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a b s t r a c t 

The outbreak of SARS-CoV-2 and the corresponding surge in patients with severe symptoms of COVID-19 

put a strain on health systems, requiring specialized material and human resources, often exceeding the 

locally available ones. Motivated by a real emergency response system employed in Northern Italy, we 

propose a mathematical programming approach for rebalancing the health resources among a network of 

hospitals in a large geographical area. It is meant for tactical planning in facing foreseen peaks of patients 

requiring specialized treatment. Our model has a clean combinatorial structure. At the same time, it con- 

siders the handling of patients by a dedicated home healthcare service, and the efficient exploitation of 

resource sharing. We introduce mathematical programming heuristic based on decomposition methods 

and column generation to drive very large-scale neighborhood search. We evaluate its embedding in a 

multi-objective optimization framework. We experiment on real world data of the COVID-19 in Northern 

Italy during 2020, whose aggregation and post processing is made openly available to the community. 

Our approach proves to be effective in tackling realistic instances, thus making it a reliable basis for 

actual decision support tools. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

In the last two decades epidemics of several infectious dis- 

ases emerged with increased frequency, in some cases reaching 

ontinental or global scale ( Jain, Duse, & Bausch, 2018 ). This is 

ue to a combination of factors, such as proximity of urban areas 

nd wildlife ( Cunningham, Daszak, & Wood, 2017 ), globalization of 

ourism and of the commercial exchanges ( McMichael, 2013 ), cli- 

ate changes ( McMichael, 2013; Shuman, 2010 ). The harm posed 

y epidemics is primarily measured in terms of human losses and 

ealth consequences; moreover, responses to epidemics emergen- 

ies typically entail high societal and economic costs (see Nicola 

t al., 2020 for an account of diverse socio-economic consequences 

f the recent COVID-19 epidemic in high-income countries). These 

onsiderations explain the increasing attention of national and in- 

ernational public health agencies toward science-based manage- 

ent of epidemic emergencies. In this context, Operations Re- 

earch (OR) plays a central role, providing effective methods to 

upport decision-making in epidemics control ( Silal et al., 2021 ) 

nd more generally in large-scale emergencies ( Stilianakis & Con- 

oli, 2013 ). 

The outbreak of SARS-CoV-2 and the corresponding surge in pa- 

ients with severe symptoms of COVID-19 put a strain on health 
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ystems. The treatment of COVID-19 patients requires special- 

zed material and human resources, often exceeding the available 

mount. To provide them with the best possible service, a reloca- 

ion of health resources between areas in need and areas with a 

urplus may be put in place. 

In this paper we propose a mathematical programming ap- 

roach for rebalancing the health resources among hospitals of a 

arge geographical area to face a foreseen surge in incoming pa- 

ients requiring specialized treatment. The rebalancing includes the 

epurposing of hospital wards, the relocation of medical staff and 

edical resources, the assignment of incoming patients to suitable 

ards, the relocation of inpatients between wards, the allocation of 

edical resources available at external suppliers, and as a last re- 

ort the selective discharge of mild patients, possibly through ded- 

cated home healthcare services. Our idea is illustrated in Fig. 1 , 

nd we later formalize the overall problem as a mixed-integer lin- 

ar programming (MILP). Its core stems from the so-called facility 

ocation-allocation problems, which arise not only from epidemics 

anagement but also from industrial applications: actually, the re- 

alancing problem described above extends and combines several 

eatures of existing facility location-allocation variants and, as such, 

t has not been treated before. 

The problem considered in this paper has relevance at various 

tages, as it asks to improve the preparedness of the health sys- 

em in the face of a long-lasting epidemic. We focus on the tactical 

spect: the solutions of our methods let decision makers (a) per- 

orm a scenario-based validation of the health system resistance 
the impact of resource relocation in facing health emergencies, 
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Fig. 1. Graphical example of the problem under study: a pandemic outbreak leads to a surge of incoming patients in a geographical area; to serve these latter, all hospitals 

of the area ( H 1 , H 2 and H3 ) need to redistribute both inpatients and resources among them; resources can be provided by external suppliers, inpatients can be discharged. 

Redistributions can happen also among wards of a single hospital, and a ward can be repurposed to host different type of patients. 
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epending on the intensity of the epidemic, and (b) reorganize the 

ystem in case one of the considered scenarios occurs. 

To solve our problem we introduce a mathematical program- 

ing heuristic algorithm exploiting MILP decomposition methods 

nd column generation algorithms. These are used to drive a very 

arge-scale neighborhood search (VLSNS) procedure. The effective- 

ess of our MILP approach is evaluated from two perspectives. 

irst, we assess its practical applicability to deal with problems 

rising from real-world situations. This includes the possibility of 

olving large-scale optimization problems populated with real data. 

econd, we consider its flexibility in prospective decision support 

ools. We consider various key performance indicators related both 

o the quality of service provided to the patients and to the eco- 

omic effort arising from the implementation of the MILP solu- 

ions, adapting our algorithms to perform bi-objective optimiza- 

ion. 

We perform scenario-based experiments, simulating the appli- 

ation of our model to the first wave of COVID-19 infections in 

ombardy, a region of Northern Italy, during Spring 2020. The ex- 

erimental results show that our methodology is effective both in 

erms of computational efficiency and in terms of solution quality. 

Outline . This paper is organized as follows. In Section 2 we 

ighlight similarities and novelties of our work with respect to 

he existing approaches for related variants of facility location- 

llocation problems. In Section 3 we provide our model, composed 

f a core of combinatorial features that may appear in generic 

ebalancing problems, and constraints arising from real-world 

mergency-specific features. In Section 4 we detail our mathemat- 

cal programming heuristic and its embedding in a bi-objective 

ptimization approach. To assess their computational effectiveness 

ur algorithms are tested experimentally in Section 5 , relying on 

 parametric analysis. We assess the value of our approach by 

omparing it to an adaptation of the exact algorithm of Corberán, 

andete, Peiró, & Saldanha-da Gama (2020) to our problem. The 

onclusions of our research are given in Section 6 . 

. Literature review 

The literature on OR applications to epidemics logistics and 

arge-scale emergencies is vast. Indeed, the scarcity of health re- 

ources is a critical issue triggering actions and reactions of dif- 
2

erent players. A full survey is beyond the scope of this section. 

e therefore refer the reader to Dasaklis, Pappis, & Rachaniotis 

2012) and to Altay & Green (2006) for extensive literature reviews 

n these topics. 

A first line of research that is strictly related with our work 

s the optimal location of facilities during large-scale emergen- 

ies ( Boonmee, Arimura, & Asada, 2017 ). Problems of this type sub- 

ume the well-known facility location-allocation (FLA) problem, a 

ombinatorial optimization problem where a set of facilities must 

e opened in either predetermined candidate sites ( discrete FLA ) 

r in a continuous region ( continuous FLA ) and customers must be 

llocated to the opened facilities so to cover the total customers’ 

emand while minimizing the location and allocation costs. FLA 

roblems naturally arise in business logistics ( Klose & Drexl, 2005; 

elo, Nickel, & Saldanha-Da-Gama, 2009 ). As such, classical FLA 

roblems often overlook system congestion, facility unavailability 

nd heterogeneity, resource scarcity and time-dependent demands, 

hich instead characterize large-scale emergency applications, Jia, 

rdóñez, & Dessouky (2007a) . 

FLA problems taking into account such emergency aspects are 

rst introduced in Jia et al. (2007a) and Jia, Ordonez, & Dessouky 

2007b) . These two works adapt classical combinatorial optimiza- 

ion problems (such as the p-median, the p-center and the max- 

mum covering problems, see e.g., Ahmadi-Javid, Seyedi, & Syam, 

017 ) and also stress the concept of quality of service in the mod- 

ling phase. 

Two additional studies relevant to our discussion are pre- 

ented in Ekici, Keskinocak, & Swann (2008) and Carr & Roberts 

2010) , where simulation models forecasting commodity demands 

re combined with algorithms to minimize the cost of locating 

mergency facilities needed to satisfy the demands. In both works, 

he optimization problem is modelled as an integer linear program 

ILP) and is resolved iteratively over a rolling time horizon, updat- 

ng dynamically the total commodity demand through the forecast- 

ng model. Ekici et al. (2008) considers the distribution of a single 

ommodity through facilities belonging to a three-levels supply- 

hain and allows demand split, while Carr & Roberts (2010) con- 

iders a multi-commodity distribution without demand split but 

nder resource-customer compatibility constraints. In our paper 

e combine several of these aspects: we model the presence of a 

lobal supplier and the redistribution of multiple health resources 
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e.g., physicians, ventilators, beds) among the facilities, taking into 

ccount compatibility and demand split aspects. 

Addressing the aspect of unavailability of facilities during 

mergencies, the research proposed in Huang, Kim, & Menezes 

2010) develops a dynamic programming algorithm for solving, on 

 path network, a specific FLA problem based on a modified p- 

enter problem and proposes a heuristic based on an ILP relax- 

tion for solving the same problem on general networks. Although 

navailability of facilities typically occurs in non-epidemic emer- 

encies like earthquakes, this aspect is also partially present in our 

tudy: due to the high inter-human transmissibility of SARS-CoV-2, 

pecific types of inpatients (e.g., geriatric ones) cannot be allocated 

o COVID-19 wards. 

More recently, in Sun, DePuy, & Evans (2014) mono- and bi- 

bjective mathematical models have been developed and solved 

xactly to tackle the problem of allocating patients and resources 

ver a network of hospitals during an epidemic. The objectives of 

he models are the minimization of the total and the maximum 

istances travelled by patients for reaching the assigned hospitals. 

he most comprehensive model presented in Sun et al. (2014) con- 

iders several patient and resource types, along with patient- 

esource compatibility, resource shortages and external suppliers. 

uch high level of detail is also considered in our paper. Moreover, 

e will extend the above approach by also considering hospital 

ard repurposing and both resource and patient relocation over 

 network of hospitals. 

