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BOUNDEDNESS OF ELLIPTIC CALABI–YAU VARIETIES WITH

A RATIONAL SECTION

CAUCHER BIRKAR, GABRIELE DI CERBO, AND ROBERTO SVALDI

Abstract. We show that for each fixed dimension d ≥ 2, the set of d-
dimensional klt elliptic varieties with numerically trivial canonical bundle is
bounded up to isomorphism in codimension one, provided that the torsion
index of the canonical class is bounded and the elliptic fibration admits a ra-
tional section. This case builds on an analogous boundedness result for the
set of rationally connected log Calabi-Yau pairs with bounded torsion index.
In dimension 3, we prove the more general statement that the set of ǫ-lc pairs
(X,B) with −(KX + B) nef and rationally connected X is bounded up to
isomorphism in codimension one.
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1. Introduction

Throughout this paper, we work over an algebraically closed field of characteristic
0, for instance, the field of complex numbers C.

The central task in algebraic geometry is the classification of projective varieties.
There are two possible approaches to this end: either by identifying two distinct
varieties that are isomorphic or by saying that two distinct varieties are birational
equivalent (or simply, birational) if they both possess isomorphic dense open sets.
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Birational equivalence, preserving many numerical and geometrical quantities, is
a sufficiently coarse equivalence relation in the category of algebraic varieties; at
the same time, it is more flexible than the classification by isomorphism type: we
can modify a given variety as long as a dense open set is left untouched, thus
constructing a new variety birational to the original one. The Minimal Model
Program predicts that, up to a special class of birational transformations, each
projective variety decomposes into iterated fibrations with general fibers of 3 basic
types:

• Fano varieties: mildly singular varieties with ample anti-canonical bundle;
• K-trivial varieties: mildly singular varieties with torsion canonical bundle;
• log canonical models: mildly singular varieties with ample canonical bundle.

As these classes of varieties constitute the fundamental building blocks in the bira-
tional classification of algebraic varieties, the task of understanding their possible
algebraic and topological structures is a central one.

The second part of the classification scheme aims to construct compact moduli
spaces that parametrize all isomorphism classes for the above 3 classes of varieties.
For this purpose, one big question is whether or not in any given dimension there are
just finitely many families of varieties for each of the 3 classes – perhaps after fixing
certain geometric invariants. This property goes under the name of boundedness,
see § 2.4. This is a central question as these 3 classes of varieties are building blocks
for many constructions in geometry and theoretical physics.

Showing boundedness for a certain class of varieties is a rather difficult task:
in fact, one needs to embed all varieties in the chosen class in a fixed projec-
tive space, while, at the same time, controlling the volume of these embeddings.
There have been some recent extraordinary developments on the study of bound-
edness for two of the building blocks introduced above: Hacon–McKernan–Xu
proved that log canonical models with fixed volume are bounded in fixed dimen-
sion, see [HMX18]; this result also implies the existence of moduli spaces of log
canonical models, thanks to work of Kollár–Shepherd-Barron, Alexeev, and others,
see [Kol13]. Kollár-Miyaoka-Mori showed in [KMM92] that smooth Fano varieties
form a bounded family; recently, Birkar proved the boundedness of d-dimensional
ǫ-klt Fano varieties for fixed ǫ > 0 and d ∈ N, thus, proving the BAB Conjecture,
see [Bir16a]; moreover, he has also generalized this result to the case of log Fano
fibrations, [Bir18], where also some ideas and techniques from [DCS16] are used.

K-trivial varieties, in turn, are not bounded in the category of algebraic varieties:
for example, it is well-known that there are infinitely many algebraic families of
projective K3 surfaces, or of abelian varieties in each dimension. Nonetheless, both
K3 surfaces and abelian varieties of fixed dimension all fit into a unique topological
family, once we consider also the non-algebraic ones. In dimension higher than 2,
the situation is even more varied. In these contexts the situation can be remedied
by fixing a polarization with bounded volume – a classic approach in the study of
moduli of algebraic varieties that do not possess an obvious polarization, cf. [Vie95].
More recently, [Bir20], Birkar has shown that polarised Calabi–Yau varieties and log
Calabi–Yau pairs are well-behaved from the point of view of the Minimal Model
Program and boundedness questions, much like in the case of Fano varieties or
canonical models, despite the lack of uniqueness for the choice of polarization.
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Boundedness for elliptic Calabi–Yau varieties. A now classical result due to
Beauville and Bogomolov, [Bea83], shows that, up to an étale cover, every smooth
variety with numerically trivial canonical class can be decomposed into a product of
abelian, hyperkähler, and Calabi–Yau manifolds. A smooth projective variety Y is
Calabi–Yau if it is simply connected, KY ∼ 0 and Hi(Y,OY ) = 0 for 0 < i < dim Y .

While we know that in any fixed dimension n ≥ 2, there exists infinitely many
algebraic families of abelian or algebraic hyperkähler manifolds, Calabi–Yau vari-
eties constitute a large class of K-trivial varieties for which boundedness is still a
hard unresolved question.

Question 1.1. Fix n ∈ N. Are n-dimensional Calabi–Yau manifolds bounded?

The only known affirmative answer to the above question is due to Gross, [Gro94],
who proved that boundedness holds for Calabi–Yau threefolds carrying an elliptic
fibration, up to birational equivalence. This is in opposition to the two-dimensional
case: in fact, there exist infinitely many algebraic families of elliptic K3 surfaces.
Starting from dimension three, theoretical physicists have formulated the expec-
tation, based on the known examples, that Calabi–Yau manifolds with sufficiently
large Picard number may be modified birationally to obtain a model that is en-
dowed with a fibration to a lower dimensional variety. In view of this, then, proving
boundedness results for elliptically fibered Calabi–Yau manifolds would provide an
important step towards answering Question 1.1, as it would show that the Picard
number can be bounded from above.

It is not hard to show that if we require the presence of a section, already in the
case of elliptic K3 surfaces, it is possible to construct polarizations with bounded
volume, thus proving boundedness for this class of K3 surfaces. The main goal of
this paper is to prove the following generalization to arbitrary dimension of this
phenomenon.

Theorem 1.2. Fix a positive integer d. Then the set of projective varieties Y such
that

(1) Y is a Calabi–Yau manifold of dimension d and
(2) Y → X is an elliptic fibration with a rational section X 99K Y

is bounded up to flops.

Theorem 1.2 is an important foundational result: it implies that there are just
finitely many families of elliptic Calabi-Yau varieties carrying a rational section, up
to birational operations that modify the variety in a subset of codimension at least
2. Such birational operations do not modify excessively the geometry of the variety;
for example, the Hodge diamond is left unaltered, as shown in [Bat98]. In turn, our
result implies that, in any fixed dimension, there are finitely many possible different
Hodge diamonds of elliptic Calabi-Yau manifolds admitting a rational section. This
is relevant to applications to physics, where F-theory constructions are based on a
choice of a Calabi-Yau manifold Y with an elliptic fibration over a base space X . In
this context, physical properties of the model can be translated into the geometry
of the elliptically fibered Calabi-Yau and the uniform boundedness of some of their
Hodge numbers is a property that has long been sought after in the field, see, for
example, [TW15].

When studying elliptic Calabi–Yau varieties in general, those admitting a ratio-
nal section play a central role. Weierstrass models and Jacobian fibrations always
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carry a rational section and their boundedness is a fundamental step towards the
proof of boundedness of elliptic Calabi–Yau threefolds in Gross’ work. Thus, Theo-
rem 1.2 represents the realization of this first fundamental step in the generalization
of [Gro94] to higher dimension. Theorem 1.2 combined with a careful analysis of
the Tate-Shafarevich group for elliptic fibrations should eventually produce a proof
of the boundedness of general elliptic Calabi-Yau manifolds.

A similar result to Theorem 1.2 holds for singular K-trivial varieties as long as
we bound the torsion index of the canonical divisor.

Theorem 1.3. Fix positive integers d, l. Then the set of varieties Y such that

(1) Y is klt and projective of dimension d,
(2) lKY ∼ 0
(3) Y → X is an elliptic fibration with a rational section X 99K Y , and
(4) X is rationally connected

is bounded up to flops.

As in Theorem 1.3 we dropped the assumption on the simple connectedness of
Y , there is a price to pay in terms of the assumptions we make: namely, we have to
assume that the base X of the fibration is rationally connected. Considering elliptic
K-trivial varieties with a rationally connected base is a rather natural restriction:
indeed, it is simple to see that when Y is Calabi–Yau then the base of an elliptic
fibration is always rationally connected, cf. Theorem 5.1. More generally, imposing
only that KY be numerically trivial, it may happen that the base X of the elliptic
fibration Y → X is not rationally connected; nonetheless, such assumption implies
that the elliptic fibration is isotrivial, i.e., the isomorphism type of the fibers does
not change, and, moreover, that the fibers over points of codimension one on the
base all have semi log-canonical singularities. Furthermore, KX ∼Q 0 and either
X has canonical singularities so that the Kodaira dimension of X is 0, or, else, X
has strictly klt singularities and it is uniruled. When X is rationally connected,
a slightly weaker result than the one in Theorem 1.3 was proven by the second
and third named authors, [DCS16], for dimension up to 5; they showed that the
conclusion of the theorem holds for those elliptic Calabi–Yau manifolds with a
section under some extra assumptions on the birational structure of the base X
of the fibration. Hence, already in dimension 4 and 5, Theorem 1.3 provides a
considerable improvement of our current knowledge.

Boundedness for rationally connected log Calabi–Yau pairs. The heart of
the proof of Theorem 1.2 relies on showing that the bases of elliptic Calabi–Yau
manifolds form in turn a bounded family, up to isomorphism in codimension 1. In
the elliptically fibered setting, the canonical bundle formula, see § 2.7, implies that
the base X carry a structure of log Calabi-Yau pair, that is, there exists an effective
divisor B on X with coefficients in (0, 1), KX + B is numerically trivial and the
singularities of the pair (X,B) are mild (klt), see § 2.1 for the type of singularities
that are allowed. The study of the bases of elliptic fibrations is our motivation to
study the boundedness of rationally connected log Calabi–Yau pairs. We prove the
following general result that holds in any dimension.

Theorem 1.4. Fix positive integers d, l. Then the set of pairs (X,B) such that

(1) (X,B) is a projective klt pair of dimension d,
(2) l(KX +B) ∼ 0, and
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(3) X is rationally connected

is log bounded up to flops.

This result is not only central to the study of boundedness for elliptic Calabi–Yau
varieties, but it maintains its own independent relevance: in view of the unavoidable
appearance of singularities in the birational classification of varieties, it is often
necessary to work not just with mildly singular varieties, but rather with pairs
of a normal projective variety and an effective divisor with coefficients in [0, 1].
All conjectures and questions for Calabi–Yau manifolds discussed so far can be
also formulated in the more general context of log Calabi–Yau pairs. Hence, the
importance of boundedness for log Calabi–Yau pairs should be immediately clear,
being the natural extension to the realm of pairs of the K-trivial case. As such,
then, it is an even more intriguing and complicated problem.

In proving Theorem 1.4, we first show that, up to birational modifications, we
can decompose X into a tower of fibrations whose general fibers are Fano varieties
with bounded singularities. This result allows us to control the torsion index of the
successive log Calabi–Yau pairs that we can construct on the base of each of the
fibrations that decompose X . At this point, we show inductively, using Birkar’s
recent results on boundedness for log Fano fibrations, [Bir18], that, at each step in
this tower of fibrations, if we assume that the base of the fibration belongs to a
bounded family, then the same holds also for the total space of the fibration.

We regard Theorem 1.4 as providing strong evidence for a more general conjec-
ture, generalizing the BAB Conjecture: the conjecture predicts the boundedness of
all rationally connected varieties of log Calabi–Yau type with bounded singularities.

Conjecture 1.5. (cf. [MP04, Conj. 3.9], [CDCH+18, Conj. 1.3]) Fix a positive
integer d and positive real number ǫ. Then the set of varieties X such that

(1) X is normal projective and rationally connected of dimension d
(2) (X,B) is ǫ-lc for some effective R-divisor B, and
(3) −(KX +B) is nef,

is bounded.

The 2-dimensional case of this conjecture was proved by Alexeev in [Ale94]. In
dimension three, combining our techniques with the recent result of Jiang [Jia19],
we are able to prove a slightly weaker version of the above conjecture, showing
that rather than boundedness, we can obtain boundedness up to isomorphism in
codimension 1.

Theorem 1.6. Fix a positive real number ǫ. The set of varieties X such that

(1) X is normal projective of dimension 3,
(2) (X,B) is ǫ-lc for some effective R-divisor B,
(3) −(KX +B) is nef, and
(4) X is rationally connected

is bounded up to flops.

Strategy of proof of Theorem 1.2-1.3. The standard approach to bound a set
of fibered varieties is to first bound the set of bases and general fibers, and then
lift boundedness from the bases to the set of total spaces. Here we follow this very
same strategy; the existence of a rational section makes bounding the set of bases
of an elliptic fibration the most important and technical step in our proof. One
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of the main novelties here is that we are able to deal with the case where X is
rationally connected and KX ≡ 0, an important missing piece in [DCS16]. Recall
that examples of this type of fibration are known to exists already in dimension 3,
see [Ogu93].

From the viewpoint of boundedness, the current techniques in the Minimal Model
Program do not provide enough tools to approach rationally connected varieties
with KX ≡ 0. As predicted in Conjecture 1.5 for the case when B = 0, these vari-
eties are expected to be bounded once their singularities are. In general, bounded-
ness is expected to hold once the torsion index of the canonical divisor is uniformly
bounded, cf. [CDCH+18, Jia19]; unfortunately, it is not easy to show that such
an hypothesis is satisfied in higher dimension. We manage to show that those ra-
tionally connected K-trivial varieties that are bases of K-trivial elliptic fibrations
with bounded torsion index satisfy boundedness of the torsion index in turn. Once
uniform boundedness of the torsion index is settled, we can reduce the theorem to
boundedness of Fano fibrations (or towers of such fibrations) which is one of the
main results of [Bir18]. Here for simplicity, we state only the case where the total
space is smooth.

Theorem 1.7 (cf. Theorem 5.4). Fix a positive integer d. Then there exists a
positive integer m = m(d) such that if

(1) Y is a Calabi–Yau manifold of dimension d and
(2) Y → X is an elliptic fibration with KX ≡ 0,

then mKX ∼ 0.

Once boundedness of the bases is settled, the following step consists in showing
that boundedness also holds for the total space of an elliptic fibration carrying a
rational section, see Theorem 5.2. In this case, the idea is to use the Zariski closure
S of the rational section X 99K Y together with the pullback of a suitable very
ample divisor H from the base X with bounded volume – a bound guaranteed by
boundedness of X – to arrive to a suitable birational model Y ′ of Y on which KY ≡
0, and the strict transform of S +H on Y ′ has bounded singularities and bounded
positive volume. Then by the results of [HMX14] and [Bir18], these conditions imply
that Y ′ is bounded and the divisors contracted in the birational map Y 99K Y ′ can
be extracted to yield a bounded model Y1 isomorphic in codimension 1 to Y . These
techniques have been recently applied also to the study of the boundedness of n-
dimensional minimal models of Kodaira dimension n− 1, see [FS20,Fil20a].

