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ABSTRACT

We describe the computational infrastructure for end-to-end Bayesian Cosmic Microwave Background (CMB) analysis implemented
by the BeyondPlanck collaboration. The code is called Commander3. It provides a statistically consistent framework for global
analysis of CMB and microwave observations and may be useful for a wide range of legacy, current, and future experiments. The
paper has three main goals. Firstly, we provide a high-level overview of the existing code base, aiming to guide readers who wish
to extend and adapt the code according to their own needs or re-implement it from scratch in a different programming language.
Secondly, we discuss some critical computational challenges that arise within any global CMB analysis framework, for instance in-
memory compression of time-ordered data, fast Fourier transform optimization, and parallelization and load-balancing. Thirdly, we
quantify the CPU and RAM requirements for the current BeyondPlanck analysis, finding that a total of 1.5 TB of RAM is required
for efficient analysis and that the total cost of a full Gibbs sample for LFI is 170 CPU-hrs, including both low-level processing and
high-level component separation, which is well within the capabilities of current low-cost computing facilities. The existing code base
is made publicly available under a GNU General Public Library (GPL) license.
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1. Introduction

The aim of the BeyondPlanck project (BeyondPlanck 2022)
is to build an end-to-end Bayesian Cosmic Microwave Back-
ground (CMB) analysis pipeline that constrains high-level prod-
ucts, such as astrophysical component maps and cosmological
parameters, directly from raw uncalibrated time-ordered data
and to apply this to the Planck Low-Frequency Instrument (LFI)
data. This pipeline builds on the experience gained throughout
the official Planck analysis period and seeks to translate this ex-
perience into reusable and computationally efficient computer
code that can be used for end-to-end analysis of legacy, current,
and future data sets. As a concrete and particularly important
example, it will serve as the computational framework for the
Cosmoglobe1 effort, which aims to establish a consistent global
model of the radio, microwave, and submillimeter sky through

? Corresponding author: M. Galloway; mathew.galloway@astro.
uio.no
1 https://cosmoglobe.uio.no

joint analysis of all available state-of-the-art data sets. This pa-
per gives an overview of the BeyondPlanck computational in-
frastructure, and it details several computational techniques that
allow the full exploration of the global posterior distribution in a
timely manner.

Since the beginning of precision CMB cosmology, algorithm
development has been a main focus of the community. For in-
stance, during the early days of CMB analysis, many differ-
ent approaches to mapmaking were explored. Projects such as
COBE (Smoot et al. 1992; Bennett et al. 1996), MAX (White
& Bunn 1995), Saskatoon (Tegmark et al. 1997) and Tenerife
(Gutiérrez et al. 1996) used a wide variety of techniques, and op-
timality was not guaranteed. Soon, however, the community con-
verged on Wiener filtering as the preferred technique (Tegmark
1997), which also allowed for the combination of multiple data
sets into a single map (Xu et al. 2001).

By the time WMAP and its contemporaries were observing,
the field had matured to the point that common tools were used
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between experiments. HEALPix2 (Gorski et al. 2005) became a
defacto standard for pixelizing the sky, and many experiments
began to use conjugate gradient (CG) mapmakers on a regular
basis (e.g., Hinshaw et al. 2003). These ideas were refined dur-
ing the analysis of Planck (Planck Collaboration I 2014, 2016,
2020), and since then those efforts have dominated the field.
Many mapmaking tools that were developed for Planck have a
strong influence on BeyondPlanck, including the MADAM de-
striper (Keihänen et al. 2005), the LevelS simulation codebase
(Reinecke, M. et al. 2006), the libsharp spherical harmonic
transform library (Reinecke & Seljebotn 2013), and the Planck
Data Release 4 analysis pipeline (Planck Collaboration Int. LVII
2020, often called NPIPE).

In parallel to these mapmaking developments, algorithms for
component separation have also been gradually refined. Sev-
eral different classes of methods have been explored and ap-
plied to a variety of experiments, including internal linear com-
bination (ILC) methods such as WMAP ILC (Bennett et al.
2003; Eriksen et al. 2004a) and NILC (Delabrouille et al. 2009);
template-based approaches such as SEVEM (Fernández-Cobos
et al. 2012); spectral matching techniques such as SMICA (Car-
doso et al. 2008); blind techniques such as GMCA (Bobin et al.
2007) or FastICA (Maino et al. 2002); and parametric Bayesian
modeling techniques such as Commander (Eriksen et al. 2004b,
2008a; Seljebotn et al. 2019). This flowering of options provided
a range of complementary approaches that each gave new in-
sights into the underlying statistical problem.

Simultaneously, there has been an immense development in
computer hardware, increasing the amount of available CPU cy-
cles and RAM by many orders of magnitude. As an example, the
COBE analysis was in 1990 initially performed on VAXstation
3200 computers (Cheng 1992), which boasted 64 KB of RAM
and a single 11 MHz processor. For comparison, the Planck
FFP8 simulations (Planck Collaboration XII 2016) were in 2013
produced on a distributed Cray XC30 system with 133 824 cores,
each with a clock speed of 2.4 GHz and 2 GB of RAM, at a total
computational cost of 25 million CPU hours. While the evo-
lution in CPU clock speed has largely stagnated during the last
decade, the cost of RAM continues to decrease, and this has been
exploited to improve the memory management efficiency in the
current analysis: BeyondPlanck represents the first CMB analy-
sis pipeline for which the full Planck LFI time-ordered data set
may be stored in RAM on a single compute node, effectively
alleviating the need for expensive disk and network communica-
tion operations during the analysis. As a result, the full computa-
tional cost of the current BeyondPlanck analysis is only 300 000
CPU hours, and, indeed, it is not entirely inconceivable that this
analysis could be run on a laptop in the not too distant future.

The BeyondPlanck pipeline is a natural evolution and fusion
of a wide range of these developments into a single integrated
codebase. There are relatively few algorithmically novel features
in this pipeline as such, but the BeyondPlanck pipeline primarily
combines industry standard methods into one single framework.
The computer code that realizes this is called Commander3,
which is a direct generalization of Commander2. Whereas previ-
ous Commander versions focused primarily on high-level com-
ponent separation and CMB power spectrum estimation appli-
cations (Eriksen et al. 2004b, 2008b; Seljebotn et al. 2019),
Commander3 also accounts for low-level time-ordered data pro-
cessing and mapmaking. This integrated approach yields a level
of performance and error propagation fidelity that we believe
will be difficult to replicate with distributed methods that require

2 http://healpix.jpl.nasa.gov

intermediate human interaction. This paper describes the code
implementation that is used to produce the results detailed in the
BeyondPlanck paper suite and makes the results of that devel-
opment available to the community.

The BeyondPlanck pipeline, documentation and data are all
available through the project webpage.3 In addition to the actual
Commander3 source code,4 several utilties are also provided that
facilitate easy use of the codes by others in the community, for
instance for downloading data and compiling and running the
codes. Documentation is also available.5 The entire project is
available under the GNU General Public License (GPL). Further
details regarding these aspects are available in Gerakakis et al.
(2022).

2. Bayesian CMB analysis, Gibbs sampling, and
code design

The main goals of the current paper are, firstly, to provide suffi-
cient intuition regarding the Commander3 source code to allow
external users to navigate and modify it themselves, and, sec-
ondly, to present various computational techniques that are used
to optimize the calculations. To set the context of this work, we
begin by briefly summarizing the main computational ideas be-
hind this approach.

2.1. The BeyondPlanck data model and Gibbs chain

As described by BeyondPlanck (2022), Commander3 is the first
end-to-end Bayesian analysis framework for CMB experiments,
implementing full Monte Carlo Markov chain (MCMC) explo-
ration of a global posterior distribution. The most important
component in this framework is an explicit parametric model.
The current BeyondPlanck project primarily focuses on the
Planck LFI measurements (Planck Collaboration I 2020; Planck
Collaboration II 2020), and for this data set we find that the fol-
lowing model represents a good description of the available mea-
surements (BeyondPlanck 2022),

d j,t = g j,tPtp, j

Bsymm
pp′, j

∑
c

Mc j(βp′ ,∆
j
bp)ac

p′ + Basymm
pp′, j

(
sorb

j,t + sfsl
j,t

) +

+s1hz
j,t + ncorr

j,t + nw
j,t.

(1)

Here j represents a radiometer label, t indicates a single time
sample, p denotes a single pixel on the sky, and c represents one
single astrophysical signal component. Further,

d j,t denotes the measured data value in units of V. This is the
calibrated timestream as output from the instrument;

g j,t denotes the instrumental gain in units of V K−1
CMB, and the

specific details are discussed by Gjerløw et al. (2022);
Ptp, j is a NTOD × 3Npix pointing matrix, which in prac-

tice is stored as a compressed pointing and polarization angle
timestream per detector (see Sect. 4.1). Pointing uncertainties
are currently not propagated for LFI, but a sampling step could
be added here in future projects to include the effects of, for ex-
ample, pointing jitter or half-wave plate uncertainties;

Bpp′, j denotes the beam convolution term, where the asym-
metric part is only calculated for the orbital dipole and sidelobe
terms. This is also not sampled in the Gibbs chain currently but
3 beyondplanck.science
4 https://github.com/Cosmoglobe/Commander
5 docs.beyondplanck.science

Article number, page 2 of 17

http://healpix.jpl.nasa.gov
beyondplanck.science
https://github.com/Cosmoglobe/Commander
docs.beyondplanck.science


BeyondPlanck Collaboration: Commander3

could be if it was possible to construct a parameterized beam
model;

Mc j(βp,∆bp) denotes element (c, j) of an Ncomp × Ncomp mix-
ing matrix, describing the amplitude of component c as seen by
radiometer j relative to some reference frequency j0 when as-
suming some set of bandpass correction parameters ∆bp. Sam-
pling this mixing matrix and the amplitude parameters is what is
traditionally regarded as component separation, and is detailed
by Andersen et al. (2022) and Svalheim et al. (2022b). The sam-
pling of the bandpass correction terms is described in Svalheim
et al. (2022a);

ac
p is the amplitude of component c in pixel p, measured at

the same reference frequency as the mixing matrix M. The esti-
mation of these amplitude parameters is also described by An-
dersen et al. (2022) and Svalheim et al. (2022b);

sorb
j,t is the orbital CMB dipole signal, including relativistic

quadrupole corrections. Estimation of the orbital dipole is de-
scribed by Galloway et al. (2022);

sfsl
j,t denotes the contribution from far sidelobes, which is also

described in Galloway et al. (2022);
s1hz

j,t accounts for a 1 Hz electronic spike signal in the LFI
detectors (BeyondPlanck 2022);

ncorr
j,t denotes correlated instrumental noise, as is described by

Ihle et al. (2022); and
nw

j,t is uncorrelated (white) instrumental noise, which is not
sampled and is simply left to average down in the maps.

