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Abstract. Two novel parallel Newton--Krylov balancing domain decomposition by constraints
(BDDC) and dual-primal finite element tearing and interconnecting (FETI-DP) solvers with deluxe
scaling are constructed, analyzed, and tested numerically for implicit time discretizations of the
three-dimensional bidomain system of equations. This model represents the most advanced math-
ematical description of the cardiac bioelectrical activity, and it consists of a degenerate system of
two nonlinear reaction-diffusion partial differential equations (PDEs), coupled with a stiff system of
ordinary differential equations (ODEs). A finite element discretization in space and a segregated im-
plicit discretization in time, based on decoupling the PDEs from the ODEs, yields at each time step
the solution of a nonlinear algebraic system. The Jacobian linear system at each Newton iteration
is solved by a Krylov method, accelerated by BDDC or FETI-DP preconditioners, both augmented
with the recently introduced deluxe scaling of the dual variables. A polylogarithmic convergence
rate bound is proven for the resulting parallel Bidomain solvers. Extensive numerical experiments
on Linux clusters up to two thousand processors confirm the theoretical estimates, showing that the
proposed parallel solvers are scalable and quasi-optimal.
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1. Introduction. The aim of this work is to design, analyze and numerically
test balancing domain decomposition by constraints (BDDC) and dual-primal finite
element tearing and interconnecting (FETI-DP) algorithms for a preconditioned
Newton--Krylov solver for implicit time discretizations of the bidomain system. This
model describes the propagation of the electric impulse in cardiac tissue by means of
a degenerate parabolic system of two nonlinear reaction-diffusion partial differential
equations (PDEs), modeling the evolution of the transmembrane electric potential
[10, 28, 29, 30]. These PDEs are coupled through the nonlinear reaction term with a
system of ordinary differential equations (ODEs), deriving from a membrane model
describing the ionic currents flowing through the cell membrane and the dynamics of
the associated gating variables.

Several time discretizations have been proposed for these complex nonlinear car-
diac models, employing different semi-implicit, operator splitting, and decoupling
techniques; see [10, Chapter 7.2] for a review. The most popular time discretizations
have been based on semi-implicit (see, e.g., [5, 8, 11, 38, 39]) and/or operator split-
ting schemes (see, e.g., [35, 6, 7]). These techniques have been largely preferred to
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fully implicit schemes such as the bidomain monolithic solver proposed in [25]. Fully
implicit solvers can be computationally very expensive when the ionic model consists
of very stiff and high-dimensional nonlinear systems of ODEs (e.g., [17, 36]). On the
other hand, operator splitting and decoupling techniques introduce additional errors
which increase the time finite difference errors; see [10, Chapter 7.2] and the references
therein. As a possible compromise to balance computational effort and accuracy, we
propose here a decoupling solution strategy based on a segregated implicit time dis-
cretization of our model, where at each time step we solve the ODEs system of the
ionic model first, and then we solve and update the nonlinear system arising from the
discretized bidomain equations. This strategy was studied previously in [23, 24, 34],
where only overlapping one-level and multilevel Schwarz preconditioners were con-
sidered. In this paper, we extend this solution strategy to two of the most efficient
preconditioners currently available, the FETI-DP and BDDC dual-primal precondi-
tioners with deluxe scaling. We recall that a practical advantage of these methods with
respect to other domain decomposition preconditioners such as multilevel Schwarz is
that they can be easily extended to unstructured meshes, because they do not need
the implementation of an intergrid operator.

FETI-DP methods were proposed by [14] as an alternative to one-level or two-level
finite element tearing and interconnecting (FETI). They have been applied in several
contexts, from three-dimensional elliptic problems with heterogeneous coefficients [18]
to linear elasticity problems [19, 31]. In the biomechanics field, applications of FETI
and FETI-DP have been extensively studied by [1, 3, 20, 38]. BDDC were introduced
by [12] as an alternative to FETI-DP for scalar elliptic problems and then analyzed by
[21, 22]. Among other applications, BDDC has been applied to the linearized (semi-
implicit) bidomain system in [38, 39] and to cardiac mechanics in [8, 27]. FETI-DP
and BDDC have been proven to be spectrally equivalent [16, 22]. The other main
family of domain decomposition methods, based on the overlapping Schwarz method,
has also been applied to the bidomain system; see [26, 33, 5] for semi-implicit time
discretizations and [23, 24, 34] for segregated implicit time discretizations.

Our main contribution consists in a novel theoretical estimate for the condition
number of the preconditioned operator, using the recent deluxe scaling introduced
in [13], for the solution of the nonlinear system arising from a fully implicit dis-
cretization of the decoupled cardiac electrical model. We also present the results of
extensive numerical tests confirming our optimality bound and the scalability of the
proposed solver. Robustness of and computational equivalence between the proposed
dual-primal algorithms are shown, thus encouraging further investigations with more
complex realistic geometries and the development of monolithic solvers for electro-
mechanical models.

The rest of the paper is structured as follows. In section 2, we briefly introduce the
bidomain model describing the electrical activity in the cardiac tissue. In section 3,
we formulate the space discretization and the time decoupling strategy. An overview
of nonoverlapping domain decomposition spaces and objects follows, and an excursus
of FETI-DP and BDDC preconditioners concludes section 4. The novel convergence
rate estimate is proved in section 5, while the results of several parallel numerical
tests in three dimensions are presented in section 6.

2. The cardiac bidomain model. We consider here the nonlinear parabolic
reaction-diffusion system, describing the propagation of electrical signal through the
cardiac tissue.

In the bidomain system [10, 28], the cardiac tissue is represented as two inter-
penetrating domains, the intra- and extracellular domains, coexisting at every point
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of the cardiac tissue and connected by a distributed continuous cellular membrane,
which (as the intra- and extracellular domains) fills the complete volume. Cardiac
cells are arranged in fibers set as laminar sheets running counterclockwise from the
epicardium to the endocardium (see [15, 10] for more details). In this way, at each
point x of the cardiac domain \Omega \subset \BbbR 3 it is possible to define an orthonormal triplet
of vectors al(x), at(x), and an(x) parallel to the local fiber direction and tangent and
orthogonal to the laminar sheets, respectively.

We define the conductivity tensors of the two media as

Di,e(x) =
\sum 

\bullet =\{ l,t,n\} 

\sigma i,e
\bullet a\bullet (x),

where \sigma i,e
\bullet are conductivity coefficients in the intra- and extracellular domain along

the corresponding direction a\bullet , with \bullet = l, t, n. In our analysis, we assume here that
these coefficients are constant in space. By defining ui,e : \Omega \times (0, T ) \rightarrow \BbbR as the intra-
and extracellular electric potential, v = ui  - ue as the transmembrane potential, and
w : \Omega \times (0, T ) \rightarrow \BbbR Nw the gating and ionic concentration variables, the parabolic-
parabolic formulation of the Bidomain system reads as follows:\left\{               

\chi Cm
\partial v

\partial t
 - div (Di \cdot \nabla ui) + Iion(v, w) = 0 in \Omega \times (0, T ),

 - \chi Cm
\partial v

\partial t
 - div (De \cdot \nabla ue) - Iion(v, w) =  - Ieapp in \Omega \times (0, T ),

\partial w

\partial t
 - R(v, w) = 0, in \Omega \times (0, T ),

v(x, t) = ui(x, t) - ue(x, t) in \Omega \times (0, T )

(2.1)

with initial values v(x, 0) = ui(x, 0) - ue(x, 0), w(x, 0) = w0(x), where \chi is the ratio
of membrane area per tissue volume and Cm is the surface capacitance. Assuming
that the heart is immersed in a nonconductive medium, we require zero-flux boundary
conditions nTDi,e\nabla ui,e = 0 on \partial \Omega \times (0, T ) and compatibility condition

\int 
\Omega 
Ieappdx = 0,

where Ieapp : \Omega \times (0, T ) \rightarrow \BbbR is the extracellular applied current. Existence, uniqueness,
and regularity results for (2.1) have been extensively studied; see, for example, [9].

The ionic model describing the ionic currents flowing through the cell membrane
is defined by the terms Iion and R(v, w) in (2.1). In this work, we consider the very
simple (yet macroscopically reliable) Rogers--McCulloch ionic model [32], with only
one gating variable and

Iion(v, w) = G v

\biggl( 
1 - v

vth

\biggr) \biggl( 
1 - v

vp

\biggr) 
+ \eta 1vw, R(v, w) = \eta 2

\biggl( 
v

vp
 - w

\biggr) 
,

where G, vth, vp, \eta 1, and \eta 2 are constant coefficients.

3. Numerical methods. (a) Space discretization. The cardiac domain \Omega 
is discretized by a structured quasi-uniform grid of hexahedral isoparametric Q1 el-
ements of maximal diameter h. Let Vh \subset V be the associated finite element space
with the same basis functions \{ \varphi p\} Nh

p=1 for both variables ui,e and w, and let Ai,e and
M be the stiffness and mass matrices with entries

\{ Ai,e\} nm =

\int 
\Omega 

(\nabla \varphi n)
T
Di,e \cdot \nabla \varphi mdx, \{ M\} nm =

\int 
\Omega 

\varphi n\varphi mdx.
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For our purposes, the mass matrix is obtained with the usual mass-lumping technique.
We denote by ui,e, v, w, Iion, and I\bfi ,\bfe app the coefficient vectors from the discretization

of ui,e, v, w, Iion, and I
i,e
app, respectively. With these choices, we thus need to solve

the semidiscrete bidomain system\left\{     \chi Cm\scrM \partial 
\partial t

\Biggl[ 
ui

ue

\Biggr] 
+\scrA 

\Biggl[ 
ui

ue

\Biggr] 
+

\Biggl[ 
M Iion(v,w)

 - M Iion(v,w)

\Biggr] 
=

\Biggl[ 
0

 - M I\bfe app

\Biggr] 
,

\partial \bfw 
\partial t = R (v,w) ,

(3.1)

where \scrA and \scrM are the stiffness and mass block-matrices

\scrA =

\biggl[ 
Ai 0
0 Ae

\biggr] 
, \scrM =

\biggl[ 
M  - M
 - M M

\biggr] 
.

(b) Decoupled implicit time discretization. Fully implicit discretizations
in time of the bidomain system coupled with ionic models while using physiological
coefficients lead to the solution of nonlinear problems at each time step, which can
be very expensive from a computational point of view: indeed, realistic ionic models
are very complex and can present up to fifty nonlinear ODEs (see, e.g., [17, 36]).
Few attempts in this direction have been made by using simple ionic models (e.g.,
[25]). In the literature, common alternatives consider implicit-explicit schemes and/or
operator splitting, where the diffusion terms are treated separately from the reaction
(e.g., [6, 7, 8, 38]); see also [10, Chapter 7.2] and the references therein.

