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Abstract
We study properties of Hamiltonian integrable systems with random initial data by con-
sidering their Lax representation. Specifically, we investigate the spectral behaviour of the
corresponding Lax matrices when the number N of degrees of freedom of the system goes
to infinity and the initial data is sampled according to a properly chosen Gibbs measure. We
give an exact description of the limit density of states for the exponential Toda lattice and the
Volterra lattice in terms of the Laguerre and antisymmetric Gaussian β-ensemble in the high
temperature regime. For generalizations of the Volterra lattice to short range interactions,
called INB additive and multiplicative lattices, the focusing Ablowitz–Ladik lattice and the
focusing Schur flow, we derive numerically the density of states. For all these systems, we
obtain explicitly the density of states in the ground states.
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1 Introduction

In this manuscript, we study properties of Hamiltonian integrable systemswith random initial
data by analysing the spectral properties of their Laxmatrices considered as random matrices.

One of the first investigations in this direction was made in [14, 15], where the authors
considered random Lax matrices of various Calogero–Moser systems, and computed their
joint eigenvalues densities. More recently, this idea gained new attention thanks to the work
of Spohn [56], where the author connected the spectrum of the random Lax matrix of the
Toda lattice with the sparse matrix of the Gaussian β-ensemble [20] at high temperature
[6]. Later, the Lax matrix of the defocusing Ablowitz–Ladik lattice [52, 55] with random
initial data was connected with the sparse matrix of the circular β-ensemble [42] in the high
temperature limit [36] by two of the present authors [31], and, independently, by Spohn [57].
In the same work, Spohn also considered the defocusing Schur flow [30], and he connected
it to the Jacobi β-ensemble [20] in the high temperature regime [7]. Further developments
on this subject were also presented in [33, 48]. We mention also the work [61], where the
author studied the statistical properties of the energy level of a quantum integrable system
analysing the eigenvalues of the Lax operator.

Classically, from the seminal paper of Liouville [44], an integrable system is understood
as a Hamiltonian system possessing enough first integrals such that the motion of the system
is regular and predictable [8]. In the modern geometrical setting [10, 54], we say that given
a Poisson manifold P of dimension n, with local coordinates a = (a1, . . . , an), and Poisson
bracket {. , .} of rank 2r , the flow generated by a scalar smooth function H = H(a):

ȧi = ∂ai

∂t
= {ai , H} , i = 1, . . . , n, (1)

is integrable if it possesses k = n − r functionally independent first integrals in involution
with respect to the given Poisson bracket.

Finding first integrals is often a complicated task, and during the past decades several
algorithms to construct them have been developed. One of the most effective methods to
produce first integrals of a given mechanical system is the so-called Lax pair representation.1

The concept of Lax pair originates from the work of P. D. Lax on the theory of PDEs [43],
see also [3, 62]. In the finite dimensional setting, the construction runs as follows [9, 11]:
assume there are N × N matrices, L = L(a) and A = A(a) with N = N (n) and such that
the equation

L̇ = [A, L], [A, L] = AL − L A, (2)

is equivalent to the Hamiltonian flow (1). Then the matrices L and A are a Lax pair for
the Hamiltonian system and the matrix L is called Lax matrix. The main consequence of
the Lax equation (2) is that the eigenvalues of L are first integrals of the Hamiltonian flow
(1). So, provided that we can prove these eigenvalues give enough functionally independent
quantities in involution, we can infer the integrability of Hamilton’s equations (1) through
the Lax pair.

The fact that in many cases an integrable system is equivalent to a matrix relation gives the
connection with randommatrix theory. Indeed, when the initial data a(0) is chosen randomly,
the Lax matrix L = L(a(0)) becomes a random matrix. To define a random initial data, we
consider invariant measures with respect to the Hamiltonian flow. In general, such objects
have the form

dμ = m (a) da1 ∧ · · · ∧ dan, (3)

1 Often L-A pair in the Russian literature.
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where the positive density m(a) is such that the measure dμ ∈ L1(P). Hamiltonian sys-
tems have a natural invariant measure, the so called Gibbs measure [41] obtained from the
Hamiltonian itself

dμH = 1

Z H
e−β H(a)dμ,

with normalization constant Z H

Z H =
∫

P
e−β H(a)dμ < ∞

so that dμH becomes effectively a probability measure. If the measure is not normalizable
in the whole phase space P, one needs to restrict the measure to a suitable submanifold
M. Because of the integrability of the system, we can consider a more general probability
measure, called generalized Gibbs measure

dμG = 1

ZG
e−∑k

j=1 β j H j (a)dμ,

where β1, …, βk are constants and H1, …, Hk are the first integrals. As above, we assume
that the normalization constant ZG is finite,

ZG =
∫

P
e−∑k

j=1 β j H j (a)dμ < ∞.

In thismanuscript, we explore the behaviour of the spectrum of the Laxmatrices of various
relevant integrable systems when the number of degrees of freedom N → ∞, and the initial
data is sampled according to a properly chosen Gibbs measure. Our main result is that we can
compute the density of states for theLaxmatrix of the exponential Toda lattice and theVolterra
lattice. This is done through a one-to-one correspondence with the Laguerre β-ensemble at
high temperature and with the antisymmetric Gaussian β-ensemble at high temperature,
respectively. These are two known classes of random matrix ensembles, see [21, 27, 47]
respectively. We consider other relevant cases of integrable systems, namely the focusing
Ablowitz–Ladik lattice [1, 2], the focusing Schur flow, and a class of integrable generalization
of the Volterra lattice to short range interactions, called the Itoh–Narita–Bogoyavleskii (INB)
additive andmultiplicative lattices [17]. In these cases the corresponding randomLaxmatrices
are not symmetric nor self-adjoint and we derive numerically their density of states that has
support in the complex plane. Interesting patterns of the density of states emerge as we
vary the parameters of the system. Finally, for all the integrable systems analysed in this
manuscript, we are able to compute the density of states in the low-temperature limit, namely
in the ground state.

This manuscript is organized as follows. In Sect. 2 we give an introduction to the basic
tools of the integrable system theory needed in this manuscript. Next, we study the density of
states of the random Laxmatrices of the exponential Toda lattice, the Volterra lattice, the INB
lattices, the Ablowitz–Ladik lattice, and the Schur flow in Sects. 3, 4, 5, 6, and 7 respectively.
Finally, in Sect. 8 we give some conclusions and an outlook for future developments on this
topic.
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2 Preliminaries

In this section, we recall some standard tools to study Hamiltonian integrable systems that
we need throughout the manuscript . For further details, we refer to various textbooks and
monographs [9–11, 54].

APoisson manifold is a pair (P, {. , .})whereP is a n-dimensional differentiablemanifold
and {. , .} is an antisymmetric bilinear operation on the space C∞(P) of smooth functions
over P,

C∞(P)×C∞(P) → C∞(P)

( f , g) −→ { f , g}
such that for all functions f , g, h ∈ C∞(P), it satisfies:

1. the Jacobi identity

{{ f , g}, h} + {{h, f }, g} + {{g, h}, f } = 0,

2. the Leibniz rule
{h f , g} = h{ f , g} + {h, g} f . (4)

The operator {. , .} is called a Poisson bracket. When there is no risk of confusion, we simply
denote a Poisson manifold by P, where the Poisson bracket is assumed to be fixed and given.

In local coordinates a = (a1, . . . , an) the Poisson bracket is specified by an antisymmetric
(2, 0) tensor π i j (a), the Poisson tensor, acting on the coordinates as

{ai , a j } = π i j (a), i, j = 1, . . . n.

The Jacobi identity on the coordinates is equivalent to the relation

∂π i j (a)
∂as

π sk(a) + ∂πki (a)
∂as

π s j (a) + ∂π jk(a)
∂as

π si (a) = 0, 1 ≤ i < j < k ≤ n,

where we are summing over repeated indices. In an open subset of P the Poisson tensor
has a fixed even rank 2r ≤ n. By antisymmetry, it follows that the Poisson tensor can be
non-degenerate, meaning that det π(a) �= 0, only if the dimension n of the base space is
even, namely n = 2N .

Given a function H(a) ∈ C∞(P), it generates a set of so-called Hamilton’s equations
through the relation

ȧ j = {a j , H} =
n∑

j=1

π i j (a)
∂ H

∂a j
, j = 1, . . . , n. (5)

The function H itself is called a Hamiltonian. The previous set of equations defines a con-
tinuum time flow from an initial condition a(0) ∈ P to its time evolution t > 0, namely
�t : a(0) → a(t). A function K = K (a) is constant under evolution �t if and only if

K̇ = {K , H} = 0.

