codimension 1, up to replacing them by a Q-factorialization, we may assume they
are both Q-factorial. Then, as both birational models satisfy the assumptions of part (ii), there are

birational contractions Ỹ 99K Ŷ and Ŷ 99K Ỹ . Thus, the two models are isomorphic in codimension
1. Lastly, as both pairs are endowed with a pair structure that is crepant to the one induced on Y
by the canonical bundle formula for f : X → Y , the two varieties are connected by a sequence of
flops with respect to such pair structure.

(4) Let D′ be a prime and g′-vertical divisor such that [D′] 6= 0 ∈ N1
R(X

′/Y ′). Then, g′(D′) = D̄ is a
divisor on Y ′ and D′ 6= λf∗D̄ for any λ ∈ R. Thus, we may assume that D′ +D′′ = λ0f

∗D̄, where
λ0 ∈ R>0, D

′, D′′ ≥ 0 and they do not have components in common. Moreover, every component
of D′′ dominates D̄. Then, D′ is g′-very exceptional in the sense of [Bir12, Definition 3.1] and it is
contracted by running a (KX′ + ǫD′)-MMP over Y ′, for 0 < ǫ≪ 1, since KX′ + ǫD′ ∼Q,Y ′ ǫD′.

�

Remark 3.2. In the setup of Lemma 3.1, by Proposition 2.9, there exist only finitely many marked birational

models Ỹ → Y that appear in a factorization of the form X̃ // Ỹ // Y , where X̃ → Y is a relatively
minimal model of f .

Lemma 3.3. Let X be a terminal Q-factorial variety, and let f : X → Y be a Calabi–Yau fiber space of
relative dimension 1. Let σ : Bir(X/Y ) → GL(N1

R(X/Y ),Z) be the induced representation. Then, the image
of σ contains an Abelian subgroup G(X/Y ) which is the image of a finite index subgroup of H < Bir(X/Y )
that acts on the affine space W (X/Y ) := {z ∈ N1

R(X/Y )/V (X/Y )| deg(z) = 1} as a group of translations.
Moreover, the quotient space W (X/Y )/G(X/Y ) is a real torus.

Proof. We follow the strategy of proof of [Kaw97, Lemma 3.5].
Let η ∈ Y be its generic point. For a divisorD on X , we shall denote by Dη its restriction to the schematic

fiber Xη of X over η. Since Bir(X/Y ) = Aut(Xη), the degree of any divisor on X is preserved under the
push-forward by elements of Bir(X/Y ). Similarly, the subspace V (X/Y ) is fixed by the push-forward action
by elements of Bir(X/Y ).
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Case 1. We prove the lemma under the additional assumption that f has a rational section.
Fix such a section D0, which will serve as the origin for Xη. By the structure of the automorphism group

of an elliptic curve, the group of rational sections M , known as the Mordell–Weil group, can be identified as
a subgroup of finite index of Aut(Xη) and hence of Bir(X/Y ) that acts via translations.

Let θ ∈ Bir(X/Y ) be an element corresponding to a rational section D1 = θ∗D0. For a K-divisor D with
deg(D) = 1, θ∗Dη −Dη ∼K D1,η −D0,η on Xη. Thus, θ acts on W (X/Y ) as the translation by [D1 −D0].
We define the map

σ′ : M // (N1
R(X/Y )/V (X/Y ))0

D1
✤ // [D1 −D0],

where

(N1
R(X/Y )/V (X/Y ))0 :=

{
γ ∈ N1

R(X/Y )/V (X/Y ) | deg(γ) = 0
}
.

It is immediate from its definition that dim(N1
R(X/Y )/V (X/Y ))0 = ρ(X/Y )− v(X/Y )− 1.

Claim. Under the assumption that D0 corresponds to the identity ofM , σ′ is a homomorphism of Abelian
groups.

Proof of the Claim. LetD1 andD2 be two rational sections, and let θ1 and θ2 be the corresponding birational
automorphisms. To avoid confusion with the summation between divisors, we denote by D1 ⋆ D2 the sum
of the two sections in the Mordell–Weil group of f , that is, the group law of the elliptic curve Xη. Since we
have fixed D0,η as the identity of Xη, then D1 ⋆D2 ∼ (D1 −D0)η + (D2 −D0)η +D0,η = (D1 +D2 −D0)η.
Thus

D1 ⋆ D2 ∼ (D1 +D2 −D0)η,

or, equivalently,

(D1 ⋆ D2)−D0,η ∼ (D1 −D0)η + (D2 −D0)η.(3.1)

Since the linear equivalence in (3.1) holds over an open subset of Y , and since we are considering the vector
space N1

R(X/Y )/V (X/Y ), that is vertical divisors are negligible, then

[(D1 ⋆ D2)−D0] = [D1 −D0] + [D2 −D0] ∈ (N1
R(X/Y )/V (X/Y ))0.

�

For any Weil divisor D on X , we define Ddeg=1 := D − (deg(D) − 1)D0. Then, deg(Ddeg=1) = 1
and f∗OX(Ddeg=1) is a torsion free sheaf of rank 1 on Y . In particular, by Riemann–Roch on Xη, in
N1

R(X/Y )/V (X/Y ) the class of Ddeg=1 is in the same class as a rational section SDdeg=1
. Thus, we have

[Ddeg=1 −D0] = [SDdeg=1
−D0] ∈ Im(σ′). Hence, as D could be any Weil divisor, Im(σ′) is a Z-module of

maximal rank in (N1
R(X/Y )/V (X/Y ))0, i.e., rank Im(σ′) = ρ(X/Y )− v(X/Y )− 1. Therefore, as W (X/Y )

is an affine space under the (fully faithful) action of (N1
R(X/Y )/V (X/Y ))0, the statement of the lemma

follows.
Case 2. We prove the lemma without assuming the existence of a section.
Let d be the minimal positive integer such that Xη has a divisor of degree d defined over k(Y ). Fix

D0 a horizontal divisor on X such that D0,η has degree d. Let Jη denote the Jacobian of Xη. Then, the
group of k(Y )-rational points of Jη has finite index in Bir(X/Y ) and it acts on Xη as a group of translation.
As before, we will denote this group by M . Let θ ∈ M and D be a divisor with deg(D) = d. Then,
θ∗Dη − Dη ∼ θ∗D0,η − D0,η on Xη. Hence, dividing by d, we deduce that θ acts as a translation by
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1
d [θ∗D0 −D0] on W (X/Y ). Similarly to Case 1, we define the morphism σ′ : M → (N1

R(X/Y )/V (X/Y ))0
given by σ′(θ) := 1

d [θ∗D0 −D0] which is a group homomorphism.
Now, consider the group homomorphism φD0,η

: Jη → Jη defined by φD0,η
(x) = τx(D0,η) − D0,η, where

τx denotes the translation by x ∈ Jη. Then, φD0,η
is an étale morphism of degree d2, by the Theorem

of the square for Abelian varieties, see [Mum70, p. 59]. For every (integral) divisor D on X , we define
Q-divisor Ddeg=d = D − ( 1d deg(D)− 1)D0. Then, deg(Ddeg=d) = d and, by the minimality of d, d| deg(D),
so that Ddeg=d is actually a Weil divisor. Again, by Riemann–Roch on Xη and the minimality of d, the class
[Ddeg=d] ∈ N1

R(X/Y )/V (X/Y ) can be represented by a prime divisor SDdeg=d
on X . Regarding the divisor

of degree 0 SDdeg=d,η −D0,η as an element of Jη, its preimage φ−1
D0,η

(SDdeg=d,η −D0,η) is defined over k(Y ):

it consists of d2 points, upon passing to k(Y ). These d2 k(Y )-points are not necessarily defined over k(Y );
on the other hand, their sum is defined over k(Y ), that is, it is an element of M which we denote by x. By
definition, τx(D0,η)−D0,η ∼ d2(SDdeg=d,η −D0,η). As τx(D0,η)−D0,η = dσ′(x), then one can now conclude
exactly as at the end of Case 1. �

Theorem 3.4. Let f : X → Y be a Calabi–Yau fiber space of relative dimension 1. Then, there are only
finitely many orbits for the action of Bir(X/Y ) on:

(1) the chambers of M(X/Y ) for the marked minimal models of f : X → Y ; and
(2) the extremal faces of M(X/Y ) induced by factorizations

X ′ //

f ′

&&
Z ′ // Y

of a marked minimal model (f ′ : X ′ → Y, α) of f .

Proof. For the reader’s convenience, we divide the proof into several steps.
We observe that:

• replacing f with a marked relatively minimal model of f does not affect the conclusions of the
theorem, cf. §2.7;

• since f is a contraction of relative dimension 1, the only contractions that can factor f are either
birational models of X or birational models of Y .

Step 0. In this step, we make a first reduction and then we introduce the strategy of proof.
By Lemma 2.16, up to replacing f with a relatively minimal model, we can assume that f factors as

X

f

''g
// Y ′ h // Y,(3.2)

where every divisor that is g-vertical dominates a divisor in Y ′, h is birational, and Y ′ is Q-factorial. To
keep the notation light, we define

v := v(X/Y ), ρ := ρ(X/Y ), and k := ρ(Y ′/Y ).

By Lemma 2.5, g∗N1
R(Y

′/Y ) ⊂ V (X/Y ). If

X

f

%%g′
// Y ′′ h′

// Y,

is another factorization of f satisfying the same properties as the one in (3.2), then by Lemma 2.18 and
Lemma 3.1.3, Y ′, Y ′′ are isomorphic in codimension one and g∗N1

R(Y
′/Y ) = (g′)∗N1

R(Y
′′/Y ) in N1

R(X/Y ).
In particular, g∗N1

R(Y
′/Y ) is an intrinsically defined k-dimensional subspace of V (X/Y ). Let (y1, . . . , yk) be
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a basis of g∗N1
R(Y

′/Y ). Then, we may complete it to a basis (y1, . . . , yv) of V (X/Y ). In turn, we complete
this basis to a basis (y1, . . . , yρ) of N

1
R(X/Y ).

By Remark 3.2, there exist only finitely many extremal faces of M(X/Y ) corresponding to fiber space
structures of a marked minimal model of f : that proves the finiteness of the extremal faces of M(X/Y )
corresponding to a factorization of a marked minimal model of f which lie on the boundary of the big cone.
Thus, in the remainder of the proof, we will focus on the extremal faces of M(X/Y ) corresponding to a
birational contraction factoring f , that is, those extremal faces that intersect M e(X/Y ) ∩B(X/Y ).

Our strategy for the proof of the theorem is to now proceed by induction on v. Let us recall that in
Lemma 3.3 we defined W (X/Y ) := {z ∈ N1

R(X/Y )/V (X/Y )| deg(z) = 1}.

Step 1. In this step, we prove the base case of the induction, that is, the case where v = 0.
If v = 0, then W (X/Y ) = {z ∈ N1

R(X/Y )| deg z = 1}.
Claim 1. Under the assumptions of Step 1, W (X/Y ) ⊂M(X/Y ) ∩B(X/Y ).

Proof of Claim 1. Let z ∈ W (X/Y ). As deg z = 1 > 0, then z ∈ B(X/Y ). Let D be a divisor with
degD > 0. If F is a component of the stable base locus of D (over Y ), then F is a vertical divisor. As v = 0,
all vertical divisors are movable and it follows easily that D itself is movable. �

To prove the statement of this step, as W (X/Y )/G(X/Y ) is compact, it suffices to invoke Lemma 2.15.

We will now proceed to prove the inductive step: we assume that v > 0 and that the inductive hypothesis

holds. We define I(X/Y ) to be the collection of all cones in M(X/Y ) of the form α∗(g
∗
ZA(Z̃/Y )) for a

marked minimal model (f̃ : X̃ → Y, α) of f factoring as

(3.3) X̃ gZ
//

f̃

**Z̃ // Ỹ
h
Ỹ

// Y,

where Ỹ → Y is a birational contraction that is not an isomorphism, whereas X̃ → Z̃ is a birational

morphism, where, in this last case, an isomorphism is also allowed. If X̃ → Z̃ is an isomorphism, then

α∗(g
∗
ZA(Z̃/Y )) is a chamber of M(X/Y ). If X̃ → Z̃ is not an isomorphism, then the cone α∗(g

∗
ZA(Z̃/Y )) is

an extremal face of M(X/Y ) corresponding to a birational contraction, that is, the extremal face intersects
B(X/Y ).

Step 2. In this step, we show that the theorem holds for those chambers and extremal faces of M(X/Y )
belonging to the collection I(X/Y ).

Let (f̃ : X̃ → Y, α) be a marked minimal model together with a factorization of f̃ as in (3.3). Then, we

have that the cone α∗(g
∗
ZA(Z̃/Y )) is in I(X/Y ). By Lemma 2.5, v(X̃/Ỹ ) < v(X̃/Y ) = v. Thus, we can

apply the inductive hypothesis to the morphism X̃ → Ỹ . Then, there are only finitely many orbits for the

action of Bir(X̃/Ỹ ) on:

(i) the chambers of M(X̃/Ỹ ); and

(ii) the extremal faces of M(X̃/Ỹ ) induced by factorizations of a marked minimal model of X̃ → Ỹ .

By the inductive hypothesis and since

α is an isom. in codim. one︷ ︸︸ ︷
Bir(X/Y ) = Bir(X̃/Y ) = Bir(X̃/Ỹ )︸ ︷︷ ︸

by Lemma 2.1

,
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then there are only finitely many orbits in (i-ii) also for the action of Bir(X/Y ) on N1
R(X̃/Ỹ ). Hence, up to

this action, there are finitely many marked minimal models (fi : Xi → Y, αi), i = 1, . . . , s of f admitting a
factorization

Xi
//

fi

&&
Ỹ

h
Ỹ

// Y .(3.4)

Since by Lemma 2.8 there exist only finitely many birational models hỸ : Ỹ → Y that may appear in a
factorization of marked minimal models of f , then there are finitely many orbits of the action of Bir(X/Y )
on

(i’) the chambers of M(X/Y ) corresponding to marked minimal models of f admitting a non-trivial
factorization through a higher birational model of Y ; and

(ii’) the extremal faces of M(X/Y ) induced by factorizations of a marked minimal model as in (3.3).

By Remark 3.2, we may restrict our attention to the chambers and the faces thereof not corresponding to
fiber space structures.