Instead, we choose here to decouple the gating variable w from the intra- and ex-
tracellular potentials ui and ue as in [23]. At each time step, this decoupled backward
Euler strategy consists of two more substeps.

\bullet Step 1: Update gating and ionic variables. Given un
i,e (hence vn) at the

previous time step tn, compute wn+1 by solving the membrane model

wn+1  - \tau R(vn,wn+1) = wn,

where \tau = tn+1  - tn is the current time step.
\bullet Step 2: Solve the bidomain system. Given un

i,e at the previous time step

and given wn+1, calculate un+1 = (un+1
i ,un+1

e ) by solving the nonlinear
equation F(un+1) = G derived from the backward Euler scheme applied to
the bidomain equations, where

F(un+1) = (\chi Cm\scrM + \tau \scrA )

\biggl[ 
un+1
i

un+1
e

\biggr] 
+ \tau 

\biggl[ 
MIion(v

n+1,wn+1)
 - MIion(v

n+1,wn+1)

\biggr] 
,

G = \chi Cm\scrM 
\biggl[ 
un
i

un
e

\biggr] 
+ \tau 

\biggl[ 
0

 - MI\bfe app

\biggr] 
.

The strategy proposed here for the solution of the nonlinear system in Step 2
consists in a Newton--Krylov approach, as in [23, 24, 34], where the decomposition of
the problem is made after the linearization: a Newton scheme is applied as an outer
iteration, and the Jacobian linear system arising at each Newton step is solved by a
Krylov method with a dual-primal preconditioner.

(c) Newton scheme and properties of the Jacobian bilinear form. The
outer Newton iteration can be summarized as
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- choose a starting value u0 = (u0
i ,u

0
e);

- for k \geq 0 solve the Jacobian linear system

JFksk =  - F(uk)(3.2)

until a Newton stopping criterion is satisfied, where sk = (ski , s
k
e) is the New-

ton correction at step k and JFk is the Jacobian of F computed in uk;
- update: uk+1 = uk + sk.

For our theoretical purposes, we need to associate to problem (3.2) the bilinear form

a(sk, \phi ) := \chi Cm

\bigl( 
ski  - ske , \varphi i - \varphi e

\bigr) 
+ \tau ai

\bigl( 
ski , \varphi i

\bigr) 
+ \tau ae

\bigl( 
ske , \varphi e

\bigr) 
+ \tau 

\Biggl( 
Nh\sum 
l=1

\partial Iion
\partial vl

(vk - 1)
\bigl( 
ski,l - ske,l

\bigr) 
\psi l, \varphi i - \varphi e

\Biggr) 

for all sk =
\bigl( 
ski , s

k
e

\bigr) 
\in Vh\times Vh and \phi = (\varphi i, \varphi e) \in Vh\times Vh, being \psi l the lth nodal basis

function, where ai,e(\cdot , \cdot ) are the bilinear forms associated with the diffusion terms and
(\cdot , \cdot ) denotes the usual L2-inner product. As in [23], it is possible to show that this
bilinear form associated to the Jacobian linear system is continuous and coercive with
respect to the following norm defined for all u = (ui, ue) \in Vh \times Vh:

| | | u| | | 2\tau := (1 + \tau )| | ui  - ue| | 2L2(\Omega ) + \tau ai (ui, ui) + \tau ae (ue, ue) .

Lemma 3.1. Assume that

\chi Cm + \tau 
\partial Iion
\partial vl

(vk) \geq c > 0, c \in \BbbR +,

holds for all l = 1, . . . , Nh and for all k. Then the bilinear form a(\cdot , \cdot ) is continuous
and coercive with respect to the norm | | | \cdot | | | \tau .

Remark 3.2. We do observe that the above hypothesis of nonnegativity is always
satisfied for any time step \tau \leq 0.37 ms, using the Rogers--McCulloch ionic model.
Indeed, numerical computations of \chi Cm + \tau \partial Iion

\partial v validate this assumption (see Figure
3.1).

As an immediate consequence of the continuity and coercivity of the bilinear form
a(\cdot , \cdot ), the following lemma holds. We drop the index k from now on, unless an explicit
ambiguity occurs.

Lemma 3.3. Assuming that the conductivity coefficients are constant in space, the
bilinear form a(\cdot , \cdot ) satisfies the bounds

a(s, s) \leq (\chi Cm + \tau KM ) | | si  - se| | 2L2(\Omega ) + \tau \sigma i
M | si| 2H1(\Omega ) + \tau \sigma e

M | se| 2H1(\Omega ),

a(s, s) \geq (\chi Cm + \tau Km) | | si  - se| | 2L2(\Omega ) + \tau \sigma i
m| si| 2H1(\Omega ) + \tau \sigma e

m| se| 2H1(\Omega ),

where

\sigma i,e
M = max

\bullet =\{ l,t,n\} 
\sigma i,e
\bullet , \sigma i,e

m = min
\bullet =\{ l,t,n\} 

\sigma i,e
\bullet ,

and KM , Km independent from the subdomain diameter H and the mesh size h.

Remark 3.4. This result is extensible to the case of conductivity coefficients almost
constant over each subdomain.
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Fig. 3.1. Surface plot of \chi Cm + \tau \partial Iion
\partial v

with Cm = 1 mF
cm3 , \chi = 1, and \tau = 0.05 ms, which are

values usually employed in numerical experiments.

4. Dual-primal preconditioners for Newton--Krylov solvers.

4.1. Nonoverlapping dual-primal spaces. Let \Omega j , j = 1, . . . , N , be a decom-
position of the cardiac domain \Omega , into nonoverlapping subdomains (or substructures).
This decomposition forms a partition of \Omega such that \Omega = \cup N

j=1\Omega j , \Omega j\cap \Omega k = \emptyset if j \not = k
and the intersection of the boundaries \partial \Omega j\cap \partial \Omega k is either empty, a vertex, an edge, or
a face. Each subdomain is a union of shape-regular conforming finite elements. The
interface \Gamma is the set of points that belong to at least two subdomains,

\Gamma :=
\bigcup 
j \not =k

\partial \Omega j \cap \partial \Omega k, \Gamma (j) = \partial \Omega j \cap \Gamma .

We assume that subdomains are shape regular and have a typical diameter of size
Hj , whereas the finite elements are of diameter h; we denote by H = maxj Hj . Let
W (j) = Vh(\Omega j) \times Vh(\Omega j) be the associated local finite element spaces. We partition

W (j) into the interior part W
(j)
I and the finite element trace space W

(j)
\Gamma . Note that

we consider variables on the Neumann boundaries \partial \Omega N as interior to a subdomain.
We introduce the product spaces

W =

N\prod 
j=1

W (j), W\Gamma :=

N\prod 
j=1

W
(j)
\Gamma .

Therefore, we define \widehat W \subset W as the subspace of functions of W , which are continuous
in all interface variables between subdomains, and similarly we denote by \widehat W\Gamma \subset W\Gamma 

the subspace formed by the continuous elements of W\Gamma . In dual-primal methods,
we iterate in the space W while requiring continuity constraints (also called primal
constraints) to hold throughout the iterations. Primal constraints guarantee that each
subdomain problem is invertible and that a good convergence bound can be obtained.
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We denote by \widetilde W the space of finite element functions in W , which are continuous in
all primal variables; clearly we have \widehat W \subset \widetilde W \subset W and likewise \widehat W\Gamma \subset \widetilde W\Gamma \subset W\Gamma .

Let W
(j)
\Pi \subset W

(j)
\Gamma be the primal subspace of functions which are continuous across

the interface and that will be subassembled between the subdomains sharing \Gamma (j).

Additionally, let W
(j)
\Delta \subset W

(j)
\Gamma contain the finite element functions (called dual) which

can be discontinuous across the interface and vanish at the primal degrees of freedom.

We then introduce the product subspacesW\Pi =
\prod N

j=1W
(j)
\Pi andW\Delta =

\prod N
j=1W

(j)
\Delta ,

from whichW\Gamma =W\Pi \oplus W\Delta . Using this notation, we can decompose \widetilde W\Gamma into a primal
subspace \widehat W\Pi which has continuous elements only and a dual subspaceW\Delta which con-
tains finite element functions which are not continuous; i.e., we have \widetilde W\Gamma = \widehat W\Pi \oplus W\Delta .
In this work, we will denote with subscripts I, \Delta , and \Pi the interior, dual, and primal
variables, respectively.

In the nonoverlapping framework, the global system matrix (see in this appli-
cation (3.2)) is never formed explicitly, but a local version with the same structure
is assembled on each subdomain, by restricting the integration set from \Omega to \Omega j by
defining the local bilinear forms

a(j)(s, \phi ) = \chi Cm (si  - se, \varphi i  - \varphi e)| \Omega j
+ \tau a

(j)
i (si, \varphi i) + \tau a(j)e (se, \varphi e)

+\tau 

\Biggl( 
Nh\sum 
l=1

\partial Iion
\partial vl

(v) (si,l  - se,l)\varphi l, \varphi i  - \varphi e

\Biggr) 
| \Omega j

,

where (\cdot , \cdot )| \Omega j
denotes the restriction of the L2-inner product on the jth subdomain.

These definitions are admissible here, as the proposed theory allows constant non-
negative distribution of the conductivity coefficients among all subdomains, with large
jumps aligned to the interfaces.

The reordering of the degrees of freedom leads to a reordered system matrix:
assuming that the system (3.2) can be written as \scrK u = f , then we will have

\scrK (j) =

\Biggl[ 
K

(j)
II K

(j)
I\Gamma 

K
(j)T
I\Gamma K

(j)
\Gamma \Gamma 

\Biggr] 
, \scrK =

\biggl[ 
KII KI\Gamma 

KT
I\Gamma K\Gamma \Gamma 

\biggr] 
.

As in classical iterative substructuring, we apply the so-called static condensation,
which consists in eliminating the interior degrees of freedom, thus reducing the prob-
lem to one on the interface \Gamma = \cup N

j=1\partial \Omega j\setminus \partial \Omega . The local Schur complement systems
are

S
(j)
\Gamma = K

(j)
\Gamma \Gamma  - K

(j)T
I\Gamma K

(j) - 1
II K

(j)
I\Gamma .

By defining the unassembled Schur complement matrix S\Gamma = diag [S
(1)
\Gamma , . . . , S

(N)
\Gamma ], we

obtain the global Schur complement matrix \widehat S\Gamma = RT
\Gamma S\Gamma R

T
\Gamma , where R\Gamma is the direct

sum of local restriction operators R
(j)
\Gamma returning the local interface components. Thus,

instead of solving system (3.2), we solve the Schur complement system

\widehat S\Gamma u\Gamma = \widehat f\Gamma ,(4.1)

where \widehat f\Gamma is retrieved from the right-hand side of (3.2). Once this problem is solved,
the solution u\Gamma on the interface is used to recover the solution on the internal degrees
of freedom uI = K - 1

II (fI  - KI\Gamma u\Gamma ). The Schur complement matrix \widehat S\Gamma of the Jacobian
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bidomain system (3.2) is symmetric, positive semidefinite; hence it is possible to apply
the preconditioned conjugate gradient (PCG) method.

