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portion, the trade-off represents the economics spec-
trum (S-R selection), but in the midvein portion, it 
reflects the mechanical constraints inherent to sup-
porting large leaves (i.e., varies with C-selection). 
We used microscopy and image analysis to determine 
the relative cross-sectional area of tissues from trans-
verse leaf sections (lamina and midvein portions) of 
angiosperms of contrasting CSR strategies. Principal 
components analysis (PCA) determined that the main 
trade-off (PCA1) was between mechanical/fibro-
vascular tissues vs. ICAS/epidermis/chlorenchyma, 
but that this was associated with the economics spec-
trum (R- to S-selection) in the lamina, and with size 
(C-selection) for the midvein. A secondary trade-off 
in both lamina and midvein portions involved ICAS 
(i.e., the internal gas diffusion pathway) vs. chlor-
enchyma/epidermis (light capture), associated with 
S- to R-selection, respectively. Our results confirm 
the expectation that ecological strategy variation has 
a basis in underlying trade-offs between tissues with 
contrasting metabolic/architectural (i.e., economics/
size-related) roles.

Keywords  CSR theory · Global spectrum · Grime · 
Leaf economics · Plant defence/defense · Plant 
functional type · Universal adaptive strategy theory

Abstract  Plant functioning depends on variation 
in resource economics traits (acquisition vs. con-
servation) and the size of plants and their parts (the 
‘global spectrum of plant form and function’). The 
anatomical basis of single traits (e.g., leaf mass per 
area; LMA) is generally understood, but little is 
known regarding the relationship between anatomical 
trade-offs and ecological strategies (representing inte-
grated suites of traits). We hypothesised correlations 
between the relative extent of leaf tissue types and 
Grime’s Competitor Stress-tolerator Ruderal (CSR) 
strategies, principally a trade-off between structural 
(mechanical/fibro-vascular) vs. photosynthetic (chlor-
enchyma and intercellular airspace; ICAS) tissues, 
for ecologically contrasting herbaceous angiosperms 
in northern Italy. Specifically, that in the lamina 
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Introduction

Vascular plant adaptive radiation involves the evolu-
tion of various aspects of phenotype operating across 
a range of scales, from molecular, cellular, organ 
and whole plant life history characters. Adaptive or 
functional traits (characters that affect survival) and 
plant ecological strategies are typically measured and 
analysed at the level of organs (leaves, roots, stems, 
flowers and dispersules) and the whole plant (e.g., 
integrated suites of traits including canopy height, 
biomass production and relative growth rate, and 
the timing of reproductive events). At this scale, dif-
ferential expression of traits reflects fundamental 
trade-offs in resource and biomass investment (Grime 
1965), the importance of which has been confirmed 
worldwide (Díaz et  al. 2016) and is known to limit 
plant adaptation to tenable trait combinations. The 
principal trade-off involves “attributes conferring an 
ability for high rates of resource acquisition in pro-
ductive habitats and those responsible for retention of 
resource capital in unproductive conditions” (Grime 
et  al. 1997), resulting in “a spectrum of plant func-
tional types which in terms of resource processing 
range from ‘the acquisitive’ to ‘the retentive’ and cor-
respond respectively to highly productive and chroni-
cally unproductive vegetation” Grime and Mackey 
(2002). This is now widely recognised as the ‘plant 
resource economics spectrum’ (Freschet et al. 2010) 
or ‘plant structural economics spectrum’ (Verbeeck 
et al. 2019), which is represented in different organs 
as the ‘leaf economics spectrum’ (Wright et al. 2004; 
Reich 2014), the ‘root economics spectrum’ (e.g., de 
la Riva et  al. 2021) and the ‘wood economics spec-
trum’ (Chave et  al. 2009). The second main axis of 
functional trait variability involves plant and organ 
size traits, which together with the economics spec-
trum form the ‘global spectrum of plant form and 
function’ (Díaz et  al. 2016). Beyond this ‘primary’ 
trade-off, ‘proximal’ traits are specific characters in 
response to selection pressures acting at particular 
moments of the life cycle: for instance, reproduc-
tive traits such as the pollination syndrome or seed 
dormancy breaking requirements (Grime and Pierce 
2012). Integration of functional traits into ecologi-
cal strategies is also a key concept because plant fit-
ness may ultimately depend on the optimization of 
trait integration along the trade-off axes more than it 
does on the performance of any single trait (Guo et al. 