To conclude the proof, we study orbits the of Bir(X/Y ) on the extremal faces and chambers of M(X/Y )

not contained in I(X/Y ). To this end, we define Î(X/Y ) ⊂ N1
R(X/Y ) to be the union of all chambers and

extremal faces of M(X/Y ) contained in I(X/Y ), and

J(X/Y ) := {z ∈ N1
R(X/Y )| deg(z) = 1, z ∈M e(X/Y ) \ Î(X/Y )}.

Step 3. In this step, we show that J(X/Y ) is closed in N1
R(X/Y ).

The condition deg(z) = 1 is clearly a closed one. The set {z ∈ M e(X/Y )| deg(z) = 1} is also closed, as
every element is big over Y and hence R-linearly equivalent to an effective divisor over Y . Let z be a point

in the closure of J(X/Y ): we must show that z 6∈ Î(X/Y ). By Lemma 2.15, we may assume that z is in
the closure of α∗A(X

′/Y ), for some marked minimal model (f ′ : X ′ → Y, α) of f . Moreover, as α∗A(X
′/Y )

does not belong to I(X/Y ), then f ′ does not admit a factorization, as in (3.4), through a higher birational
model of Y . Thus, the boundary of α∗A(X

′/Y ) in M e(X/Y ) is given by the union of the cones of the form

α∗l
′∗A

e
(Z ′/Y ), where

X ′ l′ //

f ′

&&
Z ′ m′

// Y

is a factorization of f ′ with l′ a birational morphism. On the other hand, if z ∈ I(X/Y ), then

Z ′ n′

//

m′

%%
Ỹ

o′ // Y ,

with o′ is a non-isomorphic birational morphism. That would imply that also f ′ admits an analogous fac-
torization, by pre-composing with l′, thus prompting the desired contradiction.

Step 4. In this step, we show that, in order to prove the theorem, it suffices to show that the map
p : J(X/Y ) →W (X/Y ) is proper.

By Lemma 3.3, we can fix a finite index subgroupH < Bir(X/Y ) such that the image G(X/Y ) ofH under
the natural representation σ : Bir(X/Y ) → GL(N1

R(X/Y ),Z) acts on W (X/Y ) as a group of translations
and W (X/Y )/G(X/Y ) is a compact torus. Thus, G(X/Y ) acts also on J(X/Y ): indeed, the action of
Bir(X/Y ) on N1

R(X/Y ) preserves
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• the degree of a divisor on the generic fiber of f ; and

• the property that a marked minimal model (f̃ : X̃ → Y, α) of f admits a non-trivial factorization of

f̃ .

Thus, there exists a natural morphism J(X/Y )/G(X/Y ) → W (X/Y )/G(X/Y ), where the latter is com-
pact. The properness of J(X/Y ) → W (X/Y ), in turn, implies the properness of J(X/Y )/G(X/Y ) →
W (X/Y )/G(X/Y ), and, in particular, the compactness of J(X/Y )/G(X/Y ). Then, the claim follows by
combining the local finiteness of the movable cone inside the big cone and the compactness of J(X/Y )/G(X/Y ).
In particular, the claim follows from Lemma 2.15: indeed, the faces on the boundary of the big cone are
taken care of by Corollary 2.19.

Step 5. In this step, we verify the properness of the map p.
Since the topological spaces of interest have the Heine–Borel property, we can check the properness of

p : J(X/Y ) →W (X/Y ) using sequences. Arguing by contradiction, we assume that there exists a sequence
(zn)n∈N ⊂ J(X/Y ) such that the sequence (p(zn))n∈N converges in W (X/Y ) whereas (zn)n∈N does not
admit any convergent subsequence. Both of these conditions are not affected by passing to a subsequence of
(zn)n∈N, (p(zn))n∈N.

For all n ∈ N, we write zn =
∑ρ

i=1 a
i
nyi and we set

wn :=

k∑

i=1

ainyi, xn :=

ρ∑

i=k+1

ainyi, and tn :=

ρ∑

i=v+1

ainyi.(3.5)

For all n ∈ N, zn = xn + wn, zn and xn are big over Y as well as over any birational model Ỹ → Y . By
construction, span(yv+1, . . . , yρ) maps isomorphically onto N1

R(X/Y )/V (X/Y ).

Step 5.1. In this step, we show that (xn)n∈N contains a converging subsequence.
Let Y ′ be the higher model of Y defined in Step 0. For all n ∈ N, [zn] ∈ M e(X/Y ′) ⊂ N1

R(X/Y
′) =

N1
R(X/Y )/N1

R(Y
′/Y ), by Lemma 2.2. Here [−] indicates the equivalence class in the quotient. As (y1, . . . , yk)

is a basis of N1
R(Y

′/Y ), [zn] = [xn] ∈ N1
R(X/Y

′). Thus, ([zn])n∈N ⊂ N1
R(X/Y

′) contains a converging
subsequence if and only if (xn)n∈N does.

We then argue as in [Kaw97, proof of Theorem 3.6] and look at the intersection numbers with the general
fibers of the g-exceptional divisors over their images in Y ′. By Lemma 2.3, this can be reduced to a lower-
dimensional question by considering a very general hyperplane section of Y ′. Thus, proceeding inductively,
we can reduce to the case when Y ′ is a surface and X a threefold, which is treated in [Kaw97, proof of
Theorem 3.6]. Thus, (xn)n∈N admits a converging subsequence.

Since we are assuming that (zn)n∈N contains no convergent subsequence, by Step 5.1, the same must hold
for (wn)n∈N, in view of the discussion above. As both of these conditions are not affected by passing to a
subsequence, then we pass to the subsequence of (xn)n∈N whose existence was shown in Step 5.1 and we also
pass to the subsequences of (zn)n∈N, (wn)n∈N corresponding to the same indices. Hence, we can assume that
(xn)n∈N is converging, while (zn)n∈N, (wn)n∈N do not contain any convergent subsequence.

For all n ∈ N, we set w′
n to be the unique element of N1

R(Y
′/Y ) such that g∗(w′

n) = wn.

Step 5.2 In this step, we show that there exists a birational contraction Y ′ → YN over Y which is the
outcome of a run of the MMP for a suitable subsequence of (w′

n)n∈N.
Since KY ′ + ∆′ ∼Q,Y 0, (Y ′,∆′) is klt, and Y ′ → Y is birational, for any divisor class in N1

R(Y
′/Y ) we

can run a relative MMP over Y , by [BCHM10, Corollary 1.3.2]. Hence, for all n ∈ N, the w′
n-MMP over

Y can be run and it will terminate with a relatively minimal model. By Lemma 2.8, there are just finitely
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many birational models of Y that can appear in those runs of the MMP. Furthermore, by the negativity
lemma, for a fixed n ∈ N no model can appear more than once in the w′

n-MMP. Thus, up to passing to a
subsequence (w′

nk
)k∈N ⊂ (w′

n)n∈N, we may assume that there exists a sequence of divisorial contractions and
isomorphisms in codimension one

Y ′ =: Y0
ψ0 //❴❴❴

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘

Y1
ψ1 //❴❴❴

  ❆
❆❆

❆❆
❆❆

❆
. . .

ψN−2
//❴❴❴ YN−1

ψN−1
//❴❴❴

||②②
②②
②②
②②

YN

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

Y

(3.6)

which yields, for any k ∈ N, a run of the w′
nk
-MMP over Y . In particular, for all k ∈ N, (ψN−1 ◦· · ·◦ψ0)∗w

′
nk

is nef over Y . Moreover, for all i = 1, . . . , N , by [DCS21, Propostion 2.26], there exists a marked minimal
model (fi : Xi → Y, αi) of f together with a factorization

Xi
li //

fi

&&
Yi // Y

such that the induced diagram

Xi

li

��

φi:=α
−1
i+1◦αi

isom. in codim. one
//❴❴❴❴❴❴❴❴❴ Xi+1

li+1

��
Yi

ψi

//❴❴❴❴❴❴❴❴❴ Yi+1

is commutative. Finally, passing to a suitable subsequence (w′
nkj

)j∈N ⊂ (w′
n)n∈N, we can assume that, for

all j ∈ N, the w′
nkj

all have the same ample model ψN : YN → YN+1 over Y .

We pass to the subsequence of (w′
n)n∈N whose existence was shown in Step 5.2; we also pass to the

subsequences of all the other sequences involved in the proof corresponding to the same indices.
We set wn,0 := wn, w

′
n,0 := w′

n, zn,0 := zn, and xn,0 := xn. We define inductively for i = 0, . . . , N − 1,

N1
R(Xi+1/Y ) ∋ zn,i+1 := (φi)∗zn,i, N1

R(Yi+1/Y ) ∋ w′
n,i+1 := (ψi)∗w

′
n,i,(3.7)

N1
R(Xi+1/Y ) ∋ wn,i+1 := l∗i+1w

′
n,i+1, N1

R(Xi+1/Y ) ∋ xn,i+1 := (φi)∗(xn,i + wn,i)− wn,i+1.

With these definitions, since [zn] = [xn,0] ∈ N1
R(X/Y

′), then, for all i = 0, 1, . . . , N ,

xn,i = zn,i − wn,i and [zn,i] = [xn,i] ∈ N1
R(X/Yi).(3.8)

As ψN is the ample model for the w′
n, we define w′

n,N+1 to be the only element of N1
R(YN+1/Y ) such that

w′
n,N = ψ∗

Nw
′
n,N+1; thus,

[zn,N ] = [xn,N ] ∈ N1
R(X/YN+1).(3.9)

Step 5.3. In this step, we show that for all i = 0, 1, . . . , N , there exits a converging subsequence
(xnk,i)k∈N ⊂ (xn,i)n∈N which can be chosen independently of i.

We proceed to prove the claim by induction on i = 0, . . . , N .
By Step 5.1, the claim is true for i = 0 as xn,0 = xn. Hence, we can assume that i > 0 and that we have

converging subsequences (xnk,l)k∈N for all l = 0, . . . , i− 1, corresponding to the same set of indices.
If i ≤ N and ψi−1 in (3.6) is a flip, there is nothing to prove, as xn,i = (φi−1)∗xn,i−1, by definition, in (3.7),

and since (φi−1)∗ descends to an isomorphism between N1
R(Xi−1/Yi−1) and N1

R(Xi/Yi), cf. Lemma 2.18.
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If i ≤ N and ψi−1 in (3.6) is a divisorial contraction, denoting Ei−1 its exceptional divisor, then
w′
n,i−1 − ψ∗

iw
′
n,i = cn,i−1[Ei−1] ∈ N1

R(Yi−1/Y ), cn,i−1 > 0. Since cn,i−1 > 0, by Lemma 2.11 cn,i−1Ei−1 6∈

M(Yi−1/Yi). On the other hand, setting Fi−1 := (ψi−2 ◦ · · · ◦ ψ1 ◦ g)∗Ei−1, [zn] = [xn,i] = [xn,i−1 +

cn,i−1Fi−1] ∈ N1
R(X/Yi). By Lemma 2.2, [xn,i−1+cn,i−1Fi−1] ∈M(X/Yi). Since (xnk,i−1)k∈N ⊂ (xn,i−1)n∈N

is a convergent subsequence (independent of i) and cn,i−1Fi−1 is not movable, then (cnk,i−1)k∈N must be
a sequence of positive real numbers bounded from above: hence, it contains a converging subsequence
(cnkj

,i−1)j∈N. Hence, taking the subsequences (xnkj
,l)k∈N for all l = 0, . . . , i proves the inductive step in this

case.

We pass to the subsequences of (xn,i)n∈N, i = 0, . . . , N whose existence was shown in Step 5.3; we also
pass, for all i, to the subsequences of (zn,i)n∈N, (wn,i)n∈N, (w

′
n,i)n∈N, corresponding to the same indices. Since

for all i, (φi)∗ : N
1
R(Xi/Y ) → N1

R(Xi+1/Y ) is an isomorphism, then for all i, (zn,i)n∈N, (resp. (wn,i)n∈N,
(w′

n,i)n∈N) does not contain any converging subsequence.

Step 5.4. In this step, we show that YN+1 → Y is not an isomorphism.
As (xn,N )n∈N is convergent, and zn,N = xn,N + wn,N , cf. (3.8), then YN+1 → Y is not an isomorphism:

otherwise, zn,N = xn,N ∈ N1
R(XN/Y ) and (zn,N )n∈N would be convergent.

Step 5.5. In this step, we show that there exists a marked minimal model (fN+1 : XN+1 → Y, αN+1) of
f together with a factorization

XN+1
lN+1

//

f

**
YN+1

// Y(3.10)

such that for infinitely many n ∈ N, [xn,N+1] is nef over YN+1, where φN := α−1
N+1 ◦ αN and xn,N+1 :=

(φN )∗xn,N .
Since (xn,N )n∈N is convergent calling xN ∈ N1

R(XN/Y ) its limit, then, by construction xN , xn,N are big
over both Y, YN+1, for all n ∈ N. Hence, Lemma 2.15 applied to XN → YN+1, implies that there exists a
subsequence (xnk,N )k∈N ⊂ (xn,N )n∈N and an isomorphism in codimension one φN : XN 99K XN+1 such that
(φN )∗xnk,N is nef for all k ∈ N.

We pass to the subsequence (xnk,N+1)k∈N ⊂ (xn,N+1)n∈N just defined; we also pass to the subsequences
of all the other sequences involved in the proof corresponding to the same indices. We define for all n ∈ N,
zn,N+1 := (φN )∗zn,N , wn,N+1 := l∗N+1w

′
n,N+1.

Step 5.6. In this step, we show that there exists a positive real number ǫN+1 such that for any curve

C ⊂ XN+1 contained in the fiber of fN+1, xn,N+1 · C > − 2 dimXN+1

ǫN+1
.

By Step 5.3 and Lemma 2.4.5 applied to fN+1, there exist effective divisors Dn,N+1, n ∈ N big over Y
such that xn,N+1 = [Dn,N+1] ∈ N1

R(XN+1/Y ) and 0 < ǫN+1 < 1 (independent of n) such that for all n ∈ N,
(XN+1, ǫN+1Dn,N+1) is klt. Hence, the conclusion follows by the Cone Theorem.

We fix an integer TN+1 ≥ 2 dim(X)N+1

ǫN+1
, and fix a Cartier divisor HN+1 on YN+1 ample over Y .