We define the Jacobian Bidomain local discrete harmonic extension operators as
follows:

\scrH j :W
(j)
\Gamma  - \rightarrow W (j), \scrH jw

(j)
\Gamma =

\Biggl\{ 
 - K(j) - 1

II K
(j)
I\Gamma w

(j)
\Gamma on W

(j)
I ,

w
(j)
\Gamma on W

(j)
\Gamma .

We note that the local discrete harmonic extension of a constant vector is the vector
itself. From now on, we will use the componentwise notation

\scrH jw
(j)
\Gamma =

\Bigl( 
\scrH i

jw
(j)
\Gamma ,\scrH e

jw
(j)
\Gamma 

\Bigr) 
,

where the superscripts i, e denote the usual intra- and extracellular components. As
for standard elliptic problems (see [37]), the Schur bilinear form can be defined through
the action of the Schur matrix and the Jacobian bilinear form

a(j)(\scrH ju
(j)
\Gamma ,\scrH jv

(j)
\Gamma ) = v

(j)
\Gamma S

(j)
\Gamma u

(j)
\Gamma = s(j)(u

(j)
\Gamma , v

(j)
\Gamma ).

From the definition of S
(j)
\Gamma , it follows immediately that the bilinear form s(j)(\cdot , \cdot ) is

symmetric and coercive. Thanks to Lemma 3.3, it is possible to bound the energies
related to the local Schur complements,

s(j)(u
(j)
\Gamma , u

(j)
\Gamma ) = min

v
(j)

| \partial \Omega j\cap \Gamma 
=u

(j)
\Gamma 

a(j)(\scrH ju
(j)
\Gamma ,\scrH ju

(j)
\Gamma ),(4.2)

which allows us to work with discrete harmonic extensions instead of functions defined
only on \Gamma .

4.2. Restriction operators and scaling. We define the restriction operators

R
(j)
\Delta :W\Delta \rightarrow W

(j)
\Delta , R\Gamma \Delta :W\Gamma \rightarrow W\Delta ,

R
(j)
\Pi : \widehat W\Pi \rightarrow W

(j)
\Pi , R\Gamma \Pi :W\Gamma \rightarrow \widehat W\Pi 

and the direct sums R\Delta = \oplus R(j)
\Delta , R\Pi = \oplus R(j)

\Pi , and \widetilde R\Gamma = R\Gamma \Pi \oplus R\Gamma \Delta , which maps

W\Gamma into \widetilde W\Gamma . We also need a proper scaling of the dual variables.
\bfitrho -scaling. Originally proposed for Neumann--Neumann methods, the \rho -scaling

is defined for the bidomain model at each node x \in \Gamma (j) as

\delta i,e \dagger 
j (x) =

\sigma i,e(j)

M\sum 
k\in \scrN x

\sigma i,e(k)

M

, \sigma i,e(j)

M = max
\bullet =\{ l,t,n\} 

\sigma i,e(j)

\bullet ,(4.3)

where \scrN x is the set of indices of all subdomains with x in the closure of the sub-
domain. If x is in the interior of a subdomain, then \scrN x contains only the index of
that subdomain. Moreover, \scrN x induces the definition of an equivalence relation that
allows the classification of interface degrees of freedom into faces, edges, and vertices
equivalence classes.

Deluxe scaling. Recently introduced in [13] and studied in [4], the deluxe scaling
computes the average \=w = EDw for each face \scrF or edge \scrE equivalence class. Suppose

that \scrF is shared by subdomains \Omega j and \Omega k. Let S
(j)
\scrF and S

(k)
\scrF be the principal minors
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obtained from S
(j)
\Gamma and S

(k)
\Gamma by removing all the contributions that are not related

to the degrees of freedom of the face \scrF . Let uj,\scrF = R\scrF uj be the restriction of uj to
the face \scrF through the restriction operator R\scrF . The deluxe average across \scrF is then
defined as

\=u\scrF =
\Bigl( 
S
(j)
\scrF + S

(k)
\scrF 

\Bigr)  - 1 \Bigl( 
S
(j)
\scrF uj,\scrF + S

(k)
\scrF uk,\scrF 

\Bigr) 
.

The action of (S
(j)
\scrF + S

(k)
\scrF ) - 1 can be computed by solving a Dirichlet problem over

the two subdomains involved by extending to zero the right-hand-side entries that
correspond with the interior nodes.

If we consider an edge \scrE instead, the deluxe average across \scrE is defined in a
similar manner. Suppose for simplicity that \scrE is shared by only three subdomains
with indices j1, j2, and j3; the extension to more than three subdomains is immediate.
Let uj,\scrE = R\scrE uj be the restriction of uj to the edge \scrE through the restriction operator

R\scrE , and define S
(j123)
\scrE = S

(j1)
\scrE + S

(j2)
\scrE + S

(j3)
\scrE ; the deluxe average across an edge \scrE is

given by

\=u\scrE =
\Bigl( 
S
(j123)
\scrE 

\Bigr)  - 1 \Bigl( 
S
(j1)
\scrE uj1,\scrE + S

(j2)
\scrE uj2,\scrE + S

(j3)
\scrE uj3,\scrE 

\Bigr) 
.

The relevant equivalence classes, involving the substructure \Omega j , will contribute to

the values of \=u. These contributions will belong to \widehat W\Gamma after being extended by zero
to \Gamma \setminus \scrF or \Gamma \setminus \scrE ; the sum of all contributions will result in RT

\ast \=u\ast . We then add the
contributions from the different equivalence classes to obtain

\=u = EDu = u\Pi +
\sum 

\ast =\{ \scrF ,\scrE \} 

RT
\ast \=u\ast ,

where ED is a projection. Its complementary projection is given by

PDu := (I  - ED)u = u\Delta  - 
\sum 

\ast =\{ \scrF ,\scrE \} 

RT
\ast \=u\ast .(4.4)

For each subdomain \Omega j we define the scaling matrix

D(j) =

\left[    
D

(j)
\ast k1

. . .

D
(j)
\ast kj

\right]    , \ast = \{ \scrF , \scrE \} (4.5)

with k1, . . . , kj \in \Xi \ast 
j set containing the indices of the subdomains that share the face

\scrF or the edge \scrE and where the diagonal blocks are given by D
(j)
\scrF = (S

(j)
\scrF +S

(k)
\scrF ) - 1S

(j)
\scrF 

or D
(j)
\scrE = (S

(j1)
\scrE + S

(j2)
\scrE + S

(j3)
\scrE ) - 1S

(j1)
\scrE .

We can now define the scaled local restriction operators

R
(j)
D,\Gamma = D(j)R

(j)
\Gamma , R

(j)
D,\Delta = R

(j)
\Gamma \Delta R

(j)
D,\Gamma ,

RD,\Delta as direct sum of R
(j)
D,\Delta and the global scaled operator \widetilde RD,\Gamma = R\Gamma \Pi \oplus RD,\Delta R\Gamma \Delta .
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4.3. FETI-DP preconditioner. The FETI-DP preconditioner was first pro-
posed in [14] as an alternative to one-level and two-level FETI. This class of methods

is based on the transposition from the Schur problem (4.1) on \widehat W\Gamma to a minimization

problem on \widetilde W\Gamma , with continuity constraints on the dual degrees of freedom: find
w\Gamma \in \widetilde W\Gamma which minimizes \left\{   

1

2
wT

\Gamma 
\widetilde S\Gamma w\Gamma  - wT

\Gamma 
\~f\Gamma ,

Bw\Gamma = 0,

where \~f\Gamma = \widetilde RT
\Gamma f\Gamma is given by partially subassembling the Schur complement right-

hand side on primal nodes and B is the jump operator with entries 0,\pm 1. The second
part of the system Bw\Gamma = 0 holds if and only if w\Gamma \in \widehat W , which means that the
columns of B related to primal degrees of freedom are null. By introducing a set of
Lagrange multipliers \lambda \in \Lambda = range(B), it is possible to formulate the minimization
problem as a saddle point system:\biggl[ \widetilde S\Gamma BT

B 0

\biggr] \biggl[ 
w\Gamma 

\lambda 

\biggr] 
=

\biggl[ 
\~f\Gamma 
0

\biggr] 
.

As \widetilde S\Gamma is invertible on range(B), the degrees of freedom in \widetilde W\Gamma can be eliminated by
a block-Cholesky factorization, reducing the above system to a problem only in the
Lagrange multiplier unknowns:

F\lambda = d, where F = B \widetilde S - 1
\Gamma BT , d = B \widetilde S - 1

\Gamma 
\~f\Gamma .(4.6)

After the solution \lambda is found, we can retrieve the solution on \widetilde W\Gamma as w\Gamma = \widetilde S - 1
\Gamma ( \~f\Gamma  - 

BT\lambda ). The FETI-DP system (4.6) in our application is symmetric; thus the PCG
method works well. In order to ensure fast convergence, a quasi-optimal precondi-
tioner is given by

M - 1
FETI-DP = BD

\widetilde S\Gamma B
T
D,

where BD is the scaled jump operator, obtained by applying D(j) : \Lambda \rightarrow \Lambda scaling
matrices that act on the space of the Lagrange multipliers, which are given by (4.5)
if the deluxe scaling is used or by the pseudoinverses (4.3) if the standard \rho -scaling is
used.

4.4. BDDC preconditioner. BDDC is a two-level preconditioner for the Schur
complement system \widehat S\Gamma u\Gamma = \widehat f\Gamma . If we partition the degrees of freedom of the interface
\Gamma into those internal (I) and those dual (\Delta ), the matrix \scrK (j) from the problem \scrK u = f
can be written as

\scrK (j) =

\Biggl[ 
K

(j)
II K

(j)
I\Gamma 

K
(j)T
I\Gamma K

(j)
\Gamma \Gamma 

\Biggr] 
=

\left[   K
(j)
II K

(j)
I\Delta K

(j)
I\Pi 

K
(j)T
I\Delta K

(j)
\Delta \Delta K

(j)
\Delta \Pi 

K
(j)T
I\Pi K

(j)T
\Delta \Pi K

(j)
\Pi \Pi 

\right]   .
It is possible to define the BDDC preconditioner using the restriction operators as

M - 1
BDDC = \widetilde RT

D,\Gamma 
\widetilde S - 1
\Gamma 
\widetilde RD,\Gamma , \widetilde S\Gamma = \widetilde R\Gamma S\Gamma 

\widetilde RT
\Gamma ,

where the action of the inverse of \widetilde S\Gamma can be evaluated with a block-Cholesky elimi-
nation procedure
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\widetilde S - 1
\Gamma = \widetilde RT

\Gamma \Delta 

\left(  N\sum 
j=1

\Bigl[ 
0 R

(j)T
\Delta 

\Bigr] \Biggl[ K(j)
II K

(j)
I\Delta 

K
(j)T
I\Delta K

(j)
\Delta \Delta 

\Biggr]  - 1 \biggl[ 
0

R
(j)
\Delta 

\biggr] \right)  \widetilde R\Gamma \Delta + \Phi S - 1
\Pi \Pi \Phi .