We denote the set of all free parameters in Eq. (1) by ω, such
that ω ≡ {g,∆bp, ncorr, ai, βi, . . .}. In that case, Bayes’ theorem
states that the posterior distribution may be written in the form

P(ω | d) =
P(d | ω)P(ω)

P(d)
∝ L(ω)P(ω), (2)

where P(d | ω) ≡ L(ω) is called the likelihood; P(ω) is called
the prior; and P(d) is a normalization factor.

Clearly, P(d | ω) ≡ L(ω) is a complicated multivariate prob-
ability distribution that accounts for millions of correlated pa-
rameters, and its exploration therefore represents a significant
computational challenge. To efficiently explore this distribution,
Commander3 relies heavily on Gibbs sampling theory, which
states that samples from a joint distribution may be produced by
iteratively drawing samples from all corresponding conditional
distributions. For BeyondPlanck this translates into the follow-
ing Gibbs chain:

g ← P(g | d, ξn,∆bp, a, β, C`) (3)
ncorr ← P(ncorr | d, g, ξn,∆bp, a, β, C`) (4)
ξn ← P(ξn | d, g, ncorr, ∆bp, a, β, C`) (5)

∆bp ← P(∆bp | d, g, ncorr, ξn, a, β, C`) (6)
β ← P(β | d, g, ncorr, ξn,∆bp, C`) (7)
a ← P(a | d, g, ncorr, ξn,∆bp, β, C`) (8)

C` ← P(C` | d, g, ncorr, ξn,∆bp, a, β ), (9)

where the symbol “←” means setting the variable on the left-
hand side equal to a sample from the distribution on the right-
hand side of the equation. Thus, each free parameter in Eq. (1)
corresponds to one sampling step in this Gibbs loop.

A single iteration through the main loop produces one full
joint sample, which is defined as one realization of each free
parameter in the data model. An ensemble of these samples is
obtained by running the loop for many iterations, and this en-
semble can then be used to estimate various summary statistics,

i ) Read p a r a m e t e r f i l e
i i ) I n i t i a l i z e d a t a s e t s ; s t o r e i n g l o b a l a r r a y

c a l l e d d a t a
i i i ) I n i t i a l i z e model components ; s t o r e i n g l o b a l

l i n k e d l i s t c a l l e d compLis t
i v ) I n i t i a l i z e s t o c h a s t i c p a r a m e t e r s

f o r i = 1 , N_gibbs do
1) P r o c e s s TOD i n t o f r e q u e n c y maps

a ) Sample g a i n
b ) Sample c o r r e l a t e d n o i s e
c ) Clean and c a l i b r a t e TOD
d ) Sample b a n d p a s s c o r r e c t i o n s
e ) Bin TOD i n t o maps

2 ) Sample a s t r o p h y s i c a l a m p l i t u d e p a r a m e t e r s
3 ) Sample a n g u l a r power s p e c t r a
4 ) Outpu t c u r r e n t p a r a m e t e r s t a t e t o d i s k
5 ) Sample a s t r o p h y s i c a l s p e c t r a l p a r a m e t e r s
6 ) Sample g l o b a l i n s t r u m e n t p a r a m e t e r s f o r non−TOD

d a t a s e t s , i n c l u d i n g c a l i b r a t i o n , b a n d p a s s
c o r r e c t i o n s

Listing 1: Schematic overview of Commander3 execution.

such as the posterior mean of each parameter or its standard de-
viation. With a sufficiently large number of samples, one will
eventually map out the entirety of the N-dimensional posterior
distribution, allowing the exploration of parameter correlations
and other interesting effects.

2.2. Commander3 and object-oriented programming

Commander3 represents a translation of the Gibbs chain shown
in Eqs. (3)-(9) into computer code. This is made more concrete in
Listing 1 in terms of high-level pseudo-code. A detailed break-
down is provided in Sect. 3, and here we only make a few pre-
liminary observations. First, we note that Gibbs sampling natu-
rally lends itself to object oriented programming due to its mod-
ular nature. Each component in the Gibbs chain can typically be
compartmentalized in terms of a class object, and this greatly
alleviates code complexity and increases modularity.
Commander3 is designed with this philosophy in mind, while

at the same time optimizing efficiency through the use of some
key global variables. The two most important global objects of
this type are called data and compList. The first class pro-
vides convenient access to all data sets included in the analysis
(e.g., Planck 30 GHz or WMAP K-band data). Classes are pro-
vided both for high- and low-level data objects. An example of
the former is comm_tod_noise_mod, which provides routines
for sampling the correlated noise parameters of a given data set,
while comm_tod_orbdipole_mod calculates the orbital dipole
estimate. An example of the latter is comm_map_mod, which cor-
responds to a HEALPix map object, stored either in pixel or har-
monic space. The same class also provides map-based manipula-
tion class functions, for instance spherical harmonic transforms
(SHT) routines or smoothing operators.

The second main variable, compList, is a linked list of
all model component objects, describing for instance CMB or
synchrotron emission. Again, each class contains both the in-
frastructure and variables needed to define the object in ques-
tion, and the required sampling routines for the respective free
variables. For instance, comm_comp_mod represents a generic
astrophysical sky component, while a specific subclass such
as comm_freefree_comp_mod represents free-free emission
specifically. Another example is comm_Cl_mod, which defines
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angular power spectra, Cl, and provides the required sampling
routines for this.

A third type of Commander3 modules is more diverse,
and provides general infrastructure support. Examples include
wrappers for underlying libraries or functionality such as
comm_hdf_mod (used for IO operations), comm_huffman_mod
(used for in-memory data compression), or sharp.f90 (used
for spherical harmonics transforms). Other modules, like
comm_utils or math_tools, provide general utility functions,
for instance for reading simple data files or inverting matrices.
Ultimately this category of classes is a concession to the fact
that not all functionality need be encapsulated in a truly object
oriented way.

Returning to Listing 1, we see that Commander3 may be
summarized in terms of two main phases, namely initialization
and execution. The goal of the initialization phase is simply to set
up the data and compList objects, while the execution phase
essentially amounts to repeated updates of the stochastic object
variables that are stored within each of these objects. Finally,
the current state of those variables are stored to disk at regular
intervals, resulting in a Markov chain of parameter states.

2.3. Memory management and parallelization

Essentially all of the above considerations apply equally well
to Commander2 (Seljebotn et al. 2019) as to Commander3, as
the only fundamentally new component in the current analysis
is additional support for time-ordered data processing. However,
this extension is indeed nontrivial, as it has major implications
in terms of computational efficiency and memory management.
In particular, while traditional Bayesian component separation
(as implemented in Commander2) is limited by the efficiency of
performing spherical harmonics transforms, time-ordered data
(TOD) processing is strongly dominated by memory bus effi-
ciency, that is by the cost of shipping data from RAM to the
CPU. These two problems clearly prefer different parallelization
and load-balancing paradigms, and combining the two within a
single framework represents a notable challenge.

As a temporary solution to this problem, the current Beyond-
Planck analysis (BeyondPlanck 2022) is run on a small-sized
cluster hosted by the University of Oslo that consists of two com-
pute nodes with each 128 AMD EPYC 7H12 2.6 GHz cores and
2 TB of RAM. This amount of RAM allows storage of the full
TOD on each node, and each node runs a completely indepen-
dent Gibbs chain. As a result, any communication overhead is
entirely eliminated, resulting in high overall efficiency.

However, Commander3 is parallelized using the Message
Passing Interface (MPI), adopting a “crowd computing, node-
only” parallelization paradigm, in which all cores participate
equally in most computational operations. As such, the code
can technically run on massively distributed systems with lim-
ited RAM per node, and this mode of operation will clearly be
needed for applications to large data sets, such as those pro-
duced by ground-based experiments (e.g., Simons Observatory
or CMB-S4; Ade et al. 2019; Abazajian et al. 2019), which will
require hundreds of TB of RAM and hundreds of thousands of
cores. However, while the existing code may run in this mode, it
will clearly not be computationally efficient, because of the flat
parallelization paradigm: The actual run time will be massively
dominated by network communication in spherical harmonics
transforms, to the point that the code is useless. As such, a dedi-
ciated rewrite of the underlying parallelization infrastructure is
certainly required for an efficient end-to-end Bayesian analysis
of large-volume data sets; the current Commander3 implemen-

tation is rather tuned for TB-sized data sets, such as C-BASS
(Jones et al. 2018), Planck, SPIDER (SPIDER Collaboration
et al. 2021), WMAP (Hinshaw et al. 2003) — and in a few years,
possibly even LiteBIRD (Hazumi et al. 2019).

Consequently, the current code is typically run with O(100)
cores per chain, which is determined by the requirement of
achieving good spherical harmonics efficiency for all data maps
involved in the analysis. In order to increase the overall concur-
rency, it is typically computationally advantageous to run more
independent Markov chains in parallel, rather than adding more
cores to each chain. Efficient in-chain parallelization is achieved
through data distribution across cores, such that each process is
given only a subset of each data set to operate on locally, and
results are shared between processes only when absolutely nec-
essary.

2.4. Memory layout

As already mentioned, the single most important bottleneck for
this analysis is shipping data from RAM to the CPU, and an
efficient memory layout is therefore essential to maintain high
throughput. The layout adopted for Commander3 is schemati-
cally illustrated in Fig. 1. In particular, there are two main types
of data that need to be distributed, namely maps and TOD. Dur-
ing initialization, each process is assigned a segment of each map
(both in pixel and harmonic space) and a set of time chunks of
each TOD object. In general, these time chunks can be selected
arbitrarily as long as each chunk can 1) be assumed to have con-
sistent noise characteristics, 2) are large enough so that the run-
time is not dominated by overhead and 3) are not so long that
fast Fourier transforms (FFTs) are prohibitively slow. For Planck
LFI, these chunks are for convenience distributed according to
the preexisting Pointing IDs (PIDs) defined by the LFI collabo-
ration.