In this case the quantity K is called a first integral or a constant of motion. The notion of
Liouville integrability is strictly related to the number of first integrals and the rank of the
associated Poisson tensor.
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Definition 1 (Liouville integrability) A Hamiltonian system (5) on a Poisson manifold P of
rank 2r ≤ n is Liouville integrable if there are k = n − r first integrals H1, …, Hk in
involution

{Hi , Hj } = 0, i, j = 1, . . . , k ,

and functionally independent, namely

rank

(
∂ Hi

∂a j

)
i=1,...,k
j=1,...,n

= k ,

in a dense subset of P.
As discussed in the Introduction, random initial data are obtained from an invariant mea-

sure dμ of the form (3). More precisely, this means that the measure of every subset S ⊂ P
with respect to dμ is preserved under the time-evolution �t ,∫

�t (S)

dμ =
∫

S

dμ. (6)

Interpreting the evolution as a coordinate transformation, we have∫

�t (S)

dμ =
∫

S

�∗
t (dμ),

where �∗
t (dμ) is the pull-back of dμ through �t . This shows that the condition (6) is

satisfied if �∗
t (dμ) = dμ. In coordinates, for a measure written in the form (3), namely

dμ = m (a) da1 ∧ · · · ∧ dan, the invariance of the measure with respect to the Hamiltonian
flow is expressed by the condition

div (m(a)fH (a)) :=
n∑

i=1

∂

∂ai
(m(a)(fH (a))i ) = 0, (7)

where div is the usual euclidean divergence, see e.g. [34, Chapter 1]. The vector field fH is
specified by the Hamiltonian H via the relation (fH )i = {ai , H}. The condition (7) can be
written in the form

{m, H} + m div (fH ) = 0. (8)

From formula (8) we immediately have two important consequences.

• If the Hamiltonian vector field is divergence free, like in the case of a canonical Poisson
bracket, it follows that the Euclidean measure

dμ0 = da1 ∧ da2 ∧ · · · ∧ dan (9)

is an invariant measure.
• If K is a first integral and m is the density of an invariant measure, then from the Leibniz

rule (4) it follows that
m̃ := f (K )m (10)

is the density of another invariant measure for every scalar function f ∈ C∞(P), such
that

∫
P

m̃ < ∞.

In all the examples of this manuscript, the Hamiltonian vector fields are divergence free, so
we will be allowed to consider the generalized Gibbs ensemble described in the Introduction
where dμ = dμ0 the Euclidean measure in (9).
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3 Laguerreˇ-Ensemble and the Exponential Toda Lattice

In this section, we introduce an integrable model that we call exponential Toda lattice, since
it resembles the well-know Toda lattice. We construct the Lax pair for this system, and we
define its generalized Gibbs measure. Finally, we compute the mean density of states of the
Lax matrix.

The exponential Toda lattice is the Hamiltonian system on P = R
2N with canonical

Poisson bracket described by the Hamiltonian

HE (p,q) =
N∑

j=1

e−p j +
N∑

j=1

eq j −q j+1 , p j , q j ∈ R . (11)

We consider periodic boundary conditions

q j+N = q j + �, p j+N = p j , ∀ j ∈ Z,

and � ≥ 0 is an arbitrary constant. The equations of motion are given in Hamiltonian form
as

q̇ j = ∂ HE

∂ p j
= −e−p j ,

ṗ j = −∂ HE

∂q j
= eq j−1−q j − eq j −q j+1 .

(12)

The system possesses two trivial constants of motion,

H0(p,q) =
N∑

j=1

(q j − q j+1), H1(p,q) =
N∑

j=1

p j , (13)

the first one due to periodicity, the second one due to the translational invariance of the
Hamiltonian (11). In order to obtain a Lax pair for this system we introduce, in the spirit of
Flaschka and Manakov [25, 26, 45], the variables

x j = e− p j
2 , y j = e

q j −q j+1
2 = e− r j

2 , r j = q j+1 − q j , j = 1, . . . , N ,

where we notice that
∏N

j=1 y j = e− �
2 . In these variables, the Hamiltonian (11) and the

constants of motion (13) transform into

HE (x, y) =
N∑

j=1

(
x2j + y2j

)
, H0(x, y) = 2

N∑
j=1

log y j , H1(x, y) = −2
N∑

j=1

log x j .

The Hamilton’s equations (12) become

ẋ j = x j

2

(
y2j − y2j−1

)
, ẏ j = y j

2

(
x2j+1 − x2j

)
, j = 1, . . . , N , (14)

where xN+1 = x1, y0 = yN .
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One can explicitly construct a Lax pair for this system. Let us introduce the matrix Er ,s ,
defined as

(
Er ,s

)
i j = δi

r δ
j
s . Set

L =
N∑

j=1

(
x2j + y2j−1

)
E j, j +

N∑
j=1

x j y j
(
E j, j+1 + E j+1, j

)
,

A =
N∑

j=1

x j y j

2
(E j, j+1 − E j+1, j ), (15)

where, accounting for periodic boundary conditions, indices are taken modulo N , so that
Ei, j+N = Ei+N , j = Ei, j for all i, j ∈ Z. For example, the matrix L in (15) has the explicit
form

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

x21 + y2N x1y1 xN yN

x1y1 x22 + y21 x2y2
. . .

. . .
. . .

. . .
. . . xN−1yN−1

xN yN xN−1yN−1 x2N + y2N−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (16)

The system of equations (14) then admits the Lax representation

L̇ = [A, L].
Hence, the quantities Hm = Tr

(
Lm−1

)
, m = 2, . . . , N + 1 are constants of motion as well

as the eigenvalues of L . For the exponential Toda lattice, we define the generalized Gibbs
ensemble as

dμET = 1

Z E
N (β, η, θ)

exp (−β HE + θ H0 − ηH1) drdp ,

where β, η, θ > 0, the Hamiltonians HE , H0 and H1 are defined in (11) and (13) respectively,
Z E

N is the normalization constant, dr = dr1 . . . drN and analogously for dp. We notice that
according to this measure, all the variables are independent, moreover all p j are identically
distributed, and so are the r j . After introducing the variables (r,p) → (x, y), the previous
measure turns into

dμET = 1

Z HE
N (β, η, θ)

N∏
j=1

x2η−1
j e−βx2j dx j

N∏
j=1

y2θ−1
j e−β y2j dy j . (17)

Let χ2α be the chi-distribution, defined by its density

f2α(r) = r2α−1e− r2
2

2α−1�(α)
, r ∈ R

+,

here� is the classical gamma function [53, Sect. 5]. Then, the variables x j and y j in theGibbs
measure (17) are independent random variables with scaled chi-distribution, respectively
f2η(

√
2βx j )

√
2βdx j and f2θ (

√
2β y j )

√
2βdy j .

TheLaxmatrix L in (16) becomes a randommatrixwhen the entries are sampled according
to (17). Such random matrix can be linked to the so-called Laguerre α-ensemble [47]. The
connection is obtained noticing that the matrix L admits the following decomposition

L = B Bᵀ, B =
N∑

j=1

x j E j, j +
N∑

j=1

y j E j+1, j , (18)

123



   10 Page 8 of 35 T. Grava et al.

where Bᵀ is the matrix transpose. On the other hand, the Laguerre α-ensemble is given by
the set of matrices

Lα,γ = Bα,γ (Bα,γ )ᵀ, Bα,γ = 1√
2

⎛
⎜⎜⎜⎝

x1
y1 x2

. . .
. . .

yN−1 xN

0N×(M−N )

⎞
⎟⎟⎟⎠ , (19)

here 0N×(M−N ) is the zero matrix of dimension N × (M − N ). The variables xn, yn are
distributed according to chi-distribution

xn ∼ χ 2α
γ

n = 1, . . . , N ,

yn ∼ χ2α n = 1, . . . , N − 1. (20)

Thus, the following entry wise measure on the matrices Bα,γ can be defined,

dμBα,γ = 1(
2

α
γ

−1
�( α

γ
)
)N (

2α−1�(α)
)N−1

N∏
j=1

x
2α
γ

−1

j e− x2j
2 dx j

N−1∏
j=1

y2α−1
j e− y2j

2 dy j . (21)

We observe that the matrix B in (18) has the same form of Bα,γ in (20), with the addi-
tion of the corner element yN E1,N . Furthermore, the rescaling of the variables (x j , y j ) �→
1√
2β

(x j , y j ) in (17), amounts to the matrix rescaling B �→ 1√
2β

B, and comparing with (21)

we see that 1√
2β

B is a rank one perturbation of the matrix Bθ, θ
η
.