In this way, the first term is the sum of local solvers on each substructure \Omega j , while
the latter is a coarse solver for the primal variables where

\Phi = RT
\Gamma \Pi  - RT

\Gamma \Delta 

N\sum 
j=1

\Bigl[ 
0 R

(j)T
\Delta 

\Bigr] \Biggl[ K(j)
II K

(j)
I\Delta 

K
(j)T
I\Delta K

(j)
\Delta \Delta 

\Biggr]  - 1 \Biggl[ 
K

(j)
I\Pi 

R
(j)
\Delta \Pi 

\Biggr] 
R

(j)
\Pi ,

S\Pi \Pi =

N\sum 
j=1

R
(j)T
\Pi 

\left(  K(j)
\Pi \Pi  - 

\Bigl[ 
K

(j)T
I\Pi K

(j)T
\Delta \Pi 

\Bigr] \Biggl[ K(j)
II K

(j)
I\Delta 

K
(j)T
I\Delta K

(j)
\Delta \Delta 

\Biggr]  - 1 \Biggl[ 
K

(j)
I\Pi 

R
(j)
\Delta \Pi 

\Biggr] \right)  R
(j)
\Pi 

are the matrix which maps the primal degrees of freedom to the interface variables
and the primal problem, respectively.

5. Convergence rate estimate. It has been proven that FETI-DP and BDDC
methods are spectrally equivalent [16]. In this perspective, we are able to prove
a convergence rate estimate for the preconditioned operator, which holds for both
methods when the same coarse space is chosen. We observe that, as in most of the
convergence bounds for FETI-DP and BDDC operators, also in this application the
condition number is independent of the number of subdomains. We first recall some
useful technical results that will be employed in the proof of the convergence rate
estimate. These results can be found in Appendix A of [37].

Theorem 5.1 (trace theorem). Let \Omega j be a polyhedral domain, and define the
discrete harmonic extension of the Laplacian operator \scrH \Delta 

j u\Gamma on \Omega j as

u = \scrH \Delta 
j u\Gamma \leftrightarrow 

\left\{     
 - \Delta u = 0 in \Omega j ,

u = u\Gamma on \Gamma (j),

u = 0 on \partial \Omega j\setminus \Gamma (j).

Then,

| u| 2H1/2(\Gamma (j)) \sim | \scrH \Delta 
j u\Gamma | 2H1(\Omega j)

.

Proposition 5.2 (Poincar\'e--Friedrichs inequality). Let \Omega be Lipschitz continu-
ous with diameter H. Then, there exists a constant Cf , which depends only on the
shape of \Omega but not on its size, such that

| | u| | 2L2(\Omega ) \leq CfH
2| u| 2H1(\Omega )

for all u \in H1(\Omega ) with vanishing mean value on \Omega .

We will write with A \lesssim B whenever A \leq cB with c constant independent from
the diameter H, the mesh size h, the time step \tau , and the conductivity coefficients;
similarly, we will write A \sim B whenever A \lesssim B and B \lesssim A. The main result of the
paper is the following optimality bound.

Theorem 5.3. If the deluxe scaling is used, the condition numbers of the FETI-
DP and BDDC preconditioned operators satisfy

cond (P - 1Q) \leq max
k=1,...,N

 \star =i,e

\tau \sigma 
 \star (k)
M +H2 (\chi Cm + \tau KM )

\sigma 
 \star (k)
m

\biggl( 
1 + log

\biggl( 
H

h

\biggr) \biggr) 3

,(5.1)
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where \sigma i,e
M = max\bullet =\{ l,t,n\} \sigma 

i,e
\bullet , \sigma i,e

m = min\bullet =\{ l,t,n\} \sigma 
i,e
\bullet , P - 1 denotes the FETI-DP or

BDDC preconditioner, Q is the system matrix, and KM is a constant independent of
the subdomain diameter H and mesh size h.

The core of the proof relies on the following lemma.

Lemma 5.4. Let \chi Cm + \tau \partial Iion
\partial vl

(vk) \geq c > 0 with c \in \BbbR +. Let the primal set be
spanned by the vertex nodal finite element functions and the subdomain edges averages.
If the projection operator is scaled by the deluxe scaling, then, for all u \in \widetilde W\Gamma ,

| EDu| 2S\Gamma 
\lesssim max

k=1,...,N
 \star =i,e

\tau \sigma 
 \star (k)
M +H2 (\chi Cm + \tau KM )

\tau \sigma 
 \star (k)
m

\biggl( 
1 + log

H

h

\biggr) 3

| u| 2S\Gamma 
,

where \sigma i,e
M = max\bullet =\{ l,t,n\} \sigma 

i,e
\bullet , \sigma i,e

m = min\bullet =\{ l,t,n\} \sigma 
i,e
\bullet , and KM is a constant

independent of the subdomain diameter H and mesh size h.

Proof. Instead of proving the bound for the projection operator ED, we prove
it for the complementary projection PD (4.4). Moreover, it is sufficient to compute

only the local bounds, as it holds that | PDu| 2S\Gamma 
=
\sum N

j=1 | R\partial \Omega j
PDu| 2

S
(j)
\Gamma 

. Thus, for all

u \in \widetilde W\Gamma ,

| R\partial \Omega jPDu| 2S(j)
\Gamma 

\leq | \Xi \ast 
j | 

\sum 
\ast =\{ \scrF ,\scrE \} 
\ast \in \Xi \ast 

j

| RT
\ast 

\Bigl( 
ui,ej,\ast  - \=ui,e\ast 

\Bigr) 
| 2
S

(j)
\Gamma 

,

where \Xi \ast 
j is the index set containing the indices of the subdomains that share the

face \scrF or the edge \scrE . Let us distinguish between face and edge contributions.
Face contributions. Suppose that the face \scrF is shared by subdomains \Omega j and

\Omega k. Then, by simple algebra, it follows that

ui,ej,\scrF  - \=ui,e\scrF =
\Bigl( 
S
(j)
\scrF + S

(k)
\scrF 

\Bigr)  - 1

S
(k)
\scrF 

\Bigl[ \Bigl( 
ui,ej,\scrF  - \=ui,ej,\scrF 

\Bigr) 
 - 
\Bigl( 
ui,ek,\scrF  - \=ui,ek,\scrF 

\Bigr) 
+
\Bigl( 
\=ui,ej,\scrF  - \=ui,ek,\scrF 

\Bigr) \Bigr] 
,

where we add and subtract the mean value \=ui,e\cdot ,\scrF of u over \scrF on the subdomain \cdot .
Therefore, by noticing that R\scrF S

(j)
\Gamma RT

\scrF = S
(j)
\scrF , it follows that\bigm| \bigm| \bigm| RT

\scrF 

\Bigl( 
ui,ej,\scrF  - \=ui,e\scrF 

\Bigr) \bigm| \bigm| \bigm| 2
S

(j)
\Gamma 

\leq 2| ui,ej,\scrF  - \=ui,ej,\scrF | 
2

S
(j)
\scrF 

+ 2| ui,ek,\scrF  - \=ui,ek,\scrF | 
2

S
(k)
\scrF 

+

\bigm| \bigm| \bigm| \bigm| \Bigl( S(j)
\scrF + S

(k)
\scrF 

\Bigr)  - 1

S
(k)
\scrF 

\Bigl( 
\=ui,ej,\scrF  - \=ui,ek,\scrF 

\Bigr) \bigm| \bigm| \bigm| \bigm| 2
S

(j)
\scrF 

For all ui,ej,\scrF \in \widetilde W\Gamma , where we take advantage of two inequalities arising from the

generalized eigenvalue problem S
(j)
\scrF \phi = \lambda S

(k)
\scrF \phi and by observing that all eigenvalues

are strictly positive.
It is sufficient now to estimate | ui,ej,\scrF  - \=ui,ej,\scrF | 2S(j)

\scrF 
and\bigm| \bigm| \bigm| \bigm| \Bigl( S(j)

\scrF + S
(k)
\scrF 

\Bigr)  - 1

S
(k)
\scrF 

\Bigl( 
\=ui,ej,\scrF  - \=ui,ek,\scrF 

\Bigr) \bigm| \bigm| \bigm| \bigm| 2
S

(j)
\scrF 

;

we highlight that in case the subdomain face averages are also included in the primal
space, the latter is zero. Starting from the first term, we make use of the bilinear
form associated to the Schur complement
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| ui,ej,\scrF  - \=ui,ej,\scrF | 
2

S
(j)
\scrF 

\leq (\chi Cm + \tau KM ) | | \scrH \Delta 
j

\Bigl( 
uj  - \=ui,ej,\scrF 

\Bigr) 
| | 2L2(\Omega j)

+ \tau 
\sum 
 \star =i,e

\sigma  \star 
M

\bigm| \bigm| \scrH \Delta 
j

\bigl( 
uj,\scrF  - \=u \star j,\scrF 

\bigr) \bigm| \bigm| 2
H1(\Omega j)

\lesssim 
\Bigl[ 
\tau \sigma i,e

M +H2 (\chi Cm + \tau KM )
\Bigr] 
| uj,\scrF  - \=ui,ej,\scrF | 

2
H1/2(\Gamma (j)),

applying the ellipticity Lemma 3.3 and the Poincar\'e--Friedrichs inequality (Proposi-
tion 5.2) combined with the trace theorem, Theorem 5.1. As we are already taking

in consideration the discrete restriction of a function uj \in \widetilde W\Gamma on the face \scrF , the

notations uj  - \=ui,ej,\scrF and Ih(\Theta \scrF (uj  - \=ui,ej,\scrF )) are essentially the same. Therefore, it is
possible to apply [37, Lemma 4.26] and the trace theorem to get

| ui,ej,\scrF  - \=ui,ej,\scrF | 
2

S
(j)
\Gamma 

\lesssim 
\Bigl[ 
\tau \sigma i,e

M +H2 (\chi Cm + \tau KM )
\Bigr] \biggl( 

1 + log
H

h

\biggr) 2

| \scrH \Delta 
j uj | 2H1(\Omega j)

.