Map objects (shown as light blue boxes in Fig. 1) are used
to represent astrophysical components, spatially varying param-
eters, beam functions and many other things, and are distributed
according to the libsharp parallelization scheme (Reinecke &
Seljebotn 2013). This choice is based on the fact that libsharp
is the most efficient spherical harmonics transform library avail-
able in the CMB field today, and optimizing this operation is es-
sential. Each map object can simultaneously be expressed as pix-
els or a set of al,m components in harmonic space, and libsharp
uses fast SHTs to convert between these two representations.
Each core is given a subset of pixels and al,m coefficients, and for
two maps with the same HEALPix resolution Nside, any given
core will receive exactly the same pixels of each map, which
helps minimize the amount of overhead for cross-frequency local
operations. For maps with different Nside, there will be no corre-
spondence between the sky areas that are assigned to each core,
so each cross-resolution operation requires a full-sky broadcast
operation. The header for each map (which includes information
such as Nside, `max, nmap,6 pixel and a`m lists for the current core,
etc.) is stored as a pointer to an object called mapinfo (dark blue
in Fig. 1), which itself is only stored once per unique combina-
tion of {Nside,`max, nmap} to save memory.

A single TOD object (shown as yellow boxes in Fig. 1) rep-
resents all time ordered data (TOD) from one set of detectors
at a common frequency or, equivalently, all the data one would
want to combine into a single frequency map. These objects
are generally very large, to the point where it is barely feasi-

6 The nmap parameter defines the number of columns in a given map,
which typically corresponds to the number of Stokes parameters.
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Fig. 1. Commander3 memory layout for map and TOD objects. The top process box represents a single computing core.

ble to hold a single copy in memory. Therefore, the TODs are
divided into discrete time chunks of a reasonable length, and dis-
tributed across cores. To minimize the memory footprint, all an-
cillary TOD objects (for instance, flags and pointing) are stored
in memory in compressed format, as described in Sect. 4.1, and
must be decompressed before any timestream operations can be
performed. Thus, each chunk is processed sequentially, with the
first step being decompression into standard time ordered arrays
with common indexing. Those local data objects are then utilized
and cleaned up before processing the next chunks. All inputs re-
quired for global TOD operations (such as gain sampling or map
binning; see Step 2 in Listing 1), are co-added on the fly during
this iteration over chunks, and synchronization across cores is
done only once after the full iteration.

Finally, to further minimize the memory footprint during the
TOD binning phase (during which each core in principle needs
access to pixels across the full sky), TODs are distributed ac-
cording to their local sky coverage. For Planck, this implies that
any single core processes pointing periods for which the satellite
spin axis are reasonably well aligned, and the total sky coverage
per core is typically 10 % or less. This also minimizes network
communication overhead during the synchronization stage.

3. The Commander3 software

In this section, we give a walk-through of the Commander3 soft-
ware package, organized roughly according to the order in which

a new user will experience the code. That is, we start with the
code base, installation procedure, and documentation, before de-
scribing the Commander parameter file. Then we consider the
actual code, and describe the main modules.

3.1. Code base, documentation, installation, and execution

The Commander code base, installation procedure, and docu-
mentation is described by Gerakakis et al. (2022), with a par-
ticular emphasis on reproducability. In short, the code is made
publicly available on GitHub7 under a GNU General Public Li-
brary (GPL) license, and the documentation8 is also hosted at the
same site.

At present, only Linux- and MPI-based systems are sup-
ported, and the actual installation procedure is CMake-based,
and may in an ideal case be as simple as executing the following
command line commands:

> git clone https://github.com/Cosmoglobe/Commander.git
> mkdir Commander/build && cd Commander/build
> cmake -DCMAKE_INSTALL_PREFIX=$HOME/local \

-DCMAKE_C_COMPILER=icc \
-DCMAKE_CXX_COMPILER=icpc \
-DCMAKE_Fortran_COMPILER=ifort \
-DMPI_C_COMPILER=mpiicc \
-DMPI_CXX_COMPILER=mpiicpc \

7 https://github.com/Cosmoglobe/Commander.git
8 https://cosmoglobe.github.io/Commander/
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**************************************************
* Commander p a r a m e t e r f i l e *
**************************************************
@DEFAULT LFI_ tod . d e f a u l t s

OPERATION = sample # { sample , o p t i m i z e }

##################################################
# Algo r i t hm s p e c i f i c a t i o n #
##################################################

# Monte C a r l o o p t i o n s
NUMCHAIN = 1 # Number o f i n d e p e n d e n t c h a i n s
NUM_GIBBS_ITER = 1500 # Length o f each Markov c h a i n
INIT_CHAIN01 = / p a t h / t o / c h a i n / c h a i n _ i n i t _ v 1 . h5 : 1

SAMPLE_SIGNAL_AMPLITUDES = . t r u e .
SAMPLE_SPECTRAL_INDICES = . t r u e .
ENABLE_TOD_ANALYSIS = . t r u e .

##################################################
# Outpu t o p t i o n s #
##################################################

OUTPUT_DIRECTORY = chains_BP10

##################################################
# Data s e t s #
##################################################

DATA_DIRECTORY = / p a t h / t o / w o r k d i r / d a t a
NUMBAND = 2

INCLUDE_BAND001 = . t r u e . # 30 GHz
INCLUDE_BAND002 = . t r u e . # 44 GHz

# 30 GHz p a r a m e t e r s
@START 001
@DEFAULT bands / LFI / LFI_030_TOD . d e f a u l t s
BAND_MAPFILE&&& = map_030_BP10 . 1 _v1 . f i t s
BAND_NOISEFILE&&& = rms_030_BP10 . 1 _v1 . f i t s
BAND_TOD_START_SCANID&&& = 3
BAND_TOD_END_SCANID&&& = 44072
@END 001

# 44 GHz p a r a m e t e r s
@START 002
@DEFAULT bands / LFI / LFI_044_TOD . d e f a u l t s
BAND_MAPFILE&&& = map_044_BP10 . 1 _v1 . f i t s
BAND_NOISEFILE&&& = rms_044_BP10 . 1 _v1 . f i t s
@END 002

##################################################
# Model p a r a m e t e r s #
##################################################

NUM_SIGNAL_COMPONENTS = 2
INCLUDE_COMP01 = . t r u e . # CMB
INCLUDE_COMP02 = . t r u e . # S y n c h r o t r o n

# CMB
@START 01
@DEFAULT components / cmb / cmb_LFI . d e f a u l t s
COMP_INPUT_AMP_MAP&& = cmb_amp_BP8 . 1 _v1 . f i t s
COMP_MONOPOLE_PRIOR&& = monopole−d i p o l e : mask . f i t s
@END 01

# S y n c h r o t r o n component
@START 02
@DEFAULT components / synch / synch_LFI . d e f a u l t s
COMP_INPUT_AMP_MAP&& = synch_amp_BP8 . 1 _v1 . f i t s
COMP_INPUT_BETA_MAP&& = synch_beta_BP8 . 1 _v1 . f i t s
COMP_PRIOR_GAUSS_BETA_MEAN&& = −3.3
@END 02

Listing 2: Prototype Commander parameter file.

-DMPI_Fortran_COMPILER=mpiifort \
..

> cmake --build . --target install -j 8

In this particular example, we use an Intel compiler suite,
but the code has also been tested with GNU compilers. The first
command downloads the source code; the second command cre-
ates a local directory for the specific compiled version; the third
command creates a CMake system-specific compilation recipe
(similar to Makefile) that accounts for all dependent libraries,
such as HEALPix, FFTW,9 and libsharp; and the fourth com-
mand actually downloads and compiles all required libraries and
executables. In practice, problems typically do emerge on any
new system, and we refer the interested (or potentially frustrated)
reader to the full documentation for further information.

Once the code is successfully compiled, it is run through the
system MPI environment, for instance

mpirun -n {ncore} path/to/commander param.txt

Specific MPI runtime environment parameters must be tuned ac-
cording to the local system.

3.2. The Commander parameter file

After successfully compiling and running the code, the next step
in the process encountered by most users is to understand the
Commander parameter file. This is a simple human readable and
editable ASCII file with one parameter per line, on the form

PARAMETER_NAME = {value}

The value cannot contain blank spaces (as anything following a
space in the same line is ignored, and can be used for comments)
or quotation marks, which serve a reserved internal purpose.

The Commander parameter file can become very long for
multi-experiment configurations, as in several thousands of lines,
and maintaining readability is essential for effective debugging
and testing purposes. For help in this respect, the Commander
parameter file supports four special directives that allow the con-
struction of nested parameter files, namely

@INCLUDE {filename_with_full_path}
@DEFAULT {filename_with_relative_path}
@START {number}
@END {number}

The first two of these simply insert the full contents of the speci-
fied parameter file at the calling location of the directive, and the
only difference between them is whether the filename specifies
a full path (as in the first case) or a path relative to a library of
default parameter files (as in the second case). Nested include
statements are allowed, and it is always the last occerance of
a given parameter that is used. The last two directives replace
any occurrence of multiple ampersands between @START and
@END with the specified number.

The default parameter file library is provided as part of
the Commander source code, and the path to this must be
specified through an environment variable called COMMAN-
DER_PARAMS_DEFAULT. This library contains default pa-
rameter files for each data set (Planck LFI 30 GHz, WMAP
Ka-band, etc.), as well as for each supported signal component
(CMB, synchrotron, thermal dust emission, etc.), and allow for
simple construction of complex analysis configurations through
the use of well-defined parameter files per data set and compo-
nent. These also serve as useful templates when adding new ex-
periments or components.

9 https://fftw.org
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Parameters may also be submitted with double dashes on the
command line at runtime (e.g., --BASE_SEED=4842), to support
convenient scripting. Any parameter submitted through the com-
mand line takes preference over those defined in the parameter
file.

The entire parameter file is parsed and validated as the very
first step of the code execution, and stored in an internal data
structure called comm_params for later usage. This is done to
catch user errors early in the process, and speed up debugging
and testing. The internal parameter data structure is also auto-
matically written to the output directory for reproducibility pur-
poses.

An example of a top-level Commander parameter file with
two frequency maps (Planck LFI 30 and 44 GHz) and two astro-
physical components (CMB and synchrotron emission) is shown
in Listing 2. A full description of all supported parameters is pro-
vided in the online documentation referenced above. We do note,
however, that the quick pace of code development sometimes
leaves the documentation out-of-date. If this happens, we en-
courage the reader to submit an issue through the GibHub repos-
itory, or simply fix it, and submit a pull request; Commander is
an Open Source project, and community contributions are much
appreciated.

3.3. Source code overview

After being able to run the code and edit the parameter file, the
next step is usually to modify the actual code according to the
needs of a specific analysis, whether it is to add support for a
new astrophysical component or a new low-level TOD process-
ing type. Clearly, this process may feel somewhat intimidating,
given that the current code base currently spans more than 60 000
lines distributed over 96 different Fortran modules. Fortunately,
as already mentioned, the code is highly modular in structure,
and any given development project can in most cases only focus
on a relatively small part of the code to achieve its goals. The
goal of the current section is to provide a “code map” that helps
the user to navigate the code.