2018). Indeed, while investigation of single traits can 
reveal the variability of each trait, only when traits 
are considered together as suites or ‘strategies’ can 
the trade-offs underpinning the functional response 
and adaptation of species be discerned (discussed by 
Grime and Pierce 2012).

Crucially, the extent to which plant and organ-
level trade-offs are evident at smaller scales, such 
as tissues or cells, is little understood, although the 
partitioning of essential hydrocarbons and minerals 
between tissues with contrasting roles is likely to be 
fundamental to plant functioning (Grime and Pierce 
2012). To date these fine-scale physiological and ana-
tomical/structural trade-offs have been investigated 
only in the context of specific traits, including sized-
related traits such as leaf area (Wright et  al. 2017), 
leaf venation and the hydraulic capacity of differently 
sized leaves (Sack and Frole 2006; Sack and Scof-
foni 2013) and, separately, leaf economics traits such 
as leaf mass per area (LMA) or its inverse, specific 
leaf area (SLA) (Hassiotou et  al. 2010; Villar et  al. 
2013; del la Riva et al. 2016; Xiong et al. 2016; Guo 
et al. 2017; John et al. 2017; Onoda et al. 2017; Bel-
luau and Shipley 2018). For instance, greater LMA 
of deciduous trees is related to the ratio of mesophyll 
(chlorenchyma tissue) to intercellular airspace and 
epidermis (Villar et  al. 2013). Reduced intercellular 
airspace is known to reduce mesophyll conductance 
to internal CO2 diffusion, limiting photosynthetic 
rates (see Ye et  al. (2020) and references therein). 
Indeed, LMA is a product of the density and thick-
ness of leaves (Niinemets 2001), specifically due to 
the extent of investment in cell wall material and the 
trade-off between a cell size and number, expected to 
“be affected by the proportion of different types of tis-
sues in the leaf” (Shipley et al. 2006). LMA responds 
to environmental parameters such as solar irradi-
ance, temperature, precipitation and, by extension, 
site aridity (Niinemets 2001; see also Grubb et  al. 
2015). It is also clear that the relative extent of tissue 
types comprising leaves varies with environmental 
factors, such as elevation (Liu et al. 2021), tempera-
ture, aridity and soil nutrient availability (Tian et al. 
2016). Some size-related traits, particularly involv-
ing leaf venation (vein length per unit leaf area) are 
involved in determining hydraulic conductance and 
thus influence physiological traits involved in the 
leaf economics spectrum, such as mass-based photo-
synthetic rates and stomatal conductance (Sack et al. 



1235Plant Ecol (2022) 223:1233–1246	

1 3
Vol.: (0123456789)

2013). However, variation in the extent of different 
tissue types and thus functions has not been explic-
itly investigated in the context of the wider ‘global 
spectrum’ trade-off between economics and size (i.e., 
how anatomical features and roles trade-off against 
one another as part of the general adaptive strategy of 
each species).

Notably, while resource economics variation is a 
property of the entire leaf, large leaves exhibit exten-
sive lamina area but must be physically supported by 
prominent mechanical/vascular venation, in particular 
the main midvein, suggesting a division of ‘photo-
synthetic’ and ‘supportive’ roles between the lamina 
sensu stricto and venous portions. Thus, is it reason-
able to predict a prominent division of tissue types 
(mesophyll chlorenchyma vs. mechanical/vascular) 
between lamina and venous leaf portions for species 
with larger leaves. Crucially, this generally agrees 
with Li et  al.’s (2017) concept of modular function, 
whereby leaf tissue types reflect three main ‘mod-
ules’: the light capture module (essentially chloren-
chyma), water-nutrient flow (vascular tissues) and 
gas exchange (intercellular airspace and the CO2 dif-
fusion pathway to stomata). Mechanical tissues could 
be said to represent a fourth ‘support’ module, but 
are often integrated with vascular bundles as xylary 
reinforcement.

How can we relate anatomical trade-offs to mac-
roscopic functional trait trade-offs and plant adaptive/
ecological strategies?