We are interested in studying the density of states νET for the Lax matrix L when the
entries are distributed according to the Gibbs measure dμET in (17). The density of states
νET is obtained from the weak convergence of the empirical measure of the Lax matrix L ,
namely

1

N

N∑
j=1

δλ j

N→∞−−−−⇀ νET , (22)

where λ j are the eigenvalues of L and δx is the Dirac delta function centered at x .
In order to study the density of states of the exponential Toda lattice, we need the following

result proved in [47].

Theorem 1 (cf. [47], Theorem 1.1) Consider the matrix Lα,γ = Bα,γ Bᵀ
α,γ distributed

according to dμBα,γ in (21). Then, its mean density of states νLα,γ takes the form

νLα,γ = ∂α

(
αμα,γ (x)

)
dx , x ≥ 0,

where

μα,γ (x) := 1

�(α + 1)�
(
1 + α

γ
+ α

) x
α
γ e−x

∣∣∣ψ
(
α,− α

γ
; xe−iπ

) ∣∣∣2
, x ≥ 0 , (23)

and here ψ(v,w; z) is the Tricomi’s confluent hypergeometric function (see Appendix 2).

Remark 1 The proof of theorem 1 has been obtained by comparing the Laguerre α-ensemble
(19) with the Laguerre β-ensemble at high temperature [7].

The following corollary follows.
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Corollary 1 Consider the Lax matrix L = B Bᵀ in (18) of the exponential Toda lattice with
Hamiltonian (11) and endow the entries of the matrix B in (18) with the Gibbs measure μET

(17). Then, the density of states νET of the Lax matrix L = B Bᵀ takes the form

νET = β∂α(αμα,γ (βx))|
α=θ,γ= θ

η

dx, x ≥ 0 , (24)

where the density μα,γ is defined in (23).

Proof First, we notice that by virtue of general theory, see [12, Theorem A.43], we can
restrict to the case yN = 0 in (17). As observed above, performing the change of variables
(x j , y j ) �→ 1√

2β
(x j , y j ), which amounts to rescale B �→ 1√

2β
B, one has that the matrix

entries of 1√
2β

B are distributed as the matrix entries of Bθ, θ
η
. Applying Theorem 1 we obtain

the claim.

3.1 Parameter Limit

In this section, we examine the low-temperature limit of the Hamiltonian system (11).
Namely, we want to compute the eigenvalues of the Lax matrix L in (15) in the limit
β, θ, η → ∞, in such a way that

η = η̃β, θ = θ̃β,

where η̃ and θ̃ are in compact sets of R+.
Since all x j and y j are independent random variables, we just have to consider the weak

limit of the rescaled chi-distributions, respectively

f2η̃β

(√
2βx

)√
2βdx, f2θ̃β

(√
2β y

)√
2βdy .

We explicitly work out one of the cases above.
We consider a continuous and bounded function h : R+ → R and evaluate the limit

lim
β→∞

∞∫

0

h(x) f2ηβ(
√
2βx)

√
2βdx = lim

β→∞

∫∞
0 h(x)eβ(2η̃ log x−x2)dx∫∞

0 x2η̃βe−βx2dx
= h

(√
η̃
)

.

The last identity has been obtained by applying the Laplace method (see [49]) and observing
that the minimizer of the term 2η̃ log(x) − x2 in the exponent of the integral is x0 = √η̃.

As a consequence, we conclude that x j⇀
√

η̃ and y j⇀
√

θ̃ , j = 1, . . . , N as β → ∞,
where with ⇀ we denote the weak convergence. The previous limit implies that the measure
νET in (24) weakly converges, in the low temperature limit, to the density of states of the
matrix L∞

L∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η̃ + θ̃

√
η̃θ̃

√
η̃θ̃√

η̃θ̃ η̃ + θ̃

√
η̃θ̃

. . .
. . .

. . .

. . .
. . .

√
η̃θ̃√

η̃θ̃

√
η̃θ̃ η̃ + θ̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Indeed, the fact that L is tridiagonal with iid entries along the diagonals, implies its k-th
moment depends on a multiple of k number of variables only; specifically looking back at
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the Lax matrix L in (16)

〈
Tr
(

Lk
)〉

=
〈

N∑
j=1

(
Lk
)

j j

〉
= N ·

〈(
Lk
)
11

〉
=: N ·〈 f (xN−k, . . . , xN+k; yN−k , . . . , yN+k)〉 ,

for some function f (·) of its entries. Then, passing to the density of states (22) and renaming
the iid variables, the scaling factor N identically cancels out and moments converge,

lim
N→∞

1

N

〈
Tr
(

Lk
)〉

= 〈 f (x1, . . . , x2k; y1, . . . , y2k)〉 .

So the eigenvalues density converges as well, since the eigenvalues are a function of the
moments. In particular, this also shows that the two limit commute in taking the density of
states at low temperature,

lim
N→∞ lim

β→∞
1

N

N∑
j=1

δλ j = lim
β→∞ lim

N→∞
1

N

N∑
j=1

δλ j = ν∞ ,

since the limits can be passed directly to the variables xi , yi .
The matrix L∞ is a circulant matrix, so its eigenvalues can be computed explicitly [32]

as

λ j = η̃ + θ̃ + 2
√

η̃θ̃ cos

(
2π

j

N

)
, j = 1, . . . , N .

From this explicit expression, it follows that the density of states of L∞ is

νL∞ = 1

2π

dx√
(c+ − x)(x − c−)

1(c−,c+), c± = (
√

η̃ ±
√

θ̃ )2. (25)

here 1(c−,c+) is the indicator function of the set (c−, c+). In particular, this measure belongs
to the class of Arcsin distributions. Thus, we proved the following result.

Proposition 1 Consider the random Lax matrix L in (15) sampled from the Gibbs ensemble
dμET (17) of the exponential Toda lattice (14). The density of states of the matrix L in the
low-temperature limit, i.e. when β, θ, η → ∞ in such a way that η = η̃β, θ = θ̃β, with η̃, θ̃

in compact subsets of R+, is the Arcsin distribution given by (25).

4 Volterra Lattice

The Volterra lattice, also known as the discrete KdV equation, describes the motion of N
particles on the line with equations

ȧ j = a j
(
a j+1 − a j−1

)
, j = 1, . . . , N . (26)

It was originally introduced byVolterra to study population evolution in a hierarchical system
of competing species. It was first solved by Kac and van Moerbeke in [40] using a discrete
version of inverse scattering due to Flaschka [25]. Equations (26) can be considered as a
finite-dimensional approximation of the Korteweg-de Vries equation.

The phase space is RN+ and we consider periodic boundary conditions a j = a j+N for all
j ∈ Z. The Volterra lattice is a reduction of the second flow of the Toda lattice [40]. Indeed,
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the latter is described by the dynamical system

ȧ j = a j

(
b2j+1 − b2j + a j+1 − a j−1

)
, j = 1, . . . , N ,

ḃ j = a j (b j+1 + b j ) − a j−1(b j + b j−1), j = 1, . . . , N ,

and Eq. (26) are recovered just by setting b j ≡ 0. The Hamiltonian structure of the equations
follows from the one of the Toda lattice. On the phase space RN+ we introduce the Poisson
bracket

{a j , ai }Volt = a j ai (δi, j+1 − δi, j−1)

and the Hamiltonian H1 = ∑N
j=1 a j so that the equations of motion (26) can be written in

the Hamiltonian form
ȧ j = {a j , H1}Volt . (27)

An elementary constant of motion for the system is H0 = ∏N
j=1 a j that is independent of

H1.
The Volterra lattice is a completely integrable system, and it admits several equivalent Lax

representations, see e.g. [40, 50]. The classical one reads

L̇1 = [A1, L1] ,

where

L1 =
N∑

j=1

a j E j+1, j + E j, j+1,

A1 =
N∑

j=1

(a j + a j+1)E j, j + E j, j+2 ,

where we recall that the matrix Er ,s is defined as
(
Er ,s

)
i j = δi

r δ
j
s and E j+N ,i = E j,i+N =

E j,i . There exists also a symmetric formulation due to Moser [50],

L̇2 = [A2, L2]

L2 =
N∑

j=1

√
a j (E j, j+1 + E j+1, j ) ,

A2 =
N∑

j=1

√
a j a j+1(E j, j+2 − E j+2, j ) ,

which assumes that all a j > 0.
Furthermore, we point out that there exists also an antisymmetric formulation for this Lax

pair, indeed a straightforward computation yields

Proposition 2 Let a j > 0 for all j = 1, . . . , N. Then, the dynamical system (26) admits an
antisymmetric Lax matrix L3 with companion matrix A3, namely the equations of motion are
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equivalent to L̇3 = [A3, L3] with

L3 =
N∑

j=1

√
a j (E j, j+1 − E j+1, j ), (28)

A3 =
N∑

j=1

√
a j a j+1(E j+2, j − E j, j+2). (29)

4.1 Gibbs Ensemble

We introduce a Gibbs ensemble for the Volterra lattice (26) by observing that its vector
field f j = a j

(
a j+1 − a j−1

)
is divergence free, due to the periodic boundary conditions.