This map is shown in Fig. 2 in terms of main modules.
Each colored block represents one Fortran module with the name
given in bold. (The gray utility box is a special case, in which
each entry indicates a separate module.) Different colors rep-
resent different module types, namely data objects (green), as-
trophysical component objects (red), signal sampling interfaces
(purple), utility routines (gray), as well as the main program (or-
ange). We note that this map is not exhaustive, as new modules
are added regularly.

The starting point for any new user is typically the main pro-
gram file, commander.f90. This file implements the overall ex-
ecution structure that was outlined in Listing 1, which may be di-
vided into module initialization and main Gibbs operations, and
spans only about 500 lines of code. From this module, one may
follow the arrows in Fig. 2 to identify any specific submodule.

3.3.1. Data infrastructure

The main data interface is defined in comm_data_mod, in terms
of a class called comm_data_set. Each object of this type
represents one frequency channel, for instance Planck 30 GHz,
WMAP Q-band, or Haslam 408 MHz. The main class definition
is shown in Listing 3, which is common to all data objects. The
top section defines various scalars, such as the frequency chan-
nel label (e.g., LFI_030), unit type (e.g., uK), number of detec-

t y p e comm_data_se t
c h a r a c t e r ( l e n =512) : : l a b e l
c h a r a c t e r ( l e n =512) : : u n i t
i n t e g e r : : n d e t
c h a r a c t e r ( l e n =128) : : t o d _ t y p e
l o g i c a l : : p o l _ o n l y

c l a s s ( comm_mapinfo ) , p o i n t e r : : i n f o
c l a s s ( comm_map ) , p o i n t e r : : map
c l a s s ( comm_map ) , p o i n t e r : : r e s
c l a s s ( comm_map ) , p o i n t e r : : mask
c l a s s ( comm_map ) , p o i n t e r : : procmask
c l a s s ( comm_tod ) , p o i n t e r : : t o d
c l a s s (comm_N ) , p o i n t e r : : N
c l a s s ( B_p t r ) , a l l o c a t a b l e , d imens ion ( : ) : : B
c l a s s ( comm_bp_ptr ) , a l l o c a t a b l e , d imens ion ( : ) : : bp

c o n t a i n s
p r o c e d u r e : : RJ2da t a
p r o c e d u r e : : c h i s q => g e t _ c h i s q

end t y p e comm_data_se t

Listing 3: Prototype Commander data class, comm_data_set.

tors, and TOD type (if any). The next section defines pointers
to various map-level objects, including the actual co-added fre-
quency map, main and processing masks, and the data-minus-
model residual. All of these share the same mapinfo instance,
as outlined in Fig. 1, stored in info.

The noise model is defined in terms of a pointer to an ab-
stract and generic comm_N class (implemented in comm_N_mod
in Fig. 2), which is instantiated in terms of a specific subclass. At
the moment, only three noise types are supported, namely spa-
tially uncorrelated white noise (Npp′ = σpδpp′ , implemented in
comm_n_rms_mod); a full dense low-resolution noise covariance
matrix for Stokes Q and U, as defined by the WMAP data format,
implemented in comm_n_qucov_mat; and white noise per pixel,
but projecting out all large-scale harmonic modes with ` ≤ `cut,
implemented in comm_n_lcut_mat. Each of these modules de-
fines routines for multiplying a given sky map with operators like
N−1, N−1/2, and N1/2, but does not permit access to specific in-
dividual elements (except for diagonal elements, which are used
for CG preconditioning). As such, very general noise modules
may easily be defined, and external routines do not have to care
about the internal structure of the noise model.

Next, each data object is associated with a beam operator,
B, implemented in comm_B_mod. Once again, this is an abstract
class, and must be instantiated in terms of a subclass. In the cur-
rent implementation, only azimuthally symmetric beams defined
by a Legendre transform b` are supported (in comm_B_bl_mod),
but future work may for instance aim to implement support
for asymmetric FeBeCOP beams (Mitra et al. 2011) or time-
domain total convolution (Wandelt & Górski 2001; Galloway et
al. 2022).

Bandpass integration routines are implemented through the
comm_bp module, and are accessible for each data set through
the bp pointer. This module defines the effective bandpass, τ, per
detector (if relevant) and for the full co-added frequency chan-
nel. It provides both unit conversion factors and astrophysical
SED integration operations, adopting the notation of Planck Col-
laboration IX (2014); Svalheim et al. (2022a). The specific inte-
gration prescription must be specified according to experiment;
the differences between the various cases account for instance
for whether τ is defined in brightness or flux density units, or
whether any thresholds are applied to τ. In general, we chose to
reimplement the conventions adopted by each experiment indi-
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Fig. 2. Overview of the Commander source code. The main program is called commander.f90 and is indicated by the orange box in the center.
All other boxes represents individual modules, except the gray box to the right, which summarizes various utility modules.

vidually, rather than modifying the inputs to fit a standard con-
vention, to stay as close as possible to the original analyses.

Astrophysical SED bandpass integration is performed in
the mixing module class, comm_F_mod.10 A central step in the
Commander analysis is fitting spectral parameter for each as-
trophysical component, and this requires repeated integration
of parametric SEDs with respect to each bandpass. To avoid
performing the full integral for every single parameter change,
we precompute look-up tables for each component and band-
pass over a grid in each parameter. For SEDs with one or two
parameters, we use (bi-)cubic splines to interpolate within the
grid. Separate modules are provided for constant, one- and two-
dimensional SEDs, as well as δ-function SEDs (supporting line
emission components). While this approach is computationally
very efficient, it also introduces an important limitation, in that
only two- or lower-dimensional parametric SEDs are currently
supported; future work should aim to implement arbitrary di-
mensional SED interpolation, for instance using machine learn-
ing techniques (e.g., Fendt & Wandelt 2007).

For relevant channels, time-ordered data are stored in the ab-
stract comm_tod class, which is illustrated in Listing 4. This
structure has three levels. At the highest level, comm_tod de-
scribes the full TOD for all detectors and all scans. This object
defines all parameters that are common to all detectors and scans,
for instance frequency label, sampling rate, and TOD type. It
also contains an array of comm_scan objects, each of which con-
tains the TOD of a single scan for all detectors. This module de-
fines all parameters that are common to that particular scan, for
instance the number of samples in the current scan, ntod, or the

10 Mixing matrix operators are for historical reasons currently denoted
F in Commander; it is likely to change to M in a future update, conform-
ing to the more modern notation used in the literature.

satellite velocity with respect to the Sun, vSun. It also contains an
array of comm_detscan objects, in which the actual data for a
single scan and single detector are stored. The various data, flag
and pointing arrays (tod, flag, pix, psi) are stored in terms
of byte objects, which indicates that these are all Huffman com-
pressed, as discussed in Sect. 2.4. (This feature is optional, and
it is possible to store the data uncompressed.) The comm_tod
object provides the necessary decompression routines.

The most important TOD routine is process_tod in the
comm_tod object. The main task of this routine is to produce
a sky map and its noise description given an astrophysical refer-
ence sky. This includes both performing all relevant TOD-level
sampling steps, and solving for the actual map either through
binning or CG solvers. Since each experiment in general re-
quires different sampling steps and mapmaking approaches, we
chose to implement one TOD module per experiment, for in-
stance comm_tod_lfi_mod, as opposed to one super-module
for all experiments with excessive use of conditional if-tests.
This both makes the overall TOD processing code more read-
able, and it allows different people to work simultaneously on
different experiments with fewer code synchronization prob-
lems.11 The main costs are significant code replication and a
higher risk of code divergence during development. Common
operations are, however, put into general TOD modules, such
as comm_tod_gain_mod and comm_tod_orbdipole_mod, with
the goal of maximizing code reusability.

11 We note that the first implementation of this actually did use com-
mon routines for multiple experiments, but this strategy was quickly
abandoned due to complicated merging procedures.
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! TOD c l a s s f o r a l l scans , a l l d e t e c t o r s
type , a b s t r a c t : : comm_tod

c h a r a c t e r ( l e n =512) : : f r e q
c h a r a c t e r ( l e n =128) : : t o d _ t y p e
i n t e g e r : : nmaps
i n t e g e r : : n d e t
i n t e g e r : : n scan
r e a l : : s a m p r a t e
t y p e ( comm_scan ) , d imens ion ( : ) : : s c a n s

c o n t a i n s
p r o c e d u r e : : r e a d _ t o d
p r o c e d u r e : : p r o c e s s _ t o d
p r o c e d u r e : : d e c o m p r e s s _ t o d
p r o c e d u r e : : t o d _ c o n s t r u c t o r

end t y p e comm_tod

! ####################################################

! TOD c l a s s f o r s i n g l e scan , a l l d e t e c t o r s
t y p e : : comm_scan

i n t e g e r : : n tod
r e a l : : v_sun ( 3 )
c l a s s ( comm_detscan ) , d imens ion ( : ) : : d

end t y p e comm_scan

! ####################################################

! TOD c l a s s f o r s i n g l e d e t e c t o r and s i n g l e scan
t y p e : : comm_detscan

l o g i c a l : : a c c e p t
c l a s s ( comm_noise_psd ) , p o i n t e r : : N_psd
byte , d imens ion ( : ) : : t o d
byte , d imens ion ( : ) : : f l a g
t y p e ( b y t e _ p o i n t e r ) , d imens ion ( : ) : : p i x
t y p e ( b y t e _ p o i n t e r ) , d imens ion ( : ) : : p s i

end t y p e comm_detscan

Listing 4: TOD object structure used in Commander. These mod-
ule descriptions are incomplete and are only intended to illustrate
the structure, not the full contents.

3.3.2. Signal model infrastructure

The red boxes in Fig. 2 summarize modules that defines the as-
trophysical sky model, and the purple boxes contain correspond-
ing sampling algorithms. Starting with the former, we see that
three fundamentally different types of components are currently
supported, namely 1) diffuse components, 2) point source com-
ponents, and 3) template components. The first of these is by far
the most important, as it is used to describe the usual spatially
varying “full-sky” components, such as CMB, synchrotron and
thermal dust emission. The main difference between the various
diffuse components are their spectral energy densities (SEDs)
that defines the signal strength as a function of frequency in units
of brightness temperature, with some set of free parameters. Ex-
amples of currently supported SEDs are listed in the bottom right
block of Fig. 2. We note, however, that it is very easy to add sup-
port for a new SED type as follows. First, we determine how
many free spectral parameters the new component should have;
if it is less than or equal to two, then we identify an existing
component with the same number of parameters, and copy and
rename the corresponding module file. Then we edit the func-
tion called evalSED in that routine to return the desired para-
metric SED. Finally, we search for all occurrences of the origi-
nal component label in the comm_signal_mod module, and add
corresponding entries for the new component. Typically, adding
a new SED type with two or fewer parameters can be done in 15
minutes; if the component has more than two free parameters,
however, new mixing matrix interpolation and precomputation
infrastructure has to be implemented, as discussed above.

