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Abstract

HTT full-penetrance pathogenic repeat expansions, the genetic cause of Hunt-

ington’s disease (HD), have been recently reported in a minority of frontotem-

poral dementia/amyotrophic lateral sclerosis (ALS) patients (0.13%). We

analyzed HTT CAG repeats in an Italian cohort of ALS patients (n = 467) by

repeat-primed polymerase chain reaction. One patient harbored two expanded

alleles in the HTT gene (42 and 37 CAG repeats). The absence of HD typical

symptoms and the clinical picture consistent with ALS, corroborated by the

diagnostic assessment, apparently excluded a misdiagnosis of HD.

Introduction

Dewan and colleagues have recently reported HTT full-

penetrance pathogenic repeat expansions in three probands

(0.12%) out of 2442 frontotemporal dementia (FTD)/amy-

otrophic lateral sclerosis (ALS), patients.1 After expanding

the analysis to an independent cohort of 3674 FTD/ALS

patients, five additional carriers of HTT pathogenic expan-

sions were identified (0.14%). Comparing these data to the

prevalence of pathogenic HTT repeat expansions in the gen-

eral population (0.03%),2,3 the authors concluded that the

carrier rate was significantly higher in FTD/ALS patients.

Thomas and colleagues have recently challenged this

finding, highlighting several points which argue against

the role of HTT pathogenic expansions in FTD/ALS.4

Among them, the authors cited a previously published

work which reported a 0.18% carrier rate of HTT repeat

expansions in the general population. Accordingly, they

suggested that the occurrence of HTT pathogenic expan-

sions in FTD/ALS might merely reflect their prevalence

among the general population.5 Furthermore, Thomas

and colleagues questioned the lack of clinical description

of the cases. Indeed, they could have been misdiagnosed

due to the clinical heterogeneity of HD, especially in juve-

nile forms, and to the age-dependent penetrance of HTT

pathogenic expansions.6,7 Regarding neuropathology,

Thion and coauthors stated that the absence of neostriatal

atrophy was coherent with the small repeat expansions of

the investigated patients, and that the co-existence of

huntingtin and TAR DNA-binding protein 43 (TDP-43)

aggregates and motor neuron loss had been previously

reported in HD brains.8,9

In this scenario, we performed a screening analysis of

CAG repeats in HTT in our cohort of ALS patients, to
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further assess huntingtin role in motor neuron disorders

(MNDs).

Methods

A screening analysis of HTT CAG repeats was conducted by

repeat-primed polymerase chain reaction (RP-PCR) in a

cohort of Italian patients, who were diagnosed with ALS

according to the El Escorial criteria,10 as previously

described.11 A group of 298 Italian healthy subjects (aged

>60 years) was used as control group. The length of

expanded alleles was estimated by RP-PCR and confirmed by

fluorescent PCR. Sanger sequencing was used to exclude

repeat interruptions and modifications in the polyproline

sequence following CAG repeats. Carriers of expanded HTT

alleles underwent a targeted next-generation sequencing

(NGS) panel to analyze genes implicated in MNDs

(Table S1). The library was generated by using a 150-bp

amplicon-based approach (Haloplex, Agilent) and sequenced

on MiSeq instrument (Illumina). Reads were aligned to the

human genome (assembly hg19), and the identified variants

were annotated (ANNOVAR) and filtered, focusing on rare

variants (≤0.5% in public databases), causing changes poten-

tially damaging for the protein function.

Results

Within our cohort (n = 467), ALS patients’ mean age at

onset was 60.6 years (SD 13.7), and 60.9% were males.

Familial cases were 6.6%. The distribution of CAG repeats

in the ALS cohort was evaluated and compared to a con-

trol group of Italian healthy subjects (n = 298, age at

sampling >60 years) (Fig. 1). The difference observed

between the two groups failed to reach statistical signifi-

cance (Mann–Whitney U-test, p = 0.056). The repeat fre-

quency of normal (CAG < 27) and unstable intermediate

(27 < CAG ≤ 35) alleles was not different in the two

groups (Fisher’s exact test, p > 0.05). The proportion of

intermediate alleles was identical in the control (14/

298 = 4.7%) and in the ALS (22/267 = 4.7%) groups and

comparable to that observed in an independent cohort of

Italian control subjects (5.3%).12

Interestingly, we identified one ALS patient who har-

bored two expanded alleles in the HTT gene with 42 and

Figure 1. HTT CAG repeat length (largest allele) in 466 ALS patients and 292 Italian control subjects (age at sampling >60 years). The insert

shows a zoomed view of HTT intermediate alleles (27–35 CAG repeats). The arrow indicates the ALS Patient harboring a full-penetrant pathogenic