Acknowledgments. GD would like to thank János Kollár for many valuable dis-
cussions. RS would like to thank Paolo Cascini, Stefano Filipazzi, and Enrica Floris
for many useful discussions. The authors wish to thank Yanning Xu and Stefano
Filipazzi for reading preliminary drafts of this work.

2. Preliminaries

We adopt the standard notation and definitions from [KMM87] and [KM98], and
we freely use those.

A set I ⊂ R is said to be a DCC (resp. ACC) set, if it does not contain any
strictly decreasing (resp. increasing) sequence {ik} of elements of I.
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2.1. Pairs and singularities. A log pair (X,B) consists of a normal projective
variety X and an effective R-divisor B on X such that KX +B is R-Cartier.
Given f : Y → X a log resolution of the log pair (X,B), we write

KY +B′ = f∗(KX +B),

where B′ is the sum of the strict transform f−1
∗ B ofB on Y and a divisor completely

supported on the exceptional locus of f, B′ = f−1
∗ B +

∑
aiEi. We will denote by

µDB
′ the multiplicity of B′ along a prime divisor D on Y . For a non-negative real

number ǫ, the log pair (X,B) is called

(a) ǫ-kawamata log terminal (ǫ-klt, in short) if µDB
′ < 1− ǫ for all D ⊂ Y ;

(b) ǫ-log canonical (ǫ-lc, in short) if µDB
′ ≤ 1− ǫ for all D ⊂ Y ;

(c) terminal if µDB
′ < 0 for all f -exceptional D ⊂ Y and all possible choices

of f .
(d) canonical if µDB

′ ≤ 0 for all f -exceptional D ⊂ Y and all possible choices
of f .

Let us note that 0-klt (resp., 0-lc) is just klt (resp., lc) in the usual sense. More-
over, ǫ-lc singularities only make sense if ǫ ∈ [0, 1], and ǫ-klt singularities only make
sense if ǫ ∈ [0, 1), Usually we write X instead of (X, 0), that is, when we consider
the case B = 0.

The log discrepancy of a prime divisor D on Y is defined to be a(D,X,B) :=
1− µDB

′. It does not depend on the choice of the log resolution f .

2.2. Generalised pairs. For the definition of b-divisor and related notions, we
refer the reader to [BZ16]. There, the authors introduced also the notion of gener-
alised pairs. Let us recall that a b-R-divisor N is said to descend to the divisor N ′

on a model X ′ if N equals the Cartier closure of its trace NX′ on X ′ and NX′ = N ′.

Definition 2.1. Let Z be a variety. A generalised polarised pair over Z is a tuple
(X ′ → X,B,M ′) consisting of the following data:

• a normal variety X → Z projective over Z equipped with a projective bira-
tional morphism φ : X ′ → X,

• an effective R-Weil divisor B on X,
• a b-R-Cartier b-divisor M over X which descends on X ′ such that M ′ :=
MX′ is nef over Z, and

• KX +B +M is R-Cartier, where M := φ∗M
′.

When no confusion arises, we refer to the pair by saying that (X,B +M) is a
generalised pair with data X ′ → X → Z and M ′. We call M ′ the nef part of the
generalised pair.

Similarly to log pairs, we can define discrepancies and singularities for generalised
pairs. Replacing X ′ with a higher birational model, we can assume that φ is a log
resolution of (X,B). Then we can write

KX′ +B′ +M ′ = φ∗(KX +B +M)

for some uniquely determined divisor B′. For a prime divisor D on X ′ the gener-
alised log discrepancy a(D,X,B+M) is defined to be 1−µDB

′. We say (X,B+M)
is generalised lc (resp. generalised klt, generalised ǫ-lc) if for each D the generalised
log discrepancy a(D,X,B +M) is ≥ 0 (resp.> 0, ≥ ǫ).
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2.3. Minimal model program. Moreover, we will make use of the Minimal Model
Program (MMP, in short) for (generalised) pairs with non-pseudo-effective log
canonical class. In this case, the existence and termination of the MMP has been
established in the pair setting by Birkar-Cascini-Hacon-McKernan, [BCHM10, Cor.
1.3.3], and by Birkar-Zhang in the generalised setting, [BZ16, Lemma 4.4].

Theorem 2.2. [BZ16,BCHM10] Let (X,B +M) be a projective Q-factorial gen-
eralised klt pair. Assume KX +B+M is not pseudo-effective. Then we may run a
(KX+B+M)-MMP g : X 99K Y that terminates with a Mori fibre space f : Y → T .

Let us recall the definition of Mori fibre space.

Definition 2.3. Let (X,B +M) be a generalised klt pair and let f : X → T be
a projective morphism of normal varieties with dim(T ) < dim(X). Assume that
f∗OX = OT . Then f is a Mori fibre space if

(1) X is Q-factorial,
(2) f is a primitive contraction, i.e. the relative Picard number ρ(X/T ) = 1

and
(3) −(KX +B +M) is f -ample.

2.4. Boundedness of pairs. We recall the different notions of boundedness for
varieties and log pairs.

Definition 2.4. A collection of projective varieties D is said to be bounded (resp.,
birationally bounded, or bounded in codimension one) if there exists h : Z → S a
projective morphism of schemes of finite type such that each X ∈ D is isomorphic
(resp., birational, or isomorphic in codimension one) to Zs for some closed point
s ∈ S.

Definition 2.5. A collection of projective log pairs D is said to be log birationally
bounded (resp., log bounded, or log bounded in codimension one) if there is a
quasi-projective variety Z, which may possibly be reducible, a reduced divisor E on
Z, and a projective morphism h : Z → S, where S is of finite type and E does not
contain any fiber, such that for every (X,B) ∈ D, there is a closed point s ∈ S and a
birational map f : Zs 99K X (resp., isomorphic, or isomorphic in codimension one)
such that Es contains the support of f−1

∗ B and any f -exceptional divisor (resp., Es
coincides with the support of f−1

∗ B, Es coincides with the support of f−1
∗ B).

A collection of projective log pairs D is said to be strongly log bounded if there is a
quasi-projective log pair (Z,B) and a projective morphism h : Z → S, where S is of
finite type, such that, B does not contain any fiber of h, and for every (X,B) ∈ D,
there is a closed point s ∈ S and an isomorphism f : Zs → X such that f∗Bs = B.

In the case of Calabi–Yau pairs, we will use an equivalent notion of log bound-
edness in codimension one that is more suitable for our proofs.

Remark 2.6. If D is a collection bounded in codimension one (resp., log bounded
in codimension one) of projective klt Calabi–Yau varieties (resp., klt log Calabi–
Yau pairs), then by replacing Z with its normalization in the definition above,
we can assume that the fibre Zs isomorphic in codimension one to X is normal
projective, and KZs

is Q-Cartier (resp., KZs
+f−1

∗ B is R-Cartier). We will refer to
such a collection as to a collection bounded modulo flops (resp., log bounded modulo
flops). The indication “modulo flops" comes from the fact that, if we assume that
X and Zs are both Q-factorial, then they are connected by flops by running a
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(KX +B + δf∗H)-MMP where H is an ample divisor on Zs and δ is a sufficiently
small positive number, cf. [BCHM10,Kaw08].

If D is a collection of klt log Calabi–Yau pairs which is log bounded modulo
flops, (X,B) ∈ D, and f : Zs 99K X is an isomorphism in codimension one as in
the definition above, then (Zs, f

−1
∗ B) is again a klt log Calabi–Yau pair by the

Negativity Lemma. Moreover, (X,B) is ǫ-lc if and only if (Zs, f
−1
∗ B) is so. The

same statement holds for a set D of klt Calabi–Yau varieties which is bounded
modulo flops.

To show that a given set of pairs is log birationally bounded, we will mainly use
the following theorem which is a combination of results in [HMX13,HMX14].

Theorem 2.7. [HMX13, Theorem 3.1], [HMX14, Theorem 1.3] Fix two positive
integers n and V and a DCC set I ⊂ [0, 1]. Then the collection D of log pairs
(X,B) satisfying

(1) X is a projective variety of dimension n,
(2) (X,B) is lc,
(3) the coefficients of B belong to I, and
(4) 0 < Vol(KX +B) ≤ V ,

is log birationally bounded.

In certain special cases it is possible to deduce boundedness from log birational
boundedness.

Theorem 2.8. [HMX14, Theorem 1.6] Fix a positive integer n and two positive
real numbers b and ǫ. Let D be a collection of log pairs (X,B) such that:

(1) X is a projective variety of dimension n,
(2) KX +B is ample,
(3) the coefficients of B are at least b, and
(4) the log discrepancy of (X,B) is greater than ǫ.

If D is log birationally bounded then D is a log bounded set of log pairs.

Theorem 2.8 can be strengthened when we further impose control on the singular-
ities and coefficients of pairs. The following result is a straightforward consequence
of [MST16, Theorem 6] and [Fil20b, Theorem 1.3].

Theorem 2.9. Fix a natural number d, a positive rational number C, a positive
real number ǫ, and I ⊂ Q ∩ [0, 1) a finite set. The collection D of all pairs (X,B)
such that

(1) (X,B) is ǫ-klt, projective, of dimension d,
(2) the coefficients of B belong to I,
(3) KX +B is big and nef, and
(4) Vol(KX +B) ≤ C

is strongly log bounded.

In the course of our treatment, we will need to use several times the following
technical result which allows us to pass from bounded collections of log pairs to log
bounded ones.

Proposition 2.10. Fix a finite set R ⊂ (0, 1) and a positive real number ǫ. Let
D be a bounded collection of ǫ-lc pairs. Assume that for any pair (X,B) ∈ D the
coefficients of D belong to R. Then D is strongly log bounded.
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The important point in the statement of the proposition is that there exists a
proper morphism of quasi-projective varieties h : Z → S with S smooth, and a
divisor B on Z such that for any (X,B) ∈ D there exists s ∈ S and an isomorphism
fs : Zs → X with f∗

s (B) = Bs. In this context, both Z and S are not necessarily
irreducible, but, nonetheless, they are of finite type.

Proof. By definition of boundedness there exists a couple (Z, E) with E reduced
divisor, and a projective morphism of quasi-projective varieties h : Z → S such
that for any pair (X,B) ∈ D there exists s ∈ S and isomorphism fs : Zs → X such
that fs maps Es to the support of B. We will denote by H a relatively very ample
Cartier divisor for Z → S.
Decomposing S into a finite union of locally closed subsets and possibly discarding
some components, we may assume that every fibre Zs is a variety. Blowing up Z
and decomposing S into a finite union of locally closed subsets, we may assume
that there exists a pair (Z ′, E ′) that has simple normal crossings and such that

Z ′ g
//

h′

  
❅❅

❅❅
❅❅

❅❅
Z

h
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S

and for any s ∈ S, (Z ′
s, E

′
s) is a log resolution of (Zs, Es), with g∗E

′ = E .
Decomposing S into a finite union of locally closed subsets, we may assume that
over an irreducible component of S, the fibres of Z ′ → S are equidimensional log
pairs, and that (Z ′, E ′) has simple normal crossings over S. Passing to a finite cover
of S, we may assume that every stratum of (Z ′, E ′) has irreducible fibres over S.
Decomposing S into a finite union of locally closed subsets, we may assume that S
is smooth. In particular, over an irreducible component S̄ of S, where all fibers of
Z ′ → S are d-dimensional, if E ′ =

∑n
i=1 E

′
i is the decomposition into its irreducible

components, up to passing to an open set of S̄1 ⊂ S̄, we can assume that for any i
either E ′

i |Zs
is exceptional over Zs for any s ∈ S̄1 or that E ′

i|Zs
maps to a divisor

on Zs for any s ∈ S̄1. We will denote by E ′
i,s the divisors E ′

i |Z′
s
.

Let {E ′
1, . . . , E

′
l} be those components of E ′ that are exceptional over Z – equiva-

lently, those components of E ′ such that E ′
i,s is exceptional over Zs for some (or

any) s ∈ S̄1.
By [HMX18, Theorem 4.2], for any fixed n-tuple (a1, . . . , an) ∈ (0, 1)n and any
positive integers t,m, then

h0(Z ′
s,OZ′

s
(m(KZ′

s
+
∑

i

aiB
′
i,s + tg∗Hs)))

is independent of s ∈ S̄1. Let us consider the set N of n-tuples of the form

(1−
ǫ

2
, . . . , 1−

ǫ

2
, bl+1, bl+2, . . . , bn), bi ∈ R.

As R is finite, N is a finite set as well. Then, the MMP for

KZ′ +

l∑

i=1

(1 −
ǫ

2
)B′

i +

n−l∑

j=1

bj+lB
′
j+l + (2d+ 2)g∗H
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over S̄1 exists and it must terminate by [BZ16, Lemma 4.4] with a log canonical
model as

KZ′ +

l∑

i=1

(1−
ǫ

2
)B′

i +

n−l∑

j=1

bj+lB
′
j+l + (2d+ 2)g∗Hs

is big over S1. For an element e ∈ N, e = (1− ǫ
2
, . . . , 1− ǫ

2
, bl+1, bl+2, . . . , bn), such

that

KZ′ +

l∑

i=1

(1−
ǫ

2
)B′

i +

n−l∑

j=1

bj+lB
′
j+l + (2d+ 2)g∗Hs

is pseudo-effective over S1, we will indicate by Ze → S the corresponding log
canonical model. Moreover, we will denote by Ce the pushforward of B′ on Ze.
Given a pair (X,B) ∈ D corresponding to the fiber Zs over a point s ∈ S̄1, we can

write B =
∑n−l

k=1 bk+lB
′
k+l, bk+l ∈ R and

KZ′
s
+

l∑

i=1

(1−
ǫ

2
)B′

i,s+

n−l∑

j=1

bj+lB
′
j+l,s+(2d+2)g∗Hs = g∗|Z′

s
(KX+B+(2d+2)Hs)+F,

where F is effective and its support coincides with the union of all the B′
i,s, 1 ≤ i ≤ l.

Moreover, by the cone theorem KX + B + (2d + 2)Hs is ample on X . Hence, it
follows from [HMX18, Theorems 4.2 and 6.2] that there exists an isomorphism
hs : Zs → X and h∗s(B) = Ce. As the cardinality of N is finite, the union of all the
Ze → S1 is a bounded family.
The proof then concludes by repeating the same argument on S̄ \ S̄1. This iteration
must terminate by noetherian induction in a finite number of steps. Repeating
the same argument for the remaining (finitely many) components of S yields the
desired result. �

2.5. Boundedness of Fano fibrations. To simplify the statements in this sec-
tion, we recall the following definition introduced in [Bir18].

Definition 2.11. [Bir18, Definition 1.1] Let d, r be natural numbers and ǫ be a
positive real number. A (d, r, ǫ)-Fano type (log Calabi-Yau) fibration consists of a
pair (X,B) and a contraction f : X → Z such that we have the following:

• (X,B) is a projective ǫ-lc pair of dimension d,
• KX +B ∼R f

∗L for some R-divisor L,
• −KX is big over Z, i.e. X is of Fano type over Z,
• A is a very ample divisor on Z with AdimZ ≤ r, and
• A− L is ample.

Birkar has shown that (d, r, ǫ)-Fano type fibrations are bounded. Let us recall
the following two results which are going to be relevant later in our treatment.

Theorem 2.12. [Bir18, Theorem 1.2] Let d, r be natural numbers and ǫ be a positive
real number. Consider the set of all (d, r, ǫ)-Fano type fibrations (X,B) → Z. Then
the set of varieties X is bounded.