The spatial distribution of a diffuse component is defined in
terms of a spherical harmonics expansion, s(n̂) =

∑
a`mY`m(n̂),

with an upper frequency cutoff, `max, coupled to the SED dis-
cussed above. Optionally, the spherical harmonics coefficients
may be constrained through an angular power spectrum, C` ≡〈
|a`m|2

〉
, that intuitively quantifies the smoothness of the com-

ponent through the signal covariance matrix, S (Andersen et al.
2022). Currently supported power spectrum modes include
binned: D` ≡ C``(` + 1)/2π is piecewise constant within

user-specified bins; typically the default choice for the CMB
component (Colombo et al. 2022; Paradiso et al. 2022);
power_law: D` = q(`/`0)α, where q is an amplitude, `0 is a

pivot multipole, and α is a spectral slope; often used for astro-
physical foregrounds, such as synchrotron or thermal dust emis-
sion (e.g., Planck Collaboration X 2016);
gauss: D` = q exp(−`(`+1)σ2), where σ is a user-specified

standard deviation; used to impose a natural smoothing scale to
suppress Fourier ringing;
none: no power spectrum prior is applied, S−1 = 0.
Support for integrated cosmological parameter models

through CAMB (Lewis et al. 2000) is on-going. When complete,
this will be added as a new type for which S will be defined in
terms of the usual cosmological parameters (H0, Ωi, τ, etc.).

Point source components are defined through a user-
specified catalog of potential source locations, following Planck
Collaboration IV (2018). Each source is intrinsically assumed
to be a spatial δ function, with an amplitude defined in units of
flux density in milli-Janskys. Each source location is then con-
volved with the local instrumental beam shape of each channel
(typically asymmetric FeBeCOP beam profiles for Planck, Mitra
et al. 2011, and azimuthally symmetric beam profiles for other
experiments), and this is adopted as a spatial source template at
the relevant frequency channel. In addition, each source is as-
sociated with an SED, similar to the diffuse components, allow-
ing for extrapolation between frequencies. Currently supported
models include power-law (for radio sources), modified black-
body (for far-infrared sources), and thermal Sunyaev-Zeldovich
SEDs. Time variability is not yet supported.

Finally, template components are defined in terms of a user-
specified fixed template map for which the only free parameter
is an overall amplitude at each frequency. This is primarily in-
cluded for historical reasons, for instance to support template
fitting as implemented by the WMAP team (Bennett et al. 2013).
However, this approach allows very limited uncertainty propaga-
tion, and we therefore generally rather prefer to include relevant
survey maps (for instance the 408 MHz survey by Haslam et al.
1982) as additional frequency channels, for which meaningful
uncertainties per pixel may be defined. This mode is not used in
the current BeyondPlanck analysis (BeyondPlanck 2022).

The purple boxes in Fig. 2 contain sampling routines for
these parameters, and these are split into two categories; linear
and nonlinear. The linear parameters (i.e., component amplitude
parameters) are sampled using a preconditioned CG solver (Sel-
jebotn et al. 2019), as implemented in the comm_cr_mod (“Con-
strained Realization”) module, while the nonlinear spectral pa-
rameters are sampled in the comm_nonlin_mod module using a
combination of Metropolis and inversion samplers (Andersen et
al. 2022; Svalheim et al. 2022b).

4. Optimization

The Commander walk-through given in Sect. 3 is high-level in
nature, and is intended to give a broad overview of the code.
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Fig. 3. Truncated Huffman tree for the compression of the LFI 30 GHz
channel at Nside = 512 on PID 27 646. The ovals represent the "leafs"
of the tree, each of which contains a single number to be compressed.
To determine the symbol that represents each number in the Huffman
binary array, simply read down the tree from the top, adding a 0 for
every left branch and a 1 for every right branch. The number -2, for
example, is in this table represented by the binary code 11010. Dotted
lines represent branches that were truncated for visual reasons. The full
tree contains 670 unique numbers with a total array size of 861 276
entries.

In this section, we turn our attention to lower-level details, and
focus in particular on specific optimization challenges and tricks
that improve computational efficiency.

4.1. In-memory data compression

As discussed in Sect. 2.4, one of the key challenges for achiev-
ing efficient end-to-end CMB analysis is memory management;
since the full TOD are required at every single Gibbs iteration,
it is imperative to optimize data access rates. In that respect, we
first note that RAM read rates are typically at least one order of
magnitude higher than disk read rates, and, second, most TOD
operations are bandwidth limited simply because each sample
is only used once (or a few times) per read. For this reason, a
very useful optimization step is simply to be able to store the
full TOD in RAM. At the same time, we note that disk space is
cheap, while RAM is expensive. It is therefore also important to
minimize the total data volume.

We address this issue by storing the TOD in a compressed
form in RAM, and decompress each data segment before fur-
ther processing at run-time. In the current implementation, we
adopt Huffman coding (Huffman 1952), and implement the de-
compression algorithms natively in the source code; of course,
other lossless compression algorithms can be used, and in the

30GHzIn = 32768 4096

0.01 0 0.01
K

30GHzQn = 32768 4096

0.05 0 0.05
K

30GHzUn = 32768 4096

0.05 0 0.05
K

Fig. 4. 30 GHz T, Q, and U map differences between two pipeline
executions using different levels of compression (nψ = 32768 and
nψ = 4096), smoothed by a 1 degree beam. The differences in tem-
perature look like correlated noise, and in polarization we have some
leakage from polarized synchrotron. In both cases, the amplitude of the
differences is much lower than the uncertainties from other effects.

future it may be worth exploring using different algorithms for
different types of objects.

Typically, most current CMB experiments distribute their
data, as recorded by analog-to-digital converters (ADCs), in the
form of 32-bit integers, which support over 2 billion different
numbers; we will refer to each distinct integer as a “symbol” in
the following. However, the actual dynamic range of any given
data segment only typically spans a few thousand different sym-
bols. Therefore, simply by choosing a more economic integer
precision level, a factor of three could be gained. Further im-
provements could be made by actually counting the frequency
of each symbol separately, and assign short bit strings to fre-
quently occuring symbols, and longer bit strings to infrequently
occuring symbols. Huffman coding is a practical algorithm that

Article number, page 10 of 17



BeyondPlanck Collaboration: Commander3

Table 1. Huffman compression performance for each Planck LFI data object and frequency channel. Columns 2–6 are all given in units of
gigabytes. The last column shows the average ratio between the raw and compressed data volumes.

30 GHz 44 GHz 70 GHz

Item Raw Huffman Raw Huffman Raw Huffman Raw/Huffman

TOD . . . . . . . . . 361 52 776 95 2625 340 6
Pointing (n̂) . . . . 181 10 388 18 1312 69 20
Pointing (ψ) . . . . 90 5 194 10 656 24 25
Quality flag . . . . . 45 3 97 6 328 10 33

Total . . . . . . . . . 730 70 1230 130 4530 450 10

achieves precisely this, and it can be shown to be the theo-
retically optimal lossless compression algorithm when consid-
ering each datum separately. To account for correlations, not-
ing that most CMB TODs are correlated in time, we difference
all datastreams sample-by-sample prior to compression, setting
d̄(i) = d(i)−d(i−1); after this differencing, most data values will
be close to zero.

The actual Huffman encoding relies on a binary tree struc-
ture, and assigns numbers with high frequencies to short codes
near the top of the tree, and infrequent numbers to long codes
near the bottom. As a practical and real-life example, Fig. 3
shows the top of the Huffman encoding tree for the arbitrarily se-
lected PID 27 646 for the 30 GHz data. In this case, 0 represents
about 42% of the entire data set after the pair-wise differenc-
ing operation. The optimal compression is therefore to represent
0 with a single bit (which also happens to be 0), and numbers
that occur frequently, such as 1 and -1, with 4-bit codes (1110
and 1001, respectively). At the bottom of the tree are those num-
bers which occur very infrequently. This diagram is obviously
truncated, and the full tree uses codes with lengths of 20 bits
to represent the lowest symbols that occur only once. A simple
worked example of Huffman coding is given in Appendix A.

The Huffman algorithm requires a finite number of symbols
to be encoded, and therefore performs far better for integers than
for floats. This is intrinsically the case for (ADC-outputted) TOD
and flag information, but not for pointing values. However, as
most modern CMB experiments, BeyondPlanck uses HEALPix
to discretize the sky. Precomputing the HEALPix coordinates of
each sample therefore allows the pointing sky coordinates to be
reduced from two floats per sample (representing θ and φ) to one
single integer. Of course, this requires the HEALPix resolution
parameter, Nside, to be predefined during data preprocessing and
compression for each band. In practice, this is acceptable as long
as Nside is selected to correspond to a higher resolution than the
natural beam smoothing scale of the detectors. For the LFI 30
and 44 GHz channels, we adopt Nside = 512, whereas for the
70 GHz channel we adopt Nside = 1024.12 We note that this is
indeed a lossy compression step, but it is precisely the same lossy
compression that is always involved in CMB mapmaking; the
only difference is that the discretized pointing is evaluated once
as a preprocessing step.

The same does not hold for the polarization angle, ψ, which
also is a float, and typically is not discretized in most current
CMB mapmaking codes. However, as shown by Keihänen &
Reinecke (2012) in the context of beam deconvolution for LFI
through the use of so-called 4D maps, even this quantity may
be discretized with negligible errors as long as a sufficient num-
ber of bins between 0 and 2π is used. Specifically, Keihänen &

12 This is different from the official Planck LFI maps, which adopt
Nside = 1024 for all channels.

Reinecke (2012) used nψ = 256 bins for all LFI channels, while
for BeyondPlanckwe adopt nψ = 4096; the additional resolution
has an entirely negligible cost in terms of increased Huffman tree
size.

To check the impact of the polarization angle compression,
Fig. 4 shows difference Stokes T, Q, and U maps for the co-added
30 GHz frequency channel generated in two otherwise identical
mapmaking runs with nψ = 4096 and 32 768. Here we see that
the compression introduces artifacts at the level of 0.01 µK at
high Galactic latitudes, increasing to about 0.1 µK in the Galac-
tic plane, which is entirely negligible compared to the intrinsic
uncertainties in these data, fully confirming the conclusions of
Keihänen & Reinecke (2012).