A leading theory of plant strategies that can pro-
vide a general explanation for the evolution of the 
joint economics and size trade-off (i.e., that consid-
ers the context of the natural selection pressures that 
delimit plant functioning) is Grime’s (1974) CSR 
(Competitor, Stress-tolerator, Ruderal) theory (dis-
cussed by Pierce and Cerabolini 2018; also Grime 
and Pierce 2012, Pierce and Fridley 2021). Competi-
tor species dominate stable, resource-rich habitats by 
pre-empting resources using traits permitting rapid 
growth to large size (i.e., large ‘size of whole plants 
and their parts’, sensu Díaz et al. 2016). Stress-tolera-
tors dominate in habitats where limiting and variable 
abiotic factors constrain metabolic performance, and 
are robust and slow-growing (conservative resource 
economics), some eventually becoming large. Rud-
erals dominate in habitats where biomass is periodi-
cally destroyed (disturbance) and are characterised 
by rapid growth using extremely ephemeral leaves 

(acquisitive economics), with populations persisting 
as propagules rather than mature individuals. Aside 
from this theoretical context, the CSR scheme also 
provides a practical quantitative framework for the 
comparison of individuals and species. In practice, 
quantification of CSR strategies is performed using 
leaf functional traits that represent resource econom-
ics and size trade-offs (Cerabolini et al. 2010; Pierce 
et al. 2012, 2013). Specifically, the resource econom-
ics spectrum (S to R-selection) is determined from 
leaf fresh and dry mass and area measurements that 
allow calculation of structural/photosynthetic tissue 
density traits. A leaf size axis arising perpendicular to 
this terminates in the extreme of C-selection (Pierce 
et al. 2013). The CSR score represents not economics 
or size per se, but the trade-off between these multiple 
functions.

Calculation of CSR strategies is relevant to ecol-
ogy across a range of scales encompassing the centi-
metre-scale of species coexistence within communi-
ties (Pierce et al. 2014) to biomes at the global scale 
(Pierce et  al. 2017). Indeed, CSR analysis has been 
used to predict vegetation responses such as local 
scale shifts in plant community composition along 
succession gradients (Zanzottera et al. 2020), regional 
scale functional shifts in response to climate and soil 
(Dalle Fratte et  al. 2019a; Zhang and Wang 2021) 
and can help explain species global and native range 
sizes (Liao et al. 2021). Specifically, the CSR analy-
sis method of Pierce et al. (2017), calibrated using the 
global-scale economics/size trade-off, is now a well-
established method applied worldwide to explain 
intra- and interspecific functional variability and 
environmental responses for wild plants in natural 
circumstances (e.g., Dayrell et al. 2018, Vasseur et al. 
2018; Dalle Fratte et al. 2019b; Dudova et al. 2019; 
Baltieri et  al. 2020; Behroozian et  al. 2020; Giup-
poni 2020; Ferré et  al. 2020; Escobedo et  al. 2021; 
Fernandes et  al. 2021; Han et  al. 2021; Hooftman 
et al. 2021; Lazzaro et al. 2021; Mugnai et al. 2021; 
Tameirão et  al. 2021; Watkins et  al. 2021; Bricca 
et  al. 2022; Fletcher et  al. 2022; Han et  al. 2022; 
Seele‐Dilbat et al. 2022; Yu et al. 2022). It provides 
both a dependable method and theoretical context for 
comparing plant functional variability.

To what extent are different tissue types with dif-
ferent functions associated with CSR strategy varia-
tion? To a limited extent, this has been investigated 
within the Poaceae family (Pierce et  al. 2007), for 
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which greater intracellular airspace (decreased resist-
ance to CO2 diffusion for photosynthesis) was posi-
tively associated with R-selection (and negatively 
with S-selection). However, beyond this single fam-
ily, we hypothesise that anatomical/ecological strat-
egy associations may be generally evident across a 
broader taxonomic range of Angiosperms. Here, we 
quantify the relative extent of leaf tissue types for 
species with known, measured CSR strategies from 
a range of flowering plant families, to investigate the 
specific hypotheses that (1). R- to S-variation is asso-
ciated with an increasing extent of mechanical and 
fibro-vascular tissues and decreasing relative extent 
of mesophyll chlorenchyma, and (2). C-selected spe-
cies exhibit a particularly strong contrast between 
lamina (optimised for metabolic function) and mid-
vein (optimised for mechanical support) leaf portions.