A more general log boundedness result holds if we impose a lower bound on the
coefficients of the boundary of a log Calabi–Yau pair endowed with a (d, r, ǫ)-Fano
type fibration.
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Theorem 2.13. [Bir18, Theorem 1.3] Let d, r be natural numbers and ǫ, τ be pos-
itive real numbers. Consider the set of all (d, r, ǫ)-Fano type fibrations (X,B) → Z
such that 0 ≤ ∆ ≤ B and the coefficients of ∆ are ≥ τ . Then the set of such pairs
(X,∆) is log bounded.

Definition 2.11 has an analogue for generalised pairs, where rather than (X,B)
one considers a generalised ǫ-lc pair (X,B +M) such that KX + B +M ∼f,R 0
and everything else is unchanged. In this context, there is an exact analogue of
Theorem 2.13 for generalised pairs, see [Bir18, Theorem 2.2].

2.6. Log bounded families of morphisms. We extend the notion of bounded-
ness to collection of log pairs endowed with morphisms.

Definition 2.14. (i) A set F of morphisms is a collection of 4-uples (f, Y,B,X)
where f : Y → X is a surjective morphism of projective varieties and the
pair (Y,B) is a log pair.

(ii) We say that a set F of morphisms is log bounded (resp., strongly log
bounded) if there exist quasi-projective varieties Y,X , a reduced divisor
E on Y (resp., a log pair (Y, E)), and a commutative diagram of projective
morphisms

Y
φ

//

��
❄❄

❄❄
❄❄

❄
X

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S

such that
• S is of finite type,
• for any 4-uple (f, Y,B,X) ∈ F, there is a closed point s ∈ S and

isomorphisms p : Xs → X, q : Ys → Y such that the following diagram
commutes

Ys

φ|Ys //

q

��

Xs

p

��

Y
f

// X,

and
• q∗Es coincides with the support of B (resp., q∗Es = B).

Remark 2.15. Let F be a bounded (resp., log bounded) collection of morphisms.
Then the sets

T :={(Y,B) | ∃(f, Y,B,X) ∈ F},

B :={X | ∃(f, Y,B,X) ∈ F}

are a bounded (resp., log bounded) set of pairs and a bounded set of varieties,
respectively. This is an immediate consequence of the conditions of Definition 2.14.

Lemma 2.16. Let d be a positive integer, ǫ be a positive real number, and let
R ⊂ Q ∩ (0, 1) be a finite set.
Let D be a log bounded set of pairs (Y,B) such that

(1) (Y,B) is projective, ǫ-klt of dimension d,
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(2) the coefficients of B are in R,
(3) KY +B is semi-ample.

Then, the set F of 4-uples (f, Y,B,X) such that

(i) there exists a log pair (Y,B) ∈ D,
(ii) X = Proj(⊕∞

i=0H
0(Y,OY (i(KY +B)))), and

(iii) f : Y → X is the Iitaka fibration of KY +B

is a strongly log bounded set of morphisms.

Proof. As D is a log bounded set of ǫ-klt pairs and R is finite, we can assume that
D is strongly log bounded by Proposition 2.10. Hence, there exists a scheme of
finite type S, a log pair π : (Y,B) → S over S such that for any log pair (Y,B) ∈ D,
there exists s ∈ S and (Ys,Bs) is isomorphic to (Y,B).
Decomposing S into a finite union of locally closed subsets and possibly discarding
some components, we may assume that every fibre Ys is a variety and that B does
not contain any fiber. Decomposing S into a finite union of locally closed subsets
and passing to a finite cover of S, we may assume that for any s ∈ S there is
a 1-1 correspondence between the irreducible components of B and those of Bs.
Decomposing S into a finite union of locally closed subsets, we may assume that S
is smooth. By [Bir19, Lemma 2.25], we can assume that there exists I = I(D) such
that I(KY + B) is Cartier along any fibre Ys. Up to shrinking S and decomposing
it into a finite union of locally closed subsets, we can also assume that the set

S′ := {s ∈ S | ∃(Y,B) ∈ D such that (Y,B) ≃ (Ys,Bs)}

is Zariski dense in S. By [FM18, Proposition 2.10], up to shrinking S and de-
composing it into a finite union of locally closed subsets, we can assume that Y
is Q-factorial and S′ is still dense. In particular, this implies that for all s ∈ S,
(Ys,Bs) is ǫ-klt.
Claim. Decomposing S into a finite union of locally closed subsets, we may assume
that the restriction map

H0(Y, OY(lI(KY + B))) → H0(Ys, lI(KYs
+ B|Ys

)), ∀l > 0(1)

is surjective at any point s ∈ S, and for any connected component S̄ of S

h0(Ys,OYs
(lI(KYs

+ B|Ys
))) is independent of s ∈ S̄, ∀l > 0.(2)

Proof. Decomposing S into a finite union of locally closed subset, we can assume
that there exists a log resolution ψ : (Y ′,B) → Y of (Y,B), where B := ψ−1

∗ B + E
and E is the exceptional divisor of ψ, and for any s ∈ S, (Y ′

s,Bs) is a log resolution
of (Ys,Bs). In particular, for any s ∈ S,

H0(Ys,OYs
(l(KYs

+ Bs))) = H0(Y ′
s,OY′

s
(l(KY′

s
+ B

ǫ

s))), B
ǫ
:= ψ−1

∗ B + (1− ǫ)E,

where in the equation above we have used that the pairs we consider are ǫ-klt.
Hence, the properties in (1)-(2) follow from [HMX18, Theorems 1.4, 4.2], since for
any s ∈ S′ the pair (Ys,Bs) has a good minimal model, by assumption (3) in the
statement of the Lemma. �

If s ∈ S is a point such that mI(KYs
+B|Ys

) is base point free, then it follows that
the natural map

π∗π∗OY(mI(KY + B)) → OY(mI(KY + B))(3)
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is surjective along Ys, and hence along all fibers in a Zariski neighborhood of s in
S. Hence, up to decomposing S into a finite union of locally closed subsets, we can
assume that there exists a positive integer m′ such that m′I(KY + B) is relatively
base point free over S. The relative Iitaka fibration for KY + B over S

(Y,B)

""❊
❊❊

❊❊
❊❊

❊

φ
// X

����
��
��
��

S

provides the desired bounded family of triples: in fact, given (Y,B) ∈ D, if s ∈ S is
such that there exists an isomorphism h : Ys → Y and h∗Bs = B, then (1)-(2) imply
that there exists also an isomorphism g : Xs → X and a commutative diagram

Ys

φ|Ys //

h

��

Xs

g

��

Y
f

// X.

�

Let us recall the notion of degenerateness for effective Weil divisors.

Definition 2.17. [Lai11, Definition 2.9] Let Y be a normal variety and let f : Y →
X be a proper surjective morphism of normal varieties. An effective Weil R-divisor
D on Y is said to be

(i) f -exceptional if codim(Supp(f(D))) ≥ 2;
(ii) of insufficient fibre type if codim(Supp(f(D))) = 1 and there exists a prime

divisor Γ on Y such that Γ 6⊆ Supp((D)) and Supp(f(Γ)) ⊂ Supp(f(D))
has codimension one in X.

In the notation of Definition 2.17, we shall say that the divisor D is f -degenerate
if is satisfies either one of the conditions stated the definition above. This type of
divisors were already studied by Shokurov who referred to them as very exceptional,
cf. [Sho03, Definition 3.2].

Remark 2.18. Let f : Y → X be a proper surjective morphism of normal varieties
and let φ : Y ′

99K Y be a birational contraction over X , that is, there exists a
proper surjective morphism f ′ : Y ′ → X and a commutative diagram

Y ′ φ
//❴❴❴❴❴❴❴

f ′

  ❆
❆❆

❆❆
❆❆

❆ Y

f
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

X

Let us denote by E′ the divisorial part of the exceptional locus of φ. If D is f -
degenerate for f on Y , then D′ is f ′-degenerate for f ′ on Y ′, where D′ is the
strict transform of D on Y ′. Moreover, if f is of relative dimension 1 and D is
f -degenerate for f on Y , then D′ + E′ is f ′-degenerate for f ′ on Y ′.

Lemma 2.19. Let F be a log bounded set of morphisms. Then the set Fdeg of
morphism given by 4-uples (f, Y,B +D,X) such that

• there exists (f, Y,B,X) ∈ F,
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• D is reduced and Q-Cartier, and
• D is f -degenerate

is a log bounded set of morphisms.
Moreover, if F is strongly log bounded, then also Fdeg is strongly log bounded as
well.

Proof. By the log boundedness of F, there exists a commutative diagram of projec-
tive morphisms

(Y,B)
φ

//

""❊
❊❊

❊❊
❊❊

❊
X

����
��
��
��

S

(4)

such that for any 4-uple (f, Y,B,X) ∈ F, there is a closed point s ∈ S and isomor-
phisms g : Xs → X , h : Ys → Y such that the following diagram commutes

Ys

φ|Ys //

h

��

Xs

g

��

Y
f

// X,

and h∗Bs = Supp(B). If F is strongly log bounded, then the only difference is that
we can take B such that h∗Bs = B.
Decomposing S into a finite union of locally closed subsets and passing to a finite
cover of S, we may assume that for any s ∈ S there is a 1-1 correspondence between
the irreducible components of B and those of Bs. Decomposing S into a finite union
of locally closed subsets, we may assume that S is smooth.
On X , we define the following two Zariski closed subsets

JX := {x ∈ X | dimYx > dimY − dimX},

IX := {x ∈ X | Yx is reducible}
Zar
,

where
Zar

denotes the Zariski closure of a set. Furthermore, we define

JY := φ−1(JX ), IY := φ−1(IX ), LY := JY ∪ IY ,

and we consider the variety JY (resp. JX , IY , IX , LY) as a scheme with the
reduced scheme structure. We will denote by JY,s (resp. IY,s, LY,s) the schematic
fibre of JY (resp. IY , LY) at s ∈ S.
It follows from the definition of degeneracy that for any s ∈ S if an effective reduced
divisor D on Ys is degenerate with respect to φ|Ys

then Supp(D) ⊂ Supp(LY,s).
Decomposing S into a finite union of locally closed subsets, we can assume that LY

is flat over S. Hence, if H is a very ample polarization on Y relatively over S then
there exists a positive constant C = C(F) such that for any s ∈ S

degHs
LY,s ≤ C,(5)

where degHs
indicates the degree with respect to the polarization Hs. As D ⊂ LY,s

is a reduced Weil divisor on YS , then (5) implies that

D · HdimYs−1
s = degHs

D ≤ degHs
LY,s ≤ C.
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In view of the theory of Chow varieties, see [Kol96, §1.3], then it follows that there
exists a commutative diagram of projective morphisms

(Y ′,B′ +D′)
φ′

//

%%❑
❑❑

❑❑
❑❑

❑❑
❑

X ′

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

S′

(6)

such that for any 4-uple (f, Y,B+D,X) ∈ Fdeg, there is a closed point s′ ∈ S′ and
isomorphisms g′ : X ′

s′ → X , h′ : Y ′
s → Y such that the following diagram commutes

Y ′
s

φ′|Y′
s //

h′

��

X ′
s

g′

��

Y
f

// X,

and h′∗B
′
s = Supp(B), h′∗D

′
s = D. If F is strongly log bounded, then the only

difference is that we can take B′ such that h′∗B
′
s = B. In particular, h′∗B

′
s + D′

s =
B +D, which implies that Fdeg is strongly log bounded. �

Let us recall the following result that will be useful in dealing with degenerate
divisors.

Lemma 2.20. Let (Y,B) be a klt pair. Let f : Y → X a projective contraction of
normal Q-factorial varieties. Let D = D1+D2 be an effective Weil R-divisor on Y
such that D1 is f -exceptional and D2 is of insufficient fibre type with respect to f .
Assume that KY +B ∼R,Y 0.

Then, there exists a rational contraction Y 99K Ŷ over X which contracts exactly
the support of D.

Proof. Let Y ′ → Y be a small Q-factorialization of Y . Fix 0 < a≪ 1 such that the
pair (Y ′, B′ + aD′) is klt, where B′ (resp. D′) is the strict transform of B (resp.
D) on Y ′. We can apply [Bir12, Theorem 1.8] to obtain the desired result. �

In Section 5, we will study boundedness of families of elliptic Calabi–Yau varieties
with bounded bases. In order to prove their boundedness up to flops, we will have to
show that we can contract degenerate divisors in log bounded families of morphisms.
Using the above lemma, we can ensure that this result holds.

Proposition 2.21. Let d be a positive integer, ǫ be a positive real number, and let
R ⊂ Q ∩ (0, 1) be a finite set.
Let D be a log bounded set of log pairs (Y,B) such that

(1) (Y,B) is Q-factorial projective, ǫ-klt of dimension d,
(2) the coefficients of B are in R,
(3) Y is a good minimal model for KY +B,

Then, there exists a log bounded set Fdeg,min of 4-uples (f ′, Y ′, B′, X) such that

(i) there exists a log pair (Y,B) ∈ D such that

X := Proj(⊕∞
i=0H

0(Y,OY (i(KY + B))))

and f : Y → X is the Iitaka fibration of KY +B,
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(ii) there exists an effective divisor D on Y that is f -degenerate such that
f ′ : Y ′ → X is a good minimal model for D over X and B′ is the strict
transform of B on X ′.

Under the assumptions of the proposition, as KY + B ∼Q,f 0, then KY + B +
λD ∼Q,f λD, for all λ ∈ R, and the existence of a good minimal model for D over
X is implied by Lemma 2.20.

Proof. By Lemma 2.16, the set F of 4-uples (f, Y,B,X) such that

• (Y,B) ∈ D, and
• f : Y → X is the Iitaka fibration of KY +B,

is a strongly log bounded set of morphisms. By Lemma 2.19, any f -degenerate
divisor D is bounded on Y . Hence, the set Fdeg of 4-uples (f, Y,B + D,X) such
that

• (Y,B) ∈ D,
• f : Y → X is the Iitaka fibration of KY +B, and
• D is f -degenerate,

is a strongly log bounded set of morphisms and there is a commutative diagram

(Y,B +D)
φ

//

$$■
■■

■■
■■

■■
■

X

����
��
��
��

S

(7)

such that

• X is the Iitaka fibration of KY + B over S,
• for any 4-tuple (f, Y,B + D,X) ∈ Fdeg there is a closed point s ∈ S and

isomorphisms g : Xs → X , h : Ys → Y such that the following diagram
commutes

Ys

φ|Ys //

h

��

Xs

g

��

Y
f

// X,

(8)

and h∗(Bs +Ds) = B +D.

Decomposing S into a finite union of locally closed subsets and possibly discarding
some components, we may assume that every fibre Ys is a variety and that Supp(B+
D) does not contain any fiber. Decomposing S into a finite union of locally closed
subsets and passing to a finite cover of S, we may assume that for any s ∈ S and
there is a 1-1 correspondence between the irreducible components of B + D and
those of Bs + Ds. Decomposing S into a finite union of locally closed subsets, we
may assume that S is smooth; up to shrinking S, we can also assume that the set

S′ := {s ∈ S | ∃(f, Y,B +D,X) ∈ Fdeg such that (Y,B +D) ≃ (Ys,Bs +Ds)}

is Zariski dense in S. Applying [FM18, Proposition 2.10] to the pairs (Y,B) in each
of the 4-uples (f, Y,B + D,X) ∈ F′, we may assume that Y is Q-factorial, after
decomposing S again into a finite union of locally closed subsets.
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Claim. Up to decomposing S into a finite union of locally closed subsets and
discarding those components that do not contain points of S′, we may assume that
there exists a positive rational number δ such that (Y,B + δD) is 1

2
ǫ-klt for any

4-uple (f, Y,B +D,X) ∈ F′.