The main cost associated with Huffman compression comes
in the form of an additional cost for decompression prior to TOD
processing. Specifically, we find that decompression costs about
10% of the total runtime per iteration; we consider this to be an
acceptable compromise to enable the entire data set to be held in
memory at once and eliminate disk read time.

Table 1 gives an overview of the compression performance
for each data object and LFI frequency channel. Overall, we see
that the TOD data volume is reduced by a factor of about six,
while the pointing volume is reduced by a factor of about 20.

4.2. FFT optimization and aliasing mitigation

Once the data are stored in memory, the dominant TOD opera-
tion are the FFTs, which are used repeatedly for both correlated
noise and gain sampling (Ihle et al. 2022; Gjerløw et al. 2022).
Fortunately, several highly optimized FFT libraries are widely
available that provides outstanding performance, and we cur-
rently adopt the FFTW implementation (Frigo & Johnson 2005).

Still, there are several issues that needs to be considered re-
garding FFTs. The first regards runtime versus the length of each
data segment. In particular, the FFTW documentation notes that

“FFTW works most efficiently for arrays whose size can
be factored into small primes (2, 3, 5, and 7).”

As an illustration of this fact, Fig. 5 shows the time per FFT as a
function of data length, as measured on a local compute cluster;
the top panel shows all lengths up to 10 000, while the bottom
panel shows a zoom-in of the top panel. Here we clearly see that
run times can vary by at least an order of magnitude from one
length to the next.
Commander3 exploits this effect at read-in time. As each

chunk of data is read, its length is compared to a precomputed ta-
ble of FFT costs for all values up to Nsamp = 106. The data chunk
is then truncated to the nearest local minima of the cost function,
losing only a small amount of data (0.03%) while providing a
large speedup for all FFT operations performed on that chunk.
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Fig. 5. FFT costs computed as a function of window length. (Top:)
Cost per FFT as a function of FFT length. (Bottom:) Zoom-in of the
top panel, showing more details of the variation within a small sample
range.

Of course, if the noise stationarity length is unconstrained, and
the segment length is fully up to the user to decide, then powers
of 2n are particularly desirable.

Another important effect to take into account is that of FFT
aliasing and edge effects; the underlying FFT algebra assumes
by construction that the data in question are perfectly periodic.
If there are notable gradients extending through the segment, the
end of the segment may have a significantly different mean than
the beginning, and this will be interpreted by the FFT as a large
discrete jump. If any filtering or convolution operators (for in-
stance inverse noise weighting, N−1) are applied to the data, this
step will result in nonlocalized ringing that can contaminate the
data.

Several approaches to mitigate this effect are described in the
literature, and zero padding is perhaps one of the best known, in
which one adds zeros to both ends of the original data stream.
However, this operation also has a nontrivial impact on the out-
come, and we chose a more expensive and more conservative
approach, namely mirroring: Before every FFT operation, we
double the length of the array in question, and add a mirrored
version of the original array into the second half. This makes the
function periodic by construction, and eliminates any discrete
boundary effects. However, this safety does come at a price of

doubling the run time, and future implementations should ex-
plore alternative approaches. One possibility is to allow for data
duplication in overlap regions, such that for instance 5 % of a
given data segment is filled by data from the neighboring seg-
ments at both edges. Then the overlap region is discarded after
filtering. This approach was explored by Galloway (2019), and
shown to work very well for SPIDER noise modeling.

4.3. Conjugate gradient optimization for component
separation

The second most important numerical operation in the Beyond-
Planck Gibbs sampler after FFTs is the spherical harmonics
transform. This forms the numerical basis for the astrophys-
ical component amplitude sampler (Andersen et al. 2022), in
which the following equation is solved repeatedly (Seljebotn
et al. 2019),(
S−1 +

∑
ν

Yt
νM

t
νN
−1
ν MνYν

)
a =

∑
ν

Yt
νM

t
νN
−1
ν mν. (10)

Here S and Nν denote the signal and noise covariance matrices,
respectively, Mν is a mixing matrix, mν is an observed frequency
map, a is a vector containing all component amplitudes, and Y is
a spherical harmonics transform. In this expression, Nν, Mν, and
mν are all defined as pixelized map vectors, while S and a are
defined in spherical harmonic space, and Y converts between the
two spaces.

Equation (10) involves millions of free parameters, and must
therefore be solved iteratively with preconditioned CG-type
methods (Shewchuk 1994). There are therefore two main ap-
proaches to speed up its solution: Either one may reduce the
computational cost per CG iteration, or one may reduce the num-
ber of iterations required for convergence. As far as the for-
mer approach is concerned, by far the most important point is
simply to use the most efficient SHT library available at any
given time to perform the Y operation; all other operations are
linear in the number of pixels or spherical harmonics coeffi-
cients, and are largely irrelevant as far as computational costs
are concerned. At the time of writing, the fastest publicly ava-
ialble SHT library is libsharp2 (Reinecke & Seljebotn 2013),
and we employ its MPI version for the current calculations. (We
note that the OpenMP version is even faster, but since the current
Commander3 parallelization strategy is agnostic with respect to
compute nodes, and all data are parallelized across all available
nodes, this mode is not yet supported.)

The main issue to optimize is therefore the number of iter-
ations required for convergence. Again, there are two different
aspects to consider, namely preconditioning and the stopping cri-
terion. Starting with the former, we recall that a preconditioner is
simply some (positive definite) linear operator, P, that is applied
to both sides of Eq. (10) in the hope that the equation becomes
easier to solve numerically. The ideal case is that P is equal to
the inverse of the coefficient matrix on the left-hand side, but
this is of course never readily available; if it were, the system
would already be solved. In the current work, we adopt the pre-
conditioner introduced by Seljebotn et al. (2019) for Eq. (10),
which approximates the inverse of a non-square matrix, A, by
its pseudo-inverse A+ ≡ (AtA)−1At. A possible future improve-
ment might be to replace this on large angular scales with the
exact brute-force block preconditioner of Eriksen et al. (2004b,
2008b) for ` . 100.

The final question is then, simply, to determine how many
CG iterations are required to achieve acceptable accuracy. To
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Fig. 6. RMS of a CMB difference map comparing various iteration num-
bers to the most converged 1000 iteration case. The RMS drops rapidly
until about 50 samples, at which point the marginal increase in conver-
gence per sample flattens out.

address this issue, we solve Eq. (10) for the basic BeyondPlanck
configuration (BeyondPlanck 2022) with a maximum of 1000 it-
erations, and plot the rms difference between the CMB solutions
obtained at the ith and 1000th iterations. This quantity is plotted
in Fig. 6. Here we see that that the residual decreases rapidly up
to about 70 iterations, while for more than 100 iterations only
very modest differences are seen. For the final BeyondPlanck
runs, we have chose 100 iterations as the final cutoff.

We note that this criterion differs from most previous
Commander-based analyses (e.g., Planck Collaboration X 2016),
which usually have defined the cutoff in terms of a relative reduc-
tion of the preconditioned residual, r = ||Ax−b)|2. The reason we
prefer to define the convergence criterion in terms of map-level
residuals with respect to the converged solution is simply that
r may weight the various astrophysical components very differ-
ently, for instance according to arbitrarily chosen units. One ex-
ample is synchrotron emission, which has a reference frequency
of 408 MHz in the BeyondPlanck analysis, and is measured in
units of µKRJ, and therefore has a much higher impact on r
than the CMB component. If we were to use the preconditioned
residual as a threshold instead (which many analyses also do),
then nearly singular modes in A may be given a relatively large
weight. In practice, it is our experience that a map-based rms
cutoff is less prone to spurious and premature termination than
either of the two residual-based criteria.

4.4. File format comparison: HDF versus FITS

The current Commander3 implementation adopts the hierarchical
data format (HDF) for TOD disk storage. While the CMB com-
munity has largely converged on the standard FITS format for
maps, this format has some drawbacks that make them less than
ideal for time-domain data sets, both in terms of efficiency and
programming convenience. For instance, HDF files support in-
ternal directory tree structures, which allows for intuitive storage
of multiple layers of information within each file. Additionally,
HDF can easily support data sets with different lengths, which is
useful when handling compressed data. Finally, the HDF format
supports headers and metadata for every data set, which makes
it very easy to store quantities such as units, conversion factors,

100 150 200 250

Data set size [GB]

0
5

10
15

20

F
IT

S
w

ri
te

/H
D

F
w

ri
te

Fig. 7. Ratio between FITS and HDF disk write times for subsets of the
LFI data of various sizes.

compression information and even human-readable help strings
locally.

Most importantly, however, is simply the fact that HDF is
faster than FITS. To quantify this, we performed several timing
tests, and one example is shown in Fig. 7. In this case, we write
a given data subset of varying size (single-detector 27M, single-
horn 27M+S and the full 30 GHz channel) to disk repeatedly
using standard Python libraries, and we plot the ratio of the time
averages required for this task. HDF operations are performed
with h5py and FITS operations with astropy.io.fits. For
this particular case, we see that HDF output is typically one order
of magnitude faster than FITS output on our system.

5. Resource requirements

At the outset of the BeyondPlanck project, it was by no means
obvious whether full end-to-end Bayesian processing was com-
putationally feasible with currently available computing re-
sources. A main goal of the general project in general, and this
paper in particular, was therefore simply to quantify the resource
requirements for end-to-end Bayesian CMB analysis in a real-
life setting, both in terms of CPU hours and RAM. These are
summarized for the main BeyondPlanck run, as defined in Be-
yondPlanck (2022), in Table 2. All processing times refer to to-
tal CPU hours integrated over computing cores, and since each
chain is parallelized over 128 cores, all numbers may be divided
by that number to obtain wall hours.

Starting with the data volume, we see that the total raw LFI
TOD span almost 8 TB as provided by the Planck Data Pro-
cessing Center (DPC). After compression and removing non-
essential information, this is reduced by almost an order of mag-
nitude, as the final RAM requirements for LFI TOD storage is
only 861 GB. The total RAM requirement for the full job includ-
ing component separation (most of which is spent on storing the
full set of mixing matrices per astrophysical component and de-
tector) is 1.5 TB.

The second section shows the total initialization time, which
accounts for the one-time cost of reading all data into memory.
This is mostly dominated by disk read times, so systems with
faster disks will see improvements here. However, as this is only
executed at the start of the run, it is a very subdominant cost
compared to the loop execution time.
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Table 2. Computational resources required for end-to-end BeyondPlanck processing. All times correspond to CPU hours on 128 cores. All reported
times are averaged over more than 100 samples and vary by . 5 % from sample to sample.