Regarding the second term, let \scrE \subset \partial \scrF be a primal edge such that we can add
and subtract \=ui,ej,\scrE = \=ui,ek,\scrE . Then, using the same inequalities from the generalized
eigenvalue problem,

| 
\Bigl( 
S
(j)
\scrF + S

(k)
\scrF 

\Bigr)  - 1

S
(k)
\scrF 

\Bigl( 
\=ui,ej,\scrF  - \=ui,ek,\scrF 

\Bigr) 
| 2
S

(j)
\scrF 

\leq 2 | \=ui,ej,\scrE  - \=ui,ej,\scrF | 
2

S
(j)
\scrF 

+ 2 | \=ui,ek,\scrE  - \=ui,ek,\scrF | S(k)
\scrF 
.

It is sufficient now to esteem the first term on the right-hand side, as we can deal
with the other in the same fashion. Combining the result of ellipticity (Lemma 3.3),
the Poincar\'e--Friedrichs inequality, and the trace theorem, we get

| \=ui,ej,\scrE  - \=ui,ej,\scrF | 
2

S
(j)
\scrF 

= a(j)
\Bigl( 
\scrH i,e

j

\Bigl( 
\=ui,ej,\scrE  - \=ui,ej,\scrF 

\Bigr) 
, \scrH i,e

j

\Bigl( 
\=ui,ej,\scrE  - \=ui,ej,\scrF 

\Bigr) \Bigr) 
= a(j)

\biggl( 
\scrH i,e

j

\Bigl( 
uj  - \=ui,ej,\scrF 

\Bigr) 
j,\scrE 
, \scrH i,e

j

\Bigl( 
uj  - \=ui,ej,\scrF 

\Bigr) 
j,\scrE 

\biggr) 
Lemma

3.3
\leq (\chi Cm + \tau KM )

\bigm\| \bigm\| \bigm\| \bigm\| \scrH \Delta 
j

\Bigl( 
uj  - \=ui,ej,\scrF 

\Bigr) 
j,\scrE 

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(\Omega j)

+ \tau 
\sum 
 \star =i,e

\sigma  \star 
M

\bigm| \bigm| \bigm| \bigm| \scrH \Delta 
j

\Bigl( 
uj  - \=ui,ej,\scrF 

\Bigr) 
j,\scrE 

\bigm| \bigm| \bigm| \bigm| 2
H1(\Omega j)

\lesssim 
\sum 
 \star =i,e

\bigl[ 
\tau \sigma  \star 

M +H2 (\chi Cm + \tau KM )
\bigr] \bigm| \bigm| \bigm| \bigm| \Bigl( uj  - \=ui,ej,\scrF 

\Bigr) 
j,\scrE 

\bigm| \bigm| \bigm| \bigm| 
H1(\Omega j)

.

Using [37, Lemmas 4.16, 4.17, and 4.19] and [37, Lemma 4.30], it follows that

\| 
\Bigl( 
uj  - \=ui,ej,\scrF 

\Bigr) 
j,\scrE 

\| 2 \leq C

\biggl( 
1 + log

H

h

\biggr) 3

| uj | 2H1/2(\partial \Omega j)
.

This means that

| \=ui,ej,\scrE  - \=ui,ej,\scrF | 
2

S
(j)
\scrF 

\lesssim C

\biggl( 
1 + log

H

h

\biggr) 3 \sum 
 \star =i,e

\bigl[ 
\tau \sigma  \star 

M +H2 (\chi Cm + \tau KM )
\bigr] 
| \scrH \Delta 

j uj | 2H1(\Omega j)
.
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To conclude, the face contribution gives the bound

| PDu| 2S(j)
\Gamma 

\lesssim 
\sum 
 \star =i,e

\sum 
\scrF \in \Xi \scrF 

j

\bigl[ 
\tau \sigma  \star 

M +H2 (\chi Cm + \tau KM )
\bigr] \biggl( 

1 + log
H

h

\biggr) 3

| \scrH \Delta 
j uj | 2H1(\Omega j)

\leq max
 \star =i,e

\sum 
\scrF \in \Xi \scrF 

j

\tau \sigma  \star 
M +H2 (\chi Cm + \tau KM )

\tau \sigma  \star 
m

\biggl( 
1 + log

H

h

\biggr) 3

| uj | 2S(j)
\Gamma 

.

Edge contributions. For simplicity, suppose that an edge \scrE is shared only by
three substructures, each with indexes j1, j2, and j3. The extension to the case of

more subdomains is then similar. Define S
(j123)
\scrE := S

(j1)
\scrE + S

(j2)
\scrE + S

(j3)
\scrE . Then, the

average operator is given by

\=ui,e\scrE :=
\Bigl( 
S
(j123)
\scrE 

\Bigr)  - 1 \Bigl( 
S
(j1)
\scrE uj1,\scrE + S

(j2)
\scrE uj2,\scrE + S

(j3)
\scrE uj3,\scrE 

\Bigr) 
.

Proceeding in the same fashion as for the face contribution, it follows that

uj1,\scrE  - \=ui,e\scrE =
\Bigl( 
S
(j123)
\scrE 

\Bigr)  - 1 \Bigl[ \Bigl( 
S
(j2)
\scrE + S

(j3)
\scrE 

\Bigr) 
uj1,\scrE  - S

(j2)
\scrE uj2,\scrE  - S

(j3)
\scrE uj3,\scrE 

\Bigr] 
,

which leads to

| RT
\scrE 

\Bigl( 
uj1,\scrE  - \=ui,e\scrE 

\Bigr) 
| 2
S

(j1)

\Gamma 

\leq 3uTj1,\scrE S
(j1)
\scrE uj1,\scrE + 3uTj2,\scrE S

(j2)
\scrE uj2,\scrE + uTj3,\scrE S

(j3)
\scrE uj3,\scrE ,

where we use analogous inequalities as in the face case.
Since we have included the edge averages into the primal space, we have the same

average value for the three subdomains. By adding and subtracting the mean value
over the edges \=ui,ej1,\scrE , we can get the estimate for the edges by using [37, Lemmas 4.16,
4.17, and 4.19]:

uTj1,\scrE S
(j1)
\scrE uj1,\scrE \leq 

\Bigl[ 
\tau \sigma i,e

M +H2 (\chi Cm + \tau KM )
\Bigr] \biggl( 

1 + log
H

h

\biggr) 
| \scrH \Delta 

j1uj1,\scrE | 
2
H1(\Omega j)

.

In conclusion, the edge estimate gives

| PDu| 2S(j)
\Gamma 

\leq max
 \star =i,e

\sum 
\scrE \in \Xi \scrE 

j

\tau \sigma  \star 
M +H2 (\chi Cm + \tau KM )

\tau \sigma  \star 
m

\biggl( 
1 + log

H

h

\biggr) 
| uj | 2

S
(j1)

\Gamma 

,

where the index j collects all contributions from the subdomains that share the edge
\scrE .

6. Parallel numerical results. We report here the results of several parallel
numerical tests which confirm our theoretical estimates and study the performance of
the proposed preconditioners with respect to the discretization parameters.

The weak scaling tests (with fixed local problem size per processor while the total
problem size increases with the processor count) are performed on the supercomputer
Galileo from Cineca center, a Linux Infiniband cluster equipped with 1084 nodes, each
with 36 2.30 GHz Intel Xeon E5-2697 v4 cores and 128 GB/node, for a total of 39024
cores. Meanwhile, the strong scaling tests (with fixed total problem size while the
local problem size per processor decreases with the inverse of the processor count) are
computed on the cluster Indaco at the University of Milan, a Linux Infiniband cluster
with 16 nodes, each carrying 2 processors Intel Xeon E5-2683 V4 2.1 GHz with 16
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cores each, for a total amount of 512 cores. The optimality tests are carried out on
the cluster Eos at University of Pavia, a Linux Infiniband cluster with 21 nodes, each
carrying 2 processors Intel Xeon Gold 6130 2.1 GHz with 16 cores each, for a total
of 672 cores. Our C code is based on the PETSc library [2] from Argonne National
Laboratory.

In Tests 1, 2, and 4, dual-primal preconditioners are applied with the standard
rho-scaling, as Test 3 shows an almost computational equivalence between rho- and
deluxe scaling for this application model, as concerns for nonlinear and linear itera-
tions numbers per time step.

All our numerical experiments are carried both on a thin slab and on an idealized
left ventricular geometry, modeled as a truncated ellipsoid. The latter is described in
ellipsoidal coordinates by the parametric equations\left\{     

x = a(r) cos \theta cos\varphi , \theta min \leq \theta \leq \theta max,

y = b(r) cos \theta sin\varphi , \varphi min \leq \varphi \leq \varphi max,

z = c(r) sin\varphi , 0 \leq r \leq 1,

where a(r) = a1 + r(a2  - a1), b(r) = b1 + r(b2  - b1), and c(r) = c1 + r(c2  - c1) with
a1,2, b1,2, and c1,2 given coefficients defining the main axes of the ellipsoid.

The fibers rotate intramurally linearly with the depth for a total amount of 120o

proceeding counterclockwise from epicardium (r = 1, outer surface of the truncated
ellipsoid) to endocardium (r = 0, inner surface). Regarding the physiological coeffi-
cients in Table 6.1, we refer to the original paper [32] for the parameters of the ionic
membrane model, while we refer to [10] for the bidomain and monodomain parame-
ters.

The external stimulus of Iapp = 100 mA/cm3, needed for the potential to start
propagating, is applied for 1 ms to the surface of the domain representing the en-
docardium. Instead, if a slab geometry is considered, the stimulus is applied in one
corner of the domain, over a spheric volume of radius 0.1 cm.

Figures 6.1 and 6.2 show the time evolution of the extracellular and transmem-
brane potentials, respectively, from the epicardial view of a portion of the idealized
left ventricle when the external stimulus Iapp is applied at an epicardial location. We
consider insulating boundary conditions, resting initial conditions, and a fixed time
step size \tau = 0.05 ms.

In order to test the efficiency of our solver on parallel architectures, we also
compute the parallel speedup SN = T1

TN
, the ratio between the runtime T1 on 1

processor, and the average runtime TN on N processors.
We use the default nonlinear solver (scalable nonlinear equations solvers (SNES))

in the PETSc library [2], which consists of a Newton method with cubic backtracking
linesearch. We adopt the default SNES convergence test as stopping criterion, based

Table 6.1
Conductivity coefficients for the bidomain model and physiological parameters for the Rogers--

McCulloch ionic model.