Proof of the Claim. Given a point s ∈ S′, there exists a positive rational number δ′

such that (Ys,Bs+δ
′Ds) is 1

2
ǫ-klt. As Y is Q-factorial, then (Y,B+δ′D) is 1

2
ǫ-klt in

a neighborhood of Ys in Y, as being 1
2
ǫ-klt is an open property. Thus, decomposing

S into a finite union of locally closed subsets we can find a uniform choice of δ such
that (Y,B+ δD) is 1

2
ǫ-klt, which proves the desired claim. By noetherian induction

and up to discarding those components of S not containing points of S′, we can still
assume that S′ is dense in S and repeat the same argument, which then concludes
the proof of the claim. �

In view of the claim, we can run the (KY + B + δD)-MMP over X and this must
terminate with a good minimal model by [HX13, Theorem 1.1], since D is vertical
over X by construction: indeed, D|Ys

is vertical over Xs for any s ∈ S′. Let

(Y,B +D) //❴❴❴❴❴❴❴

φ
$$❏

❏❏
❏❏

❏❏
❏❏

❏
(Y ′,B′ +D′)

φ′

yyss
ss
ss
ss
ss

X

��

S

(9)

be a good minimal model for this MMP, and by [HX13, Corollary 2.9] the good
minimal model in (9) is the outcome of an MMP with scaling of an ample divisor.
By decomposing S into a finite union of locally closed subsets and using Noetherian
induction, we can assume that at each step of this MMP, the exceptional locus is
horizontal over S and that if a given step is a divisorial contraction (resp. a flip),
then the same holds along each fibre over S. From this, we can conclude that for
all s ∈ S′, (Y ′

s,B
′
s) → Xs is a good relatively minimal model of (Ys,Ds) over Xs.

Hence, the conclusion follows from Lemma 2.20. �

2.7. Canonical bundle formula. As our main focus in this paper will be on Mori
fibrations of log Calabi–Yau pairs, we collect in this subsection some results about
lc-trivial fibrations which can be applied to our setting. For more details, we refer
the reader to [Amb04, Amb05], and to [FG12, Theorem 3.1] for the case of real
coefficients. For the definition of b-divisor and related notions, we refer the reader
to [BZ16].

Given a log pair (X,B) and a lc-trivial (resp. klt-trivial) fibration, that is, a
contraction f : X → Z of normal quasi-projective varieties such that (X,B) is log
canonical (resp. klt) at the generic point of Z, and KX + B ∼R f

∗L, then we can
define a divisor BZ on Z by posing

BZ :=
∑

(1− lD)D,(10)

where the sum is taken over every prime divisor D on Z, and lD is the log canonical
threshold of f∗D with respect to (X,B) over the generic point of D. We can also
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define a divisor MZ on Z, by posing

MZ := L− (KZ +BZ).(11)

By these definitions, we get the following formula, usually referred to as the canon-
ical bundle formula,

KX +B ∼R f
∗(KZ +BZ +MZ).(12)

Remark 2.22. It is actually not hard to see that the following more refined version
of (12) holds when BZ is a Q-divisor,

r(KX +B) ∼ (f∗r(KZ +BZ +MZ)),

where

r := min{m ∈ N>0 | m(KF +B|F ) ∼ 0, for a general fibre F},

cf. [Flo14, Remark 2.10].

By working analogously on any higher model Z ′ → Z of Z, it is possible to define
divisors BZ′ , MZ′ and the collections of these divisors in turn define b-R-divisors B,
M whose traces on Z are BZ , MZ , respectively. The b-divisors B, M are referred
to as the boundary and the moduli part of f . In the rest of the paper, we will refer
to BZ as the boundary divisor and to MZ as the moduli part of the fibration f on
Z.

When the singularities of the pair (X,B) are mild, then one can describe more
precisely the singularities of (Z,BZ +MZ) and the positivity properties of M.

Theorem 2.23. [FG12, Theorem 3.1] Let f : X → Z be a contraction of normal
varieties and let (X,B) be a log canonical pair that is klt over the generic point of
Z and KX +B ∼f,R 0.
Moreover, if (X,B) is klt, then there exists a choice of an effective R-divisor M ∼R

MZ such that (Z,BZ +M) is klt.

Remark 2.24. We will use the same notation as in the theorem above. When B
is a divisor with rational coefficients and (X,B) is klt, the above result was first
proved by Ambro, [Amb05], who also proved that there exists a sufficeintly high
birational model Z ′ of Z on which M descends to MZ′ which is a nef Q-divisor.
This is usually summarized by saying that the moduli part M is a b-nef b-Q-divisor.
Later, in [FG14], the same result was extended to the case of lc pairs.
Under such assumption, it is an immediate consequence that (Z ′ → Z,BZ ,MZ′) is
a generalised pair in the sense of § 2.2.
If B is an R-divisor, it is not true in general that M is going to be a b-nef b-R
divisor, but rather its trace on any model of X will be pseudoeffective.
Nonetheless, by writing KX +B as a convex sum of rational klt log divisors

KX +B =

s∑

i=1

ri(KX +Bi), Bi Q-divisor, KX +Bi ∼Q 0 ∀i = 1, . . . , s,

ri > 0 ∀i = 1, . . . , s,

s∑

i=1

ri = 1,

it is possible to write KX + B ∼R f
∗(KZ + CZ + N), where N is the trace on Z

of a b-nef b-R-divisor N obtained as the convex sum of the moduli parts of the
log divisors KX +Bi, while CZ is the convex sum of the boundary parts of the log
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divisors KX+Bi effective divisor. On the other hand, this kind of operation is non-
canonical and thus there is no way to enforce uniqueness of CZ and N cf. [HL19].

It is conjectured that when (X,B) is klt and B has rational coefficients, then the
divisorMZ′ should be semi-ample. Actually, the following much stronger statement,
known as the effective semi-ampleness conjecture of the moduli part, is expected
to hold; it first appeared in [PS09, Conjecture 7.13].

Conjecture 2.25. Let k, r be positive integers. There exists a positive integer
m = m(k, r) such that for any klt projective pair (X,B), where B has rational
coefficients, and any klt-trivial fibration f : X → Z as in Theorem 2.23, where the
relative dimension of f is k and r is the positive integer defined in Remark 2.22,
there exists a birational model Z ′ → Z where the multiple mMZ′ of the moduli
b-divisor on Z ′ descends and is base point free.

The effective semi-ampleness conjecture remains an hard unsolved problem, but
for our purposes we only need the case where MZ is numerically trivial and the
generic fibre of f is smooth: this was settled in [Flo14].

Theorem 2.26. [Flo14, Theorem 1.3] Fix a positive integer b. There exists an
integer m = m(b) such that for any klt-trivial fibration f : (X,B) → Z with

• B a Weil Q-divisor,
• MZ ≡ 0, and
• dimHdimE(E,C) = b for a non-singular model E of the cover E′ → F

associated to the unique element of |r(KX + B)|F | of a general fibre F of
f , where r is the positive integer defined in Remark 2.22.

we have that mMZ ∼ 0.

The statement of Theorem 2.26 is slightly different than that of the effective
semi-ampleness conjecture: in fact, while in Theorem 2.26 the integer m depends
on the dimension b of the middle cohomology of the resolution of a finite cover
of the geometric fiber, in Conjecture 2.25 the integer m depends on the relative
dimension k of f and on the integer r. While it is clear from the statement of
Theorem 2.26 that the integer b is inherently related to the integer r, as E is a
resolution of the ramified cover of degree r induced by r(KF + B|F ) ∼ 0, it is
not evident that this result provides a full solution to Conjecture 2.25 when the
moduli part is numerically trivial. Nonetheless, when the log pair induced on
the general fiber of the klt-trivial fibration f belongs to a bounded family, using
Theorem 2.26 and standard techniques in the theory of bounded pairs, we can show
that the positive integer m that trivializes the moduli part MZ can be chosen to
be uniformly bounded.

Corollary 2.27. Fix a DCC set R ⊂ (0, 1) ∩ Q. Let D be a bounded set of klt
pairs. Assume that for any pair (X,B) ∈ D the coefficients of B are in R and
KX + B ∼Q 0. Then there exists an integer number m = m(D,R) such that for
any klt-trivial fibration f : (X,B) → Z with

• MZ ≡ 0, and
• the pair (F,B|F ) ∈ D, where F is the general fibre of f ,

we can choose a divisor M in the class MZ with mM ∼ 0.

Proof. As R is DCC, by [HMX14, Theorem 1.5] there exists a finite subset R0 ⊂ R

such that the coefficients of pairs in D are in R0. Moreover, [DCS16, Corollary
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2.9] implies that there exists ǫ > 0 such that all pairs in D are ǫ-klt. Hence, by
Proposition 2.10 we can assume that D is strongly log bounded. In particular, there
exists a morphism of quasi-projective varieties Z → S and a effective Q-divisor B
on Z such that for any pair (X,B) in D there exists s ∈ S and an isomorphism
fs : Zs → X and Bs = f∗

sB. Moreover, up to decomposing S into a disjoint union
of finitely many locally closed subsets, we can assume that on each component of
S there exists a positive integer l such that l(KZ + B) ∼S 0. In fact, constructing
a log resolution

Z ′ //

  
❅❅

❅❅
❅❅

❅❅
Z

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S

of (Z,B) which is log smooth over the base S as in the proof of 2.10, and us-
ing [HMX18, Theorem 4.2] there must exist a positive integer n such that n(KX +
B) ∼ 0 for any pair in D. Up to stratifying D in the Zariski topology, we can
construct a bounded set of varieties C whose elements are smooth projective vari-
eties E that are non-singular models of the cover E′ → X associated to the unique
element of |n(KX + B)|. The statement of the Corollary then follows by noticing
that since C is bounded then there exists a natural number b = b(C) such that for
any E ∈ C, hdimE(E) ≤ b. The conclusion then follows from Theorem 2.26 and
noetherian induction. �

Similarly to the classical case, we can define a canonical bundle formula for
generalised pairs. Let (X,B+M) be a projective generalised pair, and let f : X → Z
be a contraction where dimZ > 0. We shall assume that (X,B+M) is generalised
log canonical over the generic point of Z and that KX + B +M ∼f,Q 0. We shall
also fix a divisor L on Z such that KX +B +M ∼Q f

∗L. Given any prime divisor
D on Z, let lD be the generalised log canonical threshold of f∗D with respect to
(X,B +M) over the generic point of D. Then, we define GZ :=

∑
cDD, where

cD := 1− lD and NZ := L− (KZ +BZ), so that

KX +B +M ∼Q f
∗(KZ +GZ +NZ).

The divisor GZ and NZ are just the traces on Z of Weil b-divisors G, N and
it was proven in [Fil18] that these two b-divisors induce a structure of generalised
pair on the base of a relatively trivial fibration of a generalised pair.

2.8. The different of a section of a fibration. In this subsection, we introduce
a result that will be used in the proof of Theorem 5.2.

Let us first recall the notion of different. Let Σ be a reduced divisor and B be an
effective divisor on a normal quasi projective variety Y . We denote by ν : Σν → Σ
the normalization of Σ. Assuming that Σ has no common components with B, if
(Y,Σ + B) is a log pair, then there exists a canonically defined effective R-divisor
DiffΣν (B) on Σν , called the different of B, defined as follows – see [K+92, §16] for
details. By taking hyperplane cuts, it is enough to consider the case where Y is a
surface. We can find a log resolution of singularities for (Y,Σ), r : Ȳ → Y , such

that the strict transform Σ̃ of Σ coincides with the normalisation Σν of Σ. Hence,
there exists an R-divisor BȲ on Ȳ such that

KȲ +Σν +BȲ = r∗(KY +Σ +B), and r∗BȲ = B.
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The different DiffΣν (B) is then defined as the R-divisor (BȲ )|Σν . Moreover, the pair
(Σν ,DiffΣν (B)) is a log pair which satisfies KΣν +DiffΣν (B) = ν∗((KY +Σ+B)|Σ).

We will now consider a contraction of normal quasi-projective varieties f : Y →
X of relative dimension one. We assume that there exists a rational section s : X 99K

Y and denote by S the Zariski closure of s(X) in Y .

Lemma 2.28. Let g : T → B be a surjective morphism of normal quasi-projective
varieties with dimT − dimB = 1. Assume that (T, 0) is terminal and that there
exists a rational section s : B 99K T . Let S be the Zariski closure of s(B) and let
ν : Sν → S be the normalization of S. Then, DiffSν (0) is exceptional over B.

Proof. Since s is a rational section, the finite part in the Stein factorization of g is
an isomorphism. Hence we can assume that g is a contraction.
Since T is terminal, then it is smooth in codimension two. In particular, ωT (S) is
locally free at each codimension one point of S. Let P ∈ S be a codimension one
point such that g|S(P ) = Q ∈ B and Q is codimension one. As T is smooth at P ,
it suffices to show that S is normal at P , since then ν would be an isomorphism
locally around P and the coefficient of DiffSν (0) at the codimension one point
ν−1(P ) would be 0.
Considering the birational morphism g|S ◦ ν : Sν → B, the generic point P ′ of
the strict transform of the closure of Q on Sν is the unique codimension one point
which is mapped to Q, since B is normal quasi-projective. Hence, g|−1

S (Q) = P and,
furthermore, ν−1(P ) = P ′, as P, P ′, and Q are generic points. Since B is normal
quasi-projective, the map s is well defined at Q, and s(Q) = P since g|S ◦ s is the
identity around Q and P is the only point that dominates Q. Hence, there exists a
lift sν : B 99K Sν which is well defined at Q and such that ν◦sν = s and sν(Q) = P ′,
by construction. But then, since Sν is smooth at P ′ and the map g|S ◦ ν ◦ sν is IdB
and it is a morphism around P , it follows that sν is an isomorphism locally around
Q, which implies that its differential dsν : TSν |P ′ → TB|Q is an isomorphism of
vector spaces. Since dsν factors as

TSν |P ′
dν // TT |P // TB|Q

and it is an isomorphism, it follows that dν is injective. Combined with the fact
that ν−1(P ) = P ′, we obtain that ν is an isomorphism locally around P ′ and S is
normal at P , which concludes the proof of the lemma. �

3. Rationally connected log Calabi–Yau pairs

3.1. Towers of Fano fibrations and boundedness. We briefly recall some im-
portant results from [Bir18,DCS16].

Given a klt log Calabi-Yau pair (X,B) with B > 0, any run of a KX-MMP

X 99K X ′ → Z

terminates with a Mori fibre space structure f ′ : X ′ → Z, see Theorem 2.2. By the
canonical bundle formula, cf. § 2.7, Z carries a structure of log Calabi–Yau pair
(Z,Γ) as implied by Theorem 2.23. If KZ ∼Q 0, i.e. Γ = 0, then we say that the
pair (X,B) is of product-type, see [DCS16, Definition 2.23]. Otherwise, Γ > 0 and,
assuming KZ is Q-factorial, we can run a KZ-MMP in turn and repeat the same
analysis as above. The Q-factoriality of Z is not a very strong assumption, as, for
example, it is readily implied by X being Q-factorial.
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By iterating this procedure and using the so-called two-ray game, see [K+92,
Chapter 5], the following description of Calabi-Yau pairs was given in [DCS16,
Theorem 3.2].