Therefore, an invariant measure can be obtained from (10). We use H0 = ∏N
j=1 a j , and

H1 =∑N
j=1 a j as constants of motion to construct the invariant measure

dμVolt(a) = 1

ZVolt
N (β, η)

e−β H1+(η−1) log H0da, β, η > 0, (30)

where

ZVolt
N (β, η) =

(
� (η)

βη

)N

< ∞, (31)

and � (η) is the Euler gamma function [53, §5]. We notice that according to this measure, all
the variables are independent and identically distributed (i.i.d.).

Next we want to characterize the density of states of the antisymmetric Lax L3 of the
Volterra lattice given in Proposition 2. Among the three Lax matrices of the Volterra lattice,
the matrix L3 is particularly useful since it allows us to connect the Volterra lattice with a
specific α-ensemble, namely the antisymmetric Gaussian α-ensemble. The antisymmetric
Gaussian α-ensemble, see [27], is the family of random antisymmetric tridiagonal matrices

Lα =

⎛
⎜⎜⎜⎜⎜⎝

0 y1
−y1 0 y2

. . .
. . .

. . .

−yN−2 0 yN−1

−yN−1 0

⎞
⎟⎟⎟⎟⎟⎠

, (32)

where yi are i.i.d. random variables with density

f2α(y) = y2α−1e−y2

�(α)
, y ∈ R

+ ,

which is just a rescaled chi-distribution. Even though we use a different expression of the
chi-distribution with respect to Sect. 3, we keep the same notation f2α(y) for the density that
will be used only in this section. This distribution induces a measure on the entries of the
matrix Lα , namely

dμLα =
∏N−1

i=1 y2α−1
i e−y2i 1R+(yi )dy

�(α)N−1 . (33)

In [27] the authors studied this matrix ensemble in connection with the antisymmetric Gaus-
sian β-ensemble introduced by Dumitriu and Forrester [21] in the high temperature regime,
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and computed explicitly its density of states νLα (x), defined as

1

N

N∑
j=1

δ�(λ j )
N→∞−−−−⇀ νLα (x) ,

where λ j are the eigenvalues of Lα . Since the matrix Lα is antisymmetric with real entries,
its eigenvalues are purely imaginary numbers.

Theorem 2 (cf. [27]) The density of states of the random matrix Lα in (32), is explicitly given
by

νLα (x) = ∂α(αθα(x))dx ,

where
θα(x) = ∣∣�(α)W−α+1/2,0(−x)

∣∣−2
, (34)

here �(x) is the gamma function and Wk,μ(z) is the Whittaker function (see Appendix 2) .

Remark 2 The proof of Theorem 2 has been obtained in [27] by comparing the antisymmetric
Gaussian α-ensemble (32) with the antisymmetric Gaussian β-ensemble at high temperature,
which was considered in the same paper.

We notice that performing the change of coordinates a j = x2j , the Gibbs ensemble (30)
reads:

dμVolt(x) =
∏N

j=1 x2η−1
j e−β

∑N
j=1 x2j 1R+(x j )dx

ZVolt
N (β, η)

,

which, up to a rescaling x j → x j/
√

β and for the extra term xN in the probability distribution,
is exactly the distribution (33) of the matrix Lα . Furthermore, the matrix L3 is a 2 rank
perturbation of the matrix Lα . Therefore, by a corollary of [12, Theorem A.41] and Theorem
2, we obtain the following.

Corollary 2 Consider the matrix L3 in (29) endowed with the Gibbs measure dμVolt (30).
Then, the density of states of the matrix L3 is explicitly given by

νVolt(x) = √β∂η

(
ηθη(

√
βx)
)
dx ,

where θα(x) is given in (34).

4.2 Parameter Limit

As for the case of exponential Toda (14), in this section we consider the low-temperature
regime of the Volterra lattice, namely the limit η, β → ∞, in such a way that η = βη̃, with
η̃ in a compact set of R+, and we compute the density of states of the matrix L3 (28) in this
regime.

Applying the same techniques of Sect. 3.1, we conclude that the density of states of the
matrix L3 in the low-temperature limit coincides with the one of the matrix L∞, where

L∞ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
√

η̃ −√
η̃

−√
η̃ 0

√
η̃

. . .
. . .

. . .

. . .
. . .

√
η̃√

η̃ −√
η̃ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Since the matrix L∞ is circulant, we can readily compute its eigenvalues as

λ j = 2i
√

η̃ sin

(
2π

j

N

)
, j = 1, . . . , N .

From this explicit formula, it follows that the density of states of the matrix L∞ reads

νL∞ = 1

2π

1√
4η̃ − x2

1(−2
√

η̃,2
√

η̃)(x)dx .

Such measure coincides with the measure νLα in the low-temperature limit, and it belongs
to the class of Arcsin distributions. Thus, we just proved the following.

Proposition 3 Consider the Gibbs ensemble dμV olt of the Volterra lattice (30), in the low-
temperature limit, i.e. β, η → ∞, in such a way that η = η̃β, where η̃ is in a compact subset
of R+. Then, the density of states νVolt of the Lax matrix L3 in (28) converges, in this regime,
to

νVolt = 1

2π

1√
4η̃ − x2

1(−2
√

η̃,2
√

η̃)(x)dx .

5 Generalization of the Volterra Lattice: The INB k-Lattices

The Volterra lattice (26) can be generalized in a variety of ways. The most natural ones are
two families of lattices described in [17] (see also [16, 39, 51] ) which include short range
interactions. The first family is called additive Itoh–Narita–Bogoyavleskii (INB) k-lattice
and is defined by the equations

ȧi = ai

⎛
⎝ k∑

j=1

ai+ j −
k∑

j=1

ai− j

⎞
⎠ , i = 1, . . . , N , N ≥ k ∈ N . (35)

The second family is called the multiplicative Itoh–Narita–Bogoyavleskii (INB) k-lattice and
is defined by the equations

ȧi = ai

⎛
⎝ k∏

j=1

ai+ j −
k∏

j=1

ai− j

⎞
⎠ , i = 1, . . . , N , N ≥ k ∈ N . (36)

In both cases we consider the periodicity condition a j+N = a j holds.
Setting k = 1, we recover from both lattices the Volterra one (26). Further generalizations

of the INB lattice were recently considered in [24].
A crucial difference in the two models is that in the additive lattice (35) the interaction is

on arbitrary number of points, but the non-linearity is still quadratic like the original Volterra
lattice (26); on the other hand , themultiplicative lattice (36) admits non-linearity of arbitrary
order. Moreover, both families admit the KdV equation as continuum limits, see [17].

As mentioned earlier, the additive INB k-lattice is an integrable system for all k ∈ N and
i ∈ Z, since they all admit a Lax pair formulation (2). For the additive INB lattice (35), it
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reads

L(+,k) =
N∑

i=1

(
ai+k Ei+k,i + Ei,i+1

)
,

A(+,k) =
N∑

i=1

⎛
⎝ k∑

j=0

ai+ j

⎞
⎠ Ei,i + Ei,i+k+1 , (37)

we recall that we are always considering periodic boundary conditions, so for all j ∈ Z,
a j+N = a j and Ei, j+N = Ei+N , j = Ei, j . The constants of motion obtained through this
Lax pair are in involution with respect to the Poisson bracket

{
a j , ai

}
(+,k)

= a j ai

(
k∑

s=1

δ j+s,i −
k∑

s=1

δ j−s,i

)
.

Then, the additive INB k-lattice (35) can be written as

ȧi = {ai , H1}(+,k) ,

where the Hamiltonian function H1 =∑N
j=1 a j is the same as in equation (27). In the same

way, it is possible to prove that the function H0 =∏N
j=1 a j is a first integral for the additive

INB k-lattice (35) as well.
Similarly, the multiplicative INB k-lattices can be endowed with a Lax Pair for all k ∈ N,

therefore it is another example of integrable systems. Specifically, for the periodic case we
presented in equation (36), the Lax pair reads

L(×,k) =
N∑

i=1

(
ai Ei,i+1 + Ei+k,i

)
,

A(×,k) =
N∑

i=1

⎛
⎝ k∏

j=0

ai+ j

⎞
⎠ Ei,i+k+1 . (38)

We notice that both H1 =∑N
j=1 a j , and H0 =∏N

j=1 a j are constants of motion for these
systems, for all k ∈ N.