Indeed, experts estimate these latter strategies to be effec- 

ive in mitigating hospital congestion during large-scale epidemics, 

ee e.g., Gagliano et al. (2020) ; Her (2020) ; Meschi et al. (2020) ;

carfone et al. (2011) . At the same time, some of them, as re-

ocation of patients, have received little attention in the health- 

are OR literature, see the discussion in Andersen, Nielsen, & Rein- 

ardt (2017) . In fact, in this context, OR-based approaches most 

ften consider repurposing and reallocation within a single hos- 

ital ( Andersen et al., 2017; Pishnamazzadeh, Sepehri, Panahi, & 

oodi, 2021; Thomson, Nunez, Garfinkel, & Dean, 2009 ), while, to 

he best of our knowledge, they have not been applied to large 

etworks of hospitals. 

Two recent works exploit similar ideas for industrial FLA prob- 

ems. The first of these problems is the capacitated mobile facility 

ocation (CMFL) introduced in Raghavan, Sahin, & Salman (2019) . In 

he CMFL problem, a set of heterogeneous facilities of finite capac- 

ties must be relocated from their starting position to some des- 

inations and must be assigned to a given set of customers so to 

atisfy their total demand without exceeding any facility capacity. 

he goal is to minimize the total distance covered by facilities (to 

each the destination points) and customers (to reach the assigned 

acility). In Raghavan et al. (2019) the CMFL problem is modelled 

y means of a set partitioning ILP and solved by means of an ef- 

ective branch-and-price algorithm. While relocation problems are 

ommon in the FLA literature (see e.g., Demaine et al., 2009; Melo, 

ickel, & Da Gama, 2006 for two distinct perspectives) the CMFL 

resented in Raghavan et al. (2019) combines several characteris- 

ics that are also present in the problem studied in our paper: fa- 

ilities (wards in our problem) are heterogeneous; the capacities 

f the facilities are finite; the facility relocation costs are not fixed, 

ut depend on both origin and destination locations (initial and 

ew ward types in our problem). There are relevant differences 

oo: interpreting each patient type as a customer we allow de- 

and splits, that is, patients of a given ward may be relocated to 

everal new wards; in our problem ward capacities are not fixed, 

ut depend on the assigned resources, and thus are part of the 

ecision process; we consider a multi-commodity setting; finally, 

e take into account customer-resource compatibility. All these 

spects, not modelled in Raghavan et al. (2019) , allow a greater 

exibility of our solutions in meeting the customers’ demands; as 
3 
 consequence, directly applying the methods of Raghavan et al. 

2019) to our problem would yield, in general, infeasible or sub- 

ptimal solutions. 

In the context of FLA problems, the dependency of the ward 

apacities on the assigned resources is called capacity transfer and 

as been introduced in Corberán et al. (2020) . The paper investi- 

ates the facility location problem with capacity transfers (FLPCT), a 

apacitated FLA problem where it is possible to increase the (phys- 

cal or productive) capacity of a facility by transferring it from 

ther facilities at some cost. In Corberán et al. (2020) , the FLPCT 

s modelled by means of non-linear and linear integer programs, 

nd solved using a branch-and-cut approach. The models proposed 

n Corberán et al. (2020) are suitable for homogeneous facilities 

there is only one type of customer demand). We extend the ca- 

acity transfer feature to a multi-commodity setting which is ad- 

itionally complicated by several constraints, arising from the spe- 

ific real-world application. 

In Table 1 we summarize the differences between the problem 

tudied in this paper and the literature. For each relevant feature 

f our problem, we use the checkmark symbol ( � ) if the feature is 

onsidered in the paper and we leave the entry blank otherwise. 

. Modeling relocation and reallocation in the health system 

In the following we introduce our general modeling framework 

n terms of entities involved ( Section 3.1 ), variables and constraints 

f our model ( Sections 3.2 –3.4 ) and optimization performance in- 

icators ( Section 3.5 ). The complete model is summarized in Ap- 

endix A, which also contains Tables reporting the complete sets 

f model entities (Table 4), variables (Table 5) and parameters (Ta- 

le 6). An intuitive overview of our modeling choices is given in 

ig. 2 . 

.1. Model entities 

The set of hospitals H (large rounded corner rectangles in Fig. 2 ) 

ncompasses all hospitals that are available to relocate resources 

r patients. Each hospital h ∈ H contains a set W h of logical wards 

circles within dashed-line rectangles in Fig. 2 ). Each logical ward 

s related to real-world physical wards in three (mutually exclusive) 

ays: 

(a) in a 1-to-1 relationship: a logical ward represents the phys- 

ical space of a single ward in a hospital; 

(b) in a 1-to-many relationship: a logical ward represents a clus- 

ter of two or more physical wards, grouped to represent one 

or more specialties that, for the purpose of tactical optimiza- 

tion, may be pertinent to consider together. As an example, 

a logical ward of this type may represent a set of COVID-free 

wards hosting inpatients that cannot be discharged; 

(c) in a many-to-1 relationship: a single physical ward is split 

in two or more logical wards, to manage their capacity at 

a smaller granularity. For example, if the structure of the 

rooms in a ward allows to be physically separated in smaller 

spaces with distinct access points, those become eligible as 

COVID-19 wards. 

The mapping between physical and logical wards is performed 

y the decision maker in preprocessing, and is therefore part of 

ata. Hence, in the following we simply use ward to refer to the 

ogical ones. We consider W = 

⋃ 

h ∈ H W h , and for each w ∈ W we

enote as h (w ) the element h ∈ H such that w ∈ W h , that is the

ospital to which w belongs. In the set W we also include two 

pecial wards: 

• the homecare ward v̄ , modeling domiciliary healthcare services 

such as telemedicine or assistance by qualified medical staff; 
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Table 1 

Summary of literature gap. Column HRM represents our contribution. The first three lines are the essential combinatorial features of FLA problems. In our work ‘cus- 

tomers’ are patients; ‘facility-customer compatibility’ is checked even just on the basis of geographical distances and ‘facility types’ is checked when the type of facilities 

affects locations or allocations; our model takes into account additional real-world aspects, not listed in this table. 

HRM Corberán et al. (2020) Raghavan et al. (2019) Sun et al. (2014) Carr & Roberts (2010) Ekici et al. (2008) 

discrete facility location/relocation � � � � � 

capacitated facilities � � � � � � 

customer allocation � � � � � � 

external supply of resources � � � � � 

bi-objective model � � 

facility-customer compatibility � � � � � 

multi-commodity resources � � 

facility types � � 

demand split � � � � 

capacity transfer � � 

Fig. 2. An intuitive overview of our modeling framework. The left and right layers represent the settings before and after planning decisions, respectively, in a sample 

instance with | H| = 2 hospitals, | V | = 5 wards, | R | = 3 resource types and | P| = 2 patient types. A few of the decision options are represented as arrows between layers. 

Shade and patterns of a shape correspond to distinct entity types. 

f

c

d

w

e

e

b

a

c

d

m

s

s

t

c

H

s

a

c

a

r

r

s

p

d

T

• the home ward v representing (as last resort) the discharging of 

patients from hospitals, with no domiciliary healthcare service 

except the standard one from the health system. 

Wards and operators are characterized by a specialty chosen 

rom a set S (different color shades of circles in Fig. 2 ), which 

ontains all medical specialties appearing in the system, or ad- 

itional aggregate specialties crafted by merging subsets of them 

hen it is feasible for the purpose of planning to consider them as 

quivalent. 

Patients are characterized by a type chosen from a set P (differ- 

nt color shades of triangles and diamonds in Fig. 2 ), that identifies 

oth the ward specialty in which the patients need to be hosted, 

nd the severity of their disease. 

A set of resources R (squares in Fig. 2 with different patterns) 

ontains one element for each type of human personnel, medical 

evice, or consumable that is needed to treat inpatients. Clearly, 
4 
aterial resource entities abstract from the extensive set of re- 

ources that are located in a hospital and R includes only that 

ubset which more significantly limits the number of patients 

hat can be hospitalized at once. As an example, the set R may 

ontain elements for beds, ICU equipment, oxygen supply, etc. 

uman resource entities (i.e., physicians and nurses with their 

pecialties) also belong to R : the corresponding elements are 

ssumed to match logical wards. For example, COVID-related spe- 

ialties (anaesthetists, pulmonologists and emergency physicians) 

nd specialties related to non-deferrable pathologies (e.g., neu- 

ologists, cardiologists, etc.) should be considered as distinct 

esource categories, while other specialties may be merged in a 

ingle aggregate specialty to treat non-COVID and non-emergency 

atients. 

Finally, a set of suppliers E (element e 1 in Fig. 2 ) models ad- 

itional resources, which are external to the system of hospitals. 

hese include for example additional device supplies, as well as 
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andidate locations to set up temporary support structures like 

eld hospitals. To ease notation, we model suppliers as dummy 

ards, assuming E ⊂ W . 

.2. Decision variables 

Our rebalancing model considers three main actions from the 

ecision maker: (a) to change wards type, providing more room for 

xpected peaks of demand, (b) to move resources from one ward 

o another and (c) to reassign patients between wards. In a tacti- 

al planning scenario, while actions (a) are crisp, actions (b) and 

c) are meant more as estimates for future actions. These are de- 

cribed in the following. To ease their reading, decision variables 

nd model parameters are summarized in Tables 5 and 6 of Ap- 

endix A. 