Theorem 3.1. Let (X,B) be a klt Calabi-Yau pair with B 6= 0. Then there exists
a birational contraction

π : X 99K X ′

to a Q-factorial Calabi-Yau pair (X ′, B′ = π∗B), B′ 6= 0 and a tower of morphisms

X ′ = X0

p0 // X1

p1 // X2

p2 // . . .
pk−1

// Xk(13)

such that

(i) for any 1 ≤ i < k there exists a boundary Bi 6= 0 on Xi and (Xi, Bi) is a
klt Calabi-Yau pair,

(ii) for any 0 ≤ i < k the morphism pi : Xi → Xi+1 is a Mori fibre space, with
ρ(Xi/Xi+1) = 1, and

(iii) either dimXk = 0, or dimXk > 0 and Xk is a klt variety with KXk
≡Q 0.

When dimXk > 0, KXk
∼Q 0, then we say that (X,B) is of product type,

see [DCS16, Definition 2.23].
Using Theorem 3.1, the strategy of [DCS16], and the techniques of [Bir19,

Bir16a], Birkar has shown that log Calabi–Yau pairs with bounded singularities
admitting a tower of fibration as in (13) are log bounded, provided we assume that
the last element of the tower belongs to a bounded family.

Theorem 3.2. [Bir18, Theorem 1.4] Let d, r be natural numbers, ǫ, τ be positive
real numbers. Consider pairs (X,B) and contractions f : X → Z such that

• (X,B) is projective ǫ-lc of dimension d,
• KX +B ∼Q f

∗L for some R-divisor L,
• the coefficients of B are at least τ ,
• f factors as a sequence of non-birational contractions

X = X1 → X2 → · · · → Xk = Z,(14)

• for each i, −KXi
is ample over Xi+1,

• there is a very ample divisor A on Z with AdimZ ≤ r, and
• A− L is ample.

Then the set of such (X,B) forms a log bounded family.

Combining the two results above, Birkar also showed that boundedness holds for
log Calabi–Yau pairs of non-product type.

Theorem 3.3. [Bir18, Theorem 1.5] Let d be a natural number and ǫ, τ be positive
real numbers. Consider pairs (X,B) with the following properties:

• (X,B) is projective ǫ-lc of dimension d,
• KX +B ∼R 0,
• B 6= 0 and its coefficients are ≥ τ , and
• (X,B) is not of product type.

Then the set of such (X,B) is log bounded up to isomorphism in codimension one.
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To obtain this result, it is necessary to bound the singularities of the pair together
with the coefficients of the boundary B. While the former condition is unavoidable
as already clear in the case of singular del Pezzo surfaces, the latter is a technical
condition that it should be possible to waive, as predicted by Conjecture 1.5. In-
deed, this is what we achieve in Theorem 1.4 at the expense of fixing the torsion
index of KX+B. A first step in this direction is represented by Theorem 3.5 below.

As an immediate corollary to Theorem 3.2, we get the following log boundedness
result that will be useful in the next subsection.

Corollary 3.4. Fix d and Φ ⊂ [0, 1) a DCC set of rational numbers. Then the set
of klt log CY pairs (X,B) such that

• (X,B) is projective klt of dimension d,
• KX +B ∼Q 0,
• the coefficients of B are in Φ,
• the constant map X → {pt.} factors as a sequence of non-birational con-

tractions

(15) X = X1 → X2 → · · · → Xl = {pt.},

and,
• for each i, −KXi

is ample over Xi+1.

Then the set of such (X,B) forms a log bounded family.

Proof. As Φ is a DCC subset, then [HMX14, Theorem 1.1] implies that there exists
ǫ = ǫ(d,Φ) such that all the pairs (X,B) here considered are ǫ-klt, see [CDCH+18,
Lemma 3.12]. The result then follows by applying Theorem 3.2 with Z equal to a
point and l = d, cf. also [Bir18, §7]. �

3.2. Boundedness with fixed torsion index. As we have seen above, there is
no boundedness result currently for the case of log Calabi–Yau pairs of product
type. On the one hand, this is not surprising, as, for example, among such pairs
there are those of the form (S × P1, p∗2(0 + ∞)), where S is a K3 surface and p2
is the projection to the second factor: these log Calabi–Yau pairs cannot possibly
be bounded, as K3 surfaces are not bounded. On the other hand, Conjecture 1.5
predicts that if the total space of the pair is rationally connected, then even in
the product-type case we should expect boundedness. As already mentioned, our
aim is to take care of those log Calabi–pairs that are of product-type, as those
have yet to be fully understood as far as their boundedness goes. To this end, we
prove that when the torsion index of KX + B is bounded on the total space of a
product-type log Calabi–Yau pair (X,B) and X is endowed with a tower of Mori
fibre spaces terminating with a K-trivial variety Z, then also the torsion index of
KZ is bounded.

Theorem 3.5. Fix d, l positive integers. Consider pairs (X,B) and contractions
f : X → Z such that

• (X,B), B > 0 is a klt projective pair of dimension d,
• l(KX +B) ∼ 0,
• f factors as a sequence of non-birational contraction

(16) X = X1 → X2 → · · · → Xk = Z,

• for each i, −KXi
is ample over Xi+1, and

• KZ ≡ 0



BOUNDEDNESS OF ELLIPTIC CALABI–YAU VARIETIES WITH A RATIONAL SECTION 25

Then there exists m = m(d, l) such that mKZ ∼ 0.

Proof. As l(KX + B) ∼ 0, we can write the canonical bundle formula for (X,B)
and f , cf. Remark 2.22, as

l(KX +B) ∼ f∗l(KZ +BZ +MZ).

As KZ ≡ 0, it immediately follows from the definition of BZ ,MZ that BZ = 0 ≡
MZ . Since f factors as in (16), the general fibre (F,B|F ) is one of the pairs described
in Corollary 3.4. Hence, Corollary 2.27 implies that there exists m′ = m′(d,Φ) such
that m′MZ ∼ 0. Thus,

lm′(KX +B) ∼ 0 ∼ f∗lm′(KZ +MZ) ∼ f∗lm′KZ .

To conclude, it suffices to take m := lm′. �

3.3. Birational transformations of fibered log Calabi–Yau pairs. In this
subsection we collect a few technical results on birational transformations of log
Calabi–Yau pairs endowed with a fibration that will be useful in the paper.

Proposition 3.6. Let (Y,D) be a klt pair, D a Q-divisor, and let f : Y → Z be
a projective contraction of normal varieties. Assume that KY +D ∼f,Q 0 and let
s : Z ′ → Z be a small contraction. Then there exists a Q-factorial klt pair (Y ′, D′)
isomorphic to (Y,D) in codimension 1 and a projective contraction of normal va-
rieties f ′ : Y ′ → Z ′.

Proof. Let

Y

f

��

Y
p

oo

f

��

Z Z ′soo

(17)

be a smooth resolution of indeterminacies of the rational map Y 99K Z ′. As (Y,D)

is klt, it follows that for 0 < δ ≪ 1, KY + D̃+ (1− δ)E = p∗(KY +D) + F , where

D̃ is the strict transform of D, E is the support of the p-exceptional divisor and
F is an effective and p-exceptional divisor whose support coincides with that of
E. Hence KY + D̃ + (1 − δ)E ∼f,Q F . As the diagram in (17) is a resolution of

indeterminacies of Y 99K Z ′ and s is a small contraction, it follows that the relative
Kodaira dimension of F over Z ′ is 0. In particular the support of F coincides
with the divisorial part of the relative base locus of KY + D̃ + (1 − δ)E over Z ′.

By [HX13, Theorem 1.1] and [Bir12, Theorem 1.4] a (KY + D̃ + (1 − δ)E)-good
minimal model must exist, as the general fibre of f is a good minimal model for
the restriction of KY + D̃ + (1 − δ)E to a general fibre of f . It follows that the

relative (KY + D̃ + (1 − δ)E)-MMP/Z ′ contracts F and hence it terminates with
a projective contraction f ′ : Y ′ → Z ′ such that KY ′ + D′ ∼f ′,Q 0, where D′ is

the strict transform of D̃. As this run of the MMP contracts exactly F , which is
the exceptional locus of p, it follows that Y and Y ′ are isomorphic in codimension
1. �

The next result shows that we can modify the base Z of a fibration f : Y → Z
by means of an isomorphism Z 99K Z ′ in codimension 1 and show that Z ′ is also
the base of an elliptic log Calabi–Yau pair. Contrary to the previous statement,
here we assume that the base is Q-factorial.
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Proposition 3.7. Let (Y,D) be a klt pair and let f : Y → Z be a projective con-
traction of normal varieties. Assume that KY +D ∼Q 0 and Z is Q-factorial and
let t : Z 99K Z ′ be a birational contraction of normal projective varieties. Then
there exists a Q-factorial klt pair (Y ′, D′) isomorphic to (Y,D) in codimension 1
and a projective contraction of normal varieties f ′ : Y ′ → Z ′.

A birational map t : Z 99K Z ′ is a birational contraction if t is proper and t−1

does not contract any divisors.

Proof. Let H ′ be an ample divisor on Z ′ and let H be its pullback on Z. H ex-
ists and it is well defined as t is a birational contraction. If we consider the pair
(Y,D+ ǫf∗H), 0 < ǫ≪ 1 then f∗H is abundant, since the Kodaira and numerical
dimension are invariant by pullback under contraction morphisms. By [GL13, The-
orem 4.3], there exists a run of the (KY + D + ǫf∗H)-MMP, Y 99K Y ′′ which
terminates with a good minimal model Y ′′ → Z ′. Moreover, Y ′′ admits a structure
of a log Calabi–Yau pair (Y ′′, D′′), where D′′ is the strict transform of D on Y ′′.
Let {E1, . . . , Ek} be the divisors contracted by the birational contraction Y 99K Y ′′.
The log discrepancy of any Ei with respect to (Y,D) (or, equivalently, (Y ′′, D′′)) is
at most 1. Hence, by [BCHM10, Corollary 1.4.3], there exists a model Y ′ → Y ′′ of
Y ′′ on which the only extracted divisors are the Ei. This yields the desired model
in the statement of the proposition. �

4. Rationally connected K-trivial varieties

In this section we show that the set of d-dimensional rationally connected klt
projective varieties with torsion canonical bundle are bounded up to flops, if we
bound the torsion index, i.e., if we assume that there exists a fixed integer l such
that lKX ∼ 0. When the dimension of X is 3, this result was implicitly proven
in [CDCH+18, Theorem 5.1].

4.1. Partial resolutions of RC K-trivial varieties and towers structure.

Given a rationally connected klt projective variety X with KX ∼Q 0, by [BCHM10,
Corollary 1.4.3], we can construct a partial resolution π : X ′ → X of X such that

KX′ +D = π∗KX , ⌊D⌋ = 0,

the divisorial part of the exceptional locus of π coincides with the support of D, and
the pair (X ′, D) is canonical, Q-factorial with KX′ +D ∼Q 0. The above conditions
imply that (X ′, 0) is canonical; thus, as X ′ is rationally connected, KX′ cannot be
pseudo-effective and we obtain that

D > 0.

Moreover, [Fuj11, Theorem 2.3] implies that for any 0 < ǫ≪ 1, X is a good minimal
model for the KX′ + (1 + ǫ)D-MMP. If we assume that lKX ∼ 0, l ∈ N, then also
l(KX′ + D) ∼ 0 and the coefficients of D belong to the subset { 1

l
, 2
l
, . . . , l−1

l
}.

Under this assumption, the pair (X ′, D) is a 1
l
-lc pair.

As KX′ is not pseudo-effective, we can apply Theorem 3.1 and there is a crepant
birational contraction (X ′, D) 99K (X ′′, D′) to a d-dimensional log Calabi–Yau pair
(X ′′, D′) such that l(KX′′ + D′) ∼ 0 and X ′′ is equipped with a non-birational
contraction g : Y → Z which can be factored into a sequence of Mori fibrations:

(X ′′, D′) = (X0, D0) // X1
// . . . // Xs−1

// Xs = Z.(18)
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If the pair (X0, D0) is not of product type then we know that dimZ = 0 and
(X ′′, D′) belongs to a log bounded family, by Theorem 3.4. If dimZ > 0, then
KZ ≡ 0, Z is Q-factorial and rationally connected: Theorem 3.5 then implies that
there exists m = m(d, l) such that mKZ ∼ 0.

4.2. Boundedness of RC connected K-trivial varieties with bounded tor-

sion index. The decomposition introduced in the previous section, suggest that
the following result should hold inductively.

Theorem 4.1. Fix positive integers d, l. Consider varieties X such that

• X is klt projective of dimension d,
• X is rationally connected, and
• lKX ∼ 0.

Then the set of such X is bounded up to flops.

Proof. We prove the Theorem by induction on d. The case d = 1 is trivial.
We will use the notation from § 4.1 and prove the inductive step, assuming the
theorem holds in dimension at most d− 1. For the reader’s convenience, we divide
the proof into different steps.

Step 1: We show that the pair (X ′′, D′) in (18) is log bounded up to flops.
It has already been discussed in § 4.1 that the conclusion holds when X ′′ is not
of product type. Hence we are left to prove the case when in (18) dimZ > 0
and KZ ∼Q 0: we have already noticed that there exists m = m(d, l) such that
mKZ ∼ 0. By the inductive hypothesis, then it follows that Z is bounded up
to flops. Hence, there exists a klt variety Z isomorphic to Z in codimension 1,
mKZ ∼ 0, and Z belongs to a bounded family. By Theorem 2.13, there exists a Q-

factorialization of Z that also belongs to a bounded family. In particular, replacing
Z with a Q-factorial model, we can assume that Z is Q-factorial, as well. Hence, by
repeatedly applying Proposition 3.7 we can assume that we have a tower of Mori
fibrations analogous to that in (18)

(X
′′
, D

′
) = (X0, D0) // X1

// . . . // Xs−1
// Xs = Z,

where each Xi is Q-factorial and isomorphic in codimension 1 to the corresponding
Xi in (18). Hence, as ρ(Xi/Xi+1) = 1 the same holds for ρ(Xi/Xi+1) which implies

that −KXi
is ample over Xi+1. Finally, Theorem 3.2 implies that (X

′′
, D

′
) is log

bounded.
Step 2: We show that the pair (X ′, D) is log bounded up to flops.

The pairs (X ′, D), (X ′′, D′), and (X
′′
, D

′
) are all crepant birational. Let {E1, . . . , Ej}

be the divisors contracted by the birational contraction X ′
99K X ′′. As X ′′, X

′′

are isomorphic in codimension 1, the Ei are exceptional for the rational contraction

X ′
99K X

′′
, too. The log discrepancy of the Ei with respect to (X ′, D), (X ′′, D′),

and (X
′′
, D

′
) is the same and it is contained in (0, 1]. By [BCHM10, Corollary

1.4.3], there exists a Q-factorial klt log Calabi–Yau pair (X
′
, D) and a morphism

r : X
′
→ X

′′
extracting all and only the valuations corresponding to {E1, . . . , Ej}

and such that K
X

′ +D = r∗(K
X

′′ +D
′
). By construction, (X ′, D) and (X

′
, D) are

isomorphic in codimension 1. Once again, Theorem 2.13 implies that also (X
′
, D)

is log bounded, thus terminating the proof of this part.
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Step 3: We show that X is bounded up to flops.