Remark 3 For fixed k, there exists a transformation that maps the multiplicative INB k-lattice
to the additive one. Namely, consider the system (36) and define the new set of variables

bi := ai · · · ai+k−1, i = 1, . . . , N , (39)

where the indices are taken modulo N . Then, it is immediate to see that

ȧi = ai (bi+1 − bi+k−1) , i = 1, . . . , N ,

which in turn, due to telescopic summations, implies

ḃi = bi

⎛
⎝ k∑

j=1

bi+ j −
k∑

j=1

bi− j

⎞
⎠ , i = 1, . . . , N ,

which is (35). The transformation (39) is invertible only when k and N are co-prime, for a
more detailed discussion see [17].
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5.1 Gibbs Ensemble

We want to introduce an invariant measure for the INB lattices (35) and (36). Since H0 =∏N
j=1 a j and H1 =∑N

j=1 a j are constants ofmotion for all the INB lattices, and both systems
are divergence free, in view of (10) we can consider as invariant measure the same one that
we used for the Volterra lattice, namely

dμINB (a; η, β) = e−β H1+(η−1) log H0da∫
R

N+ e−β H1+(η−1) log H0da
=
∏N

j=1 aη−1
j e−β

∑N
j=1 a j da

Z INB
N (β, η)

, β, η > 0,

(40)
where the normalization constant Z INB

N (β, η) has the value given in equation (31). For exam-
ple the random Lax matrix L(+,k) takes the form

L(+,k) � 1

2β

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · χ2
2η 0 0 0

0 0 1 · · · 0 χ2
2η 0 0

0 0 0 1 · · · 0 χ2
2η 0

...
. . .

. . .
. . .

. . .
. . .

χ2
2η 0 · · · · · · 0 1 0 0

0 χ2
2η 0 · · · . . .

. . .
. . .

...
. . .

. . .
. . .

. . . 0 0 1
1 0 · · · χ2

2η · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the χ2
2η distribution has density a2η−1

2η�(η)
e− a

2 , and are in position (i, i + k). Unlike the
Lax matrix of the Volterra lattice, the Lax matrices of these generalizations lack of a known
random matrix model to compare with. For this reason, we present numerical investigations
of the density of states for these random Lax matrices for several values of the parameters
k, η and β, see Figs. 2 and 3.We notice that, for both the additive lattice and themultiplicative
one, the density of states seems to possess a discrete rotational symmetry. In this spirit, we
prove the following

Lemma 1 Fix � ∈ N. Then for N large enough

Tr
(
(L(+,k))�

)
= Tr

(
(L(×,k))�

)
= 0 ,

if � is not an integer multiple of k + 1.

Proof We prove the statement for the additive case, the proof in the multiplicative one is
analogous.

The main idea is to relate each addendum appearing in Tr
(
(L(+,k))�

)
to a specific path

in the Z
2 plane, and prove that such a path exists if and only if � = m(k + 1) for some

m ∈ N. In particular, we can focus on the first element of the diagonal of (L(+,k))�, write
(L(+,k))�(1, 1), since all the other ones can be recovered shifting the indices. First, we write
(L(+,k))�(1, 1) as

(L(+,k))�(1, 1) =
N∑

i1,...,i�−1=1

L(+,k)(1, i1)L(+,k)(i1, i2) · · · L(+,k)(i�−1, 1) . (41)
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Fig. 1 Example of (1, 2)-Dick path of length 12

We notice that, due to the structure of L(+,k), if L(+,k)(1, i1) · · · L(+,k)(i�−1, 1) is not zero,
then either is+1 = is + 1 or is+1 = is − k modulo N . Now, consider paths in the Z2 plane
from the point (0, 0) to (�, 0), such that the only permitted steps are the up step (1, 1) and the
down step (1,−k). Since these paths resemble the classical Dyck paths, we call them (1, k)-
Dyck paths of length �. Given a non-zero element of the product in (41), we can construct
the corresponding path in the following way. We start at (0, 0), then if |i1 − 1| = 1 we make
an up step of height 1, otherwise we make a down step of height k, and so on.

For each path, let n be the number of up steps and m the number of down steps, then

m + n = � , n − mk = 0 ,

since there is a total of � step, and the path has to go back to height 0. Thus, we deduce that

m(k + 1) = � ,

and the claim is proven.

Remark 4 The previous result implies that the only non-zero moments of the densities of
states νINB,+,k, νINB,×,k , provided they exist, are the ones which are an integer multiple of
k + 1.

Another interesting feature of thesemeasures is that their supports seem tobe exponentially
localized to one dimensional contours. Specifically, it appears that the supports are the two
hypotrochoids γ+,k, γ×,k , respectively

γ+,k(t, η, β) = e−i t + η

β
eikt , γ×,k(t, η, β) = η

β
e−i t + eikt , t ∈ [0; 2π) . (42)

This feature is highlighted in Figs. 2 and 3, where we plot the empirical density of states
and the corresponding hypotrochoid. This characteristic is important since this type of curves
are also related to the density of some cyclic digraph, see [5], andmay serve as a link between
these two topics.

All these observations lead us to formulate the following conjecture
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Fig. 2 Eigenvalues of INB additive lattice for k = 2 (left) and k = 5 (right). N = 1000 and 6000 trials
performed, in red the corresponding hypotrochoid γ+,k defined in equation (42).We observe that the examples

on the left panel correspond to the case η̃ = η
β

= 1
k that in the limiting case η, β → ∞ gives the arcsin

density of states in (43) where the edges are the cusps of the hypotrochoid. This observation explains the very
high peaks located at the cusps

Conjecture 1 Consider the two matrices L(+,k), L(×,k) as in (37), (38) both endowed with
the probability distribution dμINB (40). Then, the densities of states ν

γ,β

INB,+,k and ν
γ,β

INB,×,k
exist, and have a discrete rotational symmetry, namely

ν
γ,β

INB+,k(dz) = ν
γ,β

INB+,k

(
e

2π i
k+1 dz

)
, ν

γ,β

INB×,k(dz) = ν
γ,β

INB×,k

(
e

2π i
k+1 dz

)
.

Moreover, the densities are exponentially localized in a neighbourhood of the two hypotro-
choids γ+,k(t, η, β) and γ×,k(t, η, β) in (42) respectively.

5.2 Parameter Limit

As in the previous cases, although we are not able to give an explicit formula for the density
of states of the INB lattices for general β, η, we can characterize this measure in the low-
temperature limit. Specifically, we consider the limit as β, η → ∞ in such a way that
η = η̃β, with η̃ in a compact set of R+, and we compute the density of states of the matrices
L(+,k), L(×,k), endowed with the probability inherited from dμINB (40), in this limit.

The procedure is the same as in the case of Volterra (see Section 4.2). Indeed, following
the same line, we can conclude that the densities of states ν∞

INB,+,k and ν∞
INB,×,k coincide
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Fig. 3 Eigenvalues of INB multiplicative lattice for k = 2 (left) and k = 5 (right). N = 1000 and 6000 trials
performed, in red the corresponding hypotrochoid γ×,k

Fig. 4 Eigenvalues of INB multiplicative and additive lattice for k = 5, N = 1000 and 6000 trials performed,
in red the corresponding hypotrochoid γ×,k , γ+,k

with the densities of L(+) and L(×) respectively, where

L(+,k) =
N∑

i=1

(̃
ηEi+k,i + Ei,i+1

)
, L(×,k) =

N∑
i=1

(
Ei+k,i + η̃Ei,i+1

)
.

We notice that both matrices are circulant, thus we can compute their eigenvalues explicitly
as

λ
(+,k)
j = e−2π i j

N + η̃e2π i jk
N , λ

(×,k)
j = η̃e−2π i j

N + e2π i jk
N ,
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here j = 1, . . . , N . Thus, in the large N limit, we deduce that the support of the measures
ν∞
INB+,k and ν∞

INB×,k are the hypotrochoids

γ+,k(t, η̃, 1) = e−i t + η̃eikt , γ×,k(t, η̃, 1) = η̃e−i t + eikt , t ∈ [0; 2π) ,

and the limiting eigenvalue densities are

ν∞
INB+,k = |dz|

2π
√
1 + η̃2k2 − k(|z|2 − 1 − η̃2)

, z ∈ γ+,k ,

ν∞
INB×,k = |dz|

2π
√

η̃2 + k2 − k(|z|2 − 1 − η̃2)
, z ∈ γ×,k .