Step 5.7. In this step, we show that for infinitely many n ∈ N, zn ∈ Î(X/Y ). This prompts the desired

contradiction, since zn ∈ J(X/Y ) and hence it cannot be an element of Î(X/Y ) and, hence, concludes the
proof.
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We distinguish two separate cases at this point. We define zn,N+1 := (φN )∗zn,N in N1
R(XN+1/Y ).

Case 5.7.a. In this case, we assume that there exists a subsequence (w′
nk,N+1)k∈N ⊂ (w′

n,N+1)n∈N such

that for all k ∈ N, w′
nk,N+1 − TN+1HN+1 is nef over Y .

For any irreducible curve C′ ⊂ YN+1 in the fibers of YN+1 → Y , w′
nk,N+1 ·C

′ ≥ TN+1. Therefore, for any

irreducible curve C ⊂ XN+1 in the fibers of fN+1, wnk,N+1 · C′ is either 0 or ≥ TN+1. As XN+1 has been
chosen so that xn,N+1 is nef over YN+1, cf. Step 5.5, then, by Step 5.6, zn,N+1 = xn,N+1 + wn,N+1 is nef

over Y . But this implies that for all k ∈ N, znk
⊂ Î(X/Y ) by (3.10) which contradicts our initial choice of

the sequence (zn)n∈N ⊂ J(X/Y ).

Case 5.7.b. In this case we deal with the case where the assumption of Case 5.5.a is not satisfied.
For all k ∈ N, we set

λnk
:= inf

{
λ ∈ R

∣∣ w′
nk,N+1 + (λ − 1)TN+1HN+1 is nef over Y

}
,

and we fix an extremal contraction ψnk,N+1 : YN+1 → Yn,N+2 over Y contracting an extremal ray Rn ⊂
NE(YN+1/Y ) such that Rn · (w′

nk ,N+1+(λnk
−1)TN+1HN+1) = 0. In particular, there exists a subsequence

(w′
nkj

,N+1)j∈N ⊂ (w′
nk,N+1)k∈N such that for all j ∈ N

(a) ψnkj
,N+1 and Ynkj

,N+2 are the same, by Lemma 2.8; and

(b) (λnkj
)j∈N converges, since for all k ∈ N, λnk

∈ [0, 1].

To simplify the notation, we pass to the subsequence (w′
nkj

)j∈N ⊂ (w′
n)n∈N (resp. (λnkj

)j∈N ⊂ (λn)n∈N) just

defined; we also pass to the subsequences of all the other sequences involved in the proof corresponding to
the same indices. We also define YN+2 to be the variety from property (a) above and ψN+1 : YN+1 → YN+2

be the induced morphism. We set x′n,N+1 := xn,N+1 + (1 − λn)l
∗
N+1TN+1HN+1 in N1

R(XN+1/Y ). Thus,

(x′n,N+1)n∈N converges and for all n ∈ N. Moreover, for all n ∈ N, wn,N+1−(1−λn)l
∗
N+1TN+1HN+1 ≡YN+2

0.

Hence, [zn,N+1] = [x′n,N+1] ∈ N1
R(XN+1/YN+2) which implies that YN+2 → Y is not an isomorphism, as

otherwise (zn)n∈N would be convergent, which contradicts the assumption made before Step 5.2.

At this point, we iterate this procedure. Exactly the same proof as in Step 5.5 shows that there exist a
marked minimal model (fN+2 : XN+2 → Y, αN ) and a commutative diagram

XN+1

φN+1:=α
−1
N+2◦αN+1

//❴❴❴❴❴❴❴❴❴❴❴❴❴

lN+1

��

XN+2

lN+2

��
YN+1

ψN+1
//

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖
YN+2

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

Y

(3.11)

such that, defining x′n,N+2 := (φN+1)∗x
′
nk,N+1, by construction (x′nk,N+2) is nef over YN+2 for a suitable

subsequence (x′nk,N+2)k∈N ⊂ (x′n,N+2)n∈N. Proceeding as in Step 5.6, there exists ǫN+2 > 0 such that for

any curve C ⊂ XN+1 contained in the fiber of fN+1, xn,N+2 · C > − 2 dimXN+2

ǫN+2
. We fix an integer TN+2 ≥

2 dim(XN+2)
ǫN+2

and a Cartier divisor HN+2 on YN+2 ample over Y and we set w′
n,N+2 := (ψN+1)∗w

′
n,N+1 +

(λn − 1)TN+1HN+1 for all n ∈ N. If there exists a subsequence (w′
nk,N+2)k∈N ⊂ (w′

n,N+2)n∈N such that for
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all k ∈ N, w′
nk,N+2 − TN+2HN+2 is nef over Y , we apply Case 5.7.a and reach a contradiction. Otherwise,

we repeat the procedure of Step 5.7.b.
This procedure must stop after finitely many steps. In fact, our construction yields a commutative diagram

of birational morphisms

YN+1

ψN+1
//

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
YN+2

ψN+2
//

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

YN+3

ψN+3
//

""❊
❊❊

❊❊
❊❊

❊
. . .

ψN+l−1
// YN+l

ψN+l
//

||②②
②②
②②
②②

YN+l+1

ψN+l+1
//

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦❦

. . .

Y

such that for all i ≥ 1 morphism YN+i → Y is not an isomorphism. Hence, the finiteness of the diagram
follows from Lemma 2.8. But this means that on the last step of this procedure, we must be in the situation
of case 5.7.a and again we reach a contradiction. �

4. Interludium: an example

This section aims to study the behavior of the different cones of divisors in a family of Calabi–Yau
threefolds. We will study the following example in the category of smooth Calabi–Yau threefolds which first
appeared in Wilson’s work, cf. [Wil92].

4.1. Setup. Let X → C be a family of smooth Calabi–Yau threefolds. In particular, for any t ∈ C, the log
pair (X,Xt) is plt and Xt is terminal. Let 0 ∈ C be a closed point and X0 the corresponding fiber. We
assume that X0 contains an elliptic ruled surface, that is, E0 → G0 is a minimal ruled surface over the elliptic
curve G0. In [Wil92], Wilson showed that it is possible to construct families X → C in which E0 is rigid,
that is, E0 does not deform in the family. Up to shrinking C around 0, we can identify the cohomology of X
with the cohomology of any fiber, via restriction to X0. Furthermore, up to an étale base change centered
at 0 ∈ C, we may assume that the conclusions of Theorem 5.1 are satisfied. Under these assumptions, We
shall show that the pseudo-effective cone cannot be constant in the fibers of this family.

Lemma 4.1. The surface E0 can be contracted on X0 by means of a (KX0
+ E0)-extremal contraction

π0 : X0 → Y0 to an elliptic curve isomorphic to G0.

Proof. By assumption, E0|E0
= KE0

and KE0
·R = −2, where R is a fiber of the projective bundle structure

on E0. As R2 = 0 as a divisor on E0, then R is an extremal ray both in the nef and the pseudo-effective
cones of E0. Since E0 is a minimal ruled surface, then N1,R(E0) = R[R] ⊕ R[KE0

]. Since KX0
+ E0 is not

nef, we may consider a (KX0
+ E0)-extremal contraction π0 : X0 → Y0.

Claim. The embedding i : E0 → X0 induces an embedding i∗ : N1,R(E0) → N1,R(X0) and π0|E0
is coincides

with the contraction E0 → G0.

Proof. Indeed, we may consider the plt pair (X0, E0). By adjunction, (KX0
+ E0) · R < 0, and all the

(KX0
+ E0)-negative curves are E0-negative, hence, contained in E0. By adjunction and the fact that

R2 = 0 inside E0, we have (KX0
+ E0) · R = −2. Now, let G̃0 be the section of E0 → G0 of minimal

self-intersection. To show that i∗ : N1,R(E0) → N1,R(X0) is an embedding, we will show that G̃0 is not
numerically equivalent to R in N1,R(X0). By the classification of ruled surfaces over an elliptic curve, see

[Har77, §V.2], we either have G̃2
0 ≤ 0 or G̃2

0 = 1. In the former case, since g(G0) = 1, then deg(KG̃0
) = 0

and, by adjunction
(KX + E0) · G̃0 = KE0

· G̃0 = −G̃2
0 ≥ 0.

Thus, R and G̃0 are linearly independent in N1,R(X0). Now, assume that G̃2
0 = 1. In this case, we have that

(KX+E0)·G̃0 = −1. As (KX+E0)·R = −2, to conclude, it suffices to rule out that [R] = 2[G̃0] in N1,R(X0).
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Now, let L be an ample divisor on X0. Then, by [Har77, Proposition V.2.21], up to rescaling the numerical

class of L, we have that L|E0
≡ G̃0 + bR with b > − 1

2 . Thus, we have L · G̃0 = (G̃0 + bR) · G̃0 = 1 + b,

and L · R = (G̃0 + bR) · R = 1. Thus, we have [R] 6= 2[G̃0], as b 6= − 1
2 . Hence, we conclude that

i∗ : N1,R(E0) → N1,R(X0) is an embedding. Now, since any (KX0
+E0)-negative extremal ray is spanned by

the class of a rational curve in E0 and since E0 is ruled over a curve of positive genus, it follows that the
only possible ray is R≥0[R]. Now, as we showed that G̃0 is not in R≥0[R], G̃0 cannot be contracted by π0
and no irreducible curve C ⊂ E0 horizontal over G0 can be contracted, as this would force E0 and hence
also G̃0 to be contracted. Thus, E0 cannot be contracted to a point by a (KX0

+E0)-extremal contraction,
as otherwise dim i∗(N1

R(X0)) = 1. �

As all rational curves in E0 are vertical above the elliptic base, they must all be numerically equivalent to R.
Thus, R is a (KX0

+ E0)-extremal curve, and its contraction π0 is a divisorial contraction that maps E0 to
a curve. The conclusion on the image of E0 follows from the fact that E0 is the projectivization of a vector
bundle over G0 and we are contracting the fibers of this bundle. �

4.2. Goal. The primitive contraction π0 : X0 → Y0 is the first (and only) step in the E0-MMP on X0. Let
H0 be a big and nef Cartier divisor in the relative interior of the facet of A(X0) given by π∗

0(A(Y0)). As
π0 is divisorial, then Y0 is canonical, and it contains an elliptic curve G0 of canonical singularities. As the
conclusions of Theorem 5.1 are met for X → C, any divisor class on X0 comes from the ambient space X .
We denote by H,E the corresponding cohomology classes on X restricting to H0, E0. Up to replacing H0

with a multiple, we may assume that H is a Cartier divisor.
Our goal is now to understand the models that appear on X when moving along the segment [H,E] in

N1
R(X/C). In [Wil92, Proposition 4.4], Wilson showed thatH0 is big and nef but not ample, whileHt := H |Xt

is ample for any t 6= 0. By Kawamata–Viehweg vanishing, the restriction map

H0(X,mH) → H0(Xt,mHt)

is surjective for any t ∈ C and for any m ≥ 0. Hence, the natural morphism π : X → Y over C induced by
H lifts π0. For 0 < ǫ ≪ 1, the divisor H + ǫE is relatively big over C and relatively ample over C \ {0}.
Therefore, the relative stable base locus of H + ǫE is a proper subset of X0, and it follows that H + ǫE
is relatively movable over C. Now, fix 0 ≤ ∆ ∼Q H + ǫE. For 0 < δ ≪ 1, the log pair (X,X0 + δ∆) is
plt, and the log pair obtained by adjunction (X0, δ∆0) is terminal. Thus, we can interpret the contraction
π : X → Y as a step of a (KX +X0 + δ∆)-MMP over C, that is, π is a flipping contraction for such MMP,
as its exceptional locus is small, and the flip

X
ψ

//❴❴❴❴❴❴❴

π

��❅
❅❅

❅❅
❅❅

❅ X+

π+

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

Y

of π exists. We shall denote the strict transform of a divisor M on X by M+ on X+.

Lemma 4.2. X0 is isomorphic to X+
0 .

Proof. The map ψ is a step of the (KX + X0 + δ∆)-MMP over C, (X,X0 + δ∆) is plt, and (X0, δ∆0) is
terminal. Then, (X,X+

0 + δ∆+) is plt as well; similarly, (X+
0 , δ∆

+
0 ) is terminal. Thus, π+

0 : X+
0 → Y0 is a

terminalization of Y0. SinceKX+ ≡ 0, as ψ is an isomorphism in codimension one, thenKX+
0
≡ 0. So, X0 and

X+
0 are isomorphic in codimension one, as they are both terminal and minimal, see [KM98, Corollary 3.54].

Since X0 is Q-factorial and π0 is an extremal divisorial contraction, then also Y0 is Q-factorial. Then, as also
π+
0 is extremal and, it follows that X+

0 is Q-factorial as well. In particular, as X0 and X+
0 are Q-factorial,
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minimal and terminal, they are connected by a sequence of flops.
Hence, π+

0 is a divisorial contraction that contracts the strict transform Ē0 of E0 onX
+
0 to the curveG0 ⊂ Y0.

Let R+ denote the class of the curves contracted by π+
0 . As π

+
0 is an isomorphism outside Ē0, the first flop

in the chain of flops connecting X0 to X+
0 must flop a rational curve in E0. The only rational curves here

are the fibers of the projective bundle structure E0 → G0 and they are all contained in a 1-dimensional
family. Hence, they cannot be possibly flopped. This shows that X0 and X+

0 are isomorphic. In particular,
Ē0 ·R+ = −2. �

Abusing notation, we denote by ψ0 : X0 → X+
0 the isomorphism whose existence is demonstrated in the

proof of Lemma 4.2. Given that N1
R(X0) (resp., N

1
R(X

+
0 )) comes equipped with a natural marking given by

the identification with N1
R(X), the two markings cannot possibly coincide: in fact, for example, (H + ǫE)|X0

is not ample on X0 for 0 < ǫ ≪ 1, while the corresponding class (H+ + ǫE+)|X+
0

is ample on X+
0 . Hence,

under such markings, the nef cones are not even identified.

Lemma 4.3. For any class D0 ∈ N1
R(Y0),

E+
0 · (π+∗

0 D0)
2 = 0 = Ē0 · (π

+∗
0 D0)

2 = 0 = E0 · (π
∗
0D0)

2.