Materials and methods

Plant material

Herbaceous angiosperm species were chosen based 
on several criteria: availability of quantitative CSR 
strategy scores (the extent of C-, S-, and R-selection 
expressed in %) in the global dataset of Pierce et al. 
(2017), prevalence (and/or dominance) of the species 
in contrasting habitats (productive, unproductive or 
disturbed), tendency towards an extreme of the CSR 
triangle, the local availability of wild plant material, 
phylogenetic coverage (i.e., representing major clades 
of both dicots and monocots; see One Thousand 
Plant Transcriptomes Initiative (2019) for a recent 
and comprehensive plant phylogeny). These criteria 
underpinned the choice of 21 species that broadly 
represent CSR strategy variation (Fig.  1), for which 
the more labour-intensive work of anatomical inves-
tigation was conducted. Full species names, includ-
ing authorities, are available in Table  S1, alongside 

Fig. 1   The CSR ecological strategies of the study species 
encompass the three extremes of Grime’s CSR triangle, as 
determined by the StrateFy CSR classification tool of Pierce 
et al. (2017). Inset shows the CSR triangle in the context of the 

global spectrum of plant form and function (Díaz et al. 2016), 
comprising the resource economics spectrum and the plant/
organ size spectrum
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information on the collection location for each set of 
leaf samples for each species.

CSR scores from Pierce et  al. (2017) were pre-
viously calculated based on the trade-off between 
values of specific leaf area (SLA), leaf dry matter 
content (LDMC) and leaf area (LA) (calculated 
from leaf fresh weight, dry weight and area meas-
urements), which represent positive and negative 
extremes, respectively, of leaf economics, and size 
variation. The precise method is detailed in two 
methodological papers (Pierce et  al. 2013; 2017), 
see Table  S1 for details of the C, S and R scores 
of each species used in the present study. These 
measurements were not repeated here: data from 
Pierce et al. (2017), from the same geographic area 
and populations as the present study, were used 
directly.

For each species, eight undamaged, young and 
fully expanded leaves were collected, each leaf rep-
resenting a separate individual plant. Leaves were 
collected towards the end of spring, from individu-
als still in the vegetative, rather than reproductive, 
phase of the life cycle. Leaves were excised at the 
base and placed in a fixative solution of formalin-
acetic-80% alcohol (1:1:8; FAA) at ~ 4  °C (in the 
field, in a cool-bag over icepacks, in the laboratory, 

in a refrigerator). After 24  h, samples were trans-
ferred to 70% ethanol which was replaced with 
fresh 70% ethanol after a further 24  h, followed 
by longer-term storage at 4  °C before sample 
sectioning.

Histology

To rapidly and economically process a large num-
ber of samples, a simple and original method for the 
visualization of leaf tissues was set up. Fixed leaves 
were washed thoroughly with distilled water and 
a leaf portion of about 2 × 0.5  cm was excised from 
approximately half-way along the length of the leaf 
lamina with a sharp razor blade. For small leaves not 
exceeding 2 cm in width, a transverse section of the 
whole lamina was cut, perfectly perpendicular to the 
lamina. Leaf portions were then affixed with double-
sided tape on the side of a transparent plastic block 
mounted on a microscope slide, aligning the cut edge 
of the leaf with the edge of the block. The cut edge 
was then stained by exposure to 0.2% toluidine blue 
O (Merck) micro-pipetted onto the sectioned surface 
for 5–15  min, depending on the plant species, fol-
lowed by washing with distilled water and placing of 
a coverslip (Fig.  2). Finally, the block was mounted 

Fig. 2   Explanatory illustration of the novel set up for the rapid 
yet precise processing of hand cut transverse leaf sections. 
For each species, replicate leaf portions (~ 2 × 0.5 cm) excised 
from approx. half-way along the length of the leaf lamina 
were affixed with double-sided tape to the side of a transpar-

ent plastic block mounted on a microscope slide. The cut edge 
was stained with 0.2% toluidine blue O micro-pipetted onto the 
sectioned surface for 5–15 min followed by washing with dis-
tilled water and placing of a coverslip
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on a microscope slide and observed by an Olympus 
BX50 microscope (Tokyo, Japan), illuminating the 
cut surface of the leaf with fibre optics in proximity 
to the objective. Observations were carried out with 
a 10 × or 20 × objective and digital images recorded. 
Due to the large scale of many of the leaf samples and 
depth of field limitations (and thus difficulty in focus-
sing across the sample), a focus stacking technique 
was employed: a z-axis stack of photomicrograph 
frames was produced for each section, to ensure that 
focussed image portions were available for the entire 
field of view. CombineZP image stacking software 
(Alan Hadley; alan@micropics.org.uk) was used 
to automatically stitch together focussed portions 
of frames for each leaf section, using the ‘pyramid 
weighted average’ method. As multiple images were 
obtained per Section (10 frames per stack), two leaf 
portions were analysed (lamina and midvein) with 
eight replicates for 21 species, a total of 3360 images 
were used in the present study.