(43)

We summarize these results in the following Proposition.

Proposition 4 The densities of states of the Lax matrices L(+,k) and L(×,k) in (37) and (38)
endowed with the Gibbs measure dμINB in (40), in the low temperature limit, i.e. when
η, β → ∞, in such a way that η = η̃β, with η̃ in a compact set of R+, are given respectively
by ν∞

INB+,k and ν∞
INB×,k in (43).

Remark 5 When the parameters satisfy the relation η̃k < 1, the curve γ+,k(t, η̃, 1) is not
self-intersecting, while for η̃k > 1 the curve is self-intersecting. For η̃k = 1 it has cusp
singularities [19]. The limiting shape of the support as η̃ → 0 is a circle.

The same considerations are true for the curve γ×,k(t, η̃) upon substitution η̃ �→ 1/η̃.
We also observe that the density of states ν∞

INB+,k ( ν∞
INB×,k) in equation (43) is an Arcsin

distribution for η̃ = 1
k (̃η = k) and the edges correspond to the cusps of the curve γ+,k(t, η̃)

( γ×,k(t, η̃)).

6 The Focusing Ablowitz–Ladik Lattice

The focusing Ablowitz–Ladik lattice is the following system of spatial discrete differential
equations

i ȧ j + a j+1 + a j−1 − 2a j + |a j |2(a j−1 + a j+1) = 0 , (44)

where a j ∈ C, j = 1, . . . , N , N ≥ 3, and we consider periodic boundary conditions
a j+N = a j for all j ∈ Z. This equation was introduced by Ablowitz and Ladik [1, 2],
by searching integrable spatial discretization of the cubic non-linear Schrödinger Equation
(NLS) for the complex function ψ(x, t), x ∈ R, t ∈ R

+

i∂tψ(x, t) + ∂2x ψ(x, t) + 2|ψ(x, t)|2ψ(x, t) = 0.

In contrast with what happens in the defocusing case, the particles (a1, . . . , aN ) are free to
explore the whole CN , which is the phase space of the system.

On the space C∞(CN ) we consider the Poisson bracket [23, 28]

{ f , g} = i
N∑

j=1

ρ2
j

(
∂ f

∂a j

∂g

∂a j
− ∂ f

∂a j

∂g

∂a j

)
, f , g ∈ C∞(CN ).

We notice that the phase shift a j (t) → e−2i t a j (t) transforms the AL lattice (44) into the
equation

ȧ j = i ρ2
j (a j+1 + a j−1), ρ j =

√
1 + |a j |2, (45)
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which we call the reduced AL equation. We remark that the quantity H0 = 2 ln
(∏N

j=1 ρ2
j

)

is the generator of the shift a j (t) → e−2i t a j (t), while H1 = −K (1) − K (1) with

K (1) :=
N∑

j=1

a j a j+1, (46)

generates the flow (45). Therefore, we can rewrite the AL equation as

ȧ j = {a j , HAL } , HAL = H0 + H1 .

Moreover, it is straightforward to verify that {H0, H1} = 0. The Poisson bracket induces the
symplectic form

ω = i
N∑

j=1

1

ρ2
j

da j ∧ da j , ρ j =
√
1 + |a j |2 ,

that is invariant under the evolution generated by the Hamiltonians H0 and H1. Therefore,
the volume form

ωN = ω ∧ · · · ∧ ω,

is also invariant. In view of these properties, we can define the Gibbs ensemble for the
focusing Ablowitz–Ladik lattice on the phase space CN as

dμAL = 1

Z AL
N (β)

e
β
2 H0ωN = 1

Z AL
N (β)

N∏
j=1

(
1 + |a j |2

)−β−1
d2a , β > 0 , (47)

where a = (a1, . . . , aN ), d2a =∏N
j=1(ida j ∧da j ) and Z AL

N (β) is the normalization constant
of the system. We notice that according to this measure, all the variables are i.i.d.

Remark 6 The measure with density exp(−β HAL) and β > 0 is not bounded nor normaliz-
able on the whole phase space. For this reason, we have defined the Gibbs ensemble as in
(47). Furthermore, we observe that the measure (47) has a finite number of moments, which
implies that the corresponding density of states of the Laxmatrix (see (49) below), if it exists,
would have a finite number of moments.

The focusing AL lattice is a complete integrable system. Indeed it admits a Lax represen-
tation, first obtained by Ablowitz and Ladik from the discretization of the Zakharov–Shabat
Lax pair for the focusing non-linear Schrödinger equation [63]. Gesztesy et al. [29] found a
different Lax pair for the infinite case of focusing AL lattice, and for its general hierarchy. To
adapt their construction, we double the size of the lattice according to the periodic boundary
conditions, thus we consider a chain of 2N particles a1, . . . , a2N such that a j = a j+N for
j = 1, . . . , N . Define the 2 × 2 matrix � j

� j =
(−a j ρ j

ρ j −a j

)
, j = 1, . . . , 2N , (48)
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and the 2N × 2N matrices

M=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−a2N ρ2N

�2

�4
. . .

�2N−2

ρ2N −a2N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, L=

⎛
⎜⎜⎜⎝

�1

�3
. . .

�2N−1

⎞
⎟⎟⎟⎠ .

Now let us define the Lax matrix
E = LM , (49)

that has the structure of a 5-band diagonal matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. . .
. . .

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The N -periodic equation (45) is equivalent to the following Lax equation for the matrix
E,

Ė = [A, E] ,

where

A = i

2

(
E+ − E− − E−1+ + E−1−

)
,

where the two projections M+, M− are defined for a 2N × 2N matrix as

M+ =

⎧⎪⎨
⎪⎩

M�, j , � < j ≤ � + N

M�, j , � > j + N

0 otherwise

, M− =

⎧⎪⎨
⎪⎩

M�, j , j < � ≤ j + N

M�, j , j > � + N

0 otherwise

. (50)

We notice that the Lax matrix E has a similar structure to the one of the defocusing AL
lattice obtained by Nenciu, and Simon [52, 55]. The crucial difference is that while for the
defocusing AL lattice the blocks � j are unitary matrices, for the focusing lattice this is not

the case since � j�
†
j �= I2 where I2 =

(
1 0
0 1

)
and † stands for hermitian conjugate.

The measure dμAL induces a probability distribution on the entries of the matrix E, thus
it becomes a random matrix. As in the previous cases, one would like to connect the density
of states for this random matrix to the density of states of some β-ensemble in the high
temperature regime, but, as in the case of the INB lattices, we lack of a matrix representation
of some β-ensemble with eigenvalues supported on the plane.
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We make the following observations. The matrix � j (48) is complex symmetric, and it
can be factorized in the form

� j = U j

⎛
⎜⎝

a j

|a j |
(
|a j |+

√
1+|a j |2

) 0

0 − a j
|a j | (|a j | +

√
1 + |a j |2)

⎞
⎟⎠U j

where the matrices U j =
⎛
⎝

a j√
2|a j |

1√
2

1√
2

− a j√
2|a j |

⎞
⎠ are unitary, U−1

j = U †
j . Thus defining the

matrices

M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− a2N√
2|a2N |

1√
2

U2

U4

. . .

U2N−2
1√
2

a2N√
2|a2N |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, L̃ =

⎛
⎜⎜⎜⎝

U1

U3

. . .

U2N−1

⎞
⎟⎟⎟⎠ ,

we can rewrite the Lax matrix E (49) as

E = L̃�oddL̃M̃�evenM̃ , (51)

where, defining c j := a j

|a j |
(
|a j |+

√
1+|a j |2

) , the matrices �odd and �even are given by

�odd = diag

(
c1,− 1

c1
, c3,− 1

c3
, . . . , c2N−1,− 1

c2N−1

)

�even = diag

(
− 1

c2N
, c2,− 1

c2
, . . . , c2N

)
.

Since we are interested in the distribution of the eigenvalues of E, it follows from the
factorization (51) that we can also consider the matrix �oddẼ�evenẼᵀ

, where Ẽ = L̃M̃. The
eigenvalues of �even,�odd come in pairs, such that if λ is an eigenvalue, then also −λ−1 is
an eigenvalue. The matrix Ẽ is a periodic CMV matrix [18], thus its eigenvalues are on the
unit circle.