Bidomain conductivity coeff. Ionic parameters
\sigma i
l 3\times 10 - 3\Omega  - 1 cm - 1 G 1.2 \Omega  - 1 cm - 2

\sigma i
t 3.1525\times 10 - 4\Omega  - 1 cm - 1 \eta 1 4.4 \Omega  - 1 cm - 1

\sigma i
n 3.1525\times 10 - 5\Omega  - 1 cm - 1 \eta 2 0.012

\sigma e
l 2\times 10 - 3\Omega  - 1 cm - 1 vth 13 mV

\sigma e
t 1.3514\times 10 - 3\Omega  - 1 cm - 1 vp 100 mV

\sigma e
n 6.757\times 10 - 4\Omega  - 1 cm - 1 Cm 1 mF/cm2
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t = 10 ms

t = 25 ms

t = 40 ms

t = 15 ms

t = 30 ms

t = 45 ms

t = 20 ms

t = 35 ms

t = 50 ms

Fig. 6.1. Snapshots (every 5 ms) of extracellular potential ue time evolution. For each time
frame, we report the epicardial view of a portion of the left ventricle, modeled as a truncated ellipsoid.

on the comparison of the L2-norm of the nonlinear function at the current iterate and
at the current step with specified tolerances. Since the linear system arising from the
discretization of the Jacobian problem at each Newton step is symmetric, we solve it
with the PCG method, with the BDDC or FETI-DP preconditioners from the PETSc
library, or with the Boomer Algebraic MultiGrid (bAMG) preconditioner from the
Hypre library. We use the default Hypre parameters strong threshold = 0.25, number
of smoothing levels = 25, and number of levels of aggressive coarsening = 0. In the
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t = 10 ms

t = 25 ms

t = 40 ms

t = 15 ms

t = 30 ms

t = 45 ms

t = 20 ms

t = 35 ms

t = 50 ms

Fig. 6.2. Snapshots (every 5 ms) of transmembrane potential v time evolution. For each time
frame, we report the epicardial view of a portion of the left ventricle, modeled as a truncated ellipsoid.

strong scaling tests, when testing the performance of the proposed solver against two
different ionic models (Rogers--McCulloch and Luo--Rudy phase 1), the generalized
minimal residual (GMRES) method is applied. The convergence criterion of the
linear solver is based on the decreasing of the residual norm (default from PETSc).

All parameters can be found in Table 6.2.
Test 1: Weak scaling. The first set of tests we report here is a weak scaling test

on both slab and ellipsoidal domains, performed on the Galileo cluster. For both cases,
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Table 6.2
PETSc SNES and Krylov subSPace solvers (KSP) tolerances. rtol is the relative convergence

tolerance, atol is the absolute convergence tolerance, dtol is the KSP divergence convergence toler-
ance, and stol is the convergence tolerance related to the solution change between Newton steps.

KSP rtol = 1e - 08 atol = 1e - 10 dtol = 1e+04

SNES rtol = 1e - 04 atol = 1e - 08 stol = 1e - 08

Table 6.3
Weak scaling test for the bidomain decoupled solver on the cluster Galileo. Slab domain, local

mesh 16 \cdot 16 \cdot 16 elements. Simulations of 2 ms of cardiac activation with dt = 0.05 ms (40 time
steps). Comparison of Newton--Krylov solvers with bAMG, BDDC, and FETI-DP preconditioners.
Average Newton iterations per time step (nit); average conjugate gradient iterations per Newton
iteration (lit); average CPU solution time per time step (time) in seconds.

procs mesh dofs
bAMG BDDC FETI-DP

nit lit time nit lit time nit lit time
32 64 \cdot 64 \cdot 32 278,850 1.25 106 4.9 1.0 22 6.1 1.25 10 6.0

64 128 \cdot 64 \cdot 32 553,410 1.25 132 6.8 1.0 27 6.2 1.25 11 6.0

128 128 \cdot 128 \cdot 32 1,098,306 1.25 180 9.4 1.0 32 7.6 1.25 10 7.4

256 256 \cdot 128 \cdot 32 2,188,098 1.25 237 15.2 1.0 39 7.2 1.25 10 7.9

512 256 \cdot 256 \cdot 32 4,359,234 1.25 318 20.0 1.0 48 10.1 1.25 10 11.1

1024 512 \cdot 256 \cdot 32 8,701,506 1.25 405 29.6 1.0 63 13.8 1.25 10 18.7

2048 512 \cdot 512 \cdot 32 17,369,154 1.25 536 40.3 1.0 78 33.5 1.25 10 63.2

Table 6.4
Weak scaling test for the bidomain decoupled solver on the cluster Galileo. Ellipsoidal domain,

local mesh 16 \cdot 16 \cdot 16 elements. Simulations of 2 ms of cardiac activation with dt = 0.05 ms (40 time
steps). Comparison of Newton--Krylov solvers with bAMG, BDDC, and FETI-DP preconditioners.
Average Newton iterations per time step (nit); average conjugate gradient iterations per Newton
iteration (lit); average CPU solution time per time step (time) in seconds.

procs mesh dofs
bAMG BDDC FETI-DP

nit lit time nit lit time nit lit time
32 64 \cdot 32 \cdot 64 278,850 1.0 86 3.3 1.0 30 5.4 1.0 20 4.7

64 64 \cdot 64 \cdot 64 549,250 1.07 124 6.0 1.07 37 6.2 1.07 20 6.5

128 64 \cdot 128 \cdot 64 1,090,050 1.20 207 11.3 1.20 26 7.5 1.2 19 6.6

256 64 \cdot 256 \cdot 64 2,171,650 1.42 348 22.2 1.42 25 8.7 1.42 17 10.7

512 128 \cdot 256 \cdot 64 4,309,890 1.42 335 21.3 1.42 27 10.5 1.42 18 11.4

1024 256 \cdot 256 \cdot 64 8,586,370 out of memory 1.42 28 12.5 1.42 19 11.0

2048 512 \cdot 256 \cdot 64 17,139,330 out of memory 1.42 28 26.6 1.42 19 21.4

we fix the local mesh size to 16 \cdot 16 \cdot 16, and we increase the number of subdomains
from 32 to 2048, thus resulting in an increasing slab geometry and in an increasing
portion of ellipsoid. From Tables 6.3 and 6.4, it is evident that the dual-primal
algorithms have a better performance than bAMG: the average number of linear
iterations per Newton iteration is clearly lower and does not increase with the number
of subdomains, except for BDDC on the slab domain, where the linear iterations
increase unexpectedly. Moreover, the reported average CPU times (in seconds) per
Newton step (see also Figure 6.3) are slightly better for the BDDC and FETI-DP
preconditioners, except for FETI-DP on the slab domain and 2048 processors. In the
harder ellipsoidal tests, both BDDC and FET-DP are scalable and outperform bAMG
when the number of processors increases past 128, indicating lower computational
complexity and interprocessor communications.
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Fig. 6.3. Weak scaling test on the cluster Galileo. Slab (left) and ellipsoidal (right) domains,
local mesh 16 \cdot 16 \cdot 16 elements. Simulations of 2 ms of cardiac activation with dt = 0.05 ms (40
time steps). Comparison of average CPU time per time step, in seconds.

Table 6.5
Strong scaling test for the bidomain decoupled solver on the cluster Indaco. Slab domain,

global mesh 192 \cdot 192 \cdot 32 elements, 2, 458, 434 dofs. Simulations of 2 ms of cardiac activation
with dt = 0.05 ms (40 time steps). Comparison of Newton--Krylov solvers with bAMG, BDDC,
and FETI-DP preconditioners. Average Newton iterations per time step (nit); average conjugate
gradient iterations per Newton iteration (lit); average CPU solution time per time step (time) in
seconds; parallel speedup with respect to 32 (S32) and 64 (S64) processors.

procs
bAMG BDDC FETI-DP

nit lit time S32 S64 nit lit time S32 S64 nit lit time S32 S64

32 1.25 250 116.0 - - 1.0 27 348.2 - - 1.25 11 352.2 - -
64 1.25 252 62.7 1.8 - 1.22 32 59.5 5.8 - 1.25 17 53.0 6.6 -

128 1.25 252 33.6 3.5 1.8 1.22 37 21.9 15.8 2.7 1.25 21 19.9 17.6 2.6
256 1.25 252 18.6 6.2 3.4 1.22 22 10.4 33.5 5.7 1.25 13 8.9 39.7 5.9

Table 6.6
Strong scaling test for the bidomain decoupled solver on the cluster Indaco. Ellipsoidal domain,

global mesh 128 \cdot 128 \cdot 64 elements, 2, 163, 330 dofs. Simulations of 2 ms of cardiac activation
with dt = 0.05 ms (40 time steps). Comparison of Newton--Krylov solvers with bAMG, BDDC
and FETI-DP preconditioners. Average Newton iterations per time step (nit); average conjugate
gradient iterations per Newton iteration (lit); average CPU solution time per time step (time) in
seconds; parallel speedup with respect to 32 (S32) and 64 (S64) processors.

procs
bAMG BDDC FETI-DP

nit lit time S32 S64 nit lit time S32 S64 nit lit time S32 S64

32 1.92 311 188.4 - - 1.92 36 571.8 - - 1.92 14 558.2 - -
64 1.92 310 113.4 1.7 - 1.92 30 129.1 4.4 - 1.92 19 129.7 4.3 -

128 1.92 310 60.5 3.1 1.9 1.92 40 40.2 14.2 3.2 1.92 24 42.4 13.2 3.1
256 1.92 311 32.2 5.8 3.1 1.92 23 15.1 37.9 8.5 1.92 14 19.0 29.4 6.8

Test 2: Strong scaling. We now perform a strong scaling test for the two
geometries on the Indaco cluster. For the thin slab geometry, we fix the global mesh
to 192 \cdot 192 \cdot 32 elements, and we increase the number of subdomains. We fix the
global mesh to 128 \cdot 128 \cdot 64 elements for the portion of ellipsoid instead. We observe
from Tables 6.5 and 6.6 that, as the local number of degrees of freedom decrease, the
preconditioner with the better balance in terms of average linear iterations and CPU
time per time step is FETI-DP. In both cases, BDDC and FETI-DP preconditioners
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Fig. 6.4. Strong scaling test on the cluster Indaco. Left: slab domain with global mesh 192 \cdot 
192 \cdot 32. Right: ellipsoidal domain with global mesh 128 \cdot 128 \cdot 64. Simulations of 2 ms of cardiac
activation with dt = 0.05 ms (40 time steps). Comparison of actual parallel speedup computed with
respect to 32 cores (ideal speedup dotted). Performed on the Indaco cluster.