Image analysis

Digimizer software (v.4.6.1; MedCalc Software Ltd., 
Ostend, Belgium) was used to quantify the relative 
cross-sectional area of each tissue type in each trans-
verse section (i.e., for each digital image, the perim-
eter of each tissue type was traced by hand and then 
measured in units of square pixels, or px2), for (1). 
an area of leaf lamina, and (2). an area encompass-
ing (and limited to) the main leaf vein portion (see 
Fig.  3 for details and examples). The midvein por-
tion was identified based on the presence of the larg-
est vascular bundle within the leaf, and delimited by 
placing a rectangular mask over the section (sensu 
Fig. 3C), within which the relative extent of different 
tissue types was determined. Tissue type classes were 
epidermis (adaxial plus abaxial epidermis, including 
cuticle), mechanical (extra-xylary sclerenchyma plus 
collenchyma), fibro-vascular (vascular tissues plus 
associated xylary sclerenchyma and collenchyma), 
chlorenchyma (chlorophyllous mesophyll paren-
chyma) and intercellular airspace (ICAS). The mean 
(± S.E.) proportion of leaf sections comprising each 
tissue type was calculated for lamina and for midvein 
portions.

Data analysis

All data (CSR scores and tissue proportions) were log 
transformed as a standard means of normalising data 
of disparate types prior to multivariate analysis (prin-
cipal components analysis; PCA) and regression anal-
ysis. PCA was performed using Multi-Variate Statis-
tical Package (MVSP v.3.13o; Kovach Computing 
Services, Anglesey, Wales), Pearson’s correlations 
matrices were produced using SYSTAT 12 (Systat 
Software, Chicago, IL, USA), and linear regressions 
and associated analysis of variance (ANOVA) were 
performed with SigmaPlot 10 (Systat Software).

Results

Examples of leaf sections used in the study are pre-
sented in Fig.  3. The main multivariate analysis, a 
PCA of interspecific variation in CSR strategy and 
the extent of tissue types, is presented in Fig. 4. With 
regard to the lamina portion of the leaf (Fig. 4A), the 
first two axes of variability (PCA1 and 2) accounted 
for 86.5% of variability in the dataset, and repre-
sented a main axis of variability in leaf economics, 
positively correlated with S-selection (Pearson’s cor-
relation coefficient (r) = 0.491) and negatively with 
R-selection (r = -0.492). This was associated with 
variation between the extent of mechanical and fibro-
vascular tissues (positively along PCA1) and the 
extent of intercellular airspace, epidermis and chlor-
enchyma (negatively). PCA2 was associated again 
with S- and R-selection (positively and negatively, 
respectively) but with variation mainly in intercellu-
lar airspace (with S-selection) and the extent of epi-
dermal tissues (with R-selection). A secondary trade-
off (PCA2; Fig.  4A) involved intercellular airspace 
(positively) vs. chlorenchyma/epidermis (negatively), 
associated with S- to R-selection, respectively.

For the midvein portion, PCA axes 1 and 2 
accounted for 91.6% of the variability in the dataset 
(Fig.  4B). PCA1 was an axis of size characterized 
by variation in greater mechanical tissues and less 
intercellular airspace (associated with C-selection; 
r = 0.518), compared to smaller-leaved (R-selected) 
species with greater airspace and epidermis, and 
fewer mechanical tissues in the midvein portion 
(Fig.  4B). As with the lamina portion, a secondary 
trade-off involving intercellular airspace (positively) 
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Fig. 3   The use of 
Digimizer software to 
determine the relative cross-
sectional area occupied by 
different tissues, in this case 
a transverse section of the 
midvein portion of a leaf 
of Aruncus dioicus (A). B 
and C show how lamina 
and midvein portions, 
respectively, were defined 
(i.e., the relative extent of 
tissue types was determined 
within the area delimited 
by the yellow box), for the 
example of Galium aparine. 
Further photomicrographs 
represent examples of 
transverse sections used in 
this study, and include (D). 
Cerastium vulgare, (E). 
Eriophorum vaginatum, 
(F). Arctium lappa (midvein 
section only), (G). Nardus 
stricta 
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vs. chlorenchyma/epidermis (negatively), associated 
with S- to R-selection (respectively), was also evi-
dent for the midvein portion (PCA2; Fig. 4B). Thus, 
lamina and midvein portions differed, the main trade-
off in the lamina being one of economics (and R- to 
S-selection) and the main trade-off in the midvein 
portion reflecting the degree of mechanical support 
vs. physiological function, and C-selection. Notably, 
the secondary trade-off (PCA2) was between inter-
nal space for gas diffusion vs. physiologically active 
cells.

