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ABSTRACT
We investigate the minimum planet mass that produces observable signatures in infrared
scattered light and submillimetre (submm) continuum images and demonstrate how these
images can be used to measure planet masses to within a factor of about 2. To this end, we
perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating
simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that
produces a detectable signature is ∼15 M⊕: this value is strongly dependent on disc temperature
and changes slightly with wavelength (favouring the submm). We also confirm previous results
that there is a minimum planet mass of ∼20 M⊕ that produces a pressure maximum in the disc:
only planets above this threshold mass generate a dust trap that can eventually create a hole in
the submm dust. Below this mass, planets produce annular enhancements in dust outwards of
the planet and a reduction in the vicinity of the planet. These features are in steady state and
can be understood in terms of variations in the dust radial velocity, imposed by the perturbed
gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be
derived from structure in scattered light and submm images. We emphasize that simulations
with dust need to be run over thousands of planetary orbits so as to allow the gas profile
to achieve a steady state and caution against the estimation of planet masses using gas-only
simulations.

Key words: hydrodynamics – planet–disc interactions – protoplanetary discs – submillimetre:
planetary systems.

1 IN T RO D U C T I O N

Planets form in the dense, rotationally flattened structures of dust
and gas called ‘protoplanetary disc’ (see Williams & Cieza 2011
for a review). Despite the rapid expansion of our knowledge of exo-
planets around main-sequence stars (Mayor & Queloz 1995), little
is known about the putative planets that may already be present
in such discs at an age of <10 Myr. The Atacama Large Millime-
ter/submillimeter Array (ALMA), which is approaching its full ca-
pability, can reach the unprecedented resolution and sensitivity nec-
essary for the detailed characterization of such discs and may also
be able to detect direct signatures of embedded protoplanets (see
for example the pattern of bright and dark rings observed in HL Tau
during a science verification campaign which has been interpreted
as being of planetary origin; Brogan et al. 2015). The latest near-
infrared (NIR) instruments on 8 m class telescopes [e.g. Spectro-
Polarimetric High-contrast Exoplanet REsearch (SPHERE) on the
Very Large Telescope (VLT) or Gemini Planet Imager (GPI) on the
Gemini Telescope] provide an opportunity to search for planetary
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signatures in discs via scattered light imaging at similar resolution
as ALMA in the submillimetre (submm). In the near future, similar
resolution will be available in the thermal mid-infrared (MIR) when
the 30–40 m class telescopes (e.g. the European Extremely Large
Telescope, E-ELT) will come online.

It is very tempting to connect the presence of rings and gaps
in protoplanetary disc images (which might be commonplace; see
Zhang et al. 2016) to the presence of planets. According to conven-
tional core accretion models (Pollack et al. 1996), however, giant
planets are an unexpected outcome at the very young age ascribed to
HL Tau (105 yr; Kenyon & Hartmann 1995). It is however currently
unclear whether this indeed involves a revision of planet formation
mechanisms and time-scales or whether the structures seen in the
image are not planetary in origin. Our focus here however is not to
add to the debate on this particular system but to present a more
generic exploration of the detectability of planetary signatures via
submm and scattered light imaging.

It is often assumed that only giant planets can create structures
in discs prominent enough to be observed (e.g. Varnière et al. 2006;
Ruge et al. 2013, 2014). Indeed, it is well known that giant plan-
ets create gaps in the gas disc (Lin & Papaloizou 1979), partially
depleting the surface density in a region as wide as a few times its
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Hill radius. Planets with a mass smaller than a critical value, which
is typically somewhat lower than the mass of Jupiter, are not able to
open significant gaps (Crida, Morbidelli & Masset 2006), and one
might then think that these objects would not produce observable
features in discs. In this case, it would not be possible to put observa-
tional constraints on the formation conditions of the large population
of super-Earths discovered by Kepler around main-sequence stars,
objects now believed to constitute the most abundant population of
planetary objects (Howard et al. 2012). This is particularly unfor-
tunate because whereas it is clear that gas giant planets must form
at an evolutionary stage when disc gas is still abundantly present,
it is unclear whether super-Earths originate at similarly early times.
Conventionally, terrestrial planet formation is often ascribed to later
eras (age of ∼100 Myr) when the disc gas has long since dissipated
and planet building proceeds via planetesimal collisions and giant
impacts among embryos in a gas-poor environment (Raymond et al.
2014). On the other hand, the conventional core accretion scenario
for gas giant planet formation (Pollack et al. 1996) envisages the
formation of rock cores within the protoplanetary disc which only
convert to gas giants if they attain a critical mass in excess of 10–20
Earth masses while gas is still abundantly present. An alternative
model for super-Earth formation would therefore involve the assem-
bly of rock cores during the disc phase, in the case that cores did
not achieve criticality during the gas-rich phase. The core growth
rate, and therefore the dichotomy that we observe for example in
the Solar system between terrestrial and giant planets, might be
due to the location in the disc with respect to the water snow line
(Morbidelli et al. 2015). A conceptually distinct scenario for super-
Earth formation instead invokes photoevaporation from the central
star (on a time-scale of ∼100 Myr) to erode the gas envelope of a gas
giant planet formerly produced in the protoplanetary disc (Owen &
Wu 2013).

Here we explore whether planetary signatures can potentially
be detected in the low-mass (super-Earth) regime. This issue has
not received much attention to date since the impossibility of gap
opening at masses much below a Jupiter mass (∼300 M⊕) implies
that low-mass planets have only a modest effect on disc gas dis-
tributions. Nevertheless, a number of studies have indicated that
planet-induced signatures are stronger in disc dust than in the gas,
on account of the tendency of drag-coupled dust to collect in pres-
sure maxima in the disc (Weidenschilling 1977). Such an effect has
been shown to enhance the observability of structures produced by
more massive planets, as dust becomes trapped at the outer edge of
disc gaps (e.g. Rice et al. 2006; Zhu et al. 2012; Owen 2014).