Table 6.7
Strong scaling test for the bidomain decoupled solver on the cluster Indaco. Slab domain, global

mesh 192 \cdot 192 \cdot 32 elements, 2, 458, 434 dofs. Simulations of 2 ms of cardiac activation with dt = 0.05
ms (40 time steps). Comparison of Newton--Krylov solvers with BDDC preconditioner using Rogers--
McCulloch (RMC) and Luo--Rudy phase 1 (LR1) ionic models. Average Newton iterations per time
step (nit); average conjugate gradient iterations per Newton iteration (lit); average CPU solution
time per time step (time) in seconds; parallel speedup (SN ) computed with respect to N = 32 and
N = 64 processors.

procs
RMC LR1

nit lit time S32 S64 nit lit time S32 S64

32 1.25 16.97 220.25 - - 2.85 16.97 502.25 - -
64 1.25 19.92 62.07 3.55 - 2.85 19.57 140.92 3.56 -

128 1.25 15.3 19.2 11.47 3.23 2.85 15.0 43.9 11.44 3.21
256 1.25 17.45 5.8 37.97 10.7 2.85 29.5 17.0 38.08 10.68

outperform the ideal speedup, while bAMG is suboptimal (see Fig. 6.4). Moreover,
we compare the performance of the Newton--Krylov solver with BDDC preconditioner
using the Rogers--McCulloch and Luo--Rudy phase 1 ionic models in Tables 6.7 and
6.8. In this case the Jacobian linear system is solved with the GMRES method.
By increasing the complexity of the ionic current, we observe an increase in the aver-
age number of Newton iterations from 1--2 per time step using the Rogers--McCulloch
model to 2--3 per time step with the Luo--Rudy phase 1 model. On the other hand,
the average numbers of linear iterations per time step for the two ionic models are
comparable, indicating that our dual-primal solver retains its good convergence prop-
erties even for more complex ionic models. As a consequence, the CPU times for the
Luo--Rudy phase 1 model increase due to the increase of nonlinear iterations, but the
associated parallel speedups of the two models are comparable.

Test 3: Optimality tests. Tables 6.9 and 6.10 report the results of optimal-
ity tests, for both slab and ellipsoid geometries, carried out on the Eos cluster. We
fix the number of processors (subdomains) to 4 \cdot 4 \cdot 4, and we increase the local size
H/h from 8 to 24, thus reducing the finite element size h. We focus only on the
behavior of the BDDC preconditioner, as FETI-DP has been proven to be spectrally
equivalent. We consider both scalings (\rho -scaling on top, deluxe scaling at the bottom
of each table), and we test the solver for increasing primal spaces: V includes only

D
ow

nl
oa

de
d 

11
/0

9/
22

 to
 1

59
.1

49
.1

93
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

B244 N. M. M. HUYNH, L. F. PAVARINO, AND S. SCACCHI

Table 6.8
Strong scaling test for the bidomain decoupled solver on the cluster Indaco. Ellipsoidal domain,

global mesh 128\cdot 128\cdot 64 elements, 2, 163, 330 dofs. Simulations of 2 ms of cardiac activation with dt =
0.05 ms (40 time steps). Comparison of Newton--Krylov solvers with BDDC preconditioner using
Rogers--McCulloch (RMC) and Luo--Rudy phase 1 (LR1) ionic models. Average Newton iterations
per time step (nit); average conjugate gradient iterations per Newton iteration (lit); average CPU
solution time per time step (time) in seconds; parallel speedup (SN ) computed with respect to N = 32
and N = 64 processors.

procs
RMC LR1

nit lit time S32 S64 nit lit time S32 S64

32 2 21.1 436.5 - - 3.95 20.5 862.25 - -
64 2 26.9 99.3 4.39 - 3.95 25.9 194.87 4.43 -

128 2 21.4 27.27 16.0 3.64 3.95 20.8 53.47 16.12 3.64
256 2 30.0 8.17 53.42 12.15 3.95 29.5 16.08 53.62 12.11

Table 6.9
Optimality test on the Eos cluster for PCG-BDDC. Slab domain, 4 \cdot 4 \cdot 4 subdomains, increasing

local size from 4 \cdot 4 \cdot 4 to 24 \cdot 24 \cdot 24. Comparison between different scaling and different primal sets
(V = vertices, E = edges, F = faces). Average Newton iterations (nit), average number of linear
iterations (lit), average CPU time in seconds, and average condition number (cond) per time step.

\rho -scaling

H/h
V V+E V+E+F

nit lit time cond nit lit time cond nit lit time cond
4 1.24 26 1.7 8.4 1.24 11 0.9 1.9 1.24 9 0.9 1.7
8 1.21 47 3.4 24.1 1.24 14 1.4 2.6 1.24 12 1.4 2.5

12 1.04 66 10.3 42.9 1.17 18 6.4 3.2 1.21 15 4.5 3.2
16 out of memory 1.0 20 11.9 3.7 1.0 20 11.6 3.7
20 out of memory 1.0 22 34.2 4.2 1.0 20 32.5 4.2
24 out of memory 1.0 23 83.1 4.6 1.0 21 80.5 4.5

deluxe scaling

H/h
V V+E V+E+F

nit lit time cond nit lit time cond nit lit time cond
4 1.24 26 1.9 8.4 1.24 11 0.9 1.9 1.24 9 1.0 1.7
8 1.24 47 4.1 24.0 1.24 14 1.7 2.6 1.24 12 1.8 2.5

12 1.07 65 14.7 42.7 1.17 18 5.5 3.2 1.21 15 7.8 3.2
16 1.0 80 30.0 63.7 1.0 20 19.1 3.7 1.0 20 21.4 3.7
20 1.0 90 93.8 86.3 1.0 22 73.9 4.2 1.0 20 70.0 4.2
24 1.0 99 211.9 110.1 1.0 24 205.8 4.5 1.0 21 247.3 4.5

vertex constraints, V+E includes vertex and edge constraints, and V+E+F includes
vertex, edge, and face constraints. We consider a time interval of 2 ms during the
cardiac activation phase. The time step is dt = 0.05 ms for a total amount of 40 time
steps. Similar results hold for both geometries. Despite a higher average CPU time
when using the deluxe scaling, all the other parameters are quite similar between the
two scalings. We observe almost linear dependence of the condition number if the
coarsest primal space (i.e., V) is chosen (see also Figures 6.5 and 6.6 bottom), while
we obtain quasi-optimality if we enrich the primal space by adding edges (V+E) and
faces (V+E+F).

Test 4: Whole beat (activation-recovery) simulations. In this last set of
tests (performed on the Indaco cluster), we compare the performance of our dual-
primal and multigrid preconditioners during a whole beat, i.e., during a complete
activation-recovery interval over the computational domain. We fix the number of
subdomains to 128 = 8 \cdot 8 \cdot 2 and the global mesh size to 192 \cdot 96 \cdot 24, obtaining local
problems with 8,450 degrees of freedom. We consider either a portion of ellipsoid,
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Table 6.10
Optimality test on the Eos cluster for PCG-BDDC. Ellipsoidal domain, 4 \cdot 4 \cdot 4 subdomains,

increasing local size from 8 \cdot 8 \cdot 8 to 24 \cdot 24 \cdot 24. Comparison between different scaling and different
primal sets (V = vertices, E = edges, F = faces). Average Newton iterations (nit), average number
of linear iterations (lit), average CPU time in seconds, and average condition number (cond) per
time step.

\rho -scaling

H/h
V V+E V+E+F

nit lit time cond nit lit time cond nit lit time cond
8 2.0 50 5.5 30.1 2.0 17 2.4 4.3 2.0 16 2.4 4.0

12 2.0 66 11.8 54.6 2.0 19 5.6 5.4 2.0 18 5.6 4.9
16 2.0 80 33.9 80.6 2.0 21 16.9 6.3 2.0 21 16.9 5.7
20 2.0 91 90.3 108.2 2.0 22 44.7 6.9 2.0 21 44.9 6.3
24 1.46 100 206.3 137.2 1.46 24 109.3 7.5 1.46 23 84.0 6.8

deluxe scaling

H/h
V V+E V+E+F

nit lit time cond nit lit time cond nit lit time cond
8 2.0 49 6.7 31.0 2.0 17 3.1 4.3 2.0 16 3.0 4.0

12 2.0 54 27.2 54.6 2.0 19 9.6 5.4 2.0 18 9.6 4.9
16 2.0 79 54.1 80.6 2.0 21 32.1 6.2 2.0 21 32.7 5.7
20 2.0 90 142.4 108.2 2.0 22 125.8 7.0 2.0 21 111.1 6.3
24 1.46 99 329.3 137.1 1.46 24 236.7 7.5 1.46 22 247.1 6.8
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Fig. 6.5. Optimality test on the Eos cluster for PCG-BDDC. Slab domain, 4 \cdot 4 \cdot 4 subdomains,
increasing local size from 4 \cdot 4 \cdot 4 to 24 \cdot 24 \cdot 24. Comparison between different scaling (dash-dotted
\rho -scaling, continuous deluxe scaling) and different primal sets (V = vertices, E = edges, F = faces).
Average number of linear iterations (left) and average condition numbers (right) per time step.

defined by \varphi min =  - \pi /2, \varphi max = 0, \theta min =  - 3/8\pi , and \theta max = \pi /8, or a slab
of dimensions 1.92 \times 1.92 \times 0.48 cm3. The ellipsoid test is on a time interval of
[0, 170] ms for a total of 3400 time steps, while the slab test is on the time interval
[0, 120] ms for a total of 2400 time steps. Both time intervals are enough to complete
the activation and recovery phases over the whole domains, given the short action
potential duration of the Rogers--McCulloch ionic model considered. In Figures 6.7
and 6.8 we report the trend of the average number of linear iteration per time step
during the simulation. The number of iterations remains bounded and almost constant
during the test. Moreover, we notice a huge difference between the multigrid and the
dual-primal preconditioners, with a reduction of more than 90\% for the latter. If
we focus on the trend of the dual-primal preconditioners' average number of linear
iterations (Figures 6.7 and 6.8, on the right), we see that on both domains FETI-DP is
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Fig. 6.6. Optimality test on the Eos cluster for PCG-BDDC with different scaling (dash-
dotted \rho -scaling, continuous deluxe scaling) and primal sets (V = vertices, E = edges, F = faces).
Ellipsoidal domain, 4 \cdot 4 \cdot 4 subdomains, increasing local size from 8 \cdot 8 \cdot 8 to 24 \cdot 24 \cdot 24. Average
number of linear iterations (left) and average condition numbers (right) per time step.
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Fig. 6.7. Full activation-recovery simulation on ellipsoidal domain, time interval [0, 170] ms,
3, 400 time steps. Fixed number of subdomains 8 \cdot 8 \cdot 2 and fixed global mesh 192 \cdot 96 \cdot 24. Average
number of linear iterations per time step (left), zoom over dual-primal preconditioner (right).

affected by the different phases of the action potential: there is an initial peak during
the activation phase, followed by an increase in the number of linear iterations as the
potential propagates in the tissue and by a slow decrease as wider portions of tissue
return to resting. Similar behavior can be observed for the BDDC preconditioner
on the slab domain: there is an initial peak corresponding to the activation phase,
followed by a constant period, as the tissue turn to resting. This trend is not visible
for BDDC on the ellipsoidal domain, due to the complexity of the geometry. We also
observe a better performance of the dual-primal preconditioners in terms of average
CPU time per time step (see Table 6.11).