The trade-offs evident in the multivariate analy-
sis were also evident as single correlations between 
pairs of characters (Fig. 5). These single correlations 
were highly variable but statistically significant. For 
instance, the positive correlation between the extent 
of mechanical tissues in the leaf lamina and the extent 
of S-selection was highly variable (R2 = 0.271) but 
with a high degree of confidence that an increase 
in S-selection is associated with more extensive 
mechanical tissues (p = 0.015; Fig. 5A). Thus, while 
it is possible to state that these relationships exist, a 
great deal of caution should be exercised if attempt-
ing to use values of one parameter to directly predict 
or calculate values of another.

Discussion

The results support the expectation that differential 
investment between tissue types is apparent between 
CSR strategies. As hypothesized, and supported by 
Figs. 4 and 5, S-selection is associated with relatively 
tough lamina portions (i.e., with extensive extra-
xylary mechanical tissue and fibro-vascular tissue). 
This is in agreement with Grime’s (1974) sugges-
tion that the leaves of stress-tolerators are inherently 
tough and well defended against herbivory (‘consti-
tutive defence’; see Pierce et  al. 2005). R-selection 
is associated with soft leaves (i.e., fewer mechanical 
tissues) and extensive mesophyll, both in the lamina 
and midvein portions. This represents an adapta-
tion to extremely rapid growth without much capac-
ity to support the leaf, either in terms of constitutive 
defence or physical support to allow overtopping of 
competing plants. C-selection is not associated with 
any particular investment trade-off in the lamina por-
tion (it exhibits extremely weak correlations with axes 
of variability; Fig. 4), but in the midvein region, it is 
characterised by extensive investment in fibro-vas-
cular and mechanical tissues which trade-off against 
photosynthetic tissues (intercellular airspace as the 

Fig. 4   Principal Components Analysis (PCA) demonstrating 
the associations between leaf tissue types (the relative extent 
of epidermis, mesophyll chlorenchyma, mechanical, fibro-vas-
cular and intercellular airspace) from transverse sections of the 
leaf lamina (A) and the midvein section (B) for a range of eco-

logically contrasting species from northern Italy. Values along 
axes represent Pearson’s correlation coefficients (r) between 
C-, S- and R-selection and PCA axes (1.000 = perfect positive 
correlation, 0.000 = no correlation, -1.000 = perfect negative 
correlation)
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pathway between stomata and chlorenchyma cells and 
thus chloroplasts, chlorenchyma as the site of photo-
synthetic CO2 fixation, and epidermis). This reflects 
the adaptation of C-selected species to produce large 
leaves that must be mechanically well supported, but 
also include regions of thin, parenchymatous lamina 
to facilitate gas exchange and light acquisition, with 
different portions of the leaf optimised for these pho-
tosynthetic and supportive functions.

Thus, the tissues of the lamina portion exhibit a 
trade-off involving ‘soft’ to ‘hard’ leaves and R- to 
S-selection, but not C-selection. This suggests that 
the lamina portion is governed by resource economics 
(i.e., acquisitive to conservative physiology, respec-
tively). In contrast, the midvein exhibited a strong 
gradient of mechanical and fibro-vascular tissues 
associated with C-selection, suggesting that the leaf 
size spectrum is specifically associated with variation 
in supporting veins and is governed by the develop-
ment mainly of the midvein region. Despite attempts 
to understand how leaf size and particularly venation 
traits could be linked to the leaf economics spectrum 
(e.g., Sack et al. 2013), these results suggest a degree 
of separation between ‘metabolic’ and ‘support’ func-
tions, and that Li et  al.’s (2017) functional modules 
(i.e., the light capture module, the water-nutrient flow 
module and the gas exchange module) are a realistic 
way of conceptualising leaves. Li et  al. (2017) pro-
posed this system because different species can share 
a similar position along the leaf economics spectrum 
but differ in particular traits, and functional modules 
provide an alternative point of view for considering 
the evolution of leaf functioning that can account 
for internal anatomical differences, rather than the 
‘whole leaf’ measurements typically used to investi-
gate the leaf economics spectrum. In other words, dif-
ferent internal functions and tissues are subject to dif-
ferent natural selection pressures. Our results suggest 
that both leaf economics and leaf functional module 
approaches are useful: leaves comprised functional 
modules which are more (or less) involved in manag-
ing resource economics. We should add that in addi-
tion to Li et  al.’s (2017) three modules, our sugges-
tion (see Introduction) that it may be useful to add a 
specific ‘structural’ module delimited by mechani-
cal tissues found some support from the fact that 
the main trade-off seen in the lamina was between 
mechanical tissues and intercellular airspace (much 
less so for chlorenchyma; Fig.  4). Indeed, Li et  al. 