Ward type . The first key assumption of our model is the follow- 

ng: the specialty of a ward can be changed, to meet an expected 

eak of inpatients demand which is far from that of standard load. 

uch a change requires suitable setup time, and often different re- 

ources to be made available in the ward. 

We therefore introduce for each ward w ∈ W and each spe- 

ialty s ∈ S a binary variable χw,s , taking value 1 if ward w is as-

igned to specialty s , 0 otherwise. In the example of Fig. 2 , ward w 1 

eeps its specialty ( χw 1 ,s 1 = 0 , χw 1 ,s 2 = 1 ) while ward w 2 changes

t ( χw 2 ,s 1 = 0 , χw 2 ,s 2 = 1 ). 

Resources allocation . The second key assumption of our model 

s the following: during emergency situations, staffers, device and 

aterial resources can be temporarily moved from one ward to an- 

ther, potentially in different hospitals. 

Accordingly, we introduce for each resource type r ∈ R , each 

ource ward w 1 ∈ W and each destination ward w 2 ∈ W a variable

r,w 1 ,w 2 
∈ R ≥0 , representing the amount of resources of type r that 

eed to be moved from w 1 to w 2 . Since E ⊂ W , these variables

escribe also the amount of resources transferred from the exter- 

al suppliers to wards. In the example of Fig. 2 , a certain amount

r 1 ,w 3 ,w 2 
of resources of type r 1 is moved from ward w 3 to ward 

 2 , another amount ρr 1 ,w 1 ,w 1 
of resources r 1 is kept in ward w 1 

nd ρr,e 1 ,w 2 
represents the amount of resource r obtained by w 2 

rom supplier e 1 . 

Patients’ allocation . Under normal load, the health system ex- 

ects patients to refer to the nearest hospital. However, under sys- 

em stress conditions, handling all patients of a certain type in 

heir nearest hospital might lead to the collapse of certain wards. 

herefore, assuming to have a forecasting on the expected number 

f patients of each type, we plan in advance the (expected) num- 

er of new patients of each type p ∈ P appearing in each hospital

 ∈ H to be transported for treatment to a ward w ∈ W , either in

he same or in another hospital. This is modeled by introducing a 

et of variables πp,h,w 

∈ R ≥0 . 

Furthermore, the third key assumption of our relocation mecha- 

ism is the following: even existing inpatients can be moved from 

ne ward to another, potentially located in a different hospital, 

rovided the destination ward is eligible to host the patient. We 

lso assume that the treatment of some types of patients can be 

ostponed, and even that inpatients of selected types of diseases 

an be discharged from the hospital and treated by means of a 

edicated domiciliary healthcare system. That practice is in fact the 

ain one experimented with success to reduce wards congestion 

uring the COVID-19 emergency ( Zuccotti, Bertoli, Foppiani, Ver- 

uci, & Battezzati, 2020 ). 

We therefore include in the model also a set of variables 

p,w 1 ,w 2 
∈ R ≥0 that represent the number of inpatients of type 

p ∈ P to move from ward w 1 ∈ W to ward w 2 ∈ W . Wards w 1 and

 2 can belong to the same hospital, or different ones; w 2 can even 

e the special ward representing the domiciliary healthcare system 

r the discharge of the patient. 
5

For instance, in Fig. 2 a certain number μp 1 ,w 1 ,w 1 
of inpatients 

f type p 1 is kept in ward w 1 , while a number μp 2 ,w 5 , v is dis-

harged from hospitals. At the same time, a number πp 1 ,h 1 ,w 2 
of 

ew patients of type p 1 is expected to be transported from hospi- 

al h 1 to ward w 2 , a number πp 2 ,h 1 ,w 4 
to ward w 4 (which is located 

n hospital h 2 ), and a number πp 2 ,h 2 , ̄v to dedicated homecare ser- 

ices. 

.3. Modeling system rebalancing 

In order to detail a valid tactical plan, the setting of variables 

ust respect the following conditions. 

Ward types single assignment and patients compatibility . A single 

pecialty is assigned to each ward w ∈ W , chosen among a subset 

f specialties which are considered to be valid for w depending on 

ts functional and physical structure. Let a w,s be a coefficient, set to 

 if it is feasible for ward w ∈ W to have type s ∈ S, 0 otherwise: 
 

s ∈ S 
a w,s χw,s = 1 ∀ w ∈ W (1) 

Patients and resources flow consistency . Patients and resources 

re modeled as units of flow, originating in source wards and sent 

o destination wards. Let q 0 p,w 

be the number of existing inpatients 

f type p in ward w and q p,h be the number of new patients of 

ype p expected to arrive for hospitalization in hospital h ∈ H. 

It is not always possible to move a patient from one ward 

o another. Typical restriction are due to travel distance or time. 

or each patient type p ∈ P and hospitals h 1 , h 2 ∈ H, let coefficient

 p,h 1 ,h 2 
take value 1 if moving patients of type p from h 1 to h 2 is

ossible, 0 otherwise. 

The number of patients moving from each ward must match 

hese initial values, i.e., all existing inpatients in wards must be 

oved to another compatible ward, and the treatment of all new 

atients must be planned by moving them to compatible wards: ∑ 

w 2 ∈ W 

a p,h (w 1 ) ,h (w 2 ) μp,w 1 ,w 2 
≥ q 0 p,w 1 

∀ p ∈ P, w 1 ∈ W (2) 

∑ 

w ∈ W 

a s,h,h (w ) πp,h,w 

≥ q p,h ∀ p ∈ P, h ∈ H (3) 

e remark that in (2) w 1 can be equal to w 2 , in which case the

npatients do not move. Similarly, in (3) h (w ) can be equal to h ,

n which case the new patients are treated directly in the hos- 

ital where they appear. These latter actions are always possible, 

ence the corresponding coefficients ‘ a ’ are equal to 1; moreover, 

ariables μ and ρ linked to coefficients ‘ a ’ of value 0 are set to 

 in preprocessing. The transportation of resources among wards, 

ncluding suppliers, must satisfy a symmetric condition: no more 

esources than the available ones can be moved from the initial 

ards.Letting q 0 r,w 

be the amount of resource r ∈ R initially avail- 

ble in ward w ∈ W , we get constraints: ∑ 

w 2 ∈ W 

ρr,w 1 ,w 2 
≤ q 0 r,w 1 

∀ r ∈ R, w 1 ∈ W (4) 

Wards capacity . Wards have capacities: they can host only a lim- 

ted amount of each resource. At the same time, wards can host 

nly a limited number of inpatients for a specific disease, depend- 

ng on both their structure and the amount of allocated resources. 

For each resource r ∈ R and for each ward w ∈ W , let m r,w 

be

he maximum amount of resource r that the ward w can host. The 

mount of resources sent to each ward w 2 ∈ W cannot exceed its 

apacity: ∑ 

w 1 ∈ W 

ρr,w 1 ,w 2 
≤ m r,w 2 

∀ w 2 ∈ W, r ∈ R (5) 

Similarly, let n p,r be the amount of resource r required by each 

nit of patient of type p ∈ P . The amount of each resource r ∈ R
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equired by all patients sent to each ward w 2 ∈ W cannot exceed 

he availability of r in w 2 : 

 

p∈ P 
n p,r 

( ∑ 

h ∈ H 
πp,h,w 2 

+ 

∑ 

w 1 ∈ W 

μp,w 1 ,w 2 

) 

≤
∑ 

w 1 ∈ W 

ρr,w 1 ,w 2 

∀ w 2 ∈ W \{ ̄v , v } , r ∈ R (6) 

For instance, in Fig. 2 sending ρr 1 ,w 2 ,w 2 
+ ρr 1 ,w 3 ,w 2 

units of re- 

ource r 1 to w 2 allows to host πp 2 ,h 1 ,w 2 
new patients of type p 2 in 

ard w 2 . Similarly, acquiring ρr 3 ,e 1 ,w 4 
units of resource from sup- 

lier e 1 allows to host πp 2 ,h 1 ,w 4 
new patients in w 4 . Resources are 

ot consumed in the case of transportation to wards ‘ ̄v ’ and ‘ v ’,
epresenting homecare treatment and patient’s home, respectively 

e.g. for discharged inpatients or postponed elective treatments). 

Wards compatibility . Wards can host only specific types of pa- 

ients. For each patient type p ∈ P and for each specialty s ∈ S, let

 p,s be a binary parameter, set to 1 if patients of type p can be

osted in wards of specialty s , 0 otherwise. Let also 

¯
 

0 
p,w 1 ,w 2 

= min { q 0 p,w 1 
, min 

r∈ R 
� m r,w 2 

/n p,r 	} 
e an upper bound on the number of existing inpatients of type p

hat can be moved from w 1 to w 2 , and let 

¯
 p,h,w 

= min { q h,p , min 

r∈ R 
� m r,w 

/n p,r 	} 
e an upper bound on the number of new patients of type p that 

ppear at hospital h and are sent to ward w . A ward cannot host

ew patients of a certain type unless it is switched to a compatible 

peciality: 

p,h,w 

≤ q̄ p,h,w 

∑ 

s ∈ S 
a p,s χw,s ∀ p ∈ P, ∀ h ∈ H, ∀ w ∈ W. (7) 

or instance, in Fig. 2 , ward w 2 must change its specialty to s 2 
 χw 2 ,s 2 = 1 ) to host patients of type p 1 ( πp 1 ,h 1 ,w 2 

). Similarly, a ward

annot host existing inpatients of a certain type unless its special- 

ty is compatible: 

p,w 1 ,w 2 
≤ q̄ 0 p,w 1 ,w 2 

∑ 

s ∈ S 
a p,s χw 2 ,s ∀ p ∈ P, ∀ w 1 ∈ W, ∀ w 2 ∈ W. (8) 

.4. Modeling emergency-specific features 

In the following we introduce additional constraints arising 

rom the COVID-19 emergency in Northern Italian health system, 

s suggested by domain experts (e.g. Villani, 2020 ). 