Proof. As Ē0 is contracted by π+
0 to a curve, for any general ample divisors J0 and J ′

0 on Y0, we have
Ē0 · (π

+∗
0 J0) · (π

+∗
0 J ′

0) = 0, since we may assume that the intersection J0∩J ′
0 avoids G0. As the Néron–Severi

group is generated by ample divisors, the conclusion of the lemma follows for Ē0.
The same reasoning shows also that the conclusion holds for E0 on X0, as E0 is contracted by π0.
Let V ⊂ N1

R(X/C) be the subspace that is generated by the classes that restrict to π∗
0(N

1
R(Y0)) on X0. By

the conclusion of the lemma for E0 and the deformation invariance of intersection products, it follows that,
for any t ∈ C and any L ∈ V , we have Et · (Lt)2 = 0. However, when we apply ψ, as nothing happens on
X \ {X0}, then E

+
t · (L+

t )
2 = 0 for t 6= 0. This also implies, by the constancy of the intersection numbers in

the family, that E+
0 · (H+

0 )2 = 0. �

Remark 4.4. (1) We observe that Y0 is a local complete intersection. Indeed, as observed by Wilson
[Wil92, p. 567], Y0 has cDV singularities. Thus, Y0 has locally analytically hypersurface singularities.
Hence, by [TS21, Tag 09PY], Y0 is a local complete intersection. In particular, cf. [Laz04, Remark
3.1.34], the Lefschetz hyperplane theorem can be applied to Y0.

(2) Let

N1
R(Y0)⊗R N1

R(Y0)
// N1,R(Y0)

α⊗ β
✤ // α · β

be the morphism induced by the intersection pairing on Y0. Let M0 ⊂ N1,R(Y0) be the image of this
morphism. We claim that M0 = N1,R(Y0), or, equivalently, that M

⊥
0 = {0}, where M⊥

0 ⊂ N1
R(Y0).

Let us assume that that is not case, i.e., that there is an element 0 6= v ∈ N1
R(Y0) such that v ·h·h′ = 0

for any divisors classes h, h′ ∈ N1
R(Y0). Taking h = [H ], where H is a general very ample divisor and

hence a surface with canonical singularities, then, v · h · h′ = v|H · h′|H = 0. By the previous part of
this remark, the morphism H2(Y0,Z) → H2(H,Z) is injective, and therefore v|H 6= 0. Now, assume
that h′ is an ample class. Then, since v|H · h′|H = 0, by the Hodge index theorem and the fact that
v|H 6= 0, it follows that v|H · v|H < 0. Thus, we reach the required contradiction, as v · v · h 6= 0.

Lemma 4.5. There exists a negative real number λ such that [E+] = λ[Ē] in N1
R(X

+).

Proof. By Lemma 4.3, we know that E+
0 , Ē0 ∈ (π∗

0M0)
⊥. As dimπ∗

0N
1
R(Y0) = dimN1

R(X
+
0 ) − 1 and

π∗
0N

1
R(Y0) ∩ (M0)

⊥ = {0}, then (π∗
0M0)

⊥ is a line generated by either one of the divisors E+
0 , Ē0. Let
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R+ be the class contracted by π+ (R+ is just the class of any curve in the ruling of Ē0). Hence, as already
observed at the end of the proof of Lemma 4.2, Ē0 ·R+ < 0. On the other hand, by construction, E+

0 ·R+ > 0,
as E+ is the strict transform of E through the flip. �

The conclusions of Lemma 4.5 are consistent with the observations made by Wilson in [Wil92, §5]. Indeed,
Wilson showed that the transformation induced on N1

R(X0) by the flip is a reflection through the plane
generated by pull-back of classes from Y0 which sends E0 to its negative. In particular, the coefficient λ in
Lemma 4.5 is λ = −1.

5. Deforming divisors in a family

In this section, we study how divisor classes deform in families of certain types of K-trivial varieties.
We start with the following generalization of [Tot12, Theorem 4.1]. The proof has been kindly suggested

by Totaro.

Theorem 5.1. Let X0 be a projective variety with rational singularities. Assume that H1(X0,OX0
) =

H2(X0,OX0
) = 0, and that X0 is smooth in codimension 2 and Q-factorial in codimension 3. Then, given

a deformation X → (T, 0) of X0 over a smooth variety T , there is an étale morphism (T ′, 0) → (T, 0) such
that the class group of XT ′ maps split surjectively to the class group of Cl(Xt) for all t ∈ T ′, and all these
surjections have the same kernel.

We summarize the property proven in Theorem 5.1 by saying that the divisor class group is unchanged
under nearby deformations of X0.

Proof. Let X → T be a deformation of X0 as in the statement. Under these assumptions, we can apply
[Tot12, Theorem 3.1] showing that Cl(Xt) → H2n−2(X,Z) is an isomorphism for t ∈ T , where n = dim(X0).
By Grothendieck’s six functor formalism, these homology groups form a constructible3 sheaf of Abelian
groups on T . Thus, T is stratified by a union of finitely many locally closed algebraic subsets T = ∪ni=1Ti
such that Cl(Xt) is locally constant on each of the Ti. Hence, if there is just one stratum near 0 ∈ T , then
the claim follows by the definition of locally constant sheaf.

Let us assume by contradiction that there is more than one stratum near 0 ∈ T . Then, there is a smooth
curve C through 0 that crosses a stratum exactly at 0 ∈ T . Thus, the groups Cl(Xt) would not be locally
constant around 0 ∈ C, contradicting [Tot12, Theorem 4.1]. �

Theorem 5.2. Let X0 be a terminal Q-factorial variety. Assume that KX0
≡ 0, H1(X0,OX0

) = 0 and
H2(X0,OX0

) = 0. Given a deformation X → (T, 0) of X0 over a smooth variety T , then X is terminal
Q-factorial, KX ∼Q,T 0 over a neighborhood of 0 ∈ T . Furthermore, after an étale base change, the following
facts hold:

(1) A(Xη) ⊃ A(X0), where the inclusion is possibly strict;

(2) B(X/T ) ⊂ B(X0), where the inclusion is possibly strict; and
(3) M(X/T ) ⊃M(X0), where the inclusion is possibly strict.

Remark 5.3. Lemma 4.5 provides an instance in which the inclusion (2) in Theorem 5.2 is strict. Indeed,
using the notation of §4, if E were pseudo-effective, then so would E+ be. Yet, this would imply that E+

0 is

pseudo-effective. Then, by Lemma 4.5, B(X/C) would contain a line, which is impossible.

3In this context, we only mean that the sheaf is locally constant on a suitable stratification, while we do not require that
the stalks are finite.
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Proof. (1) By repeatedly applying [dFH11, Corollary 3.2 and Proposition 3.5], it follows that X is Q-
factorial and terminal. Since ±KX0

is nef, then so is ±KXη
, where η ∈ T denotes the generic point

of T . Thus, passing to the algebraic closure η̄, KXη̄
∼Q 0, by [Gon13], and hence also KXη

∼Q 0.

Therefore, there is an open neighborhood T 0 ⊂ T such that KX
T0

∼Q,T 0 0. By [Bir12, Theorem 1.5],

0 ∈ T0. By Theorem 5.1, after an étale base change T ′ → T 0, we may assume that the class group of
Cl(Xt) is constant for all t ∈ T ′. To simplify the notation, we replace X → T by XT ′ → T ′. Hence,
if D|X0

is ample then so is D|Xη
. On the other hand, Wilson’s example [Wil92, Example 4.6] shows

that we could have a strict inclusion.
(2) Let B(X/T ) be the relative pseudo-effective cone and B(X0) be the pseudo-effective cone of the

central fiber. By Theorem 5.1, There is a natural restriction map r : B(X/T ) → N1
R(X0) and, by

semicontinuity [Har77, Theorem III.12.8], the inclusion B(X/T ) ⊂ B(X0) is clear. The inclusion
could be strict by the example discussed in §4.

(3) Note that by (1), A(X0) ⊂ A(Xη) ⊂ B(Xη). Therefore, r(B(X/T )) ∩M(X0) contains an open
subset. Indeed, we may consider a rational polyhedral cone Π ⊂ A(X0), and, up to shrinking T
around 0, every non-zero divisor class in Π lifts to a class in A(X/T ).

First, we claim that r(B(X/T )) ⊃M(X0). Assume by contradiction that this is not true. Then,
as these are full dimensional cones with a non-empty and full-dimensional intersection, we may pick
a divisor D in the boundary of B(X/T ) such that D0 = D|X0

is in the interior of M(X0) and in
particular vol(D0) > 0. We will show that vol(Dt) ≥ vol(D0) > 0 for every t ∈ T . This contradicts
the assumption that D is in the boundary of B(X/T ) and so r(B(X/T )) ⊃M(X0).

To see the claim we proceed as follows. First, as our goal is to show that vol(Dt) ≥ vol(D0) > 0
for every t ∈ T , we may assume that T is a smooth affine curve, as any point in t can be joined
to 0 with a smooth curve. Let Di be a sequence of Q-divisors contained in the interior of B(X/T )
such that limDi = D. For any i, we may choose Q-divisors Bi and rational numbers βi > 0 such
that Di ∼Q βiBi and (X,X0 + Bi) is plt and (X0, Bi|X0

) is terminal. Since Bi is big over T , there
is a minimal model φ : X 99K X ′ over T . Since D0 = D|X0

is in the interior of M(X0), then so is
Di|X0

for i ≫ 0. Thus, since the stable base locus of Di|X0
contains no divisors, each step of this

minimal model program is an isomorphism at codimension 1 points of X0. It follows that φ is an
isomorphism on a neighborhood of each codimension 1 point in X0. Since (X0, Bi|X0

) is terminal,
it follows easily that φ0 : X0 99K X ′

0 extracts no divisors and so φ0 is a small birational map. Let
B′
i = φ∗Bi, then (φ0)∗(Bi|X0

) = B′
i|X′

0
. Since B′

i is nef over T , the volume of its restriction to any
fiber is computed by self intersection. Thus, it follows that

vol(Xη, Bi|Xη
) = vol(X ′

η, B
′
i|X′

η
) = vol(X ′

0, B
′
i|X′

0
) = vol(X0, Bi|X0

),

where the last equality follows from the fact that φ0 is an isomorphism in codimension 1.
Thus, we have the following chain of equalities

vol(Xη, Di|Xη
) = βdi vol(Xη, Bi|Xη

) = βdi vol(X0, Bi|X0
) = vol(X0, Di|X0

),

where d = dim(X0). As the volume function is a continuous function on the pseudo-effective cone,
it follows that

vol(Xη, D|Xη
) = vol(X0, D0) > 0.

By upper-semicontinuity of the volume function, it follows that

vol(Xt, D|Xt
) ≥ vol(X0, D0) > 0

for every t, which is the sought contradiction.
Now assume by contradiction that (3) does not hold. Then, we may find a divisor D that is not in

M(X/T ) and D0 is in the interior of M(X0). Since D0 is in the interior of M(X0), it follows that D
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is in the interior of B(X/T ). Proceeding as above, there is a D minimal model φ : X 99K X ′ over T
such that φ0 : X0 99K X ′

0 is a small birational map. In particular φ0 contracts no divisors and hence
by semicontinuity of the fiber dimension, φ also contracts no divisors over a neighborhood of 0 ∈ T .
Therefore, there cannot be a divisorial component of Bs(D/T ) dominating T . Thus D ∈ M(X/T )
which is the required contradiction, and (3) follows. Wilson’s example [Wil92, Example 4.6] shows
that we could have a strict inclusion.

�

Remark 5.4. The proof of part (3) of Theorem 5.2 can be adapted to show the following: if D0 is in the
interior of M(X0), then for m > 0 sufficiently divisible the natural morphism H0(X,mD) → H0(X0,mD0)
is surjective. Indeed, working on the model X ′ constructed in the proof of (3), we can apply the relative
Kawamata–Viehweg vanishing theorem on X ′ to argue that the Euler characteristic χ(X ′

t,mD
′
t), which is

constant by flatness, is given by h0(X ′
t,mD

′
t).

6. Elliptic threefolds

6.1. Elliptic Calabi–Yau threefolds and their bases. If f : X → S is an elliptic Calabi–Yau threefold,
the base S is either rational, or it is a surface with Du Val singularities whose minimal resolution is an
Enriques surface, see [Gro94]

Remark 6.1. Let X be a klt variety with KX ∼Q 0. Assume that X is endowed with an elliptic fibration
f : X → S. Then, by the canonical bundle formula, cf. Proposition 2.9, there exists a generalized pair
structure (S,BS + MS) on S such that KX ∼ f∗(KS + BS + MS). By [FM00], the coefficients of BS
lie in the set

{
1− 1

n | n ∈ N>0

}
∪
{
1
6 ,

1
4 ,

1
3

}
, and , by Kodaira’s canonical bundle formula, we can find

an effective and integral divisor D such that 1
12D ∼Q MS , and (S,∆S) is klt, where ∆S := BS + 1

12D,

cf. [PS09, Example 7.16]. In particular, coeff(∆S) ⊂
{
1− 1

n | n ∈ N>0

}
∪
{
1
6 ,

1
4 ,

1
3 ,

1
12

}
.

We will denote the set
{
1− 1

n | n ∈ N>0

}
∪
{

1
6 ,

1
4 ,

1
3 ,

1
12

}
by Cell.

In order to prove the boundedness of the elliptic Calabi–Yau threefolds, one first needs to address the
boundedness of the bases of the corresponding elliptic fibrations.

The set of possible rational bases is bounded by work of Alexeev [Ale94].

Proposition 6.2. The set of log pairs

B
2,Cell

LCY, RC
:=

{
(S,∆S)

∣∣∣∣
dimS = 2, coeff(∆S) ⊂ Cell, KS +∆S ∼Q 0,
S is rationally connected, and (S,∆S) is projective klt

}

is log bounded.

Proof. Fix (S,∆S) ∈ B
2,Cell

LCY, RC. By [PS09, Corollary 1.11], there exists N ∈ N, only depending on the data

of our problem such that N(KS+∆S) ∼ 0. Since (S,∆S) is klt, this implies that it is 1
N -log canonical. Then,

by [Ale94, Theorem 6.9], the surface S belongs to a bounded family. The statement about the boundary
follows from [CDCH+21, Theorem 4.1]. �

On the other hand, we could not find in the literature a result showing the boundedness of singular models
of Enriques surfaces. The following statement fills this gap. We deduce the boundedness of these varieties
from the boundedness of Enriques surfaces and the Kawamata–Morrison cone conjecture.