HTT allele described in the text.
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37 CAG repeats (Fig. 2A and Fig. S1). By performing tar-

geted NGS panel analysis, no additional disease-causing

mutations were detected in genes implicated in MNDs in

this patient (Subject II-2 in Fig. 2B). The hexanucleotide

pathogenic expansion in chromosome 9 open reading frame

72 (C9ORF72) was also excluded.

At the age of 61, the patient started complaining of

muscle weakness in the upper limbs, mainly on the right.

Neurological evaluation showed signs of muscle wasting

and asymmetric brisk deep tendon reflexes at the upper

limbs. Electromyography detected chronic neurogenic

changes and acute denervation signs in the distal muscles

of both upper limbs. Brain and spinal cord magnetic res-

onance imaging (MRI) ruled out alternative diseases, and

a diagnosis of possible ALS was formulated. Eighteen

months later, he developed progressive dysphagia and sev-

ere respiratory impairment. Therefore, percutaneous

endoscopic gastrostomy (PEG) and tracheostomy were

placed. No cognitive impairment nor psychiatric

disturbances were reported. He died of respiratory insuffi-

ciency at 64. The proband was born to Italian,

nonconsanguineous parents. The father died at 35 years

during the Second World War. The mother was asymp-

tomatic for neurological disorders and died at 80 years of

age. The patient had two siblings. His sister (II-3) died at

60 years of lung carcinoma, with no signs or symptoms

of nervous system dysfunction. She had one son (III-8),

who died in a car accident at 30 years, and two currently

healthy daughters, of 62 and 60 (III-9, III-10). The pro-

band’s brother (II-1) died at 70 years of age. At 55, he

had been diagnosed with HD. One daughter (III-1) and

the only son (III-4) of, respectively, 67 and 50 years have

not been tested. She is asymptomatic for neurological or

psychiatric disorders, while he recently developed psychi-

atric symptoms. The remaining two daughters, currently

of 61 and 59 years of age, carry full-penetrance patho-

genic repeat expansions in HTT. The older daughter (III-

2) developed psychiatric symptoms at 35 years of age,

choreic movements, and extrapyramidal motor signs at

50, and she later developed cognitive impairment. Genetic

testing revealed 42 and 18 CAG repeats in HTT alleles.

The younger daughter (III-3) developed depression at age

(A)

(B)

Figure 2. (A) (left) PCR amplicons encompassing HTT CAG repeat regions electrophoresed through agarose gel amplified starting from DNA

obtained of the patient described in manuscript (PT), two HD subjects (size of the largest alleles: 38 and 42, respectively) and two control

subjects. (right) Electropherograms obtained from patient’s DNA after repeat-primed (RP-PCR) and fluorescent (fPCR) PCR amplification, displaying

the saw-tooth pattern and the expanded HTT alleles (37 CAG in blue, 42 CAG in red). (B) Pedigree of the family described in the text. Roman

and Arab numbers are used to indicate the generation and the subject within each generation. The arrow indicates our proband. Black and gray

symbols indicate disease status (clinical diagnosis of ALS and HD, respectively). HTTexp indicates a positive molecular testing for CAG repeats

expanded HTT alleles.
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45, followed by choreic movements. Our proband has

three sons, respectively, 48, 42, and 36 years old (III-5,

III-6, III-7). They have not shown signs of neurological

involvement so far, and they refused to pursue the predic-

tive genetic testing.

Discussion

In our case, the positive family history for HD and the

absence of MND in the relatives who harbor a pathogenic

HTT repeat expansion might suggest a “double-trouble”

in the proband. Our patient could be affected, at least

apparently, by sporadic, rapidly progressive ALS, which

led to death before the appearance of HD signs or symp-

toms. Although we ruled out molecular defects in a large

panel of genes involved in MNDs (including all the ALS

causative genes), an undisclosed genetic or environmental

predisposing factor might have increased the susceptibility

to develop a MND phenotype. The absence of HD in our

proband might be explained by the wide age at onset

variation observed among HD patients with CAG repeats

between 40 and 42. Indeed, the age at onset of Italian HD

patients with 42 CAG repeats is 39–69 years.13

However, the remarkable difference of age at onset

within the family (about 20 years) and the absence of

psychiatric or motor symptoms consistent with HD in

our proband, who reached the seventh decade, deserve

further reflections.