Keeping critical inpatients at their hospital . Not every inpatient 

an safely leave his/her hospital to be transported to other ones. 

e assume that a fraction f p,w 

∈ [0 , 1] of patients of each type p ∈
 that are initially placed in ward w ∈ W cannot leave the hospital

osting them. Accordingly, the following set of constraints is added 

o the model: ∑ 

 1 ∈ W h (w ) 

μp,w,w 1 
≥ q 0 p,w 

f p,w 

∀ p ∈ P, w ∈ W (9) 

Providing support resources for comorbidities . The treatment of 

ach patient may require more than a single specialist. It is cer- 

ainly the case of COVID-19, where a large part of critical inpatients 

uffers other chronic diseases. As discussed in the previous subsec- 

ion, these inpatients require a set of main mandatory resources of 

OVID-19 wards, in exclusive way. Additionally, they need a set of 

upport resources only in case of need, or as low frequency rou- 

ine. These latter can be provided on a proximity basis: inpatients 

f a certain ward are serviced by resources hosted in potentially 

ifferent wards, if they are located within a given distance range. 

Accordingly, we assume that the amount ˆ n p,r of support re- 

ources of type r needed by patients of type p is given, as well as 
6 
he maximum distance ˆ d between the patients and the ward host- 

ng the support resources. Introducing variables τr,w 2 ,w 3 
describing 

he amount of resource r located in w 3 and serving inpatients in 

 2 , our model is enriched by the following set of constraints: ∑ 

 3 : d h (w 2 ) ,h (w 3 ) 
≤ ˆ d 

τr,w 2 ,w 3 
≥ ˆ n p,r 

(∑ 

h ∈ H 
πp,h,w 2 

+ 

∑ 

w 1 ∈ W 

μp,w 1 ,w 2 

)
 p ∈ P, r ∈ R, w 2 ∈ W \{ v } (10) 

∑ 

w 2 ∈ W 

τr,w 2 ,w 3 
≤

∑ 

w 1 ∈ W 

ρr,w 1 ,w 3 
∀ w 3 ∈ W, r ∈ R (11) 

Constraints (10) are imposed also for patients moved to ‘home- 

are’ treatment (ward v̄ ); indeed, we model the homecare treat- 

ent as a non exclusive use of resources. Finally, we remark that 

he possibility of patients to change type during the planning hori- 

on is not taken into account, since we assume such an option to 

e important at an operational level, but to have a limited impact 

n tactical planning, for which our model is designed. 

Alternative resources . Another mean of coping with a critical lack 

f resources during emergencies is to replace specific ones with 

iable alternatives. A relevant case is given by the choice of physi- 

ians in COVID-19 sub-intensive care units: wards formally require 

ither anaesthetist, pulmonologist or emergency physicians. How- 

ver, different specialists are allowed to support, if at least some 

mong them hold the specific ICU skills. 

Accordingly, let r A ∈ R A be a set of resources which are consid- 

red to be equivalent, and let n̄ p,r A be the amount of alternative 

esources in the set r A needed by each patient of type p. We im-

ose 
 

p∈ P 
n̄ p,r A 

(∑ 

h ∈ H 
πp,h,w 2 

+ 

∑ 

w 1 ∈ W 

μp,w 1 ,w 2 

)
≤

∑ 

w 1 ∈ W,r ∈ r A 
ρr,w 1 ,w 2 

 w 2 ∈ W \{ ̄v , v } , r A ∈ R 

A (12) 

rom an application point of view, introducing alternative re- 

ources (and therefore constraints (12) ) allows to reduce the set of 

pecific ones required by some types of patients, thereby relaxing 

ome constraints in the set (6) . 

.5. Key performance indicators 

There are many aspects that need to be balanced to obtain an 

ffective planning. In the following we detail each of them as a Key 

erformance Indicator (KPI). Then we discuss on how it is more ap- 

ropriate to manage them, i.e., imposing target constraints or com- 

ining them into an objective function. We keep a minimization 

hilosophy: for each KPI, the lower the better. 

Quality of Service (QoS) . The QoS in our system is measured re- 

arding the patients’ side. In particular, we measure (a) the num- 

er of inpatients that are moved from one hospital to another 

nd (b) the number of patients that are not treated in a hospital 

i.e., those either discharged or for which the hospitalization has 

een delayed even if required). 

Let c p,w 1 ,w 2 
∈ R ≥0 be part of data, representing the cost for 

oving inpatients of type p from ward w 1 to ward w 2 ; similarly, 

et c p,h,w 

∈ R ≥0 be the cost for relocating incoming patients of type 

p from hospital h to ward w . We define the following QoS mea- 

ure: 

 

QoS = 

∑ 

p∈ P,w ∈ W 

( ∑ 

h ∈ H 
c p,h,w 

πp,h,w 

+ 

∑ 

w 1 ∈ W 

c p,w 1 ,w 

μp,w 1 ,w 

) 

(13) 

e remark that sending patients to homecare (ward v̄ ), as well as 

esorting to their discharge from the hospitals without dedicated 

omiciliary healthcare (ward v ) imply costs that affect the QoS. The 
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atter is in fact assumed to be set by a decision maker to very high

alues. A high level of service is associated with low KPI values. 

Logistics . As a second KPI we take into account the economic 

ffort to setup wards and transport resources. Let s 0 (w ) be the 

lement s ∈ S that identifies the initial speciality of ward w and 

 s 1 ,s 2 ∈ R ≥0 be the cost to change the specialty of a ward from s 1 
o s 2 . Moreover let c r,w 1 ,w 2 

∈ R ≥0 be the cost to move resource of

ype r from ward w 1 to ward w 2 . We compute the economic effort 

s: 

 

E = 

∑ 

w ∈ W,s 2 ∈ S 
c s 0 (w ) ,s 2 χw,s 2 + 

∑ 

r∈ R,w 1 ,w 2 ∈ W 

c r,w 1 ,w 2 
μr,w 1 ,w 2 

(14) 

he lower this KPI, the better. We remark that the arrangement 

f temporary field hospitals has a cost, that can conveniently be 

ncoded through coefficients c s 1 ,s 2 . 

Reallocation effort . As a third KPI we consider the time needed 

o setup wards and move resources. 

Let t r,w 1 ,w 2 
(resp. t p,w 1 ,w 2 

) be the time needed to move one unit 

f resource r ∈ R (resp. patient of type p ∈ P ) from ward w 1 ∈ W to

ard w 2 ∈ W ; let also t s 1 ,s 2 be the time needed to convert a ward

rom specialty s 1 ∈ S to s 2 ∈ S. We define 

 

R = 

∑ 

w ∈ W,s 2 ∈ S 
t s 0 (w ) ,s 2 χw,s 2 

+ 

∑ 

w 1 ,w 2 ∈ W 

(∑ 

r∈ R 
t r,w 1 ,w 2 

ρr,w 1 ,w 2 
+ 

∑ 

p∈ P 
t p,w 1 ,w 2 

μp,w 1 ,w 2 

)
epresenting the number of working hours needed to perform the 

ull relocation. We remark that the model does not include the 

cheduling of these resources: they only represent the overall ef- 

ort required. The actual time to perform reallocation depends 

herefore on the amount of personnel actually available. 

Expected patients relocation time . Part of the flexibility of the 

odel in managing the capacity is obtained by assuming new pa- 

ients to be moved from the nearest hospital to other ones. The 

xpected moving time of these patients is also an important KPI, 

eing part of the overall quality of service. Let t p,h,w 

be the time 

eeded to move an incoming patient of type p ∈ P from hospital h

o ward w . We define 

 

A = 

∑ 

p∈ P,h ∈ H,w ∈ W 

t p,h,w 

πp,h,w ∑ 

p∈ P,h ∈ H q p,h 

s the expected moving time of a single new patient. 

Combining KPIs . There are different ways in which these KPIs 

an be combined in a pertinent way. In the following we assume 

xing bounds on time KPIs to be more relevant for a decision 

aker than minimizing them. We therefore assume that the de- 

ision maker is fixing the value of two parameters T̄ R and T̄ A , rep- 

esenting the available man hours limit of time to move initial re- 

ources and inpatients, and the maximum allowed average time for 

he displacement of incoming patients, respectively. We impose 

 

R ≤ T̄ R (15) 

 

A ≤ T̄ A (16) 

nd focus on the optimization of the cost KPIs. The general model 

e start from is: 

inimize αC QoS + βC E 

s.t. (1) –(16) 

C QoS ≤ C̄ QoS 

C E ≤ C̄ E 

χw,s ∈ { 0 , 1 } w ∈ W and s ∈ S 

πp,h,s , ρr,w,w 

′ , μp,w,w 

′ , τr,w 

′ ,w 

′′ ∈ R ≥0 

p ∈ P, h ∈ H, r ∈ R, w, w 

′ , w 

′′ ∈ W (17) 
b

7 
here α and β are two real nonnegative parameters, and C̄ QoS and 

¯
 

E are upper bounds for C QoS and C E , respectively. We will consider 

wo specializations of (17) : in the first one C̄ QoS = C̄ E = + ∞ and

, β > 0 , so that we minimize a weighted sum of unbounded cost 

PIs; in the second specialization we adopt a multi-objective ap- 

roach setting to 0 precisely one weight α or β while imposing fi- 

ite upper bounds on the related KPIs. The above problem (17) will 

e referred to as hospital resource management (HRM). 