Paardekooper & Mellema (2004) were the first to simulate dust
gaps opened by low-mass planets, finding gaps opening at reso-
nances. Their simulated ALMA images demonstrated the capabil-
ity of ALMA to observe such structures: they found that a 0.05 MJ

(15 M⊕) planet opens a gap in the dust while a 0.01 MJ (3 M⊕) does
not, but do not elaborate further on the detectability threshold. In an
extensive work, Zhu et al. (2014) showed that even a planet with a
mass as little as 8 M⊕ can affect the dust surface density, creating a
double-gapped structure. However, the observational consequences
are not explored in this paper. Moreover, this work considers only
inviscid discs and therefore cannot explore the effect of viscously
driven inflow in the gas in modifying the resultant dust structures.
Dong, Zhu & Whitney (2015) focused on giant planets and their
impact on transitional discs, but they also simulate a 0.2 MJ planet
which they find is able to open a gap in the dust. They also find
that such a low-mass planet is not able to affect the spectral energy
distribution. To the best of our knowledge, their work is the only
one that, when exploring the observational consequences, is not

restricted to ALMA wavelengths but also includes simulated NIR
images. However, no study is made of systematically lowering the
planet mass until the observed signatures disappear. In a series of
papers, Fouchet, Gonzalez & Maddison (2010) explored the impact
of planets on the dust distributions, but in creating synthetic ALMA
observations (Gonzalez et al. 2012) only the gas giant regime is ex-
plored. Even more recently, the HL Tau observations (Brogan et al.
2015) prompted other works which have focused on explaining the
ring structure that was observed. Dipierro et al. (2015) interpreted
the image using three planets, finding a best fit with masses of 0.2,
0.27 and 0.55 MJ. Picogna & Kley (2015) also interpreted the HL
Tau image in terms of planets, but in this case only two planets are
invoked (with best-fitting masses 0.07 and 0.35 MJ). The authors
also commented that, depending on the disc parameters, they find
observable gaps even assuming masses of 10 and 20 M⊕. Finally,
Jin et al. (2016) also interpreted the image using three planets, but
with best-fitting masses of 0.35, 0.17 and 0.26 MJ.

The above works have shown convincingly that there is a prospect
for observing low-mass planets in discs. However, as we have high-
lighted, no work so far has directly established what is the minimum
planet mass that creates observable features at high resolution with
current instruments (or those planned for the near future). In addi-
tion, most of the effort has concentrated on ALMA and very little
attention has been dedicated to scattered light images, which how-
ever have the same resolution as ALMA. Finally, to the best of our
knowledge, the literature contains no predictions of this kind for
MIR thermal images; with the upcoming generation of 30 m class
telescopes, images at these wavelengths will in a few years have the
same resolution as existing submm and NIR instruments. The goal
of this paper is to remedy this omission by deriving a threshold for
the observability of a planetary gap in protoplanetary discs at NIR,
MIR and submm wavelengths, as well as studying the dependence
of this threshold on disc properties.

This paper is structured as follows. We present our method in Sec-
tion 2 and the results from the multi-fluid simulations in Section 3.
We then present the simulated observations in Section 4. Section 5
discusses our results and we draw our conclusions in Section 6.

2 N U M E R I C A L M E T H O D A N D I N I T I A L
C O N D I T I O N S

Our methodology consists of running 2D multi-fluid gas dust simu-
lations of planet–disc interactions. We then post-process the simula-
tions by calculating synthetic observations at three different wave-
lengths (NIR, MIR and submm).

2.1 Gas and dust dynamics

We run 2D multi-fluid simulation where we evolve at the same time
the dust and the gas using the FARGO-3D code (Benı́tez-Llambay et al.
2015). FARGO uses the ZEUS numerical algorithm (Stone & Norman
1992). The algorithm is well tested and it has been used many times
for protoplanetary disc studies (see de Val-Borro et al. 2006 for
an algorithmic comparison). We extended the code to include dust,
approximating the dust as a pressureless fluid that is coupled to the
gas via linear drag forces. We have neglected feedback from the dust
on to the gas. These approximations are valid for low dust-to-gas
ratios and particles with Stokes number (see the next paragraph)
St < 1 (Garaud, Barrière-Fouchet & Lin 2004).
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Figure 1. Radial velocity of the dust in a 2D disc for a range of Stokes
numbers. The velocity from the simulation (points) agrees well with the
analytical solution (solid lines; Takeuchi & Lin 2002).

The equation for the dust velocity, vd, is given by

dvd

dt
+ vd · ∇vd = − 1

ts
(vd − vg(t)) + ad, (1)

where vg is the gas velocity, ad are the non-drag accelerations felt
by the dust and ts is the stopping time. It is common to introduce the
dimensionless stopping time, also called Stokes number, defined as
St = ts�k, where �k is the Keplerian angular velocity at the given
location in the disc. We solve this equation along with the continuity
equation ∂�d

∂t
+ ∇ · (�dvd) = 0, using the ZEUS algorithm, in which

the forces (source step, RHS of equation 1) are evaluated prior to the
advection (transport step, vd · ∇vd term). The transport step for the
dust is identical to that of the gas. For details, see Stone & Norman
(1992), Masset (2000) and references therein.

The source step for the dust is evaluated semi-implicitly, using
the analytical solutions available for the simple form of the drag law.
We take into account the change in gas velocity over the time step
by approximating vg as vg(t ′) = vg(t) + ag × (t ′ − t) throughout
the time step, where ag is the acceleration calculated explicitly (that
is, at time t) during the source step for the gas. The dust velocity at
t + �t is given by

vd(t + �t) = vd(t) exp(−�t/ts) + ag�t

+ [
vg(t) + (ad − ag)ts

]
(1 − exp(−�t/ts)), (2)

which reproduces the explicit update when �t � ts and the short
friction time limit when �t � ts. To see this, consider ad = g and
ag = −∇P

�g
+ g, where g is the gravitational acceleration and P is

the gas pressure. For �t � ts

vd(t + �t) → vg(t + �t) + ts
∇P

�g
, (3)

i.e. the short friction time limit.
The time step, �t, is limited by both the time step of the gas and

via a Courant-Friedrichs-Lewy (CFL)-like criterion for the dust,
�t = C�x/max (|vd|, |vd − vg|), where we use a conservative
value of C = 0.44 for both the gas and dust. We have verified the
technique using a range of tests. For example, Fig. 1 shows that the
code achieves good agreement between the radial velocity obtained
in a low-resolution (Nr × Nφ = 350 × 580) 2D simulation and the
analytical solution (Takeuchi & Lin 2002).