We know that the pair (X
′
, D) is log bounded and it is isomorphic in codimension 1

to (X ′, D). Moreover, the Kodaira dimension of K
X

′+⌈D⌉ is 0 asKX ∼Q 0; thus, a

minimal model for the (K
X

′+(1+ǫ)D)-MMP on X
′
, for ǫ≪ 1, will be a Q-factorial

variety X with lKX ∼ 0. By construction, X and X are isomorphic in codimension

1. If we can prove that X belongs to a bounded family then the theorem follows at
once. But this is just a consequence of Proposition 4.2 below. �

Proposition 4.2. Fix a DCC set R ⊂ (0, 1) ∩ Q. Let D be a bounded set of klt
pairs. For any pair (X,B) ∈ D assume that:

• B > 0 and its coefficients belong to R,
• KX +B ∼Q 0,
• the Kodaira dimension of −KX is zero, and
• there exists a good minimal model X1 for KX + (1 + ǫ)B, 0 < ǫ≪ 1.

Then the set D1 := {X1 | (X,B) ∈ D, X1 is a good minimal model for (KX +(1+
ǫ)B), 0 < ǫ≪ 1} is bounded up to flops.

In the hypotheses of Proposition 4.2 the minimal model X1 is a Calabi–Yau vari-
ety, KX1

∼Q 0, which is klt but non-canonical. Moreover, under these assumptions,
the minimal model X1 is independent of the choice of 1 < ǫ≪ 1.

Proof. As R is DCC, by [HMX14, Theorem 1.5] there exists a finite subset R0 ⊂ R

such that the coefficients of pairs in D are in R0. Moreover, [DCS16, Corollary 2.9]
implies that there exists ǫ > 0 such that all pairs in D are ǫ-klt. By Proposition 2.10,
there exists a pair (X ,B) together with a projective morphism of quasi-projective
varieties X → S such that for any pair (X,B) ∈ D there exists s ∈ S and an
isomorphism hs : Xs → X and B|Zs

= h∗sB. By taking the Zariski closure of the
points s ∈ S corresponding to pairs in D, and decomposing that into a disjoint
union of finitely many locally closed subsets, we can assume that S is smooth and
the points on S corresponding to pairs in D are dense. By [HX15, Proposition 2.4]
up to substituting S with a Zariski dense open, we can assume that (X ,B) is klt
and Q-factorial. Restricting to a Zariski open set of S and/or decomposing S into
a disjoint union of finitely many locally closed subsets are operations that we are
allowed to perform: by noetherian induction, these operations can be performed
only finitely many times, hence they do not affect any boundedness argument.
By passing to a sufficiently high log resolution

Y
σ //

��
❄❄

❄❄
❄❄

❄
X

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S

of (X ,B), there exist effective divisors E ,F on Y such thatKY+E = σ∗(KX+B)+F ,
with σ∗E = B and F is σ-exceptional. Up to decomposing S in a disjoint union of
finitely many locally closed subsets and possibly passing to a higher model Y, we
can assume that (Y, E) is log smooth over S. Moreover, we can also assume that
the support of E contains all σ-exceptional divisors and that ⌊E⌋ = 0.
Let us notice that for any sufficiently divisible m ∈ N, and for 0 < ǫ≪ 1, ǫ ∈ Q,

h0(Ys,OYs
(m(KYs

+ (1 + ǫ)E|Ys
))) = h0(Xs,OXs

(m(KXs
+ (1 + ǫ)B|Xs

))).
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By [HMX18, Theorem 4.2],

h0(Ys,OYs
(m(KYs

+ (1 + ǫ)E|Ys
)))

is a constant function of s ∈ S; in particular κ(Ys,OYs
((KYs

+ (1 + ǫ)E|Ys
))) =

0, ∀s ∈ S. Thus, for any s ∈ S, KYs
+ (1 + ǫ)E|Ys

is not movable. Then [HMX18,
Theorem 1.2] implies that for any s ∈ S a good minimal model for KYs

+(1+ǫ)E|Ys

exists. If we run the KY + (1 + ǫ)E-MMP over S, [HMX18, Theorem 1.2] implies
that a good minimal Z → S model must exist and by [HMX18, Lemma 6.1] Zs

will yield a good minimal model for each pair (Ys, (1+ ǫ)E|Ys
), thus concluding the

proof. As Zs is a good minimal model for KYs
+ (1 + ǫ)E|Ys

it follows from the
definition of good minimal model that X1 and Zs are isomorphic in codimension
one. �

The following immediate corollary of the Theorem 4.1 extends [CDCH+18, Cor.
5.2] to any dimension. It relates the boundedness of rationally connected Calabi–
Yau manifolds to the boundedness of the torsion index of the canonical divisor
inside the class group.

Corollary 4.3. Fix a positive integer d. Let C be the set of varieties X satisfying
the following hypotheses:

(1) X is a klt projective variety of dimension d,
(2) X is rationally connected, and
(3) KX ≡ 0.

Then, C is bounded up to flops if and only if there exists a positive integer l = l(d)
such that lKX ∼ 0 for any X ∈ C.

Proof. If there exists l = l(d) such that lKX ∼ 0 for any X ∈ C, then the bound-
edness up to flops of C is a consequence of Theorem 4.1.
Let us assume that C is bounded up to flops. Hence, there exists h : Z → S a pro-
jective morphism of schemes of finite type such that for each X ∈ C is isomoprhic
in codimension one to Zs for some closed point s ∈ S and, moreover, Zs is normal.
As lKZs

∼ 0 if and only if lKX ∼ 0, it suffices to show that there exists a positive
integer l such that lKZs

∼ 0 for any s ∈ S. Moreover, by [Bir19, Lemma 2.25] we
can assume that there exists I = I(C) such that IKZs

is Cartier for any s ∈ S.
Decomposing S into a finite union of locally closed subsets and possibly discarding
some components, we may assume that S is smooth and that every fibre Ys is a
normal variety. Up to shrinking S, we can also assume that the set

S′ := {s ∈ S | ∃X ∈ C such that X is isomorphic in codimension one to Zs}

is Zariski dense in S. Furthermore, by [HX13, Proposition 2.4], decomposing S into
a finite union of locally closed subsets and discarding those components that do not
contain points of S′, we can assume that KZ is Q-Cartier.

Claim. Up to decomposing S into a finite union of locally closed subsets, we may
assume that for any connected component S̄ of S h0(Zs,OZs

(mI(KZs
))) is inde-

pendent of s ∈ S̄, for all m > 0.

Proof. Up to decomposing S into a finite union of locally closed subset, we may
assume that there exists a log resolution ψ : (Z ′,B′) → Z of (Z, 0), where B′ is the
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exceptional divisor of ψ. Furthermore, we may also assume that for any s ∈ S,
(Y ′

s,B
′
s) is a log resolution of Ys. In particular, for any s ∈ S, for all m > 0

H0(Ys,OYs
(m(KYs

+ Bs))) = H0(Y ′
s,OY′

s
(mKY′

s
)).

The conclusion then follows from [HMX18, Theorem 4.2]. �

At this point, we discard those connected components of S that do not contain
points of S′. By construction then, given a connected component Si of S, there is a
point s ∈ S′ ∩ Si; if mi is a positive integer such that miKZs

∼ 0, the claim above
implies that

h0(Y ′
s,OY′

s
(miKY′

s
)) = 1, for all s ∈ Si.(19)

We define l to be the maximum of the positive integers mi just defined. This is
well defined since S has only finitely many connected components, being of finite
type. As for any s ∈ S′, KZs

∼Q 0, then (19) implies that lKZs
∼ 0. �

Moreover, exactly as in [CDCH+18, §5], we expect that there will be a tight
connection be

5. Elliptic Calabi–Yau varieties with a rational section

In this section we will prove some results regarding the geometric structure of
elliptic Calabi–Yau varieties and of the bases of such fibrations that will be needed
in the proof of the main theorems of this paper.

5.1. Birational geometry of bases of fibered Calabi–Yau varieties. In this
subsection we prove that the bases of a smooth Calabi–Yau endowed with a non-
birational fibration are rationally connected.

Kollár and Larsen, [KL09, Theorem 3], proved that a simply connected smooth
(or canonical) K-trivial variety Y endowed with a dominant rational map m : Y 99K

X to a non-uniruled variety is isomorphic to a product Y ≃ Y1×Y2, where the map
m restricted to Y2 induces a dominant generically finite map Y2 99K X . In the case
of a fibered Calabi–Yau manifold, such a product cannot exist, as we now show.
We remind the reader that in this paper a smooth Calabi–Yau variety is assumed
to be simply connected.

Corollary 5.1. Let Y be a smooth projective Calabi–Yau variety. Assume that Y
is endowed with a morphism f : Y → X of relative dimension 0 < d < dimY . Then
X is rationally connected.

Proof. Let us assume that X were not rationally connected. Considering the MRC
fibration of X, X 99KW , its image W is a non-uniruled variety of positive dimen-
sion. Hence, by the results of Kollár and Larsen Y would have to be isomorphic to
a product Y ≃ Y1 × Y2, with dimY1, dim Y2 > 0. As KY ∼ 0, Künneth formula for
Hodge numbers implies that h0(KY1

) = 1 = h0(KY2
). As h0(KY1

) = hdimY1,0(Y1),
pulling back from Y1 to Y , we get that hdimY1,0(Y ) 6= 0, which contradicts Y being
Calabi-Yau, since dim Y1 < dimY . �
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5.2. Boundedness for elliptic Calabi–Yau varieties over bounded bases.

The main goal of this subsection is to prove a generalization of [DCS16, Theorem
1.3]. In what follows, by a rational section X 99K Y of a contraction f : Y → X ,
we will mean a rational map s : X 99K Y such that f ◦ s is the identity on X . With
this notation, we will denote by S the Zariski closure of the image of X via s and
by Sν the normalization ν : Sν → S.

Theorem 5.2. Fix positive integers n, d, l. Then the set of varieties Y such that

(1) Y is a klt variety of dimension n,
(2) lKY ∼ 0
(3) Y → X is an elliptic fibration with a rational section X 99K Y ,
(4) there exists a very ample Cartier divisor A on X with An−1 ≤ d

is bounded up to flops.

The existence of a very ample Cartier divisor A with bounded volume implies
that the set of bases of the elliptic fibrations is bounded.

Proof. For the reader’s convenience, we divide the proof in several steps.

Step 0. In this step we show that there exists a Q-factorialization X ′ of X which
belongs to a bounded family and we construct an elliptic fibration Y ′ → X ′ with Y ′

Q-factorial and isomorphic to Y in codimension 1.
As X is the base of an elliptic fibration and Y is klt, then X supports an effective
divisor Γ such that (X,Γ) is klt, see Theorem 2.23. By [HMX14, Theorem 1.1]
and [PS09, Theorem 8.1], it is possible to choose Γ so that its coefficients vary in
a DCC set I = I(n). Hence, by [Bir19, Lemma 2.48] it follows that there exists
ǫ = ǫ(n, I) such that (X,Γ) is ǫ-lc. As the DCC set defined I above only depends
from n and ǫ is a function of n, I, then we conclude that ǫ only depends on n.
Hence, by [BCHM10, Corollary 1.4.3] X admits a small Q-factorializationX ′ → X .
X ′ belongs to a bounded family, by Theorem 2.13. In particular, there exists an inte-
ger d′ = d′(n, d, l) and a very ample Cartier divisor A′ on X ′ such that A′n−1 ≤ d′.
Applying Proposition 3.6 with D = 0, we see that there exists a Q-factorial K-
trivial klt variety Y ′ isomorphic to Y in codimension 1 and an elliptic fibration
f ′ : Y ′ → X ′. It is immediate to see that the strict transform S′ of S on Y ′ is a
rational section of f ′.
We will denote by A′′ the divisor A′′ := (4n+ 4)A′.

Step 1. In this step, we show that it suffices to prove that Y ′ is bounded up to
flops.
As Y and Y ′ are K-trivial varieties that are klt and isomorphic in codimension 1,
the claim is straightforward.

Step 2. In this step, we show that there exists a log bounded set of morphisms F

and a 4-uple (fY ′′ , Y ′′, 0, X ′) ∈ F together with a birational contraction Y ′′
99K Y ′

over X ′ that is crepant with respect to (Y ′, 0).
The proof of Step 2 is divided into several steps (Step 2.1-2.6). We start by intro-
ducing some notation.
Let (Y t,∆t) be a terminalization t : Y t → Y ′ of (Y ′, 0), KY t +∆t = t∗KY ′ ∼Q 0.
We denote with St the strict transform of S′ on Y t. As Y ′ is klt and lKY ′ ∼ 0, then
∆t ≥ 0 and its positive coefficients belong to the set { 1

l
, 2
l
, . . . , l−1

l
}. It follows from
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Definition 2.17 that the exceptional divisor E of t is degenerate for the composition
f ′ ◦ t, cf. Remark 2.18. The support of E consists of the support of ∆ together
with divisors of log discrepancy one for (Y, 0).

Step 2.1 In this step, we show that there exists a Q-factorial projective variety
Z which is isomorphic in codimension 1 to Y t, such that (Z, 0) is terminal and the
strict transform SZ of St is big and nef over X ′.
Fix 0 < ǫ ≪ 1 and run the (KY t + ∆t + ǫSt)-MMP over X ′. As (Y t,∆t + ǫSt)
is klt and KY t + ∆t + ǫSt ∼R ǫSt is relatively big over X ′, this run of the MMP
must terminate with a minimal model fZ : Z → X ′ for KY t +∆t + ǫSt. Denoting
by ∆Z (resp. SZ) the strict transform on Z of ∆t (resp. St), it follows that SZ is
nef and big over X ′, since KY t +∆t ∼Q 0 and St is horizontal over X ′. Moreover,
as (Y t,∆t) is terminal and KY t +∆t + ǫSt ≡ ǫSt, it follows that every step of this
MMP is a (KY t +∆t)-flop and Z will also be terminal as no divisor is contracted.
We denote by ∆Z the strict transform of ∆t on Z.

Step 2.2. In this step, we show that we can run the (KZ + SZ)-MMP over
X ′ with scaling of an ample divisor and that terminates with a minimal model
fZ1

: (Z1, SZ1
) → X ′ and (Z1, SZ1

) is plt, where SZ1
denotes the strict transform of

SZ on Z1. We prove that each step of this MMP must be a KZ +∆Z-flop and that
(Z1,∆1) is also terminal, where ∆1 denotes the strict transform of ∆Z on Z1.
As SZ is big and nef over X ′, then it is relatively semiample, by the Base point
free theorem [KM98, Theorem 3.3], as µSZ ∼R KZ + ∆Z + µSZ . Thus, we can
choose S̄ ∼fZ ,Q SZ such that (Z, S̄) is terminal, by Bertini’s theorem, since (Z, 0) is
terminal. Hence, we can run the (KZ+S̄)-MMP over X ′ with scaling and this must
terminate with a Q-factorial minimal model fZ1

: Z1 → X ′, since deg((KZ+S̄)|F ) =
1 along a general fibre F of fZ .
As the pair (Z, S̄) is terminal and Z1 is a minimal model for the KZ + S̄-MMP,
then (Z1, 0) is terminal as well. It follows that KZ1

+ SZ1
is also big and nef over

X ′, as SZ ∼Q S̄. We will denote by νSZ1
: Sν

Z1
→ SZ1

the normalization of SZ1
. By

Lemma 2.28, as SZ1
is a rational section for fZ1

and Z1 is terminal, it follows that
(fZ1

◦ νSZ1
)∗ Diff(0) = 0. The negativity lemma then implies that

(20) KSν

Z1

+Diff(0) = (fZ1
◦ νSZ1

)∗(KX′)− E,

where E is an effective divisor exceptional over X ′. Hence, the pair (Sν
Z1
,Diff(0))

is klt, since (X ′, 0) is. By inversion of adjunction, SZ1
is the only lc center of the

pair (Z1, SZ1
): this automatically implies that SZ1

is normal.