. Optimization algorithms 

In a preliminary phase, we experimented on solving 

odel (17) with the commercial solver Gurobi 9.5 ( Gurobi Opti- 

ization (2021) ). Due to the size of real-world instances, even the 

esolution of the LP relaxation (root node) ran out of memory on 

 workstation equipped with 32 gigabyte of RAM. 

In fact, model (17) is meant more as a baseline for the design of 

 mathematical programming heuristic than as a direct resolution 

ool. In our algorithms we search for good solutions through a VL- 

NS approach. The main idea is to iteratively (a) choose a subset of 

inary variables, fixing them to promising values, and (b) explore 

he space of all possible solution completions. Neither step (a) nor 

tep (b) is a trivial task. To accomplish step (a) we design a col- 

mn generation (CG) algorithm, exploiting the structure of reduced 

osts arising during its execution. To accomplish step (b) we solve 

estricted MIPs by a truncated run of a general purpose solver. The 

rocess iterates in a local search fashion. 

In this context, the CG algorithm has several advantages over 

.g., the direct resolution of the LP relaxation of formulation (17) : 

rst, it lets us run the VLSNS procedure repeatedly, thus explor- 

ng a larger set of feasible solutions; moreover, it exploits a natu- 

al decomposition of model (17) , thus limiting the computational 

urden; finally, the valid lower bound it provides lets us control 

onsistently the quality of the heuristic solutions generated in the 

rocess. 

We start by describing our column generation algorithm 

 Section 4.1 ), then we proceed by describing the VLSNS procedure 

 Section 4.2 ). 

.1. Column-generation algorithm 

Decomposition scheme . We employ the well-known scheme of 

antzig–Wolfe relaxation to get a valid lower bound to formula- 

ion (17) . For a general treatment of this approach we refer the 

eader to Desrosiers & Lübbecke (2005) . The details of our refor- 

ulation, and its full notation, are reported in Appendix B. 

The overall algorithm works as follows. We relax (17) by map- 

ing constraints (2), (3), (4), (10), (15) and (16) as constraints of 

n extended formulation called master problem , whose number of 

olumns grows combinatorially, encoding the extreme points of the 

onvex hull of the remaining constraints. Then, we solve this ex- 

ended formulation by means of column generation: we start with 

 small subset of columns, solve this restricted master problem 

RMP), and use the values of dual variables to find which columns 

re left out, having minimum reduced cost ( pricing problem ). 

Our choice of relaxed constraints has three appealing features. 

irst, it allows the pricing problem to disaggregate in one inde- 

endent subproblem for each w ∈ W . Each of them contains the 

et of binary variables χw,s corresponding to a particular value of 

 ∈ W , as well as other sets of continuous variables, also related to

 particular w ∈ W . Therefore, these | W | pricing subproblems can 

e solved independently. Second, pricing subproblems do not pos- 

ess the integrality property, which means that the lower bound 

btained with our relaxation is potentially stronger than that given 

y the continuous relaxation of (17) . Third, we are able to exploit 
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he multiple-choice structure of constraints (1) , to solve them ef- 

ciently: we optimize each pricing problem w ∈ W by iteratively 

xing one of the χw,s variables to 1 and the others to 0, solving 

he remaining LP, and retaining as final pricing solution for each 

 ∈ W the best one among these | S| iterations. This yields optimal

ricing solutions in polynomial time. 

If no column of negative reduced cost is found by pricing, then 

he optimal RMP solution is optimal for the full master problem 

s well, and therefore represents a valid dual bound to (17) . Oth- 

rwise, the RMP is enriched by the negative reduced cost columns 

roduced by pricing and the process is iterated until convergence 

 Desrosiers & Lübbecke, 2005 ). 

Constraints strengthening and handling We strengthen the pric- 

ng sub-problem associated with w 

′ ∈ W , by including in its for- 

ulation the following constraint: 

r,w 1 ,w 

′ ≤ q 0 r,w 1 
, ∀ r ∈ R, w 1 ∈ W (18) 

he above is a disaggregation of constraints (4) . Its meaning is that 

he amount of resource r ∈ R sent from w 1 ∈ W to w 

′ ∈ W cannot

xceed the total available amount q 0 r,w 1 
of r in w 1 . 

In preliminary experiments we observed numerical issues and 

ery slow convergence of our column generation algorithm, that 

e were able to ascribe to the presence of the proximity resource 

onstraints (10) , which appear in the master problem as 10-DWR, 

ee Appendix B. 

Therefore, we treat such constraints in a lazy way in an iterative 

rocess. Initially, we remove them from the master problem. When 

ur CG algorithm ends, we check if the best heuristic solution 

ound violates (10) . The violation check is performed by solving a 

inear program, described in Appendix C. If one or more constraints 

f family (10) are violated, the corresponding constraints 10-DWR 

re added to the master problem and a further iteration of resolu- 

ion of the CG algorithm is performed, using the updated master 

roblem, and setting the previous master solution as a warm start. 

In our experiments this technique provided substantial 

peedups: the process always ended at the first iteration, as we 

ound that it was always possible to satisfy constraints (10) in the 

est heuristic solution found at the end of the first CG procedure 

y means of our LP postprocessing model. Intuitively, variables τ
re used only to enforce consistency of constraints (10) and (11) , 

nd do not appear in the objective function. Constraints 10-DWR 

re however made easy to satisfy in the master, since the structure 

f constraints (6) and (12) , which are additionally handled in a 

onvexified way in the pricing problems, are pushing their left and 

ight hand sides apart. 

Column generation speedup . We designed the following stopping 

riterion for the column generation algorithm: letting c̄ w 

be the 

bjective function value of the pricing sub-problem (equation (20) 

n Appendix B) for w ∈ W , we stop the column-generation algo- 

ithm (a) if no negative c̄ w 

is found in the iteration, or (b) after 500

terations or (c) as soon as the gap between the objective function 

alue z̄ of the RMP and the valid lower-bound z̄ + 

∑ 

w ∈ W, : ̄c w < 0 
c̄ w 

s less than 1% (the validity of this lower-bound is shown e.g., in 

esrosiers & Lübbecke (2005 , p. 11)). 

We further speed up our column-generation algorithms by 

topping each pricing sub-problem after 2 seconds or after 10 0 0 

implex iterations. To limit the number of columns added to the 

MP after solving the pricing sub-problems, their optimal solutions 

re sorted by non-decreasing reduced cost. Following this order, at 

ost �| W | / 2 	 columns with negative reduced cost are added at

ach iteration. 

.2. Very large-scale neighborhood search. 

Model (17) is not tractable for direct optimization. Its combi- 

atorial complexity derives from the choice of χ variables. In fact, 
8 
nce these are fixed, a linear program remains, which can addi- 

ionally be split in several subproblems. Clearly, the choice for op- 

imal χ values is highly non-trivial. To effectively optimize it, we 

evised the following algorithm. 

An incumbent solution χ0 is initially generated by fixing a 

ubset F of χ variables. Our initialization policy is detailed in 

ection 5 . We then iteratively improve χ0 along the execution 

f our column-generation algorithm by exploiting the information 

ontained in the optimal solution of the pricing sub-problems. 

More precisely, let S F := { s ∈ S : χw,s ∈ F for some w ∈ W } ; at a

iven iteration of the column-generation algorithm and for every 

 ∈ W and s ∈ S, let χ̄w,s be the value of variable χw,s in the best

euristic solution generated so far and let c̄ w,s be the value of (20) 

xing χw,s = 1 . Note that c̄ w,s is the reduced cost of the associated 

olumn. We define for each s̄ ∈ S F : 

s̄ = 

∑ 

w ∈ W 

c̄ w, ̄s −
∑ 

w ∈ W : ̄χw, ̄s =1 

c̄ w, ̄s = 

∑ 

s ∈ S: ̄χw, ̄s =0 

c̄ w, ̄s . (19) 

Interpreting the reduced cost of a variable as the potential im- 

rovement in the objective function yielded by increasing that 

ariable of one unit, the smaller the value of �w̄ 

, the more likely 

he ward type w̄ is assigned to the correct wards w ∈ W by the

ector χ̄ . 

This suggests to sort the ward types s ∈ S F by non-decreasing 

alues of �s and to define S ′ ⊆ S F as the set of the first | S F | -
nfixed_ward_types ward types in the ordering, where un- 

xed_ward_types is a fixed parameter (the actual value used in 

ur experiments is specified in Section 5 ). Then, letting F ′ = { χw,s :

 ∈ W, s ∈ S ′ } we solve to optimality model (17) after fixing to

alue χ0 
w,s each variable χw,s ∈ F ′ , thus obtaining a new feasible 

olution. Note that, by definition, F ′ ⊆ F , hence a smaller number 

f variables is fixed with respect to the initial heuristic solution. 

his implies that all heuristic solutions generated during the exe- 

ution of the column-generation algorithm are not worse than the 

nitial solution. At each step, we keep the best generated heuristic 

olution. 

Our complete mathematical programming heuristic (MPH for 

hort) is summarized as pseudo-code in Algorithm 1 . In a generic 

etting, conditions can be imposed for a run of VLSNS (line 12 of 

lgorithm 1 ). In our implementation, we define three conditions: 

1) the value LB computed at line 7 of Algorithm 1 must be greater 

han zero; (2) the lower bound computed in the current CG it- 

ration LB ′ must improve the best lower bound LB found so far 

nd (3) is the first use of set F ′ . Indeed, in the process described

bove, it is possible that the same subset F ′ is generated in multi- 

le column-generation iterations. 