Additionally, mass diffusion was added to the surface density
in the dust using a Schmidt number Sc = 1. The diffusive mass

flux, FD = −(ν/Sc)�g∇(�D/�G), where ν is the turbulent viscos-
ity (Clarke & Pringle 1988), was included by adding an effective
diffusive velocity vD = FD/�D to the velocity at which the dust is
advected during the transport step.

2.2 Initial conditions and parameters

For the viscosity, we use the α prescription of Shakura & Sunyaev
(1973) assuming α = 10−3. We use 2D cylindrical coordinates and
dimensionless units in which the orbital radius of the planet (rp) is
at unity, the unit of mass is that of the central star, while the unit
time is the inverse of the Kepler frequency of the planet. The inner
radial boundary of our grid is at 0.5 rp and the outer boundary at
3 rp; we use non-reflecting boundary conditions at both boundaries.
The resolution is 450 and 1024 uniformly spaced cells in the radial1

and azimuthal direction, respectively. We let the disc relax for a
time t0 of 10 orbits before introducing the planet, and then, to avoid
numerical artefacts, we increase the mass of the planet from zero
to the final one over a time ttaper of 20 orbits, according to the
formula sin2(π/2 × (t − t0)/ttaper). The planet is kept on a circular
orbit whose orbital parameters are not allowed to vary. The surface
density profile is given by

�(R) = �0
rp

R
, (4)

where the value of the normalization constant �0 is arbitrary as
far as the dynamics is concerned. In our fiducial model, the disc
has an aspect ratio H/R at the location of the planet of 0.05. The
aspect ratio varies in a power-law fashion with a flaring index of
0.25. The value of the aspect ratio is particularly important as it
controls the strength of the pressure forces, which are responsible
(see Section 3.1) for closing the planetary gap. For this reason,
we also run models with a different value of the aspect ratio. We
chose values of 0.025 (‘cold’) and 0.1 (‘hot’) that encompass the
possible range of variation in real protoplanetary discs.

For the fiducial model, we run simulations with different planet
masses, considering values of 8, 12, 20, 60, 120 M⊕. Note that as
far as the dynamics is concerned, only the ratio of the planet mass to
the star mass matters; the planet masses we quote assume a central
mass of 1 M
, and need to be properly rescaled with the star mass.
When varying the aspect ratio of the disc, we also run models for
additional values of the planet mass, as the aspect ratio controls how
massive a planet must be to significantly affect the surface density
of the disc. For the ‘cold’ disc case (H/R = 0.025), we also run
models for a mass of 2.5 M⊕, and for the ‘hot’ disc case for masses
of 96, 160, 480 M⊕.

Along with the gas dynamics, we integrate in time the evolution
of the dust. To keep our simulations scale-free, we fix the Stokes
number St of the grains rather than their physical size. Once the
physical scales of the disc have been chosen, it is then possible to
convert our Stokes numbers to real sizes as we explain in the next
section. We use five dust sizes, with Stokes numbers (logarithmi-
cally spaced) ranging from 2 × 10−3 to 0.2.

2.3 Radiative transfer

To investigate the detectability of dust gaps opened by low-mass
planets, we calculate images at various wavelengths using the 3D

1 While this gives a different relative resolution across the grid, the limited
range in radii of our grid does not make the effect significant.
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radiative transfer code RADMC-3D.2 In the radiative transfer cal-
culation, we use a 3D spherical mesh with Nr = 256, Nθ =
180, Nφ = 384 grid points in the radial, poloidal and azimuthal
direction, respectively. For the radial direction, we use a log-
arithmic grid extending from 1 to 100 au while an arithmetic
grid is used for the angular coordinates. To ensure that we re-
solve the disc properly in the vertical direction, we place Nθ =
{10, 160, 10} points in the [0, π/2 − θ0], [π/2 − θ0, π/2 + θ0],
[π/2 + θ0, π] intervals, respectively, where θ0 = 5H/R, H/R be-
ing the aspect ratio of the disc taken at the outer edge of the
disc.

The disc density distribution for a given grain size a is assumed
to be

ρa(R, z, φ) = �a(R, φ)√
2πH (R)

exp

(
− z2

2h(R)2

)
, (5)

where �a(R, φ) is the dust surface density, R = r sin θ and z =
r cos θ and H(R) is the pressure scaleheight. For the latter, we use
the same value, as a function of radius, as is assumed in the hydro-
dynamic simulations. The dust surface density of the disc is taken
from the hydrodynamic simulation in the following way. First, we
take both the gas and dust surface density from the hydrodynamic
simulations and bilinearly interpolate them to the spatial grid used
in the radiative transfer calculations. We extrapolate the disc both
inwards and outwards of the hydrodynamic computational domain3

if it is necessary assuming that �(R) ∝ R−1. Then we calculate the
gas density structure using equation (5). As our hydrodynamics
simulations are not 3D, we did not include dust settling or iterated
to reach hydrostatic equilibrium. Including these effects properly
would require including also other 3D effects which are poten-
tially more important, which goes beyond the scope of this paper
(see the discussion in Section 5.3). Neglecting settling is partic-
ularly relevant for the submm dust; however, we note that, given
that it is optically thin, observations mostly probe the dust surface
density, and at submm wavelengths are not really sensitive to the
details of the vertical structure. In addition, while settling might
change the global temperature of the disc, this would result only
in a global change of the surface brightness, whereas here we are
interested in the substructure present in the image. The same argu-
ment can be applied to another inconsistency that stems from our
approach, namely that the temperature assumed for the hydro calcu-
lation might be different from the one computed by RADMC-3D. Also,
we remark that such inconsistencies always arise when using para-
metric models; the benefit is that they allow us to set up a controlled
environment.

The dimensionless surface density provided by FARGO-3D is con-
verted to dimensional form taking the planetary orbital radius to be
30 au and normalizing the density such that the gas mass in the disc
is 0.01 M
 within 100 au. The corresponding normalization of the
gas surface density at 1 au is ∼300 g cm−2. For what concerns the
dust, we normalize the density so that the initial dust-to-gas ratio
is 10−2. We use 10 logarithmically spaced grain size bins between
0.1 μm and 1 mm and assume that the dust grain size distribution
follows dN/da ∝ a−3.5.