Thus, we are in a similar setting considered in [35, 59, 60]. Indeed in [59] the authors
derived the eigenvalues distribution of U

√
D where U is a Haar distributed unitary matrix

and D is a fixed diagonal matrix with positive eigenvalues. They show that the density
of states is rotational invariant and it is supported on a single ring whose radii r1 < r2
satisfy the constraint dmin < r1 < r2 < dmax , where dmin and dmax are the minimum and
maximum eigenvalues of D. In [35], the authors considered a similar problem, namely the
characterization of the density of states for a matrix of the form U T V , where U , V are
independent unitary matrices Haar distributed, and T is a real diagonal matrix independent
of U , V . They proved, under some mild conditions, that the density of states of the matrix
U T V is radially symmetric and it is supported on a ring.

It is therefore reasonable to expect that the density of states of the random Lax matrix of
the Ablowitz–Ladik lattice is rotational invariant, but with unbounded support, indeed the
eigenvalues of �even,�odd could grow to infinity.

To confirm our expectations, we perform several numerical investigations of the eigen-
values of the random Lax matrix of the Ablowitz–Ladik lattice for various values of β (see
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Fig. 5 Empirical densities for the focusing Ablowitz–Ladik lattice for β = 5, 10, 20, 10,000 trials per picture

Figs. 5 and 6). In Fig. 5 the eigenvalue density is shown. As expected, the density seems to
be rotational invariant, and concentrated on a ring, exactly as in [35, 59, 60]. For this reason,
we investigate the behaviour of the modulus of the eigenvalues, see Fig 6. They seem to be
concentrated in a small region, but, in view of Remark 6, we expect that the tails should
decay just polynomially fast.

6.1 Parameter Limit

Despite not being able to explicitly compute the density of states for general values of β, we
can perform such an analysis in the low-temperature limit, namely when β → ∞.

We notice that, according to (47), all the a j are independent. Hence, in order to obtain
the density of states in the low-temperature limit, we have to compute the weak limit of the
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Fig. 6 Empirical density for the eigenvalues’ modulus for the focusing Ablowitz–Ladik lattice for β =
5, 10, 20, 10,000 trials per picture

density

dμβ = (1 + |z|2)−β−1dz∫
D
(1 + |z|2)−β−1dz

.

Proceeding as in the previous cases, it follows that the following limit holds for all bounded
and continuous f : D → R:

lim
β→∞

∫

D

f (z)dμβ = f (0)

The previous limit implies that the density of states of the Ablowitz–Ladik lattice in the
low temperature limit is equal to the one of Ê = L̂M̂, where L̂, M̂ are 2N × 2N matrices

M̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1
�̃

�̃

. . .

�̃

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, L̂ =

⎛
⎜⎜⎜⎝

�̃

�̃

. . .

�̃

⎞
⎟⎟⎟⎠ ,

and �̂ is defined as the unitary matrix

�̂ =
(
0 1
1 0

)
.
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Tocompute the density of states for thematrixE,wenotice that bothM̂, and L̂ are permutation
matrices. Specifically, we identify them with the following permutations

M̂ ←→ (2N , 1)(2, 3)(4, 5) . . . (2N − 2, 2N − 1) ,

L̂ ←→ (1, 2)(3, 4)(5, 6) . . . (2N − 1, 2N ) .

As a consequence, the matrix Ê itself corresponds to the permutation

Ê ←→ (1, 3, 5, . . . , 2N − 1)(2, 4, 6, . . . , 2N ) .

This implies that the eigenvalues of Ê are all double, and given by

λ j = e2π i j
N , j = 1, . . . , 2N .

From this explicit expression of the eigenvalues, it is straightforward to prove that

νAL = dθ

2π
, θ ∈ [0, 2π) .

Thus, we have proved the following

Proposition 5 Consider the Gibbs ensembledμAL (47)of the focusing Ablowitz–Ladik lattice
in the low-temperature limit, i.e. β → ∞. Then, the density of states νAL of the Lax matrix
E (49) is given by

νAL = dθ

2π
, θ ∈ [0, 2π) .

7 Schur Flow

The focusing Schur flow, also known as discrete mKdV, is an integrable system deeply related
to the Ablowitz–Ladik lattice. Its equations of motion are

ȧ j = ρ2
j (a j+1 − a j−1) , ρ j =

√
1 + |a j |2 , (52)

where here we consider periodic boundary conditions, a j = a j+N for all j ∈ Z. Notice that
if a j (0) ∈ R for all j = 1, . . . , N , then a j (t) ∈ R for all times, implying that RN is an
invariant subspace for the dynamics.

Recalling the definition (46) for K (1) =∑N
j=1 a j a j+1 and introducing thePoisson bracket

{ f , g} =
N∑

j=1

ρ2
j

(
∂ f

∂a j

∂g

∂a j
− ∂ f

∂a j

∂g

∂a j

)
, f , g ∈ C∞(CN ),

we can rewrite the equations of motion (52) as

ȧ j = {a j , HS} , HS = K (1) − K (1) .

Notice that the quantity H0 = −2 ln
(∏N

j=1 ρ2
j

)
is a global first integral for the system.

Moreover, one can deduce immediately from the equations of motion that RN is invariant
for the dynamics. Thus, in view of the Hamiltonian representation and this invariance, we
define the Gibbs measure for the Schur flow as

dμS = 1

Z S
N (β)

N∏
j=1

(
1 + a2

j

)−β−1
da , a j ∈ R , (53)
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where Z S
N (β) is the normalization constant of the system,

Z S
N (β) =

∫

R
N

N∏
j=1

(
1 + a2

j

)−β−1
da .

Remark 7 Similarly to the focusing AL case, the classical Gibbs ensemble is not well-defined
on the whole phase space. Indeed, the measure with density e−β HS , β > 0 cannot be nor-
malized on RN .

The Schur flow is a completely integrable system since it admits a Lax formulation.
Namely, define the 2 × 2 matrix � j

� j =
(−a j ρ j

ρ j −a j

)
, j = 1, . . . , 2N ,

and, similarly to the Ablowitz–Ladik case, the 2N × 2N matrices

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−a2N ρ2N

�2

�4
. . .

�2N−2

ρ2N −a2N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, L =

⎛
⎜⎜⎜⎝

�1

�3
. . .

�2N−1

⎞
⎟⎟⎟⎠ .

Then, the N -periodic equation (52) is equivalent to the following Lax equation for the matrix
E:

Ė = [A, E] ,

where

A = 1

2

(
E+ + E−1+ − E− − E−1−

)
,

where the two projection +,− are defined in (50).
Carrying on with the approach of this article, we study the density of states νS for the

matrix E when the entries are distributed according to the measure (53). First, we notice that
Remark 6 is valid also in the case of the focusing Schur flow. Moreover, since the variables
a j are real, we can factorize the matrices � j in the following way:

� j = U0 diag

(
c j ,− 1

c j

)
U0, c j =

√
1 + a2

j − a j , U0 = 1√
2

(
1 1
1 −1

)
,

where we note thatU−1
0 = U0, so that the above is a similarity transformation. Thus, defining

M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1√
2

1√
2

U0

U0
. . .

U0
1√
2

1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, L̃ =

⎛
⎜⎜⎜⎝

U0

U0
. . .

U0

⎞
⎟⎟⎟⎠ , (54)

we can rewrite the Lax matrix of the Schur flow E as

E = L̃�oddL̃M̃�evenM̃ ,
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where

�odd = diag

(
c1,− 1

c1
, c3, . . .

)
,

�even = diag

(
− 1

c2N
, c2, . . . , c2N

)
.

As in the case of the Ablowitz–Ladik lattice, since we are interested in just the distribution
of the eigenvalues of E, we can consider the matrix �oddẼ�evenẼᵀ

, where

Ẽ = L̃M̃. (55)

As in theAL case, the eigenvalues of�even,�odd come in pairs, such that ifλ is an eigenvalue,
then also−λ−1 is an eigenvalue. The main difference with the case of the focusing AL lattice
is that in this case thematrix Ẽ is deterministic. Thus, one can be led to think that the eigenvalue
distribution of the Schur flow would be similar to the one of the AL lattice, but it is not the
case. Indeed, we perform several numerical investigations, reported in Fig. 7, which shows
that the behaviour of the eigenvalues is different in the two situations.

We notice that a consistent part of the eigenvalues tend to stay close to the real axis, see
Fig. 7. This behaviour is also typical of the orthogonal Ginibre ensemble [22]. The main
reason is that the eigenvalues of Ẽ are not evenly spaced on the unit circle, but they are
constrained to the left semicircle, and are more dense nearby ±i (see Fig. 8). Indeed we can
give an accurate description of the spectrum of this matrix.