Theorem 6.3. The set of varieties

B2
Enr,DV :=

{
S

∣∣∣∣
S is a projective surface with at worst Du Val singularities
and its minimal resolution is an Enriques surface

}

is bounded.
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Proof. It is well known that Enriques surfaces form a bounded family. For instance, by [Cos85, Theorem
1], every Enriques surface admits a birational morphism onto a (possibly singular) projective surface of
degree 10 in P5. Projective surfaces of degree 10 in P5 form a bounded family – it suffices to consider their
Hilbert scheme in P5. Then, also the set given by their resolutions forms a bounded family, thus proving the
boundedness of Enriques surfaces.

Now, we need to show the boundedness of the set of surfaces admitting Du Val singularities whose minimal
resolution is Enriques. Let X → T be a family that bounds the set of Enriques surfaces. Up to replacing
this family, we may assume that the conclusions of Theorem 5.1 and Theorem 5.2 hold. As there are finitely
many of these components, in the following we focus on a single one, with the understanding that the same
argument has to be repeated on each one of them individually.

Let η ∈ T be the generic point. By [Kaw97, Remark 2.2], there is a rational polyhedral cone Πη ⊂ A(Xη)
that serves as fundamental domain of the action of Aut(Xη) on Ae(Xη) = A(Xη), where we use the fact that
every nef Cartier divisor on an Enriques surface is semi-ample. Then, the semi-group of lattice points of Πη is
finitely generated. Let M1

η , . . . ,M
k
η be a set of generators of this semi-group. We denote by M1, . . . ,Mk the

corresponding classes in N1
R(X/T ) given by the identification of N1

R(Xη) and N1
R(X/T ). Since any integral

nef divisor on an Enriques surface is semi-ample, each M i
η spreads out to a divisor that is relatively semi-

ample over a non-empty open subset of T . Thus, up to shrinking T finitely many times (this is allowed by
Noetherian induction), we may assume that each M i is relatively semi-ample.

Let Lη be a divisor in Πη, and let L ∈ N1
R(X/T ) be the corresponding divisor class. Then, we claim that

L is semi-ample over T . Indeed, as Πη is a rational polyhedral cone and M1
η , . . . ,M

k
η generate its lattice

points over Z≥0, then M
1
η , . . . ,M

k
η generate Πη over R≥0. Thus, L =

∑k
i=1 aiM

i, where each ai ≥ 0. Since

each M i is semi-ample over T , then so is L.
We will now show that, under the assumptions of the previous reductions, A(Xη) = M(X/T ), where we

identify the vector spaces N1
R(Xη) and N1

R(X/T ). Clearly, we have M(X/T ) ⊂ A(Xη), as any relatively
movable divisor restricts to a movable divisor on the generic fiber, and movable divisors are nef on surfaces.
Now, let Dη ∈ A(Xη), and let D be the corresponding divisor class in N1

R(X/T ). By assumption, there
is an automorphism φ ∈ Aut(Xη) and a divisor Lη ∈ Πη such that φ∗Dη = Lη. Then, by regarding φ as
an element of Bir(X/T ), we have φ∗D = L. Since X is smooth and relatively minimal over T , φ does not
contract nor extract any divisor. Thus, φ∗ preserves linear equivalence. Thus, as L is semi-ample and the
indeterminacy loci of φ and φ−1 are small, it follows that the relative stable base locus of D over T does not
contain any divisor. In particular, D ∈M(X/T ).

In particular, we have that Πη is a fundamental domain for the action of Aut(Xη) = Bir(X/T ) on

A(Xη) =M(X/T ). Since Πη is rational polyhedral, it follows that the cone conjecture holds in this particular
setup. Thus, there are only finitely many chambers for the marked minimal models of X → T and finitely
many faces of them up to the action of Bir(X/T ). In particular, there are finitely many varieties Y1, . . . , Yl
over T such that, for every divisor D ∈M(X/T ), the ample model of D over T is isomorphic over T to some
Yi, for i = 1, . . . , l.

Now, let S0 be a surface with Du Val singularities whose minimal resolution is f : X0 → S0 for some 0 ∈ T .
Let H0 be the pull-back via f of an ample divisor on S0. Also, let H be the corresponding divisor class in
N1

R(X/T ). By Proposition 5.2, H ∈ A(Xη). Let Yi be the distinguished model that is isomorphic over T
to the relative ample model of H . Then, by construction, we have that the fiber of Yi → T over 0 ∈ T is
isomorphic to S0. In particular, the Du Val models of the Enriques surfaces appearing as fibers of X → T
are bounded, as they all appear as fibers of some Yi → T .

By iteration of this argument on all the finitely many components of T and by Noetherian induction on
the closed subsets of T removed in the construction, this shows the claim. �
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6.2. Elliptic Calabi–Yau threefolds with a rational base. In [Gro94, Theorem 1], Gross proved the fol-
lowing result showing that minimal terminal elliptic Calabi–Yau threefolds with rational base are birationally
bounded.

Theorem 6.4 ([Gro94, Theorem 1]). The set of triples

F3
CY, ell, rat := {(X,S, h) | h : X → S is an elliptic Calabi–Yau threefold and S is rational}

is birationally bounded.

By the above theorem, together with Definition 2.7, passing to a resolution of a bounding family of
fibrations, we can assume that there exist quasi-projective varieties X ,S, T and a commutative diagram

X
f

//

π

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆ S

g

xxqqq
qq
qq
qq
qq
qq

T

(6.1)

of projective morphisms satisfying the following properties:

(1) π and g are smooth;
(2) for every t ∈ T , Xt is birational to a Calabi–Yau threefold, St is a smooth rational surface and the

general fiber of ft is an elliptic curve; and
(3) if h : X → S is an elliptic Calabi–Yau threefold over a rational surface S, then X → S is birationally

equivalent to Xt → St for some t ∈ T , that is, there exists a commutative diagram

X
φ

//❴❴❴❴❴❴❴❴❴

h

��

Xt

ft

��
S

ψ
//❴❴❴❴❴❴❴❴❴ St

(6.2)

where the horizontal arrows are birational maps.

Using techniques of the MMP, up to stratifying the base T , we can modify birationally the family in (6.1)
to obtain a new family of elliptic fibrations

X ′ f ′

//

π′

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆ S ′

g′

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

T

(6.3)

such that, for every t ∈ T , Xt and X ′
t (resp. St and S ′

t) are birationally equivalent, and X ′
t is a minimal

model for Xt. In particular, this implies that F3
CY, ell, rat is log bounded in codimension 1 since the rational

map φ : X 99K X ′
t is a sequence of KX-flops, cf. Definition 2.7.3. On the other hand, the rational contraction

ft ◦ φ : X 99K S ′
t is not necessarily a morphism, as the birational map S 99K S ′

t may extract some divisor.
Hence, the sequence of flops connecting X and X ′

t is not necessarily a sequence of flops relative to a 2-
dimensional base.

To remedy this issue, we can prove the following more precise version of the boundedness in codimension
one of elliptic Calabi–Yau threefolds.
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Proposition 6.5. There exist quasi-projective varieties X ,S, T and a commutative diagram

X
f

//

π

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆ S

g
xxqqq

qq
qq
qq
qq
qq

T

of projective morphisms satisfying the following properties:

(1) π is a flat family of threefolds and g is a flat family of surfaces;
(2) for every t ∈ T , Xt is a Calabi–Yau threefold; and
(3) for every terminal elliptic Calabi–Yau threefold with rational base h : X → S, there exists t ∈ T

together with an isomorphism in codimension one φ : X 99K Xt such that St and S are isomorphic
and φ is a birational morphism over S.

The main feature of the statement of Proposition 6.5 is given by property (3), i.e., by the fact that the
family will contain every base of an elliptic fibration. This will be a useful feature when trying to prove the
boundedness of elliptic fibrations.

To do so, we will apply Theorem 3.4 which allows controlling the number of birational models of an elliptic
fibration with a fixed base. As the statement of Theorem 3.4 works for any Calabi–Yau fiber space of relative
dimension one, it can also be applied to control the birational models of a given family of elliptic fibrations.
We utilize Theorem 3.4 to turn the statement of Proposition 6.5 on boundedness in codimension one of
elliptic Calabi–Yau threefolds into a full boundedness statement. In order to use Theorem 3.4 effectively, we
need to guarantee that in the above sketch, the birational map S 99K S ′

t is an isomorphism, that is, that all
bases of elliptic Calabi–Yau varieties appear in a bounding family such as the one in (6.3). One possible way
to achieve this would be to adapt the proof of Theorem 6.4 to start from the families of surfaces guaranteed
by Proposition 6.2, rather than considering suitable smooth models of such surfaces as in [Gro94]. A more
direct approach, which still relies on the ideas of [Gro94], is given by the results of [Fil20].

Proof of Proposition 6.5. Let h : X → S be an elliptic Calabi–Yau threefold with rational base. By Propo-
sition 6.2, S belongs to a bounded family. Therefore, there exist v ∈ N (independent of S) and a very ample
divisor HS on S such that H2 ≤ v and (S, 12HS) is klt. By Theorem 6.4, (X,S, h) ∈ F3

CY, ell, rat and the
latter is birationally bounded. In particular, h admits a rational d-section, for some d ∈ Z>0 bounded from
above. Then, the claim follows by applying [Fil20, Theorem 1.1] to the log pair (X, 12h

∗HS). Finally, the
fact that we may assume that every fiber Xt is a Calabi–Yau threefold follows readily from Theorem 5.2. �

6.3. Elliptic Calabi–Yau threefolds with non-rational base. Let f : X → S be an elliptic Calabi–Yau
threefold such that S is a surface with at worst Du Val singularities whose minimal resolution is an Enriques
surface. Then, the fibration f is isotrivial. Furthermore, by [KL09, Theorem 14], after a quasi-étale cover, X
splits as the product E × Y , where E is an elliptic curve and Y is either a K3 surface or an Abelian surface.
Thus, the structure of such elliptic Calabi–Yau varieties is rather clear. On the other hand, the boundedness
of these varieties has not been addressed before. For this purpose, we perform an analysis of this case that
is similar to the one carried out by Gross in [Gro94] for rational bases.

First, we start by analyzing Jacobian fibrations. Given an elliptic fibration f : X → Y , the generic fiber
Xη is a smooth curve of genus 1; we denote by J(X)η its Jacobian, which is then a smooth curve defined
over C(Y ) of genus 1 with a C(Y )-rational point. Then, the Jacobian fibration of f is defined birationally as
any elliptic fibration j : J(X) → Y such that the generic fiber of j is J(X)η, cf. [Gro94, Definition 1.4]. In
general, we may assume that j is relatively minimal over Y : indeed, by passing to a log resolution, we may
first assume J(X) is smooth; then, we may run a relative minimal model program over Y , which terminates
with a good minimal model by [HX13, Theorem 1.1]. Thus, in general, we may choose a representative
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j : J(X) → Y for the Jacobian fibration of f such that J(X) is terminal, Q-factorial, and KJ(X) is semi-
ample over Y . In particular, for m ≫ 1, the relative linear system |mKJ(X)/Y | induces a factorization
J(X) → Y ′ → Y , where Y ′ → Y is birational.

If the base Y is a curve, then the Jacobian fibration is an elliptic fibration with a section, and there is
extensive literature about the Weierstrass models of these fibrations. Furthermore, Weierstrass models for
elliptic fibrations with a rational section still exist if the base is a smooth surface, see [DG94, Proposition
2.4]. In particular, if j : J(X) → S is a Jacobian fibration over a surface and S′ is any smooth birational
model of S mapping to S, we may construct a Weierstrass model of j with base S′. Then, by further blowing
up the discriminant locus of the fibration in S′, we may further improve the geometry of the fibration to
guarantee that the total space of the Weierstrass model is smooth and the corresponding morphism is flat,
see [Gro94, p. 276]. These special models are called Miranda models, see Definition 6.6.

Definition 6.6. Let f : X → S be an ellptic fibration. A Miranda model of f is an elliptic fibration
f ′ : X ′ → S′ such that

• f ′ is birationally equivalent to f in the sense of (6.2);
• X ′ and S′ are regular;
• f ′ is flat and it admits a section;
• the discriminant locus Σ = {s ∈ S′|X ′

s is not regular} is simple normal crossing; and
• all fibers over the singular points of Σ have Kodaira type IM1

+ IM2
, IM1

+ I∗M2
, II + IV , II + I∗0 ,

II + IV ∗, IV + I∗0 , or III + I∗0 .

In this subsection we will analyze the Jacobian fibration of an elliptic Calabi–Yau threefold with Enriques
base to prove the birational boundedness of the latter, cf. Theorem 6.12. We start our analysis by showing
that the Jacobian of such an elliptic Calabi–Yau variety is Calabi–Yau as well, cf. [GW19].

Proposition 6.7. Let f : X → S be an elliptic Calabi–Yau threefold. Assume that the minimal resolution
of S is an Enriques surface. Let j : J(X) → S be a relatively minimal model over S of the Jacobian fibration
of f . Then, J(X) is a Calabi–Yau threefold.

Proof. By assumption, J(X) is terminal and Q-factorial, as it is a relatively minimal model of a smooth
variety. By [GW19, Corollary 29], then h0(J(X),KJ(X)) = 1, κ(J(X)) = 0, and h1(J(X),OJ(X)) =

h2(J(X),OJ(X)) = 0. Thus, to conclude, it suffices to show that KJ(X) ∼Q 0, i.e., that J(X) is minimal.
Let

J(X)

j′

||③③
③③
③③
③③ j

!!❈
❈❈

❈❈
❈❈

❈

S′ τ // S

be the relatively ample model of J(X) over S. By the canonical bundle formula, KJ(X) ∼Q (j′)∗(KS′ +∆′),
where (S′,∆′) is a klt pair. Then, KS′ +∆′ is τ -ample. By assumption, the canonical bundle formula applied
to the morphism f : X → S induces trivial boundary part and trivial moduli part. Thus, by [Gro94, Lemma
1.6] applied over a big open set of S, it follows that ∆′ is π-exceptional.