2 http://www.ita.uni-heidelberg.de/dullemond/software/radmc-3d/
3 In particular, we do not consider the first six cells of hydrodynamical
computational domain, which are affected by the inner boundary condition
and show an artificial dust accumulation.

Then for a given dust grain size, we calculate the Stokes number
in the disc mid-plane, assuming that the particles are in the Epstein
regime:

St = ts� = aρd�

ρgcs
= aρd

�g
, (6)

where a is the size of the particles, ρd is the bulk density of the
dust, which we assume to be 3.6 g cm−3, ρg is the density of the
gas and �g is the surface density of the gas. To arrive at the last
expression, we have used the fact that �g = ρgH and H = cs/�;
note that in these equations we have neglected factors of order unity.
At any given location in the disc, we perform a linear interpolation
in Stokes number to compute the dust surface density, starting from
the results of our hydrodynamical simulations. When the Stokes
number is smaller than the smallest one we have in the multi-fluid
simulation, we assume that the dust follows the gas. We note that
with our parameters the typical Stokes number of 1 mm particles at
30 au is ∼0.07 and ∼0.17 at 100 au, which ensures that we have
enough information from the multi-fluid simulations to reconstruct
the surface density of those particles.

The mass absorption coefficients of the dust grains are calculated
with Mie theory using the optical constants of astronomical silicates
(Weingartner & Draine 2001). The radiation field of the central star
is modelled with blackbody emission and the star is assumed to
have parameters, typical for a Herbig Ae star,4 M� = 2 M
, Teff =
9500 K, R� = 2.5 R
.

As a first step, we calculate the temperature of the dust with
a thermal Monte Carlo simulation, then we calculate images at
1.65, 10 and 880 μm taking the disc inclination to be 10◦. We use
1.6 × 108 and 9 × 107 photons for the thermal Monte Carlo simu-
lations and for the image calculations, respectively.

3 R E S U LT S F RO M T H E G A S A N D D U S T
DY NA M I C S S I M U L AT I O N

3.1 Gas surface density

We find that it is necessary to integrate for a relatively long time
to reach a consistent steady state. We show the time evolution of
the surface density for a representative case of 60 M⊕ in Fig. 2.
Different lines correspond to different snapshots from the simula-
tions: 150 orbits (blue dotted line), 400 orbits (green dot–dashed
line), 1000 orbits (red dashed line) and finally 3000 orbits (solid
cyan line). While the gas converges reasonably close to the final
result on a time-scale of �100 planetary orbits, the depth of the gap
still slowly evolves over a time-scale of �103 planetary orbits, over
which the depth typically changes by a factor of <2. This result
is consistent with what other authors have found previously when
looking at the time-scale of gap opening (Varnière, Quillen & Frank
2004; Duffell & MacFadyen 2013; Fung, Shi & Chiang 2014) and
can be understood in terms of the time-scale to reach gap opening
being roughly the viscous time-scale across the gap. For reference,
if we assume that the perturbed region has a width � of few scale-
heights: � = xH (with x a constant with a value of a few), we find
that the time-scale for gap opening is x2/(2πα) ∼ 150x2 orbits.

4 The spectral type and luminosity of the central star (e.g. HAe versus TTs)
affect only the absolute surface brightness of the disc but do not influence
the morphology of the images. The choice of using a Herbig Ae stellar
model is motivated by the fact that most of the sources observed by current
instruments in the NIR like SPHERE or GPI are Herbig Ae stars due to
sensitivity limitations.
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Figure 2. Azimuthally averaged gas surface density for the fiducial model
for a planet mass of 60 M⊕. Different lines correspond to different snapshots
from the simulations: 150 orbits (blue dotted line), 400 orbits (green dot–
dashed line), 1000 orbits (red dashed line) and finally 3000 orbits (solid
cyan line).

Figure 3. Evolution with time of the location of the pressure maximum
outside the planet orbit (blue line) for the reference case of 480 M⊕ in the
‘hot’ disc. We also fit the data with an exponential (green line) to show that
convergence has been reached.

Crida et al. (2006) found that instead the relative surface density
profile, i.e. (1/�) (d�/dr), is established on a much faster time-
scale.

While the gas evolution has few observational implications in
itself, we find that the dust can change more significantly over
this time-scale. In particular, the dust is sensitive to the pressure
profile of the gas. If the planet is massive enough, it creates a
pressure maximum in the gas that will trap dust (Rice et al. 2006), as
we detail in Section 3.3. The location of this maximum has therefore
a deep impact on the dust structure and we find that it reaches
convergence after the stated time interval. We show in Fig. 3 the
evolution with time of the location of the pressure maximum for
an illustrative case of a planet of 480 M⊕ in the ‘hot’ disc, that is,
H/R = 0.1. We choose this disc because the viscous time-scale in
this disc is faster than for the other aspect ratios, which allows us to
explore more the evolution in time of the pressure maximum. The
curve (blue line) can be fitted with an exponential (green line) with
a tapering time-scale of ∼370 orbits; the value that the exponential
tends to is almost indistinguishable from the value after 3000 orbits.

Figure 4. Azimuthally averaged gas surface density for the fiducial model
for the different planet masses.

For the fiducial model, an exponential convergence is not so clear
and the curve can be fitted equally well by a logarithm. Assuming
that we can rescale the time-scale with (H/R)2, we can estimate
the error in the location of the pressure maximum in the fiducial
model that is introduced by only running for 3000 orbits to be 0.2 H,
by estimating the error for the ‘hot’ case if we had stopped after
750 orbits. Even for the ‘cold’ case, the error is less than H. We
remark that current observational facilities are not able to resolve
a scaleheight in discs at a distance of 30 au from the star, so that
our estimates are accurate enough for observational applications.
In what follows, we choose then to present our results after 3000
orbits.