Item 30 GHz 44 GHz 70 GHz Sum Reference

Data volume
Uncompressed TOD volume . . . . . . . . . . . . . . . . . . 761 GB 1 633 GB 5 522 GB 7 915 GB
Compressed TOD volume . . . . . . . . . . . . . . . . . . . . 86 GB 178 GB 597 GB 861 GB
Non-TOD-related RAM usage . . . . . . . . . . . . . . . . . 659 GB
Total RAM requirements . . . . . . . . . . . . . . . . . . . . 1 520 GB

Processing time (cost per run)
TOD initialization/IO time . . . . . . . . . . . . . . . . . . . . 3.8 h 4.3 h 12.5 h 20.6 h
Other initialization . . . . . . . . . . . . . . . . . . . . . . . . . 43.4 h
Total initialization . . . . . . . . . . . . . . . . . . . . . . . . . 64.0 h

Gibbs sampling steps (cost per sample)
Huffman decompression . . . . . . . . . . . . . . . . . . . . . 1.1 h 1.8 h 7.1 h 10.0 h This paper
TOD projection (P operation) . . . . . . . . . . . . . . . . . . 0.3 h 0.7 h 3.1 h 4.1 h BeyondPlanck (2022)
Sidelobe evaluation (ssl) . . . . . . . . . . . . . . . . . . . . . . 1.1 h 2.1 h 6.5 h 9.7 h Galloway et al. (2022)
Orbital dipole (sorb) . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 h 1.1 h 4.6 h 6.2 h Gjerløw et al. (2022)
Gain sampling (g) . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 h 0.7 h 4.7 h 6.0 h Gjerløw et al. (2022)
1 Hz spike sampling (s1hz) . . . . . . . . . . . . . . . . . . . . 0.2 h 0.3 h 1.9 h 2.4 h BeyondPlanck (2022)
Correlated noise sampling (ncorr) . . . . . . . . . . . . . . . 1.7 h 3.6 h 24.8 h 30.1 h Ihle et al. (2022)
Correlated noise PSD sampling (ξn) . . . . . . . . . . . . . 3.3 h 4.0 h 1.1 h 8.4 h Ihle et al. (2022)
TOD binning (Pt operation) . . . . . . . . . . . . . . . . . . . 0.2 h 0.5 h 4.1 h 4.8 h Suur-Uski et al. (2022)
Sum of other TOD processing . . . . . . . . . . . . . . . . . 1.3 h 2.5 h 10.9 h 14.7 h BeyondPlanck (2022)
TOD processing cost per sample . . . . . . . . . . . . . . 10.4 h 17.4 h 69.1 h 96.9 h
Amplitude sampling, P(a | d, ω \ a) . . . . . . . . . . . . . 23.9 h Andersen et al. (2022)
Spectral index sampling, P(β | d, ω \ β) . . . . . . . . . . . 40.3 h Svalheim et al. (2022b)
Other steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 h BeyondPlanck (2022)
Total cost per sample . . . . . . . . . . . . . . . . . . . . . . . 163.9 h

The bottom section of Table 2 summarizes the computational
costs for a single iteration of the Gibbs sampling loop. Here we
see that the total cost per sample is dominated by the TOD sam-
pling loop (as would be naively expected from data volume),
which takes about 59 % of the full sample time. The remaining
41 % is spent on component separation; about one third of this
is spent on amplitude sampling (as discussed in Sect. 4.3), and
two-thirds is spent on spectral parameter sampling. The former
of these is fairly well optimized, as it is dominated by SHTs,
while the latter clearly could be better optimized, for a potential
maximum saving of 25 % of the total runtime.

For the 70 GHz channel, 35 % of the total processing time
is spent on correlated noise sampling, P(ncorr|d, . . .). This step is
by itself the most computationally complex and expensive oper-
ation, as it requires FFTs within a CG solver for correlated noise
gap filling (Ihle et al. 2022). This step could be sped up through
approximations, but we found that the CG solver was the only
way to guarantee high accuracy in regions with large processing
masks, most notably scans through the Galactic plane. For the 30
and 44 GHz channels, the most expensive operation is in fact cor-
related noise PSD sampling, P(ξcorr|d, . . .), and this is an indica-
tion of sub-optimality of the current implementation, rather than
a fundamental algorithmic bottleneck: One of the last modifica-
tions made to the final BeyondPlanck pipeline was the inclusion
of a Gaussian peak in the noise PSD around 1 Hz, and this oper-
ation was not optimized before the final production run. Future
implementations should be able to reduce this time to negligible
levels, as only low-volume power spectrum data are involved in
noise PSD sampling.

Next, we see that the Huffman decompression costs about
10 % of the total runtime, and we consider this to be a fair
price to pay for significantly reduced memory requirements. In-
deed, without Huffman compression we would require multi-

node MPI communication, and in that case many other oper-
ations would become significantly more expensive. Thus, it is
very likely that Huffman coding in fact leads to both lower mem-
ory requirements and reduced total runtime.

We also see that sidelobe evaluation accounts for about 10 %
of the total runtime, most of which is spent on interpolation.
This part can also very likely be significantly optimized, and
the ducc13 library appears to be a particularly promising can-
didate for future integration. Sidelobe evaluation will become
even more important for a future WMAP analysis, for which four
distinct detector TODs are combined into a single differencing
assembly TOD prior to noise estimation and mapmaking, each
with its own bandpass (Bennett et al. 2013). Actually, as reported
by Watts et al. (2022), sidelobe interpolation currently accounts
for about 20 % of the total WMAP runtime due to this structure.

Unaccounted for TOD processing steps represent a total of
12 % of the total low-level processing time and include both ac-
tual computations, such as χ2 evaluations and bandpass sam-
pling, and loss due to poor load balancing. The latter could
clearly be reduced in future versions of the code.

Overall, we see from Table 2 that up to 74 h per sample
(sidelobe evaluation, correlated noise PSD sampling, spectral in-
dex sampling, and other TOD costs) can potentially be gained
through more careful optimization within the current coding
paradigm, or about half of the total runtime. This optimization
will of course happen naturally in the future, as each module
gradually matures. Also, the current native Commander3 code
does not yet support vectorization (SSE, AVX, etc.) natively, but
only partially through the external FFT and SHT libraries, and
whatever the Fortran compiler can manage on its own. This will
also be done in future work.

13 https://gitlab.mpcdf.mpg.de/mtr/ducc
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Finally, it is important to note that the current analysis frame-
work is inherently a Markov chain, and that means that each
sample depends directly on the previous one. The Bayesian anal-
ysis approach is therefore intrinsically more challenging to par-
allelize than the forward simulation frequentist-style approach,
for which independent realizations may be run on separate com-
pute cores (e.g., Planck Collaboration XII 2016). As each vari-
able in the Gibbs chain is required to hold the full previous state
of the chain constant, it is difficult to find segments of the code
that can run independently for long times without synchroniz-
ing. One place this could be added is in the TOD sampling step.
Each of the different bands could be run independently at the
same time (i.e., the 30 GHz map is independent of the 44 and
70 GHz parameters). With many TOD bands, like the configura-
tion proposed for LiteBIRD, this could be a feasible paralleliza-
tion scheme, but for LFI with only three bands the runtime is
dominated by the 70 GHz processing time regardless, and this
technique could shave at most 20 % off the total runtime for the
current run. For future analyses of massive data sets with thou-
sands of detectors, however, data partitioning will become es-
sential to achieve acceptable parallelization speed-up.

6. Summary and outlook

The main goal of this paper is to provide an overview of the Be-
yondPlanck infrastructure used to analyze the Planck LFI data
within an end-to-end Bayesian framework, hopefully aiding new
users to modify and extend it to their needs. We have discussed
the various computational and architectural decisions that have
been adopted for the BeyondPlanck codebase, as well as some
of the current challenges facing the development effort. We high-
light in particular the choices made for the analysis of the LFI
data, but many of these architectural decisions were selected to
be generalizable to future data sets.

One important novel feature introduced here that is likely
to be useful for many future CMB experiments is in-memory
data compression. We find that the original data volume may be
reduced by one order of magnitude through data selection and
compression, with negligible loss of precision. For LFI, this al-
lows the entire data set to be stored in memory on modest com-
puting hardware, and it reduces the disk read time to a one-time
initialization cost, independent of the number of iterations of the
algorithm. In general, in-memory compression permits the anal-
ysis to be performed on small clusters that are often available
at individual research institutions, as opposed to national high-
performance computing centers, and this has significant advan-
tages in both cost and ease of use, for instance shorter debugging
cycles and queuing times. We suggest that future experiments
such as CMB S4 and Simons Observatory that are planning for
data volumes many times larger than Planck’s consider using
these lossless techniques to reduce the resource requirements of
their overall analysis task.

We also quantify the computational costs for the Beyond-
Planck LFI analysis, and the resulting numbers may serve as
an estimate of the pipeline’s performance for future similarly
sized data sets. Specifically, we find that the LFI analysis re-
quires 1.5 TB of RAM, and producing one single sample costs
about 170 CPU-hrs. This latter number may be compared with
the costs required to produce the official Planck Full Focal Plane
simulations. For instance, as discussed by Planck Collabora-
tion XII (2016), producing 81 000 LFI noise simulations on the
Finnish Sisu cluster cost 4 million CPU hours, for an average
cost of 50 CPU-hrs/map. The current BeyondPlanck approach,
which includes all steps from low-level calibration to final com-

ponent separation and allows for the full exploration of parame-
ter degeneracies, is therefore computationally equivalent to pro-
ducing only three correlated-plus-white noise realizations in a
traditional frequentist approach, which allows much more re-
stricted error propagation. We conclude that the Bayesian ap-
proach compares favorably with respect to the traditional ap-
proach in terms of computational costs.

More generally, we conclude that the analysis pipeline de-
scribed in this paper is ideally suited for moderately sized CMB
data sets, and we believe that it can be extended to many ex-
isting and future experiments with relatively minor efforts. One
concrete and specific example is the on-going WMAP analysis
presented by Watts et al. (2022), which appears quite encourag-
ing both in terms of computational efficiency and data quality.