Step 2.3. Let G1 ∈ |f∗
Z1
(4n+ 4)A′| be a general member. In this step, we show

that for λ ∈ (0, 1), (Z1, λ(SZ1
+G1)) is (1− λ)-klt and KZ1

+ SZ1
+G1 is big and

nef.
(Z1, SZ1

+G1) is dlt: in fact, (Z1, SZ1
) is plt, and G1 is a general element of a base

point free linear system; thus we can conclude by Bertini’s Theorem for discrep-
ancies. As discrepancies are linear functions of the divisorial part of a pair, and
(Z1, 0) is terminal, the pair (Z1, λ(SZ1

+ G1)) is (1 − λ)-klt. As KZ1
+ SZ1

is nef
and big/X ′ and G1 ∼ f∗

Z1
A′′ with A′′ = (4n + 4)A′ Cartier and very ample, the

cone theorem implies that KZ1
+ SZ1

+G1 is nef and big.
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Step 2.4. In this step, we show that there exists C′ = C′(n, d, l) such that
(KZ1

+ SZ1
+ (n− 2)G1)

n ≤ C′.
Let us denote by

α = G1, β = KZ1
+ SZ1

+ (n− 2)G1.

Then,
(αn−2β2)n−1 ≥ (αn−1β)n−2βn,

see [Laz04, Theorem 1.6.3.(i)]. Hence, to prove that the statement of Step 2.4
holds it suffices to show that there exists positive constants C1 = C1(n, d, l), C2 =
C2(n, d, l) such that

(αn−2β2)n−1 ≤ C1 and (αn−1β)n−2 ≥ C2.

To compute C2, let us note that 0 < αn−1β since 0 6= Gn−1
1 is a movable class while

KZ1
+ SZ1

+G1 is big and nef, cf. [BDPP13, Theorem 0.2]. Moreover,

0 < αn−1β =

Gn−1
1 · (KZ1

+ SZ1
+ (n− 2)G1) =

Gn−1
1 · (KZ1

+ SZ1
) = [since Gn

1 = 0](21)

Gn−1
1 · SZ1

−Gn−1
1 ·∆Z1

. [since KZ1
≡ −∆Z1

]

As G1 is Cartier and G1 ∼ f∗
Z1
(4n+ 4)A′,

Gn−1
1 · SZ1

= (4n+ 4)n−1A′n−1 ∈ N>0,(22)

where we used the fact that SZ1
→ X ′ is a birational map and A′ is very ample

and Cartier on X ′. Moreover, as the coefficients of ∆Z1
belong to { 1

l
, 2
l
, . . . l−1

l
},

we can write ∆Z1
as the sum of its prime components as follows

∆Z1
=

s∑

j=1

cjDj , cj ∈ {
1

l
,
2

l
, . . .

l − 1

l
}, Dj prime divisor ∀j = 1, . . . , s.

Hence, as G1 is Cartier and nef, then

Gn−1
1 ·∆Z1

=

s∑

j=1

cj(G
n−1
1 ·Dj) and Gn−1

1 ·Dj ∈ N.(23)

By putting together (21)-(23), we obtain that

0 < αn−1β =

Gn−1
1 · SZ1

−Gn−1
1 ·∆Z1

∈
1

l
N>0.(24)

Hence, it suffices to take C2(n, d, l) :=
1
l
.

We now show the existence of the constant C1 = C1(n, d, l) such that

(αn−2β2)n−1 ≤ C1.

Let Ā ⊂ X ′ be a sufficiently general curve which is a complete intersection of n− 2
elements of |A′′|. In particular, Ā belongs to a bounded family.
Since X ′ is normal, Ā is a smooth curve and by the adjunction formula

degĀKĀ =(KX′ + (n− 2)A′′) · (A′′)n−2

≤(n− 2)A′′n−1 [since KX′ ≥ 0 and A′′ is ample](25)

≤d′(n− 2)(4n+ 4)n−1 [A′′ = (4n+ 4)A′, Vol(A′) ≤ d′].
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Let us define T := Z1 ×X′ Ā and ST := SZ1
|T . As T is the complete intersection

of n − 2 sufficiently general divisors in a base point free linear system and (Z1, 0)
is terminal, Bertini’s theorem and adjunction imply that T is smooth and (T, ST )
is plt. Moreover, T is an elliptic surface over Ā, by construction admitting the
section ST . We will denote by F the numerical class of a fiber of the morphism
fT := fZ1

|T : T → Ā. With this notation, then

(26) αn−2β2 = (KZ1
+ SZ1

+ (n− 2)G1)
2 · T = ((KZ1

+ SZ1
+ (n− 2)G1)|T )

2.

By the adjunction formula,

KT =(KZ1
+ (n− 2)G1)|T .(27)

Hence,

KT =(KZ1
+ (n− 2)G1) · T [(27)]

=KZ1
· T + (n− 2)(G1 · T )

=KZ1
·Gn−2

1 + (n− 2)(G1 · T ) [T = f∗
Z1
Ā ≡ f∗

Z1
A′′n−2, G1 ∼ f∗

Z1
A′′](28)

≡−∆Z1
·Gn−2

1 + (n− 2)(A′′n−1)F [KZ1
+∆Z1

∼Q 0, G1|T ≡ (A′′n−1)F ]

≤d′(n− 2)(4n+ 4)n−1F [−∆Z1
·Gn−2

1 ≤ 0 and

A′′n−1 ≤ d′(4n+ 4)n−1]

Thus, we can rewrite (26), as

αn−2β2 = (KT + ST )
2 ≤ (KT + ST ) · (d

′(4n+ 4)n−1(n− 2)F + ST ).

As the general fibre of T → Ā has genus 1 and ST is a section, (KT + ST ) · F = 1.
On the other hand, adjunction formula implies that

(KT + ST ) · ST = degST
KST

= degĀKĀ ≤ d′(n− 2)(4n+ 4)n−1

since ST → Ā is an isomorphism; the displayed inequality is just (25). Hence,
taking C1 = 2d′(n− 2)(4n+ 4)n−1 proves the claim.

Step 2.5. In this step, we show that there exists a log bounded set of morphisms
F1 and a 4-uple (f ′

Z1
, Z ′

1 +G′
1,∆

′
1, X

′) ∈ F1 such that (Z ′
1,∆

′
1 +G′

1) is Q-factorial
and isomorphic to (Z1,∆1 +G1) in codimension one.
We know that Z1 is terminal, (Z1,∆1) is 1

l
-klt, while (Z1, SZ1

+G1) is dlt. Hence,

(Z1,
1
2
(SZ1

+G1)) is 1
2
-klt and (Z1,

1
2
(∆1 + SZ1

+G1)) is 1
2l

-klt.

By Step 2.4, we have that vol(KZ1
+ 1

2
(SZ1

+ G1)) ≤ C′. Running the (KZ1
+

1
2
(SZ1

+G1))-MMP, this terminates with a minimal model Z1 99K Z2. Since G1 ∼
|f∗

Z1
(4n+4)A′| and A′ is Cartier and very ample on X ′, this run of the MMP is over

X ′ and moreover vol(KZ1
+ 1

2
(SZ1

+ G1)) > 0. Hence, Theorem 2.9 implies that

(Z2,
1
2
(SZ2

+G2)) is bounded, where SZ2
(resp. G2) denote the strict transform of

SZ1
(resp. G1) on Z2.

Denoting with ∆2 the strict transform of ∆1 on Z2, it follows that (Z2,∆2) is a log
Calabi–Yau pair such that l(KZ2

+∆2) ∼ 0. As Z2 is bounded, there exists a very
ample Cartier divisor H and a constant C2 = C2(n, d, l) such that

|KZ2
·Hn−1| ≤ C2.

As KZ2
+∆2 ∼Q 0, it follows that also

∆2 ·H
n−1 ≤ C2,
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so that (Z2,∆2 + G2) is bounded since the coefficients of ∆2 belong to the set
{ 1
l
, 2
l
, . . . , l−1

l
}. The birational map Z 99K Z2 which is the composition of the bi-

rational contractions Z 99K Z1 (Step 2.2) and Z1 99K Z2 is in turn a birational
contraction. All these maps are by construction maps over X ′.
As KZ + ∆Z ∼Q 0, it follows from Theorem 2.13 that there exists a Q-factorial
variety Z ′ with a partial resolution over X ′ that is isomorphic to Z in codimen-
sion 1 and such that the pair (Z ′,∆′ + G′) belongs to a bounded family, where
we denote by ∆′ the strict transform of ∆Z and by G′ the pullback on Z ′ of G2.
As Z ′ is a partial resolution of Z2 over X ′, it follows that there exists a morphism
fZ′ : Z ′ → X ′ which is the Iitaka fibration of the semiample divisor KZ′ +∆′+ 1

2
G′

1.
Thus Lemma 2.16 implies that the set F1 of 4-uples (fZ′ , Z ′,∆′ +G′, X ′) is a log
bounded set of morphisms.

Step 2.6. In this step, we construct the set F whose existence is claimed in the
statement of Step 2.
By construction, (Z ′,∆′) is isomorphic in codimension one to (Y t,∆t), by Step 2.1,
as it is isomorphic in codimension one to (Z,∆Z). As ∆t is exceptional over Y ′, by
Remark 2.18 ∆′ is degenerate for fZ′ . Applying Proposition 2.21, it follows that
the set

F :={(fY ′′ , Y ′′, 0, X ′) | ∃(fZ′ , Z ′,∆′ +G′, X ′) ∈ F′ such that fY ′′ : Y ′′ → X ′

is good minimal model for (Z ′, (1 + ǫ)∆′ +G′) over X ′, 0 < ǫ≪ 1}

is a log bounded set of morphisms.

Step 3. In this step we show that Y ′ is bounded up to flops.
We have shown in Step 2 that there exists a log bounded set of morphism F and a
4-uple (fY ′′ , Y ′′, 0, X ′) ∈ F, together with a birational contraction Y ′′

99K Y ′ over
X ′ which is a birational contraction is crepant with respect to (Y ′, 0).
Let D′′ be the exceptional divisor for the map Y ′′

99K Y ′. Remark 2.18 implies
that D′′ is degenerate with respect to fY ′′ . By Lemma 2.19 the set

Fdeg := {(fY ′′ , Y ′′, D,X ′) | (fY ′′ , Y ′′, 0, X ′) ∈ F and D is degenerate for fY ′′}

is a log bounded set of morphisms, and (fY ′′ , Y ′′, D′′, X ′) ∈ Fdeg by construction.
Applying Proposition 2.21 it follows that the set

Fdeg :={(fY ′′′ , Y ′′′, 0, X ′) | ∃(fY ′′ , Y ′′, D′′, X ′) ∈ Fdeg such that

fY ′′′ : Y ′′′ → X ′ is good minimal model for (Y ′′, D′′) over X ′}

is a log bounded set of morphisms. As fY ′′′ : Y ′′′ → X ′ is a relatively good minimal
model for (Y ′′, D′′) over X ′ and D′′ is the exceptional divisor of the birational
contraction Y ′′

99K Y ′, it follows that Y ′ is isomorphic in codimension one to Y ′′′.
As Y ′′′ belongs to a bounded family, see Remark 2.15, the conclusion follows. �

5.3. Finiteness of index for bases of elliptic Calabi–Yau varieties. Given an
elliptic fibration f : Y → X where KY ∼f,Q 0, using the canonical bundle formula,
see § 2.7, we can write

KY ∼Q f
∗(KX +BX +MX).

Remark 5.3. Since f is an elliptic fibration we know that the coefficients of BX

vary in a DCC subset of [0, 1), see [PS09, Example 3.1] for the precise determination
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of what coefficients can appear. Moreover, on a sufficiently high birational model
of X , say, r : X ′ → X , the moduli part MX′ becomes semi-ample: more precisely,

|12MX′| is base point free, cf. [PS09, Example 7.16]. Hence, we can choose M
′
∼

12MX′ and define M := r∗M
′
such that (X,BX + 1

12
M) is klt and 12(KX +BX +

MX) ∼ 12(KX +BX + 1
12
M).

Theorem 5.4. Fix positive integers d, l. Let f : Y → X be a contraction of normal
projective varieties such that

• Y is of dimension d,
• (Y, 0) is klt,
• lKY ∼ 0, and
• f : Y → X is an elliptic fibration.

Then there exists m = m(d, l) such that exactly one of the following cases is realized:

(a) mKX ∼ 0; or
(b) there exists an effective divisor B > 0 on X, (X,B) is a klt log Calabi–Yau

pair and m(KX +B) ∼ 0.

Proof. We use the same notation as in the paragraph before the theorem.
By Remark 2.22 and the hypotheses, we can write the canonical bundle formula in
the following form

0 ∼ lKY ∼ f∗l(KX +BX +MX).

As 12MX′ ∼M , then

0 ∼ 12lKY ∼ f∗12l(KX +BX +MX) ∼ f∗12l(KX +BX +
1

12
M).

Hence it suffices to take m = 12l to settle both case (a) and (b). In fact, case (b)

follows at once, while in case (a), if KX ∼Q 0, then B = 0 ≡ MX . As M
′
is base

point free and r∗M
′
≡ 0, it follows M

′
∼ 0 ∼M . Hence, in this case

0 ∼ 12lKY ∼ 12l(KX +
1

12
M) ∼ 12lKX.

�

Much in the same vein one can prove the following generalization of this result.

Theorem 5.5. Fix positive integers d, l and a bounded set D of K-trivial varieties.
Consider projective varieties X and contractions f : Y → X such that

• Y is a klt projective of dimension d,
• lKY ∼ 0, and
• f : Y → X is a fibration and the general fiber F belongs to D.

Then there exists m = m(d, l,D) such that exactly one of the following cases is
realized:

(a) X is projective klt and mKX ∼ 0; or
(b) there exists a generalised klt log Calabi–Yau pair (X,B+M) and m(KX +

B +M) ∼ 0.

Proof. By Remark 2.22 and the hypotheses, we can write the canonical bundle
formula in the following form

0 ∼ lKY ∼ f∗l(KX +BX +MX).(29)
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Case 1: KX < 0.
The existence of the klt log Calabi–Yau generalised pair is simply a consequence of
the canonical bundle formula above (29) and Remark 2.24.

Case 2: KX ∼Q 0.
In this case, as in the proof of Theorem 5.4, lKY ∼ f∗(l(KX +MX)) and MX is
a torsion divisor. Moreover, by Theorem 2.26, there exists a constant t such that
tMX ∼ 0. Hence,

0 ∼ tlKY ∼ f∗tlKX .