More precisely, we have the following.

Proposition 6 Let Ẽ be the 2N × 2N matrix defined in (55). Its eigenvalues are the solutions
of the quadratic equations

λ + 1

λ
+ 1 = cos

(
2π j

N

)
, j = 0, 1, . . . , N − 1, (56)

counting the multiplicity.

Proof See Appendix 1.

Remark 8 From Eq. (56) we can infer the limiting distributions of the eigenvalues of Ẽ. We
already know all of its eigenvalues lie in the unit circle, hence we can write λ = eiϕ for some
ϕ ∈ [−π, π). Equation (56) thus becomes

eiϕ + e−iϕ + 1 = cos

(
2π j

N

)
⇐⇒ ϕ = arccos

(
1

2
cos

(
2π j

N

)
− 1

2

)
.

Passing to the limit N → ∞, by standard methods, we can compute the limiting density of
the argument ϕ of the eigenvalues as

μ(ϕ)dϕ =
(
1[ π

2 ,π ](ϕ) − 1[−π,− π
2 ](ϕ)

) sin ϕ dϕ

π
√
1 − (1 + 2 cosϕ)2

This behaviour is shown in Fig. 8.

Furthermore, as in the case of theAL lattice, for large β the eigenvalues tend to accumulate
on the unit circle, see Fig. 7. In a similar way as done for the focusing AL lattice we conclude
that the density of states of the random Lax matrix E in (49) with probability distribution
entries given by the Gibbs measure dμS in (53), converge in the limit β → ∞ to the uniform
measure on the unit circle.
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Fig. 7 Schur flow eigenvalue density for β = 5, 10, 20, 10,000 trials

8 Conclusions and outlook

In this manuscript, we underlined the deep relation between integrable systems and random
matrix theory. Specifically, we showed that the exponential Toda lattice, and the Volterra one
are related to the Laguerre β-ensemble at high temperature and the antisymmetric Gaussian
β-ensemble at high temperature respectively. As we already mentioned in the introduction,
these are not isolated and lucky relations, indeed the Toda lattice is related to the Gaussian β-
ensemble at high temperature, and the Ablowitz–Ladik one to the Circular β ensemble. Thus,
in view of the new relations that we obtained, we conclude that each classical β-ensemble in
the high temperature regime is related to some integrable model, see Table 1.

Furthermore, we numerically investigate the additive and multiplicative INB lattices,
which are a generalization of the Volterra one. Since the former lattice is related to the
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Fig. 8 Distribution of the eigenvalues arguments for the Ẽ (55), N = 5000

Table 1 β-Ensembles and integrable systems

β-Ensemble at high temperature Integrable system

Gaussian Toda lattice

Laguerre Exponential Toda lattice

Jacobi Defocusing Schur flow

Circular Defocusing Ablowitz–Ladik lattice

Antisymmetric Gaussian Volterra lattice

antisymmetric Gaussian β-ensemble, it may be possible that the INB lattice could be related
to some generalization of the antisymmetric Gaussian β-ensemble themselves.

Finally, we considered the focusing Ablowitz–Ladik lattice and the focusing Schur flow.
In view of our numerical investigations, we were able to formulate a precise conjecture
regarding the eigenvalues distribution of the focusing Ablowitz–Ladik lattice. Considering
the focusing Schur flow, wewere not able to formulate a precise conjecture for its eigenvalues
distribution. The expectation is that it would be related to the a possible Ginibre β-ensemble.

It would be fascinating to consider the generalized Gibbs ensemble for the exponential
Toda lattice and the Volterra one, and prove that both their empirical measures satisfy a Large
Deviation principle in the spirit of [33, 48]. Moreover, it would be interesting to apply the
theory of Generalized Hydrodynamic [13] to have some insight regarding the behaviour of
the correlation functions for these systems.
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Appendix A: Proof of Proposition 6

Recall that the matrix Ẽ is defined as Ẽ = L̃M̃ where L̃ and M̃ are as in (54). It is a block
circulant matrix, indeed we can write

Ẽ = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

E0 E1 E−1

E−1 E0 E1
. . .

. . .
. . .

. . .
. . . E1

E1 E−1 E0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with

E0 =
(−1 1

−1 −1

)
, E−1 =

(
0 1
0 1

)
, E1 =

(
1 0

−1 0

)
.

One can immediately check that λ = ±i are eigenvalues for Ẽ with eigenvectors

v±i = (∓i, 1,∓i, 1, . . . ,∓i, 1)ᵀ .

We now claim that, for fixed N , the remaining eigenvalues have multiplicity 2 and are the
(N − 1) solutions to �(λ)N = I2, where we defined

�(λ) =
(

λ −λ − 1

−λ − 1 λ2+2λ+2
λ

)
.

Such solutions are obtained by solving the equation

λ + 1

λ
+ 1 = cos

(
2π j

N

)
f or j = 0, . . . ,

⌊
N

2

⌋
. (57)

For j = 0 the solutions to (57) are ±i which we already treated separately. Indeed � (±i)
is not diagonalizable and �(±i)N �= I2 for every N greater than 0. For any other j ∈
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{1, . . . , ⌊ N
2

⌋}, the solutions to (57) are

λ1,2 =
cos
(
2π j

N

)
− 1

2
± i

√
3 + 2 cos

(
2π j

N

)
− cos2

(
2π j

N

)

2
. (58)

Since both the real and imaginary part are monotone functions of j , different j ′s will cor-
respond to different solutions. Hence, if N is odd, we will have a total of N − 1 solutions
coming from (58); if N is even one has N − 2 distinct solutions coming from the equation
in (57) plus the double solution λ = −1 obtained for j = N/2.

For a given eigenvalue λ, the corresponding independent eigenvectors are

v1 =
(
(1, 0)� (λ) , . . . , (1, 0)� (λ)N−1 , 1, 0

)ᵀ
,

v2 =
(
(0, 1)� (λ) , . . . , (0, 1)� (λ)N−1 , 0, 1

)ᵀ
.

Let us check the correctness of the claim. Write Ẽv1 := (w1, . . . , wN )ᵀ, where w j are two-
dimensional row vectors, then using the fact that � (λ)N = I2, one can compute for any
k = 1, . . . , N ,

w
ᵀ
k = 1

2

(
E−1 �(λ)−1 + E0 + E1 �(λ)

)
�(λ)k

(
1
0

)

= 1

2

((
λ + 1 λ

λ + 1 λ

)
+
(−1 1

−1 −1

)
+
(

λ −λ − 1
−λ λ + 1

))
�(λ)k

(
1
0

)

= λ · �(λ)k
(
1
0

)
,

which shows that v1 is an eigenvector with eigenvalue λ. The same proof clearly applies to
the other eigenvector v2.

Appendix B: Confluent Hypergeometric Functions

Appendix B.1: Tricomi Confluent Hypergeometric Function

The Tricomi Confluent Hypergeometric function ψ(a, b; z), that we introduced in Theorem
1, is defined as the solution of the Kummer’s equation

z
d2ψ

dz2
+ (b − z)

dψ

dz
− aψ = 0 , (59)

such that

ψ(a, b; z) ∼ z−a , z → ∞ , | arg(z)| ≤ 3

2
π − δ ,

here δ is a small positive constant. The origin is a regular singular point for this equation
with indexes 0 and 1 − b, moreover, this equation has an irregular singularity at infinity of
rank one. Usually, ψ(a, b; z) has a branch point at 0, whose principal branch is the same as
z−a , thus it has a cut on the z plane along the interval (−∞, 0].
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Appendix B.2:Whittaker Function

The Whittaker function Wμ,κ (z), that we introduced in Theorem 2, is defined as the solution
to the Whittaker’s equation

d2W

dz2
+
(

−1

4
+ κ

z
+ 1 − 4μ2

4z2

)
W = 0 ,

such that

Wμ,κ (z) ∼ e− z
2 zκ , z → ∞ , | arg(z)| ≤ 3

2
π − δ ,

here δ is a small positive constant. The Whittaker’s equation is obtained from Kummer’s

equation (59) via the substitution W = e− z
2 z

1
2+μψ(a, b; z), with κ = 1

2 (b − a), and μ =
1
2 (b − 1). It has a regular singularity at 0 with index 1

2 ± μ, and an irregular singularity at
infinity of rank 1. Moreover, the following equality holds

Wμ,κ (z) = e− z
2 z

1
2+μψ

(
1

2
+ μ − κ, 1 + 2μ; z

)
.

For a more general overview on Confluent Hypergeometric functions, we refer to [53,
Sect. 13], and [4, Chapter 13].
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