While the BeyondPlanck project itself was a time-limited ef-
fort from 2018 to 2021, this work will be continued within the
context of the Open Science and community-wide Cosmoglobe
project. We strongly encourage all interested parties to get in-
volved in that project, and together develop an Open Source
state-of-the-art model of CMB sky.
Acknowledgements. We thank Prof. Pedro Ferreira and Dr. Charles Lawrence for
useful suggestions, comments and discussions. We also thank the entire Planck
and WMAP teams for invaluable support and discussions, and for their dedi-
cated efforts through several decades without which this work would not be
possible. The current work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement num-
bers 776282 (COMPET-4; BeyondPlanck), 772253 (ERC; bits2cosmology), and
819478 (ERC; Cosmoglobe). In addition, the collaboration acknowledges sup-
port from ESA; ASI and INAF (Italy); NASA and DoE (USA); Tekes, Academy
of Finland (grant no. 295113), CSC, and Magnus Ehrnrooth foundation (Fin-
land); RCN (Norway; grant nos. 263011, 274990); and PRACE (EU).

References
Abazajian, K., Addison, G., Adshead, P., et al. 2019, arXiv Preprints

[arXiv:1908.01062]
Ade, P., Aguirre, J., Ahmed, Z., et al. 2019, Journal of Cosmology and Astropar-

ticle Physics, 2019, 056–056
Andersen et al. 2022, A&A, in preparation [arXiv:201x.xxxxx]
Bennett, C. L., Banday, A. J., Gorski, K. M., et al. 1996, ApJ, 464, L1
Bennett, C. L., Hill, R. S., Hinshaw, G., et al. 2003, ApJS, 148, 97
Bennett, C. L., Larson, D., Weiland, J. L., et al. 2013, ApJS, 208, 20
BeyondPlanck. 2022, A&A, in preparation [arXiv:2011.05609]
Bobin, J., Starck, J., Fadili, J., & Moudden, Y. 2007, IEEE Transactions on Image

Processing, 16, 2662
Cardoso, J.-F., Le Jeune, M., Delabrouille, J., Betoule, M., & Patanchon, G.

2008, IEEE Journal of Selected Topics in Signal Processing, 2, 735
Cheng, E. 1992, Astronomical Data Analysis Software and Systems, 25, 368
Colombo et al. 2022, A&A, in preparation [arXiv:201x.xxxxx]
Delabrouille, J., Cardoso, J. F., Le Jeune, M., et al. 2009, A&A, 493, 835
Eriksen, H. K., Banday, A. J., Górski, K. M., & Lilje, P. B. 2004a, ApJ, 612, 633
Eriksen, H. K., Jewell, J. B., Dickinson, C., et al. 2008a, ApJ, 676, 10
Eriksen, H. K., Jewell, J. B., Dickinson, C., et al. 2008b, ApJ, 676, 10
Eriksen, H. K., O’Dwyer, I. J., Jewell, J. B., et al. 2004b, ApJS, 155, 227
Fendt, W. A. & Wandelt, B. D. 2007, arXiv e-prints, arXiv:0712.0194
Fernández-Cobos, R., Vielva, P., Barreiro, R. B., & Martínez-González, E. 2012,

MNRAS, 420, 2162
Frigo, M. & Johnson, S. G. 2005, Proceedings of the IEEE, 93, 216, special issue

on “Program Generation, Optimization, and Platform Adaptation”
Galloway, M. 2019, Stratospheric Ballooning with SPIDER and BIT
Galloway et al. 2022, A&A, in preparation [arXiv:201x.xxxxx]
Gerakakis et al. 2022, A&A, in preparation [arXiv:201x.xxxxx]
Gjerløw et al. 2022, A&A, in preparation [arXiv:2011.08082]
Gorski, K. M., Hivon, E., Banday, A. J., et al. 2005, The Astrophysical Journal,

622, 759–771
Gutiérrez, C. M., Davies, R. D., Watson, R. A., et al. 1996, Astronomical &

Astrophysical Transactions, 10, 43
Haslam, C. G. T., Salter, C. J., Stoffel, H., & Wilson, W. E. 1982, A&AS, 47, 1
Hazumi, M., Ade, P., Akiba, Y., et al. 2019, Journal of Low Temperature Physics,

194, 443
Hinshaw, G., Barnes, C., Bennett, C. L., et al. 2003, ApJS, 148, 63
Huffman, D. A. 1952, Proceedings of the IRE, 40, 1098

Article number, page 15 of 17



A&A proofs: manuscript no. BP_generalization

Ihle et al. 2022, A&A, in preparation [arXiv:2011.06650]
Jones, M. E., Taylor, A. C., Aich, M., et al. 2018, Monthly Notices of the Royal

Astronomical Society, 480, 3224–3242
Keihänen, E. & Reinecke, M. 2012, A&A, 548, A110
Keihänen, E., Kurki-Suonio, H., & Poutanen, T. 2005, Monthly Notices of the

Royal Astronomical Society, 360, 390
Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473
Maino, D., Farusi, A., Baccigalupi, C., et al. 2002, MNRAS, 334, 53
Mitra, S., Rocha, G., Górski, K. M., et al. 2011, ApJS, 193, 5
Paradiso et al. 2022, A&A, in preparation [arXiv:201x.xxxxx]
Planck Collaboration I. 2014, A&A, 571, A1
Planck Collaboration IX. 2014, A&A, 571, A9
Planck Collaboration I. 2016, A&A, 594, A1
Planck Collaboration X. 2016, A&A, 594, A10
Planck Collaboration XII. 2016, A&A, 594, A12
Planck Collaboration I. 2020, A&A, 641, A1
Planck Collaboration II. 2020, A&A, 641, A2
Planck Collaboration IV. 2018, A&A, 641, A4
Planck Collaboration Int. LVII. 2020, A&A, 643, A42
Reinecke, M. & Seljebotn, D. S. 2013, A&A, 554, A112
Reinecke, M. & Seljebotn, D. S. 2013, Astronomy & Astrophysics, 554, A112
Reinecke, M., Dolag, K., Hell, R., Bartelmann, M., & Enßlin, T. A. 2006, A&A,

445, 373
Seljebotn, D. S., Bærland, T., Eriksen, H. K., Mardal, K. A., & Wehus, I. K.

2019, A&A, 627, A98
Shewchuk, J. R. 1994, An Introduction to the Conjugate Gradient Method

Without the Agonizing Pain, Edition 1 1
4 , http://www.cs.cmu.edu/~quake-

papers/painless-conjugate-gradient.pdf
Smoot, G. F., Bennett, C. L., Kogut, A., et al. 1992, ApJ, 396, L1
SPIDER Collaboration, Ade, P. A. R., Amiri, M., Benton, S. J., et al. 2021,

A Constraint on Primordial B-Modes from the First Flight of the SPIDER
Balloon-Borne Telescope

Suur-Uski et al. 2022, A&A, in preparation [arXiv:201x.xxxxx]
Svalheim et al. 2022a, A&A, in preparation [arXiv:201x.xxxxx]
Svalheim et al. 2022b, A&A, in preparation [arXiv:201x.xxxxx]
Tegmark, M. 1997, ApJ, 480, L87
Tegmark, M., de Oliveira-Costa, A., Devlin, M. J., et al. 1997, The Astrophysical

Journal, 474, L77
Wandelt, B. D. & Górski, K. M. 2001, Phys. Rev. D, 63, 123002
Watts et al. 2022, A&A, in preparation [arXiv:201x.xxxxx]
White, M. & Bunn, E. F. 1995, ApJ, 443, L53
Xu, Y., Tegmark, M., de Oliveira-Costa, A., et al. 2001, Phys. Rev. D, 63, 103002

Article number, page 16 of 17

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf


BeyondPlanck Collaboration: Commander3

Appendix A: Huffman Coding

Here, we show a worked example of Huffman coding using a
simple data set. For this example, we use the following data,
which is stored as a series of 16 unsigned 4-bit integers:

4 8 8 3 7 8 1 8 3 4 8 13 1 8 1 4. (A.1)

Naively, these data would take 4 ∗ 16 = 64 bits to encode.
However, with Huffman compression, we are able to greatly re-
duce the number of bits per number that is required on average,
by encoding common data with small symbols and uncommon
data with large ones. To compute this optimal symbolic repre-
sentation, first we compute the frequency of each of the symbols
in our data set and sort them, which produces a table that looks
like this:

Data Frequency
7 1

13 1
3 2
1 3
4 3
8 6

Each symbol is now assigned a node in the tree structure,
with a weight equal to its frequency. The Huffman tree is then
constructed starting from the bottom. We create a new node,
which we will call "a," which combines the two lowest prior-
ity symbols, in this case "7" and "13," and give it a weight equal
to their combined weights At this point, the list of nodes looks
like this:

Node Weight Left Child Right Child
a 2 7 13
3 2 none none
1 3 none none
4 3 none none
8 6 none none

This process is now repeated, combining the two lowest
weight nodes again (node "a" and node "3"), to create a new
node "b". The nodes now look like this:

Node Weight Left Child Right Child
1 3 none none
4 3 none none
b 4 a 3
8 6 none none

This process repeats three more times until all nodes are as-
signed, which gives a final tree state that is shown in Fig. A.1.

Not all implementations of Huffman encoding will return
identical trees, as the order in which identical nodes are com-
bined is implementation dependant.

Once we have this tree structure, it is trivial to compute the
new data stream that encodes the data of equation A.1. For each
symbol we start at the appropriate node and simply read up the
tree to the top. For our case, this gives:

111 0 0 110 1000 0 110 0 110 111 0 1001 110 0 110 111 (A.2)

where the spaces between symbols have been deliberately
left for clarity, but in memory would be stored as a continuous

     8
     6
     0

 Node 
Weight
Symbol

0 1

     E
    16

     D
    10

0 1

     B
     4

     C
     6

     4
     3
   111

     1
     3
   110

0 10 1

     3
     2
   101

     A
     2

0 1

     7
     1
  1000

    13
     1
  1001

Fig. A.1. Full Huffman tree of the example data given in Eq. A.1.

binary field. That allows us to losslessly encode all the above
information in only 38 bits, which is a compression factor of
0.59. In addition, we have to store the compression table as well,
which in this case requires another 42 bits, but in general this
overhead is mostly negligible for larger data sets.

To decompress the data, we simply reconstruct the tree struc-
ture in memory and then traverse it from top to bottom. The first
symbol is "1", which corresponds to a right branch, then "1"
again, and then "1" again, and we have arrived at the number
"4". We then start over from the top of the tree with "0", which
leads left immediately to "8". We start again at the top and get
another "8", and so on, retraversing the tree each time we suc-
cessfully match a symbol, and in this way can decompress the
entire data set in order. This technique makes it impossible to
start in the middle of the data set, as the only place in the data
stream we can be guaranteed to start a symbol is right at the be-
ginning, so this approach does not allow for decompression of
partial chunks.
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