Fig. 4 shows the azimuthally averaged surface density of the gas
for the fiducial model after 3000 planetary orbits. In this figure, it
can be seen that there is little modification to the gas surface density
for the least massive cases. The 120 M⊕ planet produces a gap that
involves a reduction in surface density by a factor of 10; the 60 M⊕
one produces a partial gap that involves a reduction by a factor of 4.
The relatively small depth of these gaps is not surprising given that
for the planet masses considered here only the most massive case is
in the gap opening regime. Two commonly used (Lin & Papaloizou
1993) criteria for gap opening are the so-called thermal criterion,
according to which the planet Hill radius RH must be greater than
the vertical scaleheight of the disc H:

q � 3

(
H

R

)3

, (7)

where q = Mpl/M∗ (we assume M∗ = 1 M
 for simplicity in what
follows), and the viscous criterion, according to which the time-
scale to open the gap must be smaller than the time-scale for vis-
cosity to close it:

q �
(

27π

8

)1/2 (
H

R

)5/2

α1/2. (8)

Substituting numerical values for our case gives a threshold mass
ratio of 4 × 10−4 � 120 M⊕ for the thermal criterion and 5.5 × 10−5

� 16 M⊕ for the viscous criterion. This means that for our choice
of parameters the pressure forces are the dominant ones trying to
close the gap and therefore only the thermal criterion should be
considered. To be in the regime where also viscosity is important
would require to consider a lower value of H/R or a bigger value of
α. Note that however, due to the shallow dependence on α and the
similar dependence on H/R, in practice this happens only for quite
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Figure 5. Gas surface density for the different planet masses (as indicated in Earth masses).

extreme values of the parameters. Crida et al. (2006) collected the
two criteria in only one that accounts for both conditions:

3

4

H

RH
+ 50ν

qr2
p �p

� 1. (9)

The interested reader can consult Baruteau et al. (2014) for an al-
ternative formulation of the same criterion, which gives explicitly
the mass ratio q. The numerical factors in this equation are slightly
different so that the threshold mass ratio is approximately 1.5 ×
10−4 � 45 M⊕. However, note that their definition of gap is a factor
of 10 reduction in the surface density, which actually happens in
our simulations only for the most massive planet. Simplified criteria
like the ones we quote here can be used only as order-of-magnitude
estimates and one should not overinterpret them. What matters for
the purpose of this paper is that these planets are not in a regime
where they open deep gaps in the gas surface density such as those
opened by Jupiter-mass planets. Finally, note the very steep depen-
dence of the thermal criterion on the disc temperature, which will
be important in the rest of the paper.

Fig. 5 shows the 2D gas surface density. Note that although the
gap starts to be visible only for the 60 M⊕ case, all planets generate
a clear spiral in the 2D gas surface density. Such spirals however are
too thin and with a contrast that is too low to be observed. We will
show this in the next section where we show simulated observations.
Even in the case of very massive planets, the conclusions of Juhász
et al. (2015) were that it is extremely hard to detect spirals such
as the ones recently imaged in the scattered light (e.g. Muto et al.
2012; Garufi et al. 2013; Benisty et al. 2015; Wagner et al. 2015).
It should therefore not be surprising that spirals are not detectable
for these low-mass planets.

3.2 Dust surface density

We begin by reporting the features produced in the dust by planets
of varying mass; the observability of these features will be discussed
in Section 4. It is impossible to show all the results from our simula-
tions in the limited space of this paper. Instead, it is more instructive
to understand the trends with planet mass and particle size and to
determine what drives this behaviour. As a representative example,
we show for a 20 M⊕ planet how the dust surface density varies with
Stokes number (Fig. 6).5 For sufficiently small dust particles, which
are well coupled to the gas, the depth of the gap in the dust density
should be the same as the gas. For our smallest size, we indeed
see only slight difference between dust and the gas; however, it is
possible to see that the dust density at the edge of the gap is slightly
larger. By the next size we simulate (St = 0.063), there is already
an order unity variation in the surface density, which continues to
increase with increasing dust size.

From these images, it is clear that the structures in the dust
density are largely azimuthally symmetric (for the planet masses
we consider here; for massive enough planets this is not necessarily
true), with the exception of the spiral feature, which is thin and
only has a small density enhancement associated with it. Thus, it
is instructive to consider the trends seen in azimuthally averaged
profiles. From the azimuthally averaged profiles (Figs 7 and 8), we
see that increasing both the planet mass and particle size leads to
stronger effects in the dust. The trends with planet mass for a fixed
Stokes number (here St = 0.02, Fig. 7) show that the depth of the

5 Note that the multi-fluid simulations are not sensitive to the normalization
of the dust surface density; for illustrative purposes in Figs 6–8, we have
normalized each dust surface density so that it has initially the same value
as the gas surface density.
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Figure 6. Dust surface density for the 20 M⊕ planet. Different panels correspond to different Stokes numbers as shown in the legend. For reference, we show
also the gas surface density.

Figure 7. Dust surface density with St = 0.02 for the different planet
masses.

gap depends clearly on the planet mass, with more massive planets
creating deeper gaps. The 8 M⊕ planet does not significantly modify
the dust surface density (the variation is only a few per cent even
for the largest dust size we simulate), while the 12 M⊕ produces
variations of order unity. The 60 and 120 M⊕ planets actually create
a hole rather than a narrow gap, meaning that the surface density
of the dust inside ∼1.2 times the orbital radius of the planet is
severely depleted of dust; the 20 M⊕ planet is in between a gap
and a hole. There is thus only a limited range of planet masses
that create detectable gaps for this Stokes number; planets that are
massive enough will eventually form holes. Similar trends hold with
particle size, with the 20 M⊕ planet opening a gap in the St = 0.2

Figure 8. Dust surface density for the 20 M⊕ planet. Different lines cor-
respond to different Stokes numbers as shown in the legend. For reference,
we show also the gas surface density.

dust. One notable fact is that while the location of the peak dust
density in the ring depends on planet mass, it is not a function of
grain size.