Since S has Du Val singularities, then KS′ ∼Q,S E ≥ 0, where E is π-exceptional. Thus, KS′ +∆′ ∼Q,S
E +∆′, where E +∆′ is effective, π-exceptional, and π-ample. The negativity lemma then implies that τ is
the identity morphism. �

In order to retrieve birational boundedness of the original models f : X → S from the boundedness in
codimension 1 of the Jacobian fibrations j : J(X) → S, we need to understand how many smooth curves of
genus 1 over k(S) admit the same Jacobian J(X)η. This association is controlled by the Weil–Châtelet group
WC(J(X)η), see [DG94]. On the other hand, an elliptic fibration that arises from a Calabi–Yau variety has
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very restrictive geometric conditions, which then restrict the class of generic fibers that can possibly arise.
These fibrations can be parametrized by a much smaller subgroup of the Weil–Châtelet group, known as the
Tate–Shafarevich group XS(J(X)η). We refer to [DG94,Gro94] for a systematic treatment of this topic.
Roughly speaking, XS(J(X)η) parametrizes fibrations f : X → S with prescribed Jacobian fibration and
such that, for every s ∈ S, f admits an étale local section over s. In particular, such a fibration does not
admit multiple fibers over codimension 1 points of the base S.

Remark 6.8. When considering an elliptic Calabi–Yau threefold f : X → S, the morphism f does not
admit multiple fibers over codimension 1 points of the base S, as KX ∼ 0. Thus, f : X → S corresponds
to a class in the Tate–Shafarevich group XU (J(X)η), for a big open subset U ⊂ S. For more details, see
[Gro94, p. 276].

A first step towards proving birational boundedness of elliptic Calabi–Yau threefolds with a non-rational
base is to show that their Tate-Shafarevich groups are finite.

Proposition 6.9. Let f : X → S be an elliptic Calabi–Yau threefold. Assume that the minimal resolution
of S is an Enriques surface. Then, X ∈ XS\Ssing

(J(X)η).

Proof. First, we show that we may assume that f is equidimensional. Let f : X → S be an elliptic Calabi–
Yau threefold and assume that the minimal resolution S′ of S is an Enriques surface. Then, as KX ∼ 0
and KS ∼Q 0, in the canonical bundle formula KX ∼ f∗(KS + BS +MS) the boundary part BS = 0 while
the moduli part MS ≡ 0. Up to flopping X over S, by Lemma 2.16, we may assume that f factors as
X → S′ → S, where f ′ : X → S′ is equidimensional, and π : S′ → S is birational. Since KX ∼ 0 and
KS ∼Q 0, it follows that S′ → S is a partial resolution. Let {p1, . . . , pk} be the singular locus of S, and
let π be an isomorphism over pi for 1 ≤ i ≤ l for some 1 ≤ l ≤ k. Then, S′

sing = {p1, . . . , pl, q1, . . . , qm},
where qj ∈ Ex(π) for all j. For each i = l + 1, . . . k, let Ei be the (possibly reducible) π-exceptional curve
mapping to pi. Then, S \ {p1, . . . , pk} = (S′ \ {p1, . . . , pl}) \ (∪ki=l+1Ei). Then, assuming the claim in the
equidimensional case, X ∈ XS′\S′

sing
(J(X)η). As S

′
sing = {p1, . . . , pl, q1, . . . , qm}, it then follows that

XS′\S′

sing
(J(X)η) ⊂ X(S′\{p1,...,pl})\(∪k

i=l+1
Ei)(J(X)η) = XS\Ssing

(J(X)η).

Thus, in the following, we may assume that f is equidimensional. By [KL09, Theorem 14], there exists a
commutative diagram

X X̃ = F̃ × S̃

S S̃

f g

ψ

φ

where ψ is étale in codimension one, KX̄ ≡ 0, and φ is a generically finite rational map. As X is terminal,

then so is X̃. Note then that F̃ is an elliptic curve and S̃ is a smooth surface with KS̃ ∼ 0. From the above
diagram it follows that φ is a morphism, étale over the regular locus of S, such that deg(φ) = deg(ψ). Since
f and g are equidimensional, it follows that φ is finite. Since φ is étale outside of Ssing and deg(φ) = deg(ψ),
it follows that ψ is étale over the complement of Ssing. In particular, f is a smooth fibration over the
complement of Ssing. Thus, X ∈ XS\Ssing

(J(X)η). �

Miranda models are particularly important for the direct computation of the Tate–Shafarevich group of
an elliptic fibration of a Calabi–Yau threefold.

Proposition 6.10. Let f : X → S be an elliptic Calabi–Yau threefold. Assume that the minimal resolution
of S is an Enriques surface. Let j̃ : J̃(X) → S̃ be a Miranda model of the Jacobian fibration j : J(X) → S
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of f . Let Ẽ be the exceptional locus of the birational morphism S̃ → S with the reduced structure. Then,
X ∈ XS̃\Ẽ(J(X)η), and this group is finite.

Proof. By [DG94, Theorem 2.24], XS̃(J(X)η) is an extension of (Q/Z)r by a finite group, where

r = b2(J̃(X))− ρ(J̃(X))− (b2(S̃)− ρ(S̃)).

By Proposition 6.7, J̃(X) is a resolution of a Calabi–Yau variety, and the minimal model of S̃ is an Enriques

surface. Thus, it follows that h2(J̃(X),OJ̃(X)) = h2(S̃,OS̃) = 0. Therefore, b2(J̃(X)) = ρ(J̃(X)) and

b2(S̃) = ρ(S̃). In particular, r = 0 and XS̃(J(X)η) is a finite group.

Let S′ denote the minimal resolution of S. Then, S̃ → S factors through S′, as S̃ is smooth. By [DG94,
Proposition 2.4], J(X) admits a model over S′ that is a Weierstrass fibration. Then, by [DG94, proof of

Theorem 2.8], we may assume that S̃ is obtained by blowing up the discriminant locus of the Weierstrass
model. By the proof of Proposition 6.9, J(X) → S is smooth over the complement of Ssing. In particular,

Ẽ is the inverse image of Ssing. Then, by Proposition 6.9, X ∈ XS\Ssing
(J(X)η) = XS̃\Ẽ(J(X)η).

To conclude, we need to show that XS̃\Ẽ(J(X)η) is finite. This follows from the finiteness of XS̃(J(X)η)

and [Gro94, Proposition 3.2]. �

Since only finitely many birational classes of Calabi–Yau threefolds can admit the same Jacobian fibration,
to prove the boundedness of elliptic Calabi–Yau threefold with base a singular Enriques surface, we need to
show that the assignment “fibration to Jacobian” can be inverted in a family in a finite-to-one way, rather
than just on a fixed model. For this purpose, one needs to arrange for a family of Jacobian fibrations with
some special geometric properties, to guarantee that the Tate–Shafarevich group behaves well in the family.

Proposition 6.11. There exist quasi-projective varieties J̃ , S̃, T and a commutative diagram

J̃
f̃

//

π̃
&&▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼ S̃

g̃
xxqqq

qq
qq
qq
qq
qq

T

of projective morphisms satisfying the following properties:

(1) π̃ is a smooth family of threefolds and g̃ is a smooth family of surfaces;

(2) f̃ admits a section;
(3) for every elliptic Calabi–Yau threefold h : J → S admitting a rational section and for which the

minimal resolution of S is an Enriques surface, there exists a closed point t ∈ T such that J̃t → S̃t
is isomorphic to a Miranda model J̃ → S̃ of J → S as in Proposition 6.10; and

(4) there exists a reduced divisor Ẽ ⊂ S̃ that is log smooth over T such that any of the isomorphisms

S̃t → S̃, whose existence is claimed in (3), maps Ẽt (considered with its reduced structure) on the

reduced exceptional locus Ẽ of S̃ → S.

Proof. Let h : J → S be an elliptic Calabi–Yau threefold admitting a rational section and for which S is
an Enriques surface. By Theorem 6.3, S belongs to a bounded family. Therefore, there exists C ∈ N and
a very ample divisor H on S such that H2 ≤ C and (S, 12H) is klt. By assumption, h admits a rational

section. Then, we can apply [Fil20, Theorem 1.1] to the log pair (J, 12φ
∗H) – in this case, we are taking

d = 1 with respect to the notation of [Fil20, Theorem 1.1]. Furthermore, since we are considering fibrations
with a rational section, their boundedness in codimension 1 actually follows from [Fil20, Theorem 7.8]. In
particular, by [Fil20, step 6 of proof of Theorem 7.8], also the rational section of J → S is bounded in
codimension 1. Therefore, the fibrations f : J → S are bounded in codimension one together with a rational
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section. Let J → S → T be the family thus obtained. Then, as the rational section of the fibrations is
bounded as well, it follows that J → S has a rational section which is defined over every t ∈ T . In particular,
Jη → Sη has a rational section, where η denotes the generic point of an irreducible component of T . The
fact that we may assume that every fiber Jt is a Calabi–Yau threefold follows easily from Theorem 5.2. To
prove the statement of the claim, we will stratify and resolve the family thus obtained.

In the following, we will focus on one irreducible component of T at a time, and we will possibly stratify
and resolve such a component. Since T is of finite type, by Noetherian induction the following process has to
be repeated only finitely many times. By abusing notation, in the following, we will assume T is irreducible.

Let η denote the generic point of T . Then, the geometric generic fiber Jη → Sη admits a Miranda model.
Up to a finite cover of T , then so does Jη → Sη. Thus, we may assume that Jη → Sη has a birational model

J̃η → S̃η as in Proposition 6.10. We denote by Ẽη the exceptional divisor of S̃η → Sη. Up to shrinking T ,

we may assume that the generic fiber spreads out, and we obtain a tower of morphisms J̃ → S̃ → T , where
J̃ → T and S̃ → T are smooth and Ẽ → T is log smooth. Up to shrinking T , we may also assume that
J̃ → S̃ has a section. Thus, we obtain a family of Miranda models as in Proposition 6.10, and the claim
follows. �

Theorem 6.12. The set of triples

F3
CY, ell, Enr :=

{
(X,S, f)

∣∣∣∣
X is a Calabi–Yau threefold, h : X → S is an elliptic fibration,
and the minimal resolution of S is an Enriques surface

}

is birationally bounded.

Proof. By Proposition 6.11, the set of corresponding Jacobian fibrations is birationally bounded by a family
of Miranda models. Then, the claim follows by [Gro94, Theorem 4.3], since the condition on the Tate–
Shafarevich group in [Gro94, Theorem 4.3] is guaranteed to hold by Proposition 6.10. �

We can also prove an analogue of Proposition 6.5 for the elliptic fibrations in F3
CY, ell, Enr.

Proposition 6.13. There exist quasi-projective varieties X ,S, T and a commutative diagram

X
f

//

π

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆ S

g

xxqqq
qq
qq
qq
qq
qq

T

of projective morphisms satisfying the following properties:

(1) π is a flat family of threefolds and g is a flat family of surfaces;
(2) for every t ∈ T , Xt is a Calabi–Yau threefold; and
(3) for every terminal elliptic Calabi–Yau threefold with non-rational base h : X → S, there exists t ∈ T

together with an isomorphism in codimension one φ : X 99K Xt such that St and S are isomorphic
and φ is a birational morphism over S.

Proof. The proof is identical to the one of Proposition 6.5, where we replace Theorem 6.4 with Theorem 6.12.
�

6.4. Threefolds of Kodaira dimension 2. The tools developed in §3 can also be applied to study the
boundedness of birationally bounded elliptic varieties that are not of Calabi–Yau type. In this case, the
difficulty is that dropping the Calabi–Yau condition, it may be difficult to show that flops deform, as
needed in the proof of Theorem 6.18. Here, we consider minimal terminal threefolds of Kodaira dimension 2.
By [Fil20], it is known that these are bounded in codimension 1 under certain natural and necessary geometric
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conditions. In order to show the boundedness of these varieties, we rely on work of Kollár and Mori, showing
that the deformation of flops of Q-factorial terminal threefolds is locally unobstructed, see [KM92, §11].

Theorem 6.14. Let X → T be a flat projective family of minimal terminal Q-factorial threefolds of Kodaira
dimension 2. Then, up to stratifying T into a finite union of locally closed Zariski subsets and taking finite
covers, the following holds:
Let 0 ∈ T be any closed point, and let ψ0 : X0 99K X+

0 be a KX0
-flop. Then, there exists a KX -flop X 99K X+

over T extending X0 99K X+
0 .

Remark 6.15. After the stratification, T is the disjoint union of finitely many irreducible components.
Thus, the KX0

-flop extends over the irreducible component of T containing the point 0.

Proof. Let

X0
ψ0 //❴❴❴❴❴❴❴

r0

  ❅
❅❅

❅❅
❅❅

❅
X+

0

r+0~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

Z0

(6.4)

be a KX0
-flop associated to the contraction of an extremal ray R0 ⊂ NE(X0). We now divide the rest of the

proof into steps for the reader’s convenience.

Step 0. In this step, we make some reductions.
Up to stratifying T into a union of locally closed subsets, we may assume that T is smooth. By [FM20,
Proposition 2.9] and [Fil20, cf. proof of Theorem 6.1]

(1) X is a terminal Q-factorial variety;
(2) there exists a commutative diagram

X
f

//

��❅
❅❅

❅❅
❅❅

❅ S

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

T

such that S = ProjT R(KX ) and f is the relative Iitaka fibration X over T . In particular,KX = f∗HS

where HS is a Q-divisor which is a relatively ample over T ;
(3) for every t ∈ T , St = Proj R(KXt

);
(4) if E ⊂ Xt is a prime ft-very exceptional divisor in the sense of [Bir12, Definition 3.1], then there

exists a prime divisor E ⊂ X horizontal over the connected component T̄ of T containing t such that
Et = kE for some k > 0; Indeed, up to a finite cover, we may assume that all the divisors that are
very exceptional for the morphism of geometric generic fibers Xη → Sη is defined over k(T ). Then,
by [Kol13, 4.38], we may assume that any such prime divisor restricts to a prime divisor fiber by
fiber. Lastly, we may shrink T around η so that, for every t ∈ T , every ft-very exceptional divisor
is the restriction of the closure of one of the divisors that are very exceptional for Xη → Sη; and,

(5) the local systems GN 1(X/T ),GN 1(X/T ) defined in [KM92, Definitions 12.2.4 and 12.2.7] are con-
stant: indeed, by [KM92, Propositions 12.2.5 and 12.2.8] those have finite monodromy; hence, sub-
stituting T with a suitable finite cover, we can assume that their monodromy is trivial.

Moreover, let us recall that, for a very general t ∈ T , GN 1(X/T )|Xt
= N1,R(Xt), see [KM92, Propositions

12.2.5 and 12.2.8]. Thus, by (5), we may assume that N1
R(Xt) = GN 1(X/T )|Xt

for a very general t ∈ T .
Finally, since T has finitely many irreducible components, restricting to one of these components we may
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also assume that T is irreducible, by Noetherian induction.