7. Conclusions. We have constructed dual-primal preconditioners for fully im-
plicit discretizations of the Bidomain system, which are solved through a decoupling
strategy. We have proved a convergence bound of the preconditioned FETI-DP and
BDDC bidomain operators with deluxe scaling. Parallel numerical tests validate the
bound and show the efficiency and robustness of the solver, thus enlarging the class
of methods available for the efficient and accurate numerical solution of this complex
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Fig. 6.8. Full activation-recovery simulation on slab domain, time interval [0, 120] ms, 2, 400
time steps. Fixed number of subdomains 8 \cdot 8 \cdot 2 and fixed global mesh 192 \cdot 96 \cdot 24. Average number
of linear iterations per time step (left), zoom over dual-primal preconditioner (right).

Table 6.11
Whole beat simulation on time interval [0, 170] ms, 3, 400 time steps for the ellipsoidal domain

and time interval [0, 120] ms, 2, 400 time steps for the slab. Fixed number of subdomains 8 \cdot 8 \cdot 2 and
fixed global mesh 192 \cdot 96 \cdot 24. Comparison of average Newton steps, average linear iterations (lit),
and average CPU time (in seconds) per time step.

procs dofs
bAMG BDDC FETI-DP

nit lit time nit lit time nit lit time
Slab 128 8,450 1.4 185 11.28 1.4 19 8.02 1.4 12 7.62

Ellipsoid 128 8,450 1.97 328 13.24 1.97 30 8.85 1.97 21 8.05

biophysical reaction-diffusion model. Additional research is needed in order to assess
the performance of the proposed dual-primal solvers for more realistic ionic models
and with respect to optimized multigrid solvers.

REFERENCES

[1] C.M. Augustin, G.A. Holzapfel, and O. Steinbach, Classical and all-floating FETI methods
for the simulation of arterial tissues, Internat. J. Numer. Methods Engrg., 99 (2014), pp.
290--312.

[2] S. Balay et al., PETSc Web Page, 2019, https://petsc.org/release/.
[3] D. Brands, A. Klawonn, O. Rheinbach, and J. Schr\"oder, Modelling and convergence

in arterial wall simulations using a parallel FETI solution strategy, Comput. Methods
Biomech. Biomed. Engrg., 11 (2008), pp. 569--583.

[4] L. Beir\~ao Da Veiga, L.F. Pavarino, S. Scacchi, O. Widlund, and S. Zampini, Isogeometric
BDDC preconditioners with deluxe scaling, SIAM J. Sci. Comput., 36 (2014), pp. A1118--
A1139.

[5] L. A. Charawi, Isogeometric overlapping Schwarz preconditioners for the Bidomain reaction--
diffusion system, Comput. Methods Appl. Mech. Engrg, 319 (2017), pp. 472--490.

[6] H. Chen, X. Li, and Y. Wang, A splitting preconditioner for a block two-by-two linear system
with applications to the Bidomain equations, J. Comput. Appl. Math., 321 (2017), pp.
487--498.

[7] H. Chen, X. Li, and Y. Wang, A two-parameter modified splitting preconditioner for the
bidomain equations, Calcolo, 56 (2019), 21.

[8] P. Colli Franzone, L.F. Pavarino, and S. Scacchi, A numerical study of scalable cardiac
electro-mechanical solvers on HPC architectures, Front. Physiol., 9 (2018), 268.

[9] P. Colli Franzone and G. Savar\'e, Degenerate evolution systems modeling the cardiac electric
field at micro-and macroscopic level, in Evolution Equations, Semigroups, and Functional
Analysis, Springer, Cham, 2002, pp. 49--78.

D
ow

nl
oa

de
d 

11
/0

9/
22

 to
 1

59
.1

49
.1

93
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://petsc.org/release/ 


© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

B248 N. M. M. HUYNH, L. F. PAVARINO, AND S. SCACCHI

[10] P. Colli Franzone, L.F. Pavarino, and S. Scacchi, Mathematical Cardiac Electrophysiology,
Springer, Cham, 2014.

[11] P. Colli Franzone, L.F. Pavarino, and S. Scacchi, Parallel multilevel solvers for the cardiac
electro-mechanical coupling, Appl. Numer. Math., 95 (2015), pp. 140--153.

[12] C.R. Dohrmann, A preconditioner for substructuring based on constrained energy minimiza-
tion, SIAM J. Sci. Comput., 25 (2003), pp. 246--258.

[13] C.R. Dohrmann and O.B. Widlund, A BDDC algorithm with deluxe scaling for three-
dimensional H(curl) problems, Commun. Pure Appl. Math., 69 (2016), pp. 745--770.

[14] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, FETI-DP: A dual--primal
unified FETI method--part I: A faster alternative to the two-level FETI method, Internat.
J. Numer. Methods Engrg., 50 (2001), pp. 1523--1544.

[15] I.J. LeGrice, B.H. Smaill, L.Z. Chai, S.G. Edgar, J.B. Gavin, and P.J. Hunter, Laminar
structure of the heart: Ventricular myocyte arrangement and connective tissue architecture
in the dog, Amer. J. Physiol. Heart Circ. Physiol., 269 (1995), pp. H571--H582.

[16] J. Li and O.B. Widlund, FETI-DP, BDDC, and block Cholesky methods, Internat. J. Numer.
Methods Engrg., 66 (2006), pp. 250--271.

[17] C. Luo and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization,
repolarization, and their interaction, Circ. Res., 68 (1991), pp. 1501--1526.

[18] A. Klawonn, O.B. Widlund, and M. Dryja, Dual-primal FETI methods for three-
dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal., 40
(2002), pp. 159--179.

[19] A. Klawonn and O.B. Widlund, Dual-primal FETI methods for linear elasticity, Comm.
Pure Appl. Math., 59 (2006), pp. 1523--1572.

[20] A. Klawonn and O. Rheinbach, Highly scalable parallel domain decomposition methods with
an application to biomechanics, ZAMM Z. Angew. Math. Mech., 90 (2010), pp. 5--32.

[21] J. Mandel and C.R. Dohrmann, Convergence of a balancing domain decomposition by con-
straints and energy minimization, Numer. Linear Algebra Appl., 10 (2003), pp. 639--659.

[22] J. Mandel, C.R. Dorhmann, and R. Tezaur, An algebraic theory for primal and dual sub-
structuring methods by constraints, Appl. Numer. Math, 54 (2005), pp. 167--193.

[23] M. Munteanu and L.F. Pavarino, Decoupled Schwarz algorithms for implicit discretizations
of nonlinear monodomain and bidomain systems, Math. Models Methods Appl. Sci., 19
(2009), pp. 1065--1097.

[24] M. Munteanu, L.F. Pavarino, and S. Scacchi, A scalable Newton--Krylov--Schwarz method
for the bidomain reaction-diffusion system, SIAM J.Sci. Comput., 31 (2009), pp. 3861--
3883.

[25] M. Murillo and X-C. Cai, A fully implicit parallel algorithm for simulating the non-linear
electrical activity of the heart, Numer. Linear Algebra Appl., 11 (2004), pp. 261--277.

[26] L. F. Pavarino and S. Scacchi, Multilevel additive Schwarz preconditioners for the bidomain
reaction-diffusion system, SIAM J. Sci. Comput., 31 (2008), pp. 420--443.

[27] L.F. Pavarino, S. Scacchi, and S. Zampini, Newton--Krylov-BDDC solvers for nonlinear
cardiac mechanics, Comput. Methods Appl. Mech. Engrg., 295 (2015), pp. 562--580.

[28] M. Pennacchio, G. Savar\'e, and P. Colli Franzone, Multiscale modeling for the bioelectric
activity of the heart, SIAM J. Math. Anal., 37 (2005), pp. 1333--1370.

[29] A. Quarteroni, A. Manzoni, and C. Vergara, The cardiovascular system: Mathematical
modelling, numerical algorithms and clinical applications, Acta Numer., 26 (2017), pp.
365--590.

[30] A. Quarteroni, T. Lassila, S. Rossi, and R. Ruiz-Baier, Integrated heart: Coupling multi-
scale and multiphysics models for the simulation of the cardiac function, Comput. Methods
Appl. Mech. Engrg., 314 (2017), pp. 345--407.

[31] O. Rheinbach, Parallel Scalable Iterative Substructuring: Robust Exact and Inexact FETI-DP
Methods with Applications to Elasticity, Ph.D. thesis, University of Duisburg-Essen, 2006.

[32] J.M. Rogers and A.D. McCulloch, A collocation-Galerkin finite element model of cardiac
action potential propagation, IEEE Trans. Biomed. Engrg., 41 (1994), pp. 743--757.

[33] S. Scacchi, A hybrid multilevel Schwarz method for the bidomain model, Comput. Methods
Appl. Mech. Engrg., 197 (2008), pp. 4051--4061.

[34] S. Scacchi, A multilevel hybrid Newton--Krylov--Schwarz method for the bidomain model of
electrocardiology, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 717--725.

[35] J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K.-A. Mardal, and A. Tveito, Computing
the Electrical Activity of the Heart, Springer, Cham, 2006.

[36] K.H.W.J. Ten Tusscher, D. Noble, P-J. Noble, and A.V. Panfilov, A model for human
ventricular tissue, Amer. J. Physiol. Heart Circ. Physiol., 286 (2004), pp. H1573--H1589.D

ow
nl

oa
de

d 
11

/0
9/

22
 to

 1
59

.1
49

.1
93

.1
81

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

NEWTON--KRYLOV DUAL-PRIMAL BIDOMAIN SOLVERS B249

[37] A. Toselli and O. Widlund, Domain Decomposition Methods: Algorithms and Theory,
Springer, Cham, 2006.

[38] S. Zampini, Dual-primal methods for the cardiac bidomain model, Math. Models Methods Appl.
Sci., 24 (2014), pp. 667--696.

[39] S. Zampini, Inexact BDDC methods for the cardiac bidomain model, in Domain Decomposition
Methods in Science and Engineering XXI, Springer, Cham, 2014, pp. 247--255.

D
ow

nl
oa

de
d 

11
/0

9/
22

 to
 1

59
.1

49
.1

93
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y


	Introduction
	The cardiac bidomain model
	Numerical methods
	Dual-primal preconditioners for Newton–Krylov solvers
	 Nonoverlapping dual-primal spaces
	Restriction operators and scaling
	FETI-DP preconditioner
	BDDC preconditioner

	Convergence rate estimate
	Parallel numerical results
	Conclusions
	References