Even for planets that just open gaps, we find that the gaps opened
in dust can be much deeper than the ones in the gas, consistent with
what was found by previous authors (Paardekooper & Mellema
2006; Zhu et al. 2014). Compare for example the 20 M⊕ case in
Fig. 7 with Fig. 4, where the presence of a planet is only barely
visible by looking at the surface density. In addition, the more
massive cases we simulate not only show a gap or a hole, but also a
bright ring in the surface density outside the orbital location of the
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Figure 9. Dissection of the dust radial velocity for two sizes for the 12 M⊕ planet. The plots show the pressure gradient term from equation (11) (solid blue
line), the actual value of the velocity from the simulation (dashed green line), the estimate of equation (11) with (dot–dashed cyan line) and without (dotted red
line) the diffusion term and finally the gas radial velocity from the simulation (solid purple line). Left-hand panel: St = 0.07. Right-hand panel: St = 0.007.

planet. The enhancement of this peak, and even more interestingly
its location, depends on the planet mass (Fig. 7). We will investigate
the reasons for this morphology in Section 3.3. We do not find any
feature like the one that Paardekooper & Mellema (2006) found at
outer resonances, in line with the results of Zhu et al. (2014).

3.3 Dust radial velocity

Since the dust density is azimuthally symmetric, this suggests that
the dust dynamics and resulting surface density can be understood in
terms of a one-dimensional model in which the continuity equation
is just

∂�d

∂t
+ ∂(R�dvd,R)

∂R
= 0. (10)

This equation can be closed with the knowledge of dust velocity;
for particles with St � 1, we can make use of the short friction time
approximation in which the dust velocity is given by

vd = vg + ts
∇P

ρ
+ vD, (11)

where the last term takes into account the diffusive flux. The ex-
pression provides a simple way of dissecting the dust velocity into
the contribution from the gas and that due to the pressure gradient,
since apart from at the gap edge vD is generally small. Thus, the
pressure term is responsible for the differences between the dust
and the gas velocities; in turn, these affect the surface densities.
It is straightforward to realize looking at the expression that the
importance of the pressure gradient increases with the particle size.

Fig. 9 shows a comparison of the actual dust radial velocity from
the simulation, azimuthally averaged, with the approximation given
by equation (11) (where again quantities have been azimuthally av-
eraged) for two dust sizes for the 12 M⊕ planet (left-hand panel: St
= 0.07; right-hand panel: St = 0.007). Specifically, the plots show
the pressure gradient term from equation (11) (solid blue line), the
actual value of the velocity from the simulation (dashed green line),
the estimate of equation (11) including (dot–dashed cyan line) or
not (dotted red line) the dust diffusion term (that is, vD) and finally
the gas radial velocity from the simulation (solid purple line). We
can see that the pressure gradient is always negative. To state it in
another way, the planet is not massive enough to create a pressure
maximum outside the gap edge. Since this condition is required to
trap dust particles (because it provides a location where the dust

Figure 10. Comparison between the steady-state surface density predicted
by equation (10) (green dashed line: without including dust diffusion; dotted
red line: including dust diffusion) and the actual value from the simulation
(solid blue line) for the 12 M⊕ planet, St = 0.07.

radial velocity is zero), the planet is unable to trap dust and open
up a hole (Rice et al. 2006). However, there is still a region where
the pressure gradient is weaker, resulting in a smaller radial veloc-
ity. This is then a ‘traffic jam’ rather than a dust trap, in which a
higher dust density region is associated with the lower velocity. We
conclude then that the existence of a pressure maximum is not a
necessary condition to affect the dust surface density. While this
paper was being refereed, Dipierro et al. (2016) proposed another
mechanism that can open gaps in the dust without requiring a pres-
sure maximum. We note that their mechanism is different from the
one we describe here and applies to grains with a larger Stokes
number (they assume St = 10).

We now illustrate that the dust is in (or close to) steady
state. By setting ∂�d/∂t = 0, the continuity equation reduces to
� ∝ 1/(RvR), from which the constant of proportionality can be
fixed using the surface density far from the planet.

We demonstrate this in Fig. 10, which shows a comparison be-
tween the steady state expected from the continuity equation and
the actual surface density from the simulation (solid blue line). We
show two different steady-state predictions; the difference between
them is that the dashed green line neglects dust diffusion (i.e. it is
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Figure 11. Dissection of the dust radial velocity for the 60 M⊕ planet (see
Fig. 9 for the meaning of the different lines), St = 0.07.

computed using the dotted red line of Fig. 9), whereas the dotted
red line includes it (i.e. it is computed using the dot–dashed cyan
line). The remarkable agreement confirms that the structure that
we see in the surface density is sculpted by the structure in the
velocity, namely by (mostly) the pressure gradient (with a minor
contribution from diffusion). This also means that in this particular
case we could potentially have deduced the dust structure (neglect-
ing dust diffusion) purely from the gas surface density and radial
velocity, without running any multi-fluid simulation. However, for
the right-hand panel of Fig. 9 (St = 0.007), dust diffusion is very
important in smoothing out the structures carved by the pressure
gradient. In this case, since the dust diffusion depends on the dust
density, multi-fluid simulations are needed.

For more massive planets, the planet creates a maximum in the
pressure and we have an actual pressure trap for large enough par-
ticles. We show in Fig. 11 one such case with a 60 M⊕ planet6 and
St = 0.07 dust, where the meaning of the lines is the same as in
Fig. 9. For this particular size, the pressure gradient term is much
larger than the gas velocity; however, the ts dependence of this term
(equation 11) means that there is a minimum dust size that can be
trapped, which for a 60 M⊕ planet requires St � 3 × 10−4. Particles
above this size can only break through this trap via diffusion; thus,
as noted by previous authors (Rice et al. 2006; Pinilla, Benisty &
Birnstiel 2012b; Zhu et al. 2012), dust will continue to pile up at
the location where the pressure gradient vanishes and a maximum
in the dust surface density will occur. We will comment more on
the location of the maximum in the dust in Section 5.1. Diffusion
smooths out the maximum as it tends to cancel gradients in the dust
concentration, so that the surface density will not grow indefinitely
at the location of the pressure maximum. However, this takes a
long time as reaching a steady state requires the diffusive veloc-
ity to be comparable to the pressure gradient term, and therefore
a very big dust accumulation, which is provided by dust drifting
from the outer part of the disc. Indeed, in our simulation we see
that, for planets that create traps, the surface density at the pressure
maximum is still increasing even after 3000 orbits, and no steady
state has been reached yet (differently from the ‘traffic jam’ case
shown previously). As shown in the previous section, the trap cuts
out most of the supply to the inner disc, so that the planet opens a
hole rather than a gap for this particular case (which for dust sizes

6 The 20 M⊕ planet also creates a pressure maximum, although only very
shallow.

close to the minimum hole opening size can be partially filled by
diffusion). Fig. 11 also shows how the estimate provided by equa-
tion (11) breaks down close to the planet. Our interpretation is that
2D effects in this region cannot be neglected. In this case, only 2D
dust dynamics simulations can recover the correct result.