.3. Multi-objective optimization 

As detailed in Section 3.5 , our problem includes two objec- 

ives: the economical costs C E and the penalties of quality of ser- 

ice C QoS . We have designed an approach to explore the Pareto set 

f solutions of HRM. The literature on multi-objective optimiza- 

ion is rich ( Marler & Arora, 2004 ) and includes various approach 

uch as fuzzy compromise programming ( Parra, Terol, Gladish, & 

rıa, 2005 ) and augmented ε-constraint ( Mavrotas, 2009 ). Here, 

ur main aim is to get a better understanding of the relationship 

etween the two terms of the objective function. Our approach is 

nspired by the augmented ε-constraint method, and its pseudo- 

ode is presented in Algorithm 2 . 

The two terms C E and C QoS affect the model via the value of 

heir weight in the objective function (resp. β and α) and the 

hreshold value (resp. C̄ E and C̄ QoS ). First, the utopia values of the 

wo terms are computed (resp. UB U 
E 

and UB U 
QoS 

): our algorithm 

PH is run twice, setting the weight of the term not to consider 
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Algorithm 1: Mathematical programming heuristic (MPH) for 

HRM. 

Input : an instance of HRM, a value of unfixed_ward_types , 

a set F ⊆ { χw,s : w ∈ W, s ∈ S} , an starting feasible 

solution χ0 

Output : a valid lower bound LB , a primal solution χ̄ to the 

instance of HRM and its value UB 
 

1 S F := { s ∈ S : χw,s ∈ F for some w ∈ W } ; 
2 UB 0 , χ̄ = value and solution to HRM instance after fixing 

variables in F ; U B 
 = U B 0 ; 

3 initialize RMP with columns from χ̄ ; 

4 repeat 

5 z̄ , θ̄ = value and solution to RMP; 

6 c̄ w 

= { min s ∈ S { ̄c w,s = solve (20) with θ and 

χw,s = 1 } , ∀ w ∈ W } ; 
7 LB ′ = z̄ + 

∑ 

w ∈ W : c̄ w < 0 
c̄ w 

; LB = max { LB ′ , LB } ; 
8 compute �s̄ using c̄ w,s with (19); 

9 sort S F by non-decreasing value of �s̄ ; 

10 S ′ = first | S F | − unfixed_ward_types elements in the 

ordering; 

11 F ′ = { χw,s : w ∈ W, s ∈ S ′ } ; 
12 if conditions to run VLSNS then 

13 UB , χ = value and solution of HRM instance after 

fixing variables in F ′ to value χ0 ; 

14 if UB < UB 
 then 

15 U B 
 = U B , χ̄ = χ ; 

16 end 

17 end 

18 add columns with negative c̄ w 

to RMP; 

19 until CG stopping criterion ; 

Algorithm 2: Multi-objective optimization scheme for HRM. 

Input : an instance of HRM, a value of unfixed_ward_types , 

a set F ⊆ { χw,s : w ∈ W, s ∈ S} , a value of χ0 , a value 

of grid_length 

Output : a valid lower bound LB , a primal solution χ to the 

instance of HRM and its value UB for the 

2 · grid_length combinations of augmented 

ε-constraints setting and utopia values for C E and 

C QoS 

/* unless otherwise stated C̄ QoS = + ∞ and C̄ E = + ∞ */ 
/* utopia for C E */ 

1 UB U 
E 
, χU 

E 
, LB U 

E 
← MPH with α = 0 , β = 1 ; 

/* utopia for C QoS */ 
2 UB U 

QoS 
, χU 

QoS 
, LB U 

QoS 
← MPH with α = 1 , β = 0 ; 

/* solution with equally weighted C E and C QoS */ 
3 UB 
 , χ
 , LB 
 ← MPH with α = 1 , β = 1 ; 

4 compute C E 
 and C QoS 

 from UB 
 ; 

/* intermediate values between utopias and solution 
UB 
 */ 

5 for i = 0 .. grid_length do 

/* if i > 0 , initialize RMP of MPH with all columns 
found up to iteration i − 1 */ 

6 C E 
ε-i 

, χε-i 
E 

, LB ε-i 
E 

← MPH with 

α = 0 , β = 1 , C̄ QoS = UB U 
QoS 

+ i · C QoS 

 −UB U 

QoS 

grid_length +1 

7 C QoS 
ε-i 

, χε-i 
QoS 

, LB ε-i 
QoS 

← MPH with 

α = 1 , β = 0 , C̄ E = UB U 
E 

+ i · C E 
 −UB U 
E 

grid_length +1 

8 end 
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o value 0, and not imposing any threshold value (or, equivalently, 

etting C̄ QoS = C̄ E = + ∞ ) 

To compute the nadir values, we run MPH setting the weights 

ith same value 1 and no threshold value imposed. This execution 

rovides a heuristic solution χ
 with value UB 
 . This value is de- 

omposed in the two terms C E 
 and C QoS 

 , which are used as nadir

alues. 

The gap between utopia and nadir is explored setting a num- 

er of equally spaced grid points between them (parameter 

rid_length in Algorithm 2 ); each grid point identifies the thresh- 

ld value of a term while optimizing the other term. For exam- 

le, the optimization of C E in the first grid point is carried run- 

ing MPH with α = 0 and β = 1 and imposing a threshold value 
¯
 

QoS = UB U 
QoS 

+ (C QoS 

 − UB U 

QoS 
) / ( grid_length + 1). On the i th grid

oint ε − i , our algorithm MPH provides a heuristic solution χε−i , 

ts value C E ε−i 
and a valid lower bound LB ε−i 

E 
. 

We exploit the CG framework of our algorithm MPH to speed 

p the computation of grid points. We start the computation from 

he grid point with the stricter threshold value, loosening this 

alue in each subsequent visited grid point. At the end of the com- 

utation of the grid point i , the computation of the following point 

 + 1 is initialized including to the RMP all columns generated up 

o iteration i , which are feasible also for point i + 1 . 

. Experimental evaluation 

In this section we test on the effective use of our algorithms for 

actical response to an epidemic in a vast geographical area. To this 

nd, we define instances of realistic size starting from data avail- 

ble at public institutional repositories. These include: the number 

nd location of hospitals and their wards in Lombardy region; staff

ize and historical number of inpatients for each ward; number of 

ncoming COVID-19 patients during the considered time period. 

The data collection was not easy, as their sources are hetero- 

eneous and some of them are unformatted plaintext reports. The 

recise repositories URLs, the formulas and the assumptions used 

o setting up parameter values are found in a companion technical 

eport available in Premoli, Barbato, & Ceselli (2021) , together with 

he complete instances used in our experiments. While most of pa- 

ameters are fixed to specific values, we perform a scenario-based 

nalysis by varying some of the parameters of our model. In the 

ollowing we summarize only the main aspects of the parameters 

nitialization. 

Parameters initialization . Our model considers 86 hospitals in 

et H and 486 logical wards in set W . These latter include home 

nd homecare wards ( v , ̄v ), one global supplier and 483 hospital 

ards (retrieved from repository in Regione Lombardia (2020c) , 

isting hospitals and wards in Lombardy as of September 2020). 

he costs of transporting resources and patients between hospital 

ards coincide with their geographical distances. Moreover we set 

 r,w, ̄v = c r,w, v = 0 for all r ∈ R and w ∈ W ; transportation costs of

atients toward home and homecare logical wards are treated as 

cenario parameters, see below. 

Our model considers 10 patients types in set P : seven are ob- 

ained from the set of ward specialties found in Regione Lombar- 

ia (2020a) , to which we have added three additional types rep- 

esenting COVID-19 patients with increasing severity levels of ill- 

ess (such a distinction is adopted by several governments, see, 

.g., National Health Institution, 2020; Son, Lee, & Hwang, 2021 ): 

• patients with mild pneumonia and dyspnea, requiring oxygen 

through a mask. They can be treated at home in case of lack of 

human resources and beds in hospitals. 

We label the corresponding type as COVID-mild . 
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Fig. 3. CPU time MPH. 
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1 This is due to memory overflow or to the limit of time and iterations imposed 

for the resolution of the pricing sub-problems. 
• patients requiring treatment in sub-intensive care units (sub- 

ICU), requiring additional equipment (e.g., Continuous Positive 

Airway Pressure helmets). They cannot be treated at home. 

We label the corresponding type as COVID-subICU ; 
• patients in intensive care unit (ICU) requiring full ICU equip- 

ment and that cannot be treated at home. 

We label the corresponding type as COVID-ICU . 

Note that our model does not consider asymptomatic and pau- 

isymptomatic patients affected by COVID-19: the former require 

nly isolation surveillance, while the latter can self-treat at home. 

ach category in P gives rise to a corresponding ward type in S, 

hich also includes two additional types representing the “home”

nd “homecare” logical wards. 

We consider the very initial phase of COVID-19 spread in Spring 

020 in Lombardy region (Italy). That is, in the starting state of 

he system, the hospitals have no COVID-19 wards and no COVID- 

9 inpatients. These latter are the only patient types considered as 

ncoming patients. We treat their total quantity and their distribu- 

ion among hospitals as scenario parameters. 

Finally, we consider 10 resources in set R reasonably exist- 

ng in most Italian hospitals. The minimum quantity of each re- 

ource per patient of each type is defined by the Italian legisla- 

ion ( Ministero della Sanità della Repubblica Italiana, 1988 ), while 

he initial amount of resources in each hospital ward is computed 

sing data in Regione Lombardia (2020a) . The amount of resources 

vailable at the global supplier is treated as a scenario parameter. 

Scenarios . We vary some parameters to create a set of instances 

overing multiple realistic scenarios. A summary of such param- 

ters is given in Appendix A, Table 7. Here we describe them in 

etails. 