Step 1. In this step, we show that there exists a polydisk 0 ∈ ∆k ⊂ T over which the flop X0 99K X+
0

deforms (in the analytic topology).
By [KM92, Theorem 11.10], the flop X0 99K X+

0 deforms over a germ of 0 ∈ T in the analytic topology: the
deformation is obtained as base change of a flop of a miniversal deformation space of X0, cf. [KM92, Theorem
11.10]. More precisely, as T is smooth, there exists a polydisk 0 ∈ ∆k ⊂ T over which the flop of X0 deforms,
that is, there exists a commutative diagram of analytic spaces

X∆k
Ψ //❴❴❴❴❴❴❴❴❴❴❴❴❴

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃ r
∆k

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆
X+

∆k

����
��
��
��
��
��
��
��
�r+

∆k

ww♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

Z

��
∆k

(6.5)

where X∆k := X ×∆k ∆k, and the following properties are satisfied:

(a) the restrictions of the maps in (6.5) to X0 yield the diagram in (6.4);
(b) ∀t ∈ ∆k, Ψ|Xt

is an isomorphism in codimension one; and
(c) ∀t ∈ ∆k, X+

t is Q-factorial.

For t ∈ ∆k we shall consider the restriction of the diagram in (6.5) to Xt

Xt
ψt:=Ψ|Xt //❴❴❴❴❴❴❴

rt
��❅

❅❅
❅❅

❅❅
❅

X+
t

r+t~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

Zt

(6.6)

where X+
t := X+

∆k,t
, ψt := Ψ|Xt

: Xt 99K X+
t denotes the induced isomorphism in codimension one and

rt := (r∆k)|Xt
, r+t :=

(
r+
∆k

)∣∣
Xt
.

Step 2. In this step, we show that

(i) X+
t and Zt are projective for t general in the (analytic Zariski topology of) ∆k; and

(ii) for t ∈ ∆t very general, any irreducible curve Ct contracted by rt specializes to a curve in X0

contracted by r0; in particular, Ct ·KXt
= 0.

Since ∆k is open in the Euclidean topology, ∆k contains a point t ∈ T , very general in the Zariski topology,
such that GN 1(X/T )|Xt

= N1,R(Xt).

(i) By assumption, X+
0 ,Z0 are projective; thus, by [KM92, Theorem 12.2.10], for t ∈ ∆k general, X+

t ,Zt
are projective.

(ii) This is just a consequence of the countability of the components the relative Douady space of X over
Z together with the fact that those are proper over Z, cf. [Fuj84].

Step 3. In this step, we construct an effective divisor D on X such that for general v ∈ ∆k (in the
analytic topology), X+

v is the ample model of both Dv and ∀ǫ > 0 also of KXv
+ ǫDv. Moreover, the last

conclusion holds also over St.
Let t ∈ ∆k be a very general point for which properties (i-ii) of Step 2 hold; then, KXt

∼Q,Zt
0, by [KM92,
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Proposition 12.1.4]. Hence, KXt
= r∗tKZt

and KX+
t

= (r+t )
∗KZt

, as ψt is an isomorphism in codimension

one. In particular, ψt is crepant birational with respect to KXt
and KX+

t
is nef. Hence, given an ample

divisor D+
t on X+

t , which exists by (i) in Step 2, KX+
t
+ ǫD+

t is ample for all positive real numbers ǫ. We

define Dt := (ψ−1
t )∗D

+
t . Choosing 0 ≤ ǫ≪ 1 and D+

t general in its Q-linear series, then (Xt, ǫDt) is terminal
and ψt is the outcome of the run of a (KXt

+Dt)-MMP. As ψt is crepant birational with respect to KXt
and

KXt
∼Q,St

0, then ψt can also be obtained as a run of the relative Dt-MMP over St.
Since N1

R(Xt) = GN 1(X/T )|Xt
, as t is very general, there exists a divisor D on X such that the numerical

class of D restricts to Dt on Xt. Furthermore, as the identification N1
R(Xt) = GN 1(X/T )|Xt

relies on the
relative Hilbert scheme of X over T , cf. [KM92, proof of Proposition 12.2.5], we may assume that D is itself
effective, flat over T , and D|Xt

= Dt as divisors. In particular, we can assume that D does not contain any
fiber. We set D∆k := D|X

∆k
. Let D+

∆k be the strict transform of D∆k on X+
∆k

; to simplify the notation,

for v ∈ ∆k, we set D+
v := D+

∆k |X+
v
. For our choice of t ∈ ∆k, D+

t = D+
t . Hence, D+

t is ample on X+
t .

As ampleness is an open property, cf. [KM92, proof of Theorem 12.2.10], then, for v ∈ ∆k general (in the
analytic Zariski topology) D+

v is ample on X+
v .

Step 4. In this step, we show that

(A) for all v ∈ T , Dv (resp. KXv
+ Dv) is big;

(B) there exist a positive real number ǫ0 such that for all 0 ≤ ǫ ≤ ǫ0, (Xv, ǫDv) is terminal for all v ∈ T ;
(C) for all v ∈ T , Dv is movable over Sv.

(A) By Step 3, Dv is big for v ∈ ∆k general in the analytic Zariski topology. By the semi-continuity
theorem [Har77, Theorem III.12.8], for v ∈ T very general in the Zariski topology, h0(Xv,OXv

(mDv))
is constant for any fixed choice of m ∈ N. Hence, for very general v ∈ T , Dv is big; finally, applying
the semi-continuity theorem again, we can conclude that Dv is big for all v ∈ T . The exact same
argument applies to prove the bigness of KXv

+Dv for all v ∈ T .
(B) As for all t ∈ T , Xt is terminal and Q-factorial, and Dt is effective, then the conclusion simply follows

by Noetherian induction on T , thanks to [Kol97, Theorem 4.8] and the fact that being terminal is
an open condition in a family, see [dFH11, Proposition 3.5]. By part (2) and since KX is Q-linearly
equivalent to the pull-back of an ample divisor on S, cf. Step 0, for all 0 < ǫ ≪ 1, all (KX + ǫD)-
negative curves are contained in the fibers of X → S. Hence, we may assume that for all 0 < ǫ≪ 1,
any run of the relative (KX + ǫD)-MMP over T with scaling of an ample divisor is also a run of
the relative (KX + ǫD)-MMP over S. Furthermore, with the same choice of ǫ, (KX + ǫD) ∼Q,S ǫD;
hence, the way a relative (KX +ǫD)-MMP is run will be independent of ǫ for 0 < ǫ≪ 1. As KX +ǫD
is big over T for all positive values of ǫ, then any run of the (KX + ǫD)-MMP must terminate with
a good minimal model, see [BCHM10]. Thus, for 0 < ǫ≪ 1, let

X =: X0
Φ0

//❴❴❴

--

Φ=Φn−1◦Φn−1◦···◦Φ1◦Φ0

++
X1

Φ1

//❴❴❴

,,

X2
Φ2

//❴❴❴

  ❇
❇❇

❇❇
❇❇

❇
. . .

Φn−3

//❴❴❴ Xn−2
Φn−2

//❴❴❴

||②②
②②
②②
②②
②

Xn−1
Φn−1

//❴❴❴

rr

Xn =: X ′

ooS

��
T

(6.7)

be one such run of the relative (KX + ǫD)-MMP with scaling of an ample divisor – over T or S,
equivalently. We define D′ := Φ∗D and φt := Φ|Xt

. As D′ is nef and big over S by construction,
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then to conclude the proof of (3) it suffices to prove the following claim.

Claim 1. For all v ∈ T , φv : Xv 99K X ′
v is an isomorphism in codimension one.

Proof. Let us assume, by contradiction, that for some v ∈ T , φv : Xv 99K X ′
v is not an isomorphism

in codimension one. By Steps 2-3, for any t ∈ ∆k very general (in the analytic Zariski topology)
(I) X+

t is Q-factorial, cf. Step 1, and ∀ǫ > 0, KX+
t
+ ǫD+

t ample on X+
t ;

(II) for all 0 < ǫ≪ 1, (X ′
t , ǫD

′
t) is terminal and KX ′

t
+ ǫD′

t is big and semi-ample on X ′
t ; and,

(III) φt : Xt 99K X ′
t is an isomorphism in codimension one, by [HMX18, Lemma 3.2]: indeed, with

reference to the statement of [HMX18, Lemma 3.2], it suffices to take
• X := X , U := T , 0 := t;
• ∆ := ǫD for 0 < ǫ ≪ 1 such that (X ,∆) is terminal, the same holds for (Xt,∆t) so that
property (2) in the statement of the lemma is satisfied. Furthermore, for such choice of
ǫ, the Q-linear system of KXt

+∆t is movable by (I), thus property (3) in the statement
of the lemma is satisfied; and

• D1, . . . , DdimT , dimT sufficiently general effective divisors meeting transversely at 0 .
Hence, by Lemma 6.17, φt is an isomorphism in codimension one, since ψt is. As the indeterminacy
locus of Φ is Zariski closed and its exceptional locus is locally closed in the Zariski topology, it follows
that φu must be is an isomorphism in codimension one for u ∈ T general. On the other hand, as
φv is a birational map over Sv, any divisor contracted by φv is very exceptional with respect to
fv : Xv → Sv. By condition (4) in Step 0, there exists a prime divisor E ⊂ X horizontal over T
such that Et = kE for some k > 0. It suffices to show that E must be contained in the exceptional
locus of Φ to obtain the sought contradiction. But, if that were not the case, there would exist an
integer i ∈ {0, 1, . . . , n − 1} such that for the extremal contraction ξi : Xi → Zi in the i-th step of
the (KX +D)-MMP in (6.7), then dim ξi(Ei)t = 2 for t ∈ T general, whereas dim ξ(Ei)v = 1; here, Ei
is the strict transform of E on Xi. This is clearly impossible, by the upper semi-continuity of fiber
dimension. �

Step 5. In this step, we show that there exists a positive real number ǫ1 such that for all 0 < ǫ ≤ ǫ1,
KX ′

v
+ ǫD′

v is big and semi-ample on X ′
v for all v ∈ T , where the model X ′ is the one constructed in (6.7).

The MMP in (6.7) terminates with a good minimal model X ′ over S. Thus, for all u ∈ T , D′
u is big and

semi-ample over Su. As KX is the pull-back of a Q-divisor on S ample over T , then KX ′
u
+ ǫD′

u is big and
semi-ample on X ′

u.

Step 6. In this step, we show that D+
0 is ample over S0.

We first show that D+
0 is nef over S0. Let us assume by contradiction that this is not the case. Thus, there

must exist a D+
0 -negative curve Γ+

0 vertical over S0 spanning an extremal ray of the effective cone of curves
on X+

0 . As KX+
0

∼Q,S0
0, then Γ+

0 is also a (KX+
0
+ D+

0 )-negative curve. Since in Step 4 we showed that

D0 is movable over S0, then the same conclusion must hold for D+
0 over S0, as ψ0 is an isomorphism in

codimension one over S0, by construction. Hence, the contraction of Γ+
0 gives rise to a relative (KX+

0
+D+

0 )-

flipping contraction µ0 : X
+
0 → Y0 over S0 which is also a relative KX+

0
-flop. Then, [KM92, Corollary 11.11]

implies that up to possibly passing to a positive multiple, for very general t ∈ ∆k (in the analytic Zariski
topology) there exists a curve Ct ⊂ X+

t specializing to a curve supported on the exceptional locus of µ0.
But then, for some irreducible component Cit of Ct, D

+
t ·Cit < 0: this yields the desired contradiction as D+

t

is ample for t ∈ T general by construction, cf. Step 3.
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The same reasoning, utilizing [KM92, Corollary 11.10], shows that if D+
0 is nef, then the effective cone of

curves of X+
0 does not admit a D+

0 -trivial extremal ray over S0. Hence, D
+
0 is ample over S0.

Step 7. In this step, we show that there exists an analytic Zariski open neighborhood U ′ ⊂ ∆k of 0 and
an isomorphism over U ′ between the restrictions of X ′|U ′ and X+

∆k |U ′ .

As D+
0 is ample over S0 and KX+

0
= f∗

0HS0
, with HS0

ample, then for all 0 < ǫ ≪ 1, KX+
0
+ ǫD+

0 is ample

on X+
0 . By the openness of ampleness, then KX+

v
+ ǫD+

v is ample on X+
v for v ∈ ∆k general (for the analytic

Zariski topology) and X+
∆k → ∆k is projective over an analytic Zariski open neighborhood U ⊂ ∆k of 0.

Hence, over U we have the following commutative diagram

X|U
Ψ|U

##❋
❋

❋
❋

X ′|U

Φ−1|U
<<③

③
③

③
ΞU //❴❴❴❴❴❴❴❴

""❊
❊❊

❊❊
❊❊

❊❊
X+

∆k |U

{{✇✇
✇✇
✇✇
✇✇
✇

ΞU := (Ψ|U ) ◦ (Φ−1|U ).

U

By Claim 1 and the construction of Ψ, cf. Step 1, ΞU |X ′

0
is an isomorphism in codimension one. As

(ΞU |
−1
X ′

0
)∗(KX+

0
+D+

0 ) = KX ′

0
+D′

0, KX ′

0
+D′

0 is big and semi-ample on X ′
0, and X+

0 is Q-factorial, Lemma 6.17

implies that KX ′

0
+ D′

0 is ample and that ΞU |X ′

0
is an isomorphism. Thus, KX ′ + D′ and KX+

∆k
+ D+

∆k are

both ample over a common analytic Zariski open U ′ ⊂ U . Hence, (ΞU )|U ′ is an isomorphism over U ′ since
(ΞU )∗(KX ′ +D′)|U = (KX+

∆k
+D+

∆k)|U .

Step 8. Conclusion of the proof.
To conclude the proof we just need to show that Φ is just given by a KX -flop over T .
As mentioned at the start of [KM92, proof of Theorem 12.2.10], the restriction to X0 induces a natural
injection, cf. [KM92, Proposition 12.2.6],

r0 : NE(X/T ) →֒ NE(X0).