�

6. Rationally connected generalised log Calabi–Yau pairs

6.1. Singularities in Mori fibre spaces. When studying the structure of a Mori
fibre space f : X → Y it is natural to ask whether there is any way to control the
singularities of the base Y in terms of the singularities of the total space X .

A conjecture of Shokurov, later refined by Birkar, [Bir16b, Conjecture 1.2] pre-
dicts that one should expect an affirmative answer to the question above. We have
seen in § 2.7 that when we have a generalised pair (X,B +M) and a morphism
f : X → Z such that KX + B +M ∼f,Q 0, then we can define a generalised pair
(Z,G + N) providing a generalization of the standard form of the canonical bun-
dle formula. Using the canonical bundle formula for generalised pairs, Birkar’s
conjecture can be expressed in a more general context.

Conjecture 6.1. [Bir18, Conjecture 2.4] Let d be a positive integer and ǫ be a
positive real number. Then there exists a positive real number δ = δ(d, ǫ) such that
if (X,B +M) is a generalised pair with a contraction f : X → Z such that

• (X,B +M) is ǫ-lc of dimension d,
• KX +B +M ∼f,Q 0, and
• −KX is big over Z,

then the generalised pair structure (Z,G+N) induced by the canonical bundle for-
mula is δ-lc.

Birkar proved in [Bir16b, Corollary 1.7] that Conjecture 6.1 holds when dimX =
dimZ + 1 and the M ≡ 0 as a b-divisor. In the following we extend Birkar’s result
to the case of generalised pairs.

Lemma 6.2. Fix a positive integer d and a positive real number ǫ. Let (X,B+M)
be an ǫ-lc generalised pair and let f : X → T be a contraction of relative dimension
1 with KX+B+M ∼R 0. Assume that B+M is f -big. For any big Cartier divisor
HT on T , there exists δ = δ(d, ǫ)stisfying the following:
for any positive real number λ ≪ 1, there exists an effective divisor Γλ such that
λHT ∼R KT + Γλ and (T,Γλ) is δ-lc.

In particular, the lemma implies that if T is Q-Gorenstein then the pair (T, 0) is
automatically δ-lc.

Proof. Let X ′ → X be a log resolution where M descends. We will denote by E
the exceptional divisor for X ′ → X and by B′ the strict transform of B.
As HT is big on T, HT ∼R AT + FT the sum of an ample AT and an effective
R-divisors FT on T . We will denote by H (respectively H ′), A (resp.A′), F (resp.
F ′) the pullback of HT , AT , FT on X (resp. X ′).
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It is easy to see that η1(B
′ +M ′)+ η2A

′ is big for any positive real numbers η1, η2.
Hence, η1(B

′ +M ′) + η2A
′ ∼R G

′
η1,η2

+A′′
η1,η2

, where G′
η1,η2

is effective and A′′
η1,η2

is ample. We fix a choice of positive real numbers η1, η2. Thus, for any positive
constant c and choosing D′

cη1,cη2
a sufficiently general effective divisor in the ample

R-linear system |(1 − cη1)M
′ + cA′′

η1,η2
|R, it follows that

KX′ +B′ + (1− ǫ)E +M ′ + cη2(A
′ + F ′) ∼R

KX′ + (1− ǫ)E + (1− cη1)(B
′ +M ′) + c(η1(B

′ +M ′) + η2A
′) + cη2F

′ ∼R(30)

KX′ + (1− cη1)B
′ + (1− ǫ)E +D′

cη1,cη2
+ cG′

η1,η2
+ cη2F

′.

For c≪1, the pair (X ′, (1− cη1)B
′ + (1− ǫ)E +D′

cη1,cη2
+ cG′

η1,η2
+ cη2F

′) is ǫ
2
-lc.

By (30) and the fact that

KX′ + (1− cη1)B
′ + (1− ǫ)E +D′

cη1,cη2
+ cG′

η1,η2
+ cη2F

′ ∼R,X E′,

with E′ effective and exceptional over X , also the induced pair (X, (1 − cη1)B +
Dcη1,cη2

+ cGη1,η2
+ cη2F ) is ǫ

2
-lc, where Dcη1,cη2

, Gη1,η2
, η2F are the push-forward

of D′
cη1,cη2

, G′
η1,η2

, F ′ on X .
Let us fix one such choice of the constants c and define λ := cη2. Since

KX + (1− cη1)B +Dcη1,λ + cGη1,λ + λF ∼R λH,

by [Bir16b, Corollary 1.7], there exist 0 < δ = δ(d, ǫ) and an effective divisor Γλ on
T such that λHT ∼R KT + Γλ and (T,Γλ) is δ-lc. �

In the Introduction we addressed the reasons that make Conjecture 1.5 a central
problem in the study of boundedness. Also this conjecture can be extended to the
more general setting of generalised pairs.

Conjecture 6.3. Fix a positive integer d and positive real number ǫ. Then the set
of varieties X such that

(1) (X,B +M) is an ǫ-lc generalised pair of dimension d,
(2) KX +B +M ∼Q 0, and
(3) X is rationally connected

is bounded.

We will denote by 6.3≤d the statement of Conjecture 6.3 for generalised pairs
of dimension at most d. We can prove the following conditional step towards the
solution of the conjecture above.

Theorem 6.4. Assume Conjecture 6.3≤d and Conjecture 6.1 hold. Then the set
of varieties X such that

(1) (X,B +M) is an ǫ-lc generalised pair of dimension d+ 1,
(2) KX +B +M ∼Q 0
(3) KX 6≡ 0, and
(4) X is rationally connected

is bounded up to flops.

Proof. By [Bir18, Theorem 2.2], it is enough to prove the Theorem when X is
endowed with a Mori fibre space structure f : X → Z. The target variety Z will
also be rationally connected. The canonical bundle formula, see § 2.7, implies that
there is a log Calabi–Yau structure (Z,G+N) on Z. Moreover, by Conjecture 6.1
(Z,G + N) is δ-lc for some δ = δ(d + 1, ǫ). Hence, by applying Conjecture 6.3, Z
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belongs to a bounded family. A second application of [Bir18, Theorem 2.2] to the
Fano fibration f completes the proof. �

7. Proofs of the theorems and corollaries

Proof of 1.4. By Theorems 3.1 and 2.13, it is enough to prove the conclusion holds
for a pair (X,B) satisfying all the conditions in the statement of the theorem and
that is moreover endowed with a tower of Mori fibre spaces

(X,B) = (X0, B0) // X1
// . . . // Xs−1

// Xs = Z.(31)

If (X,B) is not of product type, then dimZ = 0 and the conclusion follows from
Corollary 3.4. If dimZ > 0 and KZ ∼Q 0, then Theorem 3.5 implies that there
exists m = m(d, l) such that mKZ ∼ 0. Then, by Theorem 4.1, Z is bounded up
to flops. That is, there exists a klt variety Z ′ isomorphic to Z in codimension 1
which belongs to a bounded family. By Theorem 2.12, we can assume that Z ′ is Q-
factorial. As, Z ′

99K Z is an isomorphism in codimension 1 of projective varieties,
it is also a birational contraction. Thus, we can apply Proposition 3.7 to the MFS
Xs−1 → Z in (31) and obtain a commutative diagram

X ′
s−1

//❴❴❴

��

Xs−1

��

Z ′ //❴❴❴❴ Z

where the horizontal arrow X ′
s−1 99K Xs−1 is an isomorphism in codimension 1

of Q-factorial projective varieties. As all horizontal arrows in the diagram are
isomorphisms in codimension 1 of Q-factorial projective varieties, it follows that
ρ(Xs−1/Z) = ρ(X ′

s−1/Z
′) = 1; hence, Xs−1 → Z ′ is a Mori fibre space. As the

mapX ′
s−1 99K Xs−1 is in turn a birational contraction, we can apply Proposition 3.7

to the MFS Xs−2 → Xs−1 in (31) and obtain a commutative diagram

X ′
s−2

//❴❴❴

��

Xs−2

��

X ′
s−1

//❴❴❴ Xs−1

where the horizontal arrow X ′
s−2 99K Xs−2 is an isomorphism in codimension 1 of

Q-factorial projective varieties.
By inductively applying Propositions 3.7, as we just did, we construct a pair (X ′, B′)
isomorphic in codimension 1 to (X,B) and endowed with a tower of Mori fibre
spaces

(X ′, B′) //

��
✤

✤

✤
X ′

1
//

��
✤

✤

✤
. . . // X ′

s−1
//

��
✤

✤

✤
Z ′

��
✤

✤

✤

(X,B) // X1
// . . . // Xs−1

// Z,

(32)

where all the vertical arrows are isomorphisms in codimension 1 and ρ(X ′
i/X

′
i+1) =

1, for i = 0, . . . , s− 1.
The conclusion then follows by applying Theorem 3.2 to the pair (X ′, B′) and the
tower of morphisms in (32). �
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Proof of 1.2. Since Y is a simply connected Calabi–Yau, by Corollary 5.1 X is
rationally connected. Thus, Theorem 5.4 implies that there is a choice of an effective
divisor B ≥ 0 (where we allow the possibility of B = 0), such that the pair (X,B) is
klt, log Calabi–Yau, and the torsion index of KX +B is bounded. By Theorem 1.4,
the pair (X,B) is log bounded up to flops. By Propositions 3.6 and 3.7, up to
substituting Y with an elliptic terminal Calabi–Yau Y ′ → X ′ with Y ′ isomorphic
to Y in codimension 1, we can assume that the base of the elliptic fibration is
actually bounded. The proof then follows immediately from Theorem 5.2. �

Proof of 1.3. As Y → X is an elliptic fibration, Theorems 5.4 implies that there is
a choice of an effective divisor B ≥ 0 (where we allow the possibility of B = 0),
such that the pair (X,B) is klt, log Calabi–Yau, and the torsion index of KX+B is
bounded by a constant m = m(l, d). Hence, as X is rationally connected, the pair
(X,B) is log bounded up to flops, by Theorem 1.4. By Propositions 3.6 and 3.7,
up to substituting Y with an elliptic K-trivial variety Y ′ → X ′ with Y ′ isomorphic
to Y in codimension 1, we can assume that the base of the elliptic fibration is
actually bounded. The proof then follows immediately from Theorem 5.2, since Y
is 1

l
-lc. �

Proof of 1.6. The case KX ≡ 0 follows from [Jia19, Theorem 1.6]. Hence, we can
assume that KX 6≡ 0. Then, by Theorem 3.1 and [Bir18, Theorem 2.2], it suffices
to prove that the conclusion holds for a ǫ-lc generalised pair (X,B +M) such that
KX +B+M ∼R 0 and that is moreover endowed with a tower of Mori fibre spaces

(33) (X,B) = (X0, B0) // X1
// . . . // Xs−1

// Xs = Z,

and either dimZ = 0 or KZ ≡ 0. Let us notice that the proof of Theorem 3.1
applies also to the case of generalised pairs, cf. [DCS16, Theorem 3.1] and its proof.
If dimX1 = 0 then s = 1 and the conclusion follows immediately from the proof
of the BAB Conjecture. If dimX1 = 1, then s = 2, dimZ = 0 and the conclusion
follows immediately from Theorem 2.12. If dimX1 = 2, then either

(a) ρ(X1) = 1 and s = 2, dimZ = 0; or
(b) ρ(X1) = 2 and X2 = P1, and s = 3; or
(c) s = 1 and KX1

≡ 0.

Let us analyze these 3 cases separately.
Case (a). We start by proving the following claim.
Claim 1. X1 is a δ-lc Fano surface, for some positive δ = δ(ǫ).

Proof of Claim 1. If M ∼X1,R 0 then KX + B ∼X1,R 0, hence [Bir16b, Corollary
1.7] implies that X1 is δ-lc. If M is relatively ample over X1 then letting H1 be an
ample Cartier divisor on X1, Lemma 6.2 implies that there exist 0 < δ = δ(ǫ) such
that X1 is δ-lc. �

Claim 1 and the BAB conjecture for surfaces, [Ale94, Theorem 6.8], imply that X1

belongs to a bounded family. Then, Theorem 2.12 implies the statement of the
theorem.
Case (c). The same proof as that of Claim 1 shows that there exists 0 < δ = δ(ǫ)
such that X1 is a δ-lc surface. As KX1

≡ 0 and X1 is rationally connected, [Ale94,
Theorem 6.8] implies that X1 belongs to a bounded family. Then, Theorem 2.12
implies the statement of the theorem.
Case (b). We start by proving the following claim.
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Claim 2. There exists a birational contraction X1 → Y onto surface Y and Y
belongs to a bounded family.

Proof of Claim 2. If the contraction X1 → Y exists, then considering the con-
traction X → Y , the same proof as for Claim 1 shows that Y is δ-lc, for some
0 < δ = δ(ǫ).
As ρ(X1) = 2, the nef cone of X1 is spanned by 2 extremal rays

Nef(X1) = R≥0F1 + R≥0F2,

where F1 is the class of a fibre of the P1-bundle X1 → X2; thus, F 2
1 = 0.

We distinguish several cases based on the sign of F 2
2 ,KX1

· F2:

F 2
2 > 0: F2 is big and nef. By Lemma 6.2, for 0 < λ ≪ 1 there exists a
boundary Γλ such that (X1,Γλ) is klt and KX1

+ Γλ ∼R λF2. Hence,
the Rationality Theorem and the Contraction Theorem imply that F2 is a
semi-ample Q-divisor. The Iitaka fibration X1 → Y of F2 is a birational
contraction such that ρ(Y ) = 1. By Lemma 6.2, then either Y is Fano or
KY ≡ 0. As −KY is nef and Y is rationally connected and δ-lc, [Ale94,
Theorem 6.8] implies that Y belongs to a bounded family.

F 2
2 = 0,KX1

· F2 < 0: Since F 2
1 = 0 = F 2

2 , the nef cone of X1 coincides with
NE(X1). Moreover, KX1

· Fi < 0, hence, KX1
is negative along NE(X1) \

{0}. Thus, X1 is Fano and it suffices to take Y = X1 and the identity map
X1 → Y . Hence, [Ale94, Theorem 6.8] implies that Y belongs to a bounded
family, as it is a δ-lc Fano.

F 2
2 = 0,KX1

· F2 > 0: As KX1
· F1 < 0 < KX1

· F2, Hodge Index Theorem
implies that KX1

≡R a1F1 + a2F2 with a2 < 0 < a1.
Let A be an ample Cartier divisor on X1. Lemma 6.2 implies that for
any 0 < λ ≪ 1 there exists an effective divisor Γλ s.t. λA ∼R KX1

+ Γλ.
For λ sufficiently small, then Γλ ∈ R<0F1 + R>0F2 which is impossible, as
F 2
1 = 0 = F 2

2 implies that Nef(X1) = Pseff(X1). Hence, this case cannot
happen.

F 2
2 = 0,KX1

· F2 = 0: In this case KX1
+ tF2 ∼R 0 for some t > 0 by Hodge

Index Theorem. Taking X1 = Y and X1 → Y to be the identity, then −KY

is nef and Y is rationally connected and δ-lc. Hence, [Ale94, Theorem 6.8]
implies that Y belongs to a bounded family.

�

The statement of the theorem then follows from Claim 2 together with Theorem 2.12
and [Ale94, Theorem 6.8]. �
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