(2017) restricted their considerations to the lamina 
portion of a typical dicotyledonous dorsoventral leaf 
(i.e., with distinct palisade and spongy chlorenchy-
mas), rather than the leaf as a whole (i.e., including 
midvein and petiole regions). Further complications 
could arise from the fact that most monocots exhibit 
isobilateral leaves, the internal differences being more 
between chlorenchyma externally vs. hydrenchyma 
or aerenchyma internally. Rather than Li et  al.’s 
(2017) ‘water-nutrient flow’ module, we found that 
mechanical tissues co-varied with fibro-vascular tis-
sues (Fig. 4), suggesting that it would be more precise 
to state that mechanical and vascular tissues together 
form a ‘physiological and physical support’ module. 
Indeed, because xylem elements are necessarily rigid 
(to maintain form and function despite internal pres-
sure changes), xylem has always had a structural sup-
port role and a strong influence on the evolution of 
vascular plant architectural traits. Mechanical tissues 
often add their support directly next to vascular tis-
sues (but not in the case of ‘extra-xylary’ mechani-
cal tissues such as most collenchyma and some fibre 
bundles), and it is evident that ‘water-nutrient flow’ 
is intimately linked to physical support. Certainly, 
for C-selected species, the ‘support module’ repre-
sents one of the principle axes of adaptation, under-
pinning the size spectrum of Díaz et  al. (2016) and 
the leaf venation/size relationships that are evident in 
the global flora (Sack and Scoffoni 2013). Ultimately, 
these results confirm that ecological strategy spectra 
do have a basis in differential investment at the level 
of tissues—something that has largely been assumed 
(e.g., Pierce et  al. 2005; Grime and Pierce 2012) 
rather than directly investigated.

As a potential complication, note that the single 
correlations between CSR strategy scores and the 
extent of tissue types (Fig.  5) are statistically sig-
nificant but highly variable. This variability can be 
interpreted in two ways: that the integration of mul-
tiple traits is more crucial to plant functioning than 
any single trait (Guo et al. 2018), or that this vari-
ability simply represents limitations to the dataset. 
Indeed, the analysis is based on ‘hard’ traits (Hodg-
son et al. 1999), i.e., traits representing a fundamen-
tal property of plant functioning but that are labour 
intensive to acquire. In this case, sample prepara-
tion, microscopy and image analysis represent three 
sequential time-consuming processes prior to data 
analysis, leading to a compromise regarding the 



1242	 Plant Ecol (2022) 223:1233–1246

1 3
Vol:. (1234567890)



1243Plant Ecol (2022) 223:1233–1246	

1 3
Vol.: (0123456789)

number of species that can be included consider-
ing the human resources available. Additionally, 
C-selected species, by definition, exclude other 
species, leading to low species richness in com-
petitor-dominated plant communities (Cerabolini 
et al. 2016). This means that while a plant commu-
nity dominated by stress-tolerators or ruderals may 
provide various examples of S- or R-selected spe-
cies, it is relatively difficult to encounter strongly 
C-selected species, limiting the choice of species 
that can be collected and used. Indeed, in the pre-
sent study, species do not represent the extremes of 
C- and S-selection as two simple groups, rather they 
represent a gradient from strongly S-selected to 
strongly C-selected species, with variation between 
these extremes (Fig. 1). This is sufficient, as results 
of the multivariate analysis are statistically signifi-
cant and support the hypotheses, but a well-funded 
study with sufficient resources could undoubt-
edly investigate a much broader range of species, 
reducing variability in the dataset and improving 
precision.

In conclusion, our data confirm the expectation 
that ecological strategy variation has a basis in under-
lying trade-offs between tissues with contrasting met-
abolic and structural roles.
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