We have repeated the same analysis shown here also for the ‘cold’
and ‘hot’ disc and confirm that a pressure maximum appears for the
same ratio of the planet mass to thermal gap opening mass. To sum-
marize, in our simulations the existence of a pressure maximum
happens at a mass �0.2Mth ∼ 20((H/R)/0.05)3 M⊕, where Mth is
gap opening mass given by the thermal criterion. We then confirm
the results of Lambrechts, Johansen & Morbidelli (2014), who in
a different context found roughly the same value through 3D sim-
ulations. The fact that 2D and 3D simulations give a very similar
result is very encouraging and means that this result can be taken to
be robust.

4 SI M U L AT E D O B S E RVAT I O N S

To study the observability of the gaps, we also calculate simulated
observations at NIR, MIR and submm wavelengths. In the NIR,
we study the observability of the gaps with the current state-of-
the-art imaging instrument, SPHERE on VLT (Beuzit et al. 2008).
While the resolution of the currently available MIR instruments
is too low to allow the detection of planets in this mass regime,
this will change in a few years with the advent of 30 m class tele-
scopes. We thus compute also MIR images, with the resolution of
the planned NIR/MIR instrument, Mid-infrared E-ELT Imager and
Spectrograph (METIS) on the E-ELT, to assess the potential of this
wavelength in detecting low-mass planets. Since both of these in-
struments provide diffraction-limited resolution due to the extreme
adaptive optics used, we simulate the observations by convolving
the resulting images with a 2D Gaussian kernel. The full width
at half-maximum (FWHM) was taken to be λ/D, where λ is the
wavelength of observation and D is the telescope diameter.

In the case of the submm images, we simulate images using the
Common Astronomy Software Applications7 (CASA) v4.2.2. We use
thesimobserve task to simulate the observed visibilities and then
the images are calculated from the visibilities using theclean task.
The full 12 m array is used in two different configurations resulting
in 0.027 and 0.091 arcsec resolution, respectively, at 880 μm. The
source declination is taken to be δ =−25◦. We simulate observations
with 1 h integration time using the full 7.5 GHz bandwidth and
0.913 mm precipitable water vapour, typical for band 7 observations.
For all simulated observations, we assume that the distance to the
source is 140 pc.

4.1 Fiducial model

Figs 12–14 show the simulated observations respectively for ALMA
wavelengths (870 μm in band 7), in the NIR and in the MIR. It is
clear how the presence of a gap is readily detectable in some of these
images, despite the relatively low mass of the planet. Not only the
gap itself, but also the bright ring outside the gap edge contributes
in making the gap stand out visually. The comparison between the
different ALMA resolutions allows us to establish what is the spa-
tial resolution that allows us to reach the ‘intrinsic’ boundary posed
by the fact that a minimum planet mass is required to significantly

7 http://casa.nrao.edu/index.shtml
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Figure 12. Submm images for four different planet masses for the fiducial model. We show two different resolutions of 0.025 arcsec (top row) and 0.091 arcsec
(bottom row). The size of the synthesized beam is shown as a filled white ellipse in the bottom-left corner of each panel.

Figure 13. Images in the scattered light for the same planet masses as the previous figure. The resolution of the radiative transfer images was degraded to that
of SPHERE on VLT (0.04 arcsec), by convolving the images with a 2D Gaussian kernel. The central 0.1 arcsec of the disc was masked to simulate the effect
of a coronagraph. The images are scaled with the square of the radial distance from the central star. The size of the PSF is shown in the bottom-left corner as a
filled white ellipse.

perturb the surface density of the disc. The 12 M⊕ planet is observ-
able at the best resolution of 0.027 arcsec (corresponding to slightly
more than 2 scaleheights), but not when the resolution is degraded
to 0.091 arcsec. We also note that submm observations have a slight
advantage over that of scattered light imaging when it comes to
detecting the signature of a low-mass planet. The 12 M⊕ planet,
while still visible with the highest angular resolution available to
ALMA, is impossible to detect in the scattered light images. We
interpret this phenomenon as due to the fact that the submm traces
larger particles which are less coupled to the gas surface density. As
noted in Section 3.2, this means that the gap is more pronounced for
the large particles. This result is consistent with what other authors
have found (Dong et al. 2015). For what concerns the MIR, we note
that the results are largely similar to the NIR scattered light. While
the MIR traces slightly larger particles, the difference is not signif-

icant enough to affect the images. Therefore, the minimum mass
of a planet that can be detected through a gap in the dust image is
wavelength dependent. In the submm, we can almost go down to
10 M⊕, while in the NIR and MIR (when it will become possible in
the future) we are constrained to slightly larger masses of ∼20 M⊕.

4.2 Varying the aspect ratio

When we change the disc aspect ratio, the gap opening mass changes
(equation 7). We might therefore expect that a simulation at a given
H/R and planet mass should be ‘equivalent’ in terms of observability
to one with another H/R value and a planet mass scaled according
to (H/R)3. This is however not entirely true because the overall
spatial scale of the induced structure scales with H. Given finite
instrumental resolution, this means that in cold discs the minimum
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Figure 14. Images in the MIR of the thermal emission from the disc for the same planet masses as in Fig. 12. The resolution of the radiative transfer images
was degraded to that of the future METIS instrument on the E-ELT by convolving the images with a 2D Gaussian with an FWHM of 0.05 arcsec. The images
are scaled with the square of the radial distance from the star and the central 0.1 arcsec of the disc was masked to simulate the effect of a coronagraph. The size
of the PSF is shown in the bottom-left corner as a filled white ellipse. Current instruments lack the spatial resolution to be able to resolve the morphologies we
describe in this paper.