• Magnitude of the infection (parameter q new 

p for p ∈ { COVID- 

mild, COVID-subICU, COVID-ICU } ). Let q new 

p for p ∈ { COVID-mild, 

COVID-subICU, COVID-ICU } be the total number of incoming pa- 

tients of type p (in the whole system). It will be used to com- 

pute parameter q p,h which appears in our model. We consider 

three values for q new 

p : 
• Baseline scenario: q new 

p is drawn from Regione Lombardia 

(2020b) ; 
• Heavy scenario: q new 

p corresponds to the value in the base- 

line scenario increased of 25% ; 
• Light scenario: q new 

p corresponds to the value in the baseline 

scenario decreased of 25% . 
• Distribution of new COVID-19 patients in the hospitals (param- 

eter q p,h for p ∈ { COVID-mild, COVID-subICU, COVID-ICU } and 

h ∈ H). There are two cases: 
• proportional distribution of new COVID-19 patients: q p,h = 

q new 

p 

∑ 

w ∈ W h 
q 0 p,w ∑ 

w ∈ W 

q 0 p,w 
; 

• real-data distribution of new COVID-19 patients: we first get 

the total number sc � of SARS-CoV-2 positive individuals in 

each province � ∈ L of Lombardy from ( Dipartimento della 

Protezione Civile, 2020 ) on the 9th of April 2020 (corre- 

sponding to the first peak of 2020 in Lombardy); then we 

distribute all such individuals as new COVID-19 patients 

to each hospital h of that province according to the for- 

mula q p,h = q new 

p 

∑ 

w ∈ W h 
q 0 p,w ∑ 

h ∈ H � 
∑ 

w ∈ W h 
q 0 p,w 

sc � ∑ 

� ∈ L sc � 
, where H � is the set 

of hospitals in province � ∈ L . 
• resource availability from suppliers (parameter q 0 r,e , for r ∈ R and 

e ∈ E): we define the amount of resources available to be pur- 

chased from supplier as a percentage of the total amount 

of resources already present in all wards. That is, q 0 r,e = ξ ·∑ 

w ∈ W 

q 0 r,w 

with ξ ∈ { 0 , 0 . 02 , 0 . 05 } . 
• Maximum transportable distance (all parameters a p,h 1 ,h 2 

and 

ˆ d ). 

Binary parameters a p,h ,h , used in constraints (2) and (3) to al- 

1 2 

10 
low the transportation of patients between hospitals are set to 

value 0 (hence forbidding transport) if the distance between the 

departure and destination hospital exceeds a threshold value d̄ . 

In each considered scenario ˆ d = d̄ and values for both distance 

types are ˆ d , d̄ ∈ { 50 kilometer , 100 kilometer } . 
• Objective function multiplier for home ward (parameter c p,w 1 , v 

for all p ∈ P and w 1 ∈ W ). c p,w 1 , v = γ · max { c p,w 1 ,w 2 
: p ∈ P, w 1 ∈

W, w 2 ∈ W \ { v , ̄v }} for p ∈ P and w 1 ∈ W with γ ∈ { 2 , 10 , 20 } . 
By combining all cases for the parameter values above we get a 

otal of 108 instances. 

Implementation details . The column-generation and the heuris- 

ic algorithms of Section 4 have been implemented in C ++ , us- 

ng Gurobi 9.5 as LP and MILP solver. We used default values 

or all parameters of Gurobi. We run our experiments on a ma- 

hine equipped with an Intel i7 8-core 4.00 gigahertz processor 

nd 32 gigabyte of RAM. 

In all our experiments, parameter unfixed_ward_types of the 

euristic of Algorithm 1 is set to 2. This low value is justified by 

ecalling that, each time we generate a subset F ′ of variables to 

x in formulation (17) , we need to check that F ′ has not been

enerated in some previous iteration. Such an operation is time- 

onsuming for higher values of unfixed_ward_types . Moreover, an 

nitial heuristic solution χ0 was found by fixing wards to their ini- 

ial type ( s 0 (w ) ) if their type does not allow hosted inpatients to

e discharged, i.e., χw,s 0 (w ) = 1 if and only if a s 0 (w ) , w 

= 0 . 

.1. Computational results 

Testing reports infeasibility on all 36 instances with ξ = 0 ; 

oreover, there are 12 additional infeasible instances correspond- 

ng to parameters d̄ = 50 kilometer, ξ ∈ { 0 . 02 , 0 . 05 } , γ ∈ { 2 , 10 , 20 }
nder the real-data distribution of new COVID-19 patients and in 

oth baseline and heavy scenarios. Finally, MPH does not terminate 

n three additional instances with γ = 20 . 1 

For each of the remaining 57 instances, the best solution 

btained by our heuristic is feasible also with respect to con- 

traints (10) in which ˆ n s,r is initialized from real-world data: our 

P-based post-processing is always able to verify the compliance 

ith such constraints and to compute the corresponding values of 

ariables τ . The performance of our algorithms is analysed below 

n the same set of 57 instances. The exact CPU times, optimality 

aps and infeasibility details are reported in Table 8 of Appendix D. 

The total CPU times of our algorithm MPH are represented in 

he boxplot of Fig. 3 . In the same figure each gray dot represents

he execution of MPH on one of the feasible instances. There is a 

uge difference between the fastest execution and the slowest one 

25,149 seconds vs. 73,153 seconds). The median CPU time value is 

5,065 seconds (orange line in the boxplot) which is close to the 

verage CPU time (45,805 seconds). We recall that, as specified in 

ection 4 , Gurobi was not able to load in memory our instances of 

RM and was not even able to solve their continuous relaxations. 
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Fig. 4. Profiling of MPH. 
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Looking at the computational results more closely we found out 

hat the scenario parameter that mostly influence the CPU time is 

he distance d̄ (and hence the related parameters a p,h 1 ,h 2 
). By in- 

reasing d̄ from 50 kilometer to 100 kilometer the median CPU 

ime increases from 31,730 seconds to 47,543 seconds. Moreover, 

nly 7 out of the 23 instances with d̄ = 50 kilometer yield a worse

PU time than at least one instance of those with d̄ = 100 kilo- 

eter. 2 For the other parameters we did not observe such strong 

mpact on the CPU times of MPH, hence we omit the correspond- 

ng analyses. 

Primal solution profiling . We hereby present a profiling of the 

rimal heuristic solutions provided by the iterative runs of VL- 

NS (line 13 of Algorithm 1 ), taking into consideration the num- 

er of runs with different sets of fixed variables F ′ and the exe- 

ution time. Let: UB 0 be the value of the solution χ0 which ini- 

ialize MPH; UB 
 be the value of the best solution found by MPH; 

B i be the best primal solution found after i runs of VLSNS; and 

B t be the best primal solution found stopping the execution of 

PH after t seconds. In this analysis we set i = 10 and t = 10 4 sec-

nds (i.e., less than 3 hours). The boxplots in Fig. 4 (b) summarize 

he relative gaps between each upper bound defined above and the 

ower bound obtained at the end of the CG (value LB ), computed 

s (UB − LB ) /LB ; the boxplots in Fig. 4 (a) summarize the CPU times

eeded to obtain the upper bounds defined above. 

First, we analyse the quality of the best solution UB 
 provided 

y MPH. In Fig. 4 (b) we observe that the relative gaps of UB 
 range

rom 11% to 0 . 1% with a median value of 2% . Additionally we report

hat the median relative gap improvement between UB 0 and UB 
 

computed as (U B 0 − U B 
 ) /U B 0 on each instance) is about 4 . 7% .

hese results lead to the conclusion that the combination of our 

G algorithm and the VLSNS procedure provides solutions of suit- 

ble quality and effectively improves the starting heuristic solution. 

Next, we focus on the quality of the solutions produced by MPH 

y truncating its execution after i runs of VLSNS. The correspond- 

ng boxplot in Fig. 4 (b) shows that the relative gaps of UB i are

ery similar to the ones of UB 
 . This suggests that just after 10

uns of VLSNS we get solutions of good quality through our MPH 

lgorithm; indeed, we report that UB i is strictly better than UB 0 

n all 57 instances and that U B i = U B 
 in 39 instances. Concern-

ng the quality of the solutions obtained by stopping MPH after 

0,0 0 0 seconds, the median relative gap of UB t is one percentage 

oint higher than those of UB 
 and UB i . These solutions improve 

he starting upper bound UB 0 in 46 out of 57 instances, and in 13

f these we have U B t = U B 
 . 

We finally study how much CPU time is actually needed to ob- 

ain the primal solutions corresponding to U B 
 , U B i and U B t . The
2 A qualitative view of the change in the CPU time with respect to this parameter 

s given in Appendix D, Fig. 5. 

e

o

11 
rst boxplot in Fig. 4 (a) shows that the median time needed to find

B 
 is around 16,0 0 0 seconds, with a maximum of ∼53,0 0 0 sec-

nds; the average time to get UB 
 is ∼19,0 0 0 seconds. This is much

ower than the ∼45,0 0 0 seconds required to terminate the MPH 

lgorithm in median. The remaining two boxplots of Fig. 4 (a) re- 

orts the quartiles of the CPU times for obtaining UB i and UB t re- 

pectively. In median, we need ∼12,0 0 0 seconds to find UB i and 

4,500 seconds to find UB t . 

Discussion . Our primal solution profiling yields that the MPH 

lgorithm is suitable to support tactical planning decisions de- 

anded by realistic HRM instances: a truncated version is able 

o find good solutions in less than a quarter of the time needed 

o complete the column generation procedure. Therefore, although 

his latter takes high CPU times (about 12 hours in average), its 

se is still adequate to tackle epidemic emergencies that last from 

eeks to months, such as that of COVID-19. 