Our proband harbored two expanded HTT alleles. Sub-

jects harboring two HTT expanded alleles are rare with

estimated prevalence ranging from 0.1%14 to 0.4%15

within HD cohorts. The largest HTT allele, usually con-

sidered the main determinant for disease onset and pro-

gression, is likely shared by the patient’s brother and

nieces. The minor allele (37 repeats) confers a low-

penetrance risk for HD and could potentially be involved

in modifying the clinical presentation. Indeed, HTT alleles

with 37 repeats are considered pathogenic with reduced

penetrance (37 < CAG < 40). Nevertheless, biallelic HD

patients do not display significant differences in disease

onset or progression compared to those harboring a sin-

gle mutated allele,16 supporting the “complete domi-

nance” of HD.

Several reports have described the occurrence of ALS in

patients with a family history of HD and a positive

genetic testing for high-penetrance pathogenic CAG

repeat expansion in HTT.17–20 Interestingly, in two cases

the available post-mortem tissues displayed concomitant

ALS and HD pathology,21,22 a finding recently paralleled

in larger independent HD brain cohorts.18

These findings suggest that HTT expansion might pre-

dispose a subset of individuals to develop clinical and

pathological features consistent with ALS. This hypothesis

cannot be definitively excluded in our patient. Consider-

ing the clinical picture consistent with MND, corrobo-

rated by the diagnostic assessment, and the absence of

HD typical symptoms, we exclude a misdiagnosis of HD

at the time of clinical evaluation of our patient. The pres-

ence of a positive family history for HD differentiates our

case from those described by Dewan and colleagues.1

Our study indicates that CAG abnormal repeats in

HTT might be extremely rare in Italian ALS patients. The

absence of pathological HTT repeat expansions in the

remaining cohort might have been influenced by its

demographic features, especially by the low rate of ALS

familial cases (6.6%). Indeed, out of eight carriers of

abnormal HTT CAG repeats reported by Dewan and col-

leagues, four had a known family history of FTD/ALS.

This finding suggests that HTT pathogenic expansions

might be more common in familial rather than sporadic

FTD/ALS.1 We did not observe a higher rate of interme-

diate (27–35) HTT repeat expansions in ALS patients

compared to control subjects, although the difference in

the distribution of CAG repeats between these two groups

was nearly significant.

The association of expanded HTT alleles with heteroge-

neous clinical presentations might acknowledge the vari-

able expressivity of this molecular defect. Otherwise, it

might indicate that clinically distinct neurodegenerative

disorders such as ALS and HD could share a common

genetic basis. A similar hypothesis has been postulated for

other repeat expansion disorders. Hexanucleotide repeat

expansions in C9ORF72, the main genetic cause of ALS/

FTD, have been linked to different neurodegenerative dis-

orders, including dementia and parkinsonism,23 and rep-

resent the most common genetic cause of HD

phenocopies.24 Notably, pathological CAG expansions in

HTT can also induce TDP-43 and huntingtin co-

aggregation in vitro, likely through a direct interaction

between poly-Q residues and TDP-43 C-terminal

domain.8 Therefore, HTT expansion could represent an

additional example of the pathogenic link connecting

poly-Q expansions and TDP-43 proteinopathies, includ-

ing ALS/FTD.

In summary, we believe that the direct involvement of

HTT in ALS pathogenesis, emerged by novel sequencing

technologies, should be interpreted with great prudence.

Although it is possible that HD and ALS are part of the

same neurodegenerative disease landscape and that HTT

expansion might produce ALS features as the primary

manifestation in a small minority of HD individuals,

available data so far are limited and fragmented. A repli-

cation of these studies in further cohorts is required to

confidently confirm the pathogenic role of HTT repeat

expansions in ALS before moving to common clinical

practice.
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alleles containing 37 and 42 CAG repeats, respectively.

Table S1. List of genes included in our NGS panel.
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