Recall that ψ0 : X0 99K X+
0 is the flop of an extremal ray R0 ⊂ NE(X0). Moreover, Step 7 implies that

R0 ⊂ Im(r0). We set R̃0 := r−1
0 (R0). Then, R̃0 is an extremal ray in NE(X/T ). Moreover, by specialization,

KX · R̃0 = 0 and D · R̃0 < 0. Since KX + ǫD is big, by Step 4, then there exists the flop of R̃0 over T ,

X
Υ //❴❴❴❴❴❴❴

s
  ❇

❇❇
❇❇

❇❇
❇ X ′′

s′′}}④④
④④
④④
④④

Z ′.

(6.8)

Since r0(R̃0) = R0, then the curves contracted by X0 → Z ′
0 are all the curves in R0. By construction then,

denoting s0 := s|X0
, s′′0 := s|X ′′

0
s0 = r0 and, by the uniqueness of flops, it follows then also that s′′0 = r+0 .

Hence, the flop Υ in (6.8) yields a flop of X lifting the flop ψ0 in (6.4) on X0 as claimed in the statement of
the theorem. �

The following is an immediate corollary of Theorem 6.14.
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Corollary 6.16. Let X → T be a flat projective family of minimal terminal Q-factorial threefolds with
Kodaira dimension 2. Then, up to stratifying T into a finite union of locally closed Zariski subsets and
taking finite covers, the following holds:
Let 0 ∈ T be any closed point, and let ψ0 : X0 99K X+

0 be a finite sequence of KX0
-flops. Then, there exists a

finite sequence of KX -flops X 99K X+ over T extending X0 99K X+
0 .

In the proof of Theorem 6.14 we used the following easy consequence of [Kaw97, Lemma 1.5].

Lemma 6.17. Let (Y1, D1), (Y2, D2) be projective klt pairs. Assume that

(1) KY1
+D1 is ample and KY2

+D2 is nef and big;
(2) Y1 is Q-factorial;
(3) there exists a birational map λ : Y1 99K Y2 which is an isomorphism in codimension one; and
(4) λ∗(KY1

+D1) = KY2
+D2.

Then λ is an isomorphism.

Proof. Let τ : Y3 → Y2 be a Q-factorialization of Y2. We set D3 := τ−1
∗ D2; thus, KY3

+D3 = τ∗(KY2
+D2)

so that KY3
+ D3 is big and nef. Then, η := τ−1 ◦ λ : Y1 99K Y3 is an isomorphism in codimension one of

Q-factorial varieties such that η∗(KY1
+D1) = KY3

+D3. But then, [Kaw97, Lemma 1.5] implies that η is
an isomorphism since the interior of Nef(Y3) and of η∗Nef(Y1) have non-empty intersection. Hence, since
λ = τ ◦ η, then λ is a morphism and KY1

+D1 = λ∗(KY2
+D2). As KY1

+D1 is ample on Y1, then λ can
only be an isomorphism. �

6.5. Towards progress in higher dimension. The following result is the main technical result in the
proof of the boundedness of elliptic Calabi–Yau threefolds. It shows how the results of §3 can be used to
prove the boundedness of certain elliptically fibered varieties once we know that they are bounded up to
flops over the base.

Theorem 6.18. Fix a positive natural number d. Let F be a set of triples ((X, 0), (Y, 0), f). Let B :=
{Y | ∃(X,Y, f) ∈ F}. Assume that all triples (X,Y, f) ∈ F satisfy the following properties:

• X is a projective terminal Q-factorial variety of dimension d;
• h1(X,OX) = h2(X,OX) = 0; and
• f : X → Y is a relatively minimal elliptic fibration.

If F is bounded in codimension one and B is bounded, then F is bounded.

The assumption h1(X,OX) = 0 = h2(X,OX) in Theorem 6.18 is needed to apply the results in §5, which
allow extending flops from a special fiber to the whole family.

Proof. Let (X,Y, f) ∈ F. As Y belongs to the bounded set B, there exist v ∈ N and a very ample divisor
HY on Y such that HdimY

Y ≤ v and (Y, 12HY ) is klt. Such choice of v is independent of Y ∈ B. Up to
replacing HY with a multiple only depending on F, by the boundedness of the extremal rays, we can assume
that KX + 1

2f
∗H is semi-ample with κ(X, 12f

∗H) = n − 1. Then, arguing as in Step 0 of the proof of
Theorem 6.14, up to a stratification of a family bounding F in codimension 1, we may partition F into a
finite number of classes such that h0(O(m(KX + 1

2f
∗H))) only depends on m sufficiently divisible for all X

in one of the given classes partitioning F . In particular, as the stratification is finite, vol(X,KX+ 1
2f

∗H) can

only attain finitely many values. Moreover, since, by assumption, F3
CY, ell, rat is birationally bounded, then

there exists a positive integer C, independent of the triple (X,Y, f), such that f admits a rational l-section,
for some d ≤ C. Thus, we can apply [Fil20, Theorem 1.1] to deduce that the set of pairs

{
(X,

1

2
f∗HY )

∣∣∣∣(X,Y, f) ∈ F and HY is the very ample divisor on Y constructed above

}
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is log bounded. Even better, [Fil20, Theorem 1.1] implies that there exist quasi-projective varieties X ,Y, T
and a commutative diagram

X
f

//

π

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼ Y

g

xxqqq
qq
qq
qq
qq
qq

T

(6.9)

of projective morphisms such that for any triple (X,Y, f) in F there exists a closed point t ∈ T such that

(1) Y ≃ Yt;
(2) X and Xt are connected by a sequence of flops over Y = Yt.

Up to passing to a stratification and an étale base change of the original parameter space T , we may
assume that Theorem 3.4 and Theorem 5.2 apply to the pullback of the morphisms in (6.9) to each of the
finitely many irreducible components of T . Furthermore, we may assume that each irreducible component
of T is affine. As there are finitely many of these components, in the following we focus on a single one, with
the understanding that the same argument has to be repeated on each one of them individually. By abusing
notation, we will denote this irreducible component by T .

By Theorem 3.4, X → Y admits finitely many minimal models X1, . . . ,Xk over Y, up to isomorphism
over Y. For any (X,Y, f) ∈ F, there exist t ∈ T and an isomorphism in codimension one ψ : X 99K Xt which
can be factored into a sequence of flops over Y = Yt. The cones M(Xt) and M(X) are naturally identified
by ψ∗ and the same holds also for M(Xt/Yt) and M(X/Y ). Then, there exists a class Dt ∈ M(Xt) such
that the rational map ψ−1 : Xt 99K X is a Dt-MMP over Yt. Furthermore, we may assume that Dt lies in
the interior of both M(Xt) and of ψ−1

∗ (A(X/Y )) in the decomposition of M(Xt/Yt). By Theorem 5.2, there
exists D ∈M(X/T ) such that D|Xt

= Dt. Let Φ: X 99K X ′ be a D-MMP over Y. By Theorem 3.4, there is
1 ≤ i ≤ k such that X ′ and Xi are isomorphic over Y.

Then, by [HMX18, §3], the D-MMP Φ above restricts to a Dt-negative birational map Φ|Xt
: Xt 99K X ′

t on
the fiber Xt which can be factored into a sequence of small KXt

-trivial birational maps. By Remark 5.4 and
the fact that Dt is in the interior of M(Xt), then, up to rescaling by a positive rational number, there exists
D such that (X ,D) and (Xt, Dt) are both terminal. Thus, X ′

t is itself terminal and it is connected to Xt by
a sequence of flops. Since Dt ∈ ψ∗(A(X/Y )) ∩ (Φ|Xt

)∗(A(X ′
t/Yt)), and it is in the interior of ψ∗(A(X/Y )),

then by [Kaw97, Lemma 1.5] X ′
t and X are isomorphic. In turn, Xi,t and X are also isomorphic and since

there are only finitely many models X1, . . . ,Xk, the claim follows. �

Remark 6.19. While Theorem 6.18 is stated in the setting of elliptically fibered varieties, its underlying
philosophy is quite general. In fact, as soon as we have boundedness modulo flops for a set of K-trivial
varieties (resp. a set of Calabi–Yau fiber spaces), one could try to prove the Kawamata–Morrison cone
conjecture for that particular situation. If that is successful and one can argue that flops can be extended
from a fiber to the total space, then the corresponding analog of Theorem 6.18 would follow.

As an immediate corollary of Theorem 6.18 we are able to bound a large class of elliptic Calabi–Yau
fibrations in higher dimension.

Corollary 6.20. Fix positive integers d, C. Let Fd,CCY, ell, LF be the set of triples

F
d,C
CY, ell, LF

:=



(X,Y, f)

∣∣∣∣∣∣

X is a terminal projective Calabi–Yau variety of dimension n,
f : X → Y is an elliptic fibration admitting a rational l-section
of degree l ≤ C, and Y is a log Fano variety.





Then F
d,C
CY, ell, LF is bounded.
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Proof. Let Dd−1,ǫ
log Fano be the set of varieties

D
d−1,ǫ
log Fano :=

{
Y

∣∣∣∣
dimY = d− 1, and there exists an effective divisor ∆ on Y
such that (Y,∆) is ǫ-klt, KY +∆Y ∼Q 0, ∆ is big

}
.

By [Bir21, Theorem 1.4], for any fixed real number ǫ > 0, Dd−1,ǫ
log Fano is log bounded.

Let (X,Y, f) ∈ F
d,C
CY, ell, LF. By Proposition 2.9 and Remark 6.1, given an elliptic Calabi–Yau variety

f : X → Y , there exists a boundary ∆Y on Y with coefficients in Cell such that (Y,∆Y ) is klt andKY +∆Y ∼Q
0. By [HMX14, Theorem 1.5], there exists a positive real number ǫ0 such that (Y,∆Y ) is ǫ0-klt. As Y is log

Fano, then, ∆Y is big and, hence, Y ∈ D
d−1,,ǫ0
log Fano. Hence, the set Bd−1

log Fano of varieties

B
d−1
log Fano :=

{
Y

∣∣∣ ∃(X,Y, f) ∈ F
d,C
CY, ell, LF

}

is bounded.
On the other hand, Fd,CCY, ell, LF is bounded in codimension one by [Fil20, Theorem 7.2]. Hence, we can

apply Theorem 6.18 with F = F
d,C
CY, ell, LF and B = B

d−1
log Fano. �

7. Proof of the main results

Proof of Theorem 1.1. This follows immediately from Proposition 6.5, Proposition 6.13, and Theorem 6.18.
�

Remark 7.1. Theorem 6.18 can be used to deduce analogs of Theorem 1.1 in higher dimension. So far,
there have been several results addressing the boundedness in codimension 1 of elliptic Calabi–Yau varieties
admitting a rational section in any dimension, see [BDCS20, FS20a, DCS21]. Unfortunately, for n ≥ 4,
the current state of the art regarding elliptic Calabi–Yau n-folds f : X → Y can only guarantee that Y is
bounded in codimension 1. Once we are able to address the actual boundedness of the set of bases Y , the
statements in [BDCS20,DCS21] could be enhanced to full boundedness using the tools here discussed.

Proof of Corollary 1.2. This follows immediately from Theorem 1.1 and Verdier’s generalization of Ehres-
mann’s theorem [Ver76, Corollaire 5.1]. �

Proof of Theorem 1.3. By [Fil20, Theorem 1], F3,v,C
κ=2 is bounded up to flops. Moreover, by [Fil18, Theo-

rem 1.14] the set of varieties {
S
∣∣∣ ∃(X,S, f) ∈ F

3,v,C
κ=2

}

is bounded, cf. Proposition 2.9. Thus, there exist N ∈ N and a very ample divisor effective HS on S such

that H2
S = Nv and (Y, 12HY ) is klt. Such choice of N is independent of the triple (X,S, f) ∈ F

3,v,C
κ=2 . As we

are assuming the existence of a degree C rational section of f , we can apply [Fil20, Theorem 1.1] to deduce
that the set of pairs

{
(X,

1

2
f∗HS)

∣∣∣∣(X,S, f) ∈ F and HY is the very ample divisor on Y constructed above

}

is log bounded in codimension 1. Even better, [Fil20, Theorem 1.1] implies that there exist quasi-projective
varieties X ,S, T and a commutative diagram of projective morphisms

X

π

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆
Φ // S

g

xxqqq
qq
qq
qq
qq
qq

T
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such that for any (X,S, f) ∈ F
3,v,C
κ=2 there exists t ∈ T such that S ∼= St and f is birational to Φt : Xt → St

over S for some t ∈ T . Note that X 99K Xt is given by a sequence of flops over S = St. Moreover,
by [HX15, Proposition 2.4], we may assume that X is Q-factorial and all fibers Xt are terminal Q-factorial
projective varieties; furthermore, up to an additional stratification, we may assume that all fibers are varieties
of Kodaira dimension 2 and St ∼= Proj(R(KXt

)) for every t ∈ T , see [Fil20, cf. proof of Theorem 6.1].
By Theorem 3.4, there exist k ∈ Z>0 and finitely many marked minimal models φi : X 99K Xi over S, for

i ∈ {1, 2, . . . , k}, such that for any Q-divisor D pseudo-effective over S and any minimal model φ : X 99K X ′

over S, there exists 1 ≤ i ≤ k for which φi is birationally equivalent over S to φ. In particular, if φ : X 99K X ′

is a sequence of flops, then up to isomorphism over S, φ = φi for some 1 ≤ i ≤ k. Let X ∈ F
3,v,C
κ=2 and

Xt 99K X the sequence of flops mentioned above. By Theorem 6.14, we may assume that this extends to a
sequence of flops X 99K X ′ and there exists a birational isomorphism X ′ ∼= Xi over S for some 1 ≤ i ≤ k,
hence X ∼= Xi,t. �
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I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Boston, MA, 2009, pp. 179–211, DOI 10.1007/978-
0-8176-4747-6 6. MR2641190 ↑2, 34, 36

[KM92] J. Kollár and S. Mori, Classification of three-dimensional flips, J. Amer. Math. Soc. 5 (1992), no. 3, 533–703, DOI
10.2307/2152704. MR1149195 ↑5, 39, 40, 41, 42, 43

[KM98] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134,
Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated
from the 1998 Japanese original. MR1658959 ↑5, 27

[Lai11] C.-J. Lai, Varieties fibered by good minimal models, Math. Ann. 350 (2011), no. 3, 533–547, DOI 10.1007/s00208-
010-0574-7. MR2805635 ↑8, 11

[Laz04] R. Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.
A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of
Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear
series. MR2095471 ↑28

[Mor93] D. R. Morrison, Compactifications of moduli spaces inspired by mirror symmetry, Astérisque 218 (1993), 243–271.
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