Our experiments also highlight that only the maximum trans- 

ort distance of the patients has a relevant effect on the CPU 

ime of our algorithms. We impute this behavior to the fact that 

mall values of d̄ set to 0 more parameters a p,h 1 ,h 2 
, which in turn, 

hrough constraints (2) and (3) , fixes to 0 the corresponding vari- 

bles in our model: d̄ = 50 kilometer sets to 0 the 58% of μ and

variables, while d̄ = 100 kilometer sets to 0 the 28% of them. 

hen, d̄ = 50 kilometer corresponds to a smaller solution space of 

he CG, which terminates in less time. 3 

.2. Comparison with existing methods 

We stress that our methods are designed to handle the HRM in 

ll its features: as soon as some of them are dropped, simpler and 

rguably more efficient methods could be employed. For instance, 

f location decisions are fixed, our model becomes similar to that 

f Sun et al. (2014) ; if all resources belong to the same commodity, 

nd facilities are homogeneous, the effective methods of Corberán 

t al. (2020) can be used. In fact, we are not aware of attempts in

he literature considering these features simultaneously. A natural 

uestion is instead whether existing models for rich FLA problems 

an be exploited to provide (even approximate) solutions to our 

RM. 

Indeed, the model for the FLA problem with capacity transfer 

FLA-CT in the remainder) of Corberán et al. (2020) is suitable to 

e adapted to our HRM by penalizing the assignment of multi- 

le types to the same facility and treating resources in a surro- 

ate way, minimizing infeasibilities arising due to incompatible re- 

ource usage in post-processing. We have experimented on differ- 

nt adaptation variants, finding one of them especially suitable for 

ur purpose; full details are reported in Appendix E. 
3 Additional qualitative view of this effect is provided in Appendix D, Fig. 6. 
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Table 2 

Results of FLA-CT vs. MPH. 

MPH FLA-CT Corberán et al. (2020) 

H% | W | time UB 
 (seconds) time CG (seconds) abs. viol. (1) forbidden resource usage (%) time (seconds) unsolved instances 

10 62 6.03 112.75 4 20% 56.88 0 

25 147 52.94 1276.88 11.63 44% 152.50 0 

50 272 400.04 4853.00 10.63 47% 1758.63 0 

75 392 1057.22 12553.00 10.38 50% 4614.75 0 

100 483 13599.88 38053.25 7.5 48% 6620.33 2 
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Table 3 

Average value of computational results of multi-objective optimization 

experiments. 

C E C QoS 

utopia UB U 39.50 37976.00 

nadir UB 
 83.15 38343.90 

(U B 
 − U B U ) / (U B U ) 1.936 0.012 

(UB U − LB U ) / (UB U ) 0.024 0.032 

time UB 
 (seconds) 38053.25 38053.25 

time UB U (seconds) 6094.75 43591.00 

time 1 st ε-constr. iteration (seconds) 18579.5 25927.38 

CG iter. 1 st ε-constr. iteration 185.5 257.88 

time ε-constr. reoptimization (seconds) 1601.81 2475.56 

CG iter ε-constr. reoptimization 2.8 4.7 
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We experiment on a subset of our instances. We set a 

aseline scenario with parameters γ = 2 , ξ = 0 . 05 , d̄ = 50 and

proportional’-‘light’ distribution of new COVID-19 patients. We 

xperiment on this baseline scenario and all configurations that 

hange the value of exactly one parameter starting from the base- 

ine, for a total of 8 instances. Moreover, for each instance, we 

reate sub-instances selecting a subset of hospitals with their cor- 

esponding wards. That is, on top of the complete instances, we 

onsider sub-instances with 10%, 25%, 50% and 75% of hospitals. In 

able 2 we summarize our comparison. Full computational results 

re reported in Appendix E, Table 11. Columns in first block contain 

he size of the instance, in terms of percentage of hospitals (‘H%’) 

nd number of wards (‘ | W | ’). Second block contains the computing

ime for the MPH algorithm to find the best primal solution (‘time 

B 


 ’) and to complete the CG (‘time CG’). The third block refers to 

he FLA-CT algorithm of Corberán et al. (2020) , with the number 

f times an additional type is assigned to a single ward (the ab- 

olute violation of constraint (1) , ‘abs. viol. (1) ’), the percentage of 

esources that are used in the solution of FLA-CT but which violate 

onstraints (5) or (6) (‘forbidden resource usage (%)’), the comput- 

ng time (‘time’) and the number of unsolved instances. Each row 

eports average value over 8 instances. The time needed by MPH to 

nd the best solution (‘time UB 
 ’) is less than the time needed by

LA-CT to finish execution (with the exception of the case of the 

omplete instance ‘ H% ’ = 100 ), while the execution time of FLA-CT 

s less than the time to complete CG execution of MPH. However, 

hen considering the complete instance (case with ‘ H% ’ = 100 ), in

 cases out of 8 FLA-CT was not able to provide a solution for 

out-of-memory’ errors; that is, instances of real-world size such 

s those used in our experiments currently require decomposition 

echniques to be handled, as in MPH algorithm. 

Details on the computation of infeasibilities are provided in Ap- 

endix E. The amount of violations is not negligible, with up to 

0% of resources that are used in the solution of FLA-CT but whose 

se is forbidden for HRM. As a consequence, additional processing 

s required to use FLA-CT solutions for the original HRM problem, 

hile MPH guarantees feasibility of its solutions. 

.3. Multi-objective optimization 

We experiment the multi-objective optimization scheme pre- 

ented in Algorithm 2 on the subset of instances defined in the 

receding subsection. In Table 3 we present a summary of compu- 

ational results, averaged over the 8 instances. The complete set of 

esults is presented in Appendix D, Table 9. 

First we check the distance between utopia UB U and the value 

B 
 provided by our algorithm MPH, and the distance between 

he utopia and the lower bound computed at the end of CG for 

ts computation ( LB U ). The gap between the utopia and its lower 

ound ( (UB U − LB U ) /LB U ) is fairly low (2% for C E and 3% for C QoS ).

n terms of absolute values, C E is much smaller than C QoS (around 

 . 1% ); that yields high relative gap between its utopia and the 

adir ( (U B 
 − U B U ) /U B U ). Instead, the gap between the utopia and

he nadir for C QoS is very low (around 1%). 
12 
It is therefore not surprising that no new solution is found in 

he 8 experiments using C E as objective function, as any such so- 

ution should fall into that narrow gap. It was instead possible to 

nd non dominated solutions on 2 of the 8 experiments using C QoS 

s objective. Concerning the computational profiling: the first vis- 

ted grid point requires an execution time and a number of CG it- 

rations similar to those required by the setting without thresh- 

ld values; on the other hand, the subsequent grid point requires 

nly a small amount of time and CG iterations, thanks to the warm 

tart described in Section 4.3 . Overall, in terms of problem struc- 

ure, using C E as objective and limiting C QoS by a constraint, results 

n faster runs. 

. Conclusion 

In this paper we have studied the HRM, a tactical facility 

ocation-allocation problem applied to the reorganization of med- 

cal resources and hospitals in large geographic areas. In the HRM 

he combinatorial structure of standard facility location-allocation 

roblems is enriched with constraints and features emerging from 

he management of medical resources in real world applications, 

uch as times and costs of transportation of resources and patients, 

ncompatibility between different types of patients in a same ward, 

eed of specific wards and staff for each patient type, etc. 

To obtain primal solutions to the HRM we have devel- 

ped a mathematical programming heuristic, intertwining column- 

eneration with very large-scale neighborhood search. Our heuris- 

ic is based on a MILP model for the HRM whose objective function 

alances between the quality of service delivered to the patients 

nd the economic costs resulting from the health system reorgani- 

ation. The flexibility of our heuristic allowed us to embed it in a 

ulti-objective optimization algorithm inspired by the augmented 

-constraint approach, where the quality of service and the eco- 

omic costs are minimized separately. Both the mathematical pro- 

ramming heuristic and the multi-objective approach provide valid 

ower bounds through the column generation mechanism, allowing 

n evaluation of the primal solutions quality. 

To show the practical applicability of our algorithms we tested 

hem on instances inspired by the COVID-19 emergency that oc- 

urred in Lombardy (Italy) at the beginning of 2020. Data collec- 
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ion itself was not trivial, as real data is available only by aggre- 

ating multiple heterogeneous public repositories of Italian institu- 

ions, which are partially unstructured. We openly release them as 

tructured instances, to foster reproducibility and further research. 

We have performed scenario-based experiments, by consider- 

ng several estimations of the COVID-19 incoming patients at the 

pidemic peak and other parameters related to the resource avail- 

bility, to geographical constraints and to the quality of service. 

The experimental results indicate that our mathematical pro- 

ramming heuristic is successful in terms of both computational 

imes and solutions quality: it detects infeasible instances quickly 

nd solves most of feasible instances employing a CPU time which 

s adequate for tactical purposes; the obtained solutions are of 

ood quality, as we have shown by estimating their optimality 

aps, based on the lower-bound provided by the column genera- 

ion algorithm. 

Concerning the task of optimizing the two objectives indepen- 

ently, in a multi-objective approach we found that (a) our ag- 

regation method is effective in producing solutions dominating 

 large portion of the potential space of Pareto-optimal solutions 

b) our column generation method fits well in this context, given 

ts strong reoptimization potential when ε-constraints iteratively 

hange. 

We examined several research directions for future works. First, 

e would study exact algorithms for solving the HRM. A branch- 

nd-price algorithm is the most natural extension in this direc- 

ion, since it is based on column-generation techniques. Second, 

e would integrate our tactical decision-support model with tools 

or estimating epidemic peaks (epidemiological models, data anal- 

sis, etc.). Finally, we would test the approach resulting from the 

revious two steps also in a rolling-horizon setting, in which the 

eorganization of the health system is performed at successive mo- 

ents of a same epidemic spread. 
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