Figure 15. An example of how the aspect ratio of the disc changes the morphology of the image. We show the results for a planet mass of 20 M⊕, which
corresponds to 2.5 M⊕ for the ‘cold’ disc and to 160 M⊕ for the ‘hot’ disc once the planet mass has been rescaled to have the same Mpl/Mgap ratio. The top row
is the ‘hot’ disc, the middle row is the fiducial model and the bottom row is the ‘cold’ disc. The columns show different instruments: SPHERE (left), METIS
(middle) and ALMA (right). In the left and middle column, the images are scaled with the square of the radial distance from the star and central 0.1 arcsec of
the disc was masked to simulate the effect of a coronagraph. The size of the PSF/synthesized beam is shown in the bottom-left corner as a filled white ellipse.
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detectable planet mass does not decrease as steeply with H/R as the
cubic dependence suggested by the simple argument above. This
is illustrated in Fig. 15 where we show simulated observations for
the three H/R values we simulate (0.025, 0.05 and 0.1) and planet
masses which represent the same ratio of Mpl/Mgap (that is, 20 M⊕
for H/R = 0.05, 2.5 M⊕ for the ‘cold’ disc and 160 M⊕ for the
‘hot’ disc). Although the simulations produce comparable depths
of gaps in the gas, the very narrow feature produced by the lowest
mass planet in the coldest disc is clearly the most challenging to
detect observationally.

Thus, the detectability of the gap opened by a planet depends on
two factors, the amount of depletion within the gap and the width
of the gap. If the resolution of the observations is much higher
[i.e. the size of the point spread function (PSF)/synthesized beam
is much smaller than the width of the gap], the detectability of the
gap depends only on the S/N of the image (i.e. whether or not the
given amount of depletion in the gap could be robustly measured
above the noise level). If, on the other hand, the width of the gap is
comparable to or smaller than the size of the PSF/synthesized beam,
the contrast between the gap and the surrounding disc is reduced,
making the detectability of the gap more difficult. Indeed, this is the
case in the ‘cold’ disc for the 2.5 M⊕ planet, which creates a gap
that is narrower than the PSF.

5 D ISCUSSION

5.1 Can we measure the planet mass?

Supposing that a real disc with the observed morphology described
in this paper is found, a very important question is whether it is
possible to measure the mass of the putative planet responsible for
dust gap opening. As mentioned in Section 2.2, all the planet masses
we quote in this section assume a central star of 1 M
, and need
to be rescaled properly with the stellar mass. Actually, this is also
the case with the radial velocity method for detecting exoplanets
after the protoplanetary disc has been dispersed. It highlights the
importance of characterizing precisely the stellar parameters (e.g.
Ligi et al. 2012, 2016). We have shown that in low-mass planet
regime described in this paper we do not find any evidence for
non-axisymmetric structures. This is in contrast to more massive
planets that create vortices if the disc has a sufficiently low viscosity
(Regály et al. 2012), an explanation that has been proposed for the
asymmetries observed in transition discs.

In terms of qualitative differences, thus, the only one present in
the cases discussed in this paper is the difference between gaps and
holes in the submm dust. The presence of a hole in the submm dust
points to a planet mass �20 M⊕ for the fiducial model (H/R = 0.05).
We can then conclude that the existence of a hole in the submm
points to a planet mass �0.2Mth ∼ 20((H/R)/0.05)3 M⊕, which
corresponds to the minimum mass for which there is a pressure
maximum in the gas. The opposite should however be interpreted
with caution. As discussed briefly in Section 3.1, reaching a steady
state takes a considerable time (thousands of orbits). Before the
steady state is reached, the planet may be able to open only a gap,
which will slowly turn into a hole. We remark that 1000 orbits at 30
au is approximately 1.6 × 105 yr, which is a sizeable fraction of the
disc lifetime (2–3 Myr; Fedele et al. 2010). Therefore, observing a
gap does not necessarily mean that the planet is less massive than
the previously stated threshold.

To get better estimates on the planet mass, it is thus necessary
to use quantitative arguments. In particular, the diagnostics that
have been proposed in the literature (de Juan Ovelar et al. 2013;

Kanagawa et al. 2015; Akiyama et al. 2016) are the gap depth, the
gap width and the location of the bright ring in the submm image.

To quantify the shape and position of the gap, we compute these
quantities from our simulated images in the following way. First,
we de-projected the image with the known inclination and posi-
tion angles and calculated the azimuthally averaged radial surface
brightness profile of the disc. We note that in reality the inclination
of the disc can be constrained fairly well from submm line observa-
tions. Then we fitted a first-order polynomial in log–log space to the
radial intervals [0.075 arcsec, 0.1 arcsec] and [0.45 arcsec, 0.55 arc-
sec] to get a model of the background surface brightness profile. We
then normalized the azimuthally averaged radial surface brightness
profile of the disc to the fitted polynomial. Finally, we measured the
parameters of the gap on this normalized radial surface brightness
profile, Iν , between 0.1 and 0.45 arcsec.

The depth of the gap was taken to be the minimum of the nor-
malized surface brightness, Iν,min. The width of the gap was taken to
be the distance between the two radii (inner and outer radius of the
gap), where the normalized radial surface brightness dropped below
(1−0.66 × (1−Iν,min)). The location of the bright ring in the submm
was determined as the position of the maximum in the normalized
surface brightness outside of the gap. It is important to note that we
assumed that gaps are detectable if the surface brightness reduction
in the gap is more than or equal to 50 per cent compared to the fitted
background surface brightness of the disc.

Regarding the gap depth as derived from the submm images, we
remark that there is only a narrow range of planet masses that is able
to create gaps. The other planets either do not affect the dust surface
density or create actual holes, for which measuring the contrast
is not meaningful. For this reason, we caution against the use of
the relations for the gap depth that have been derived for the gas
(Kanagawa et al. 2015), as they are unlikely to hold when applied
to submm observations and they lead to serious overestimates of
the planet mass. Moreover, the gap depth is affected by the finite
resolution of the observations, which makes the gap shallower than
what it would be in an image with infinite resolution.

The gap width as measured from the submm images suffers from
the same problem, namely that for the most massive planets the gaps
will slowly turn into holes for which a width is no longer defined.
We thus consider in what follows the gap width as measured from
the SPHERE NIR images. The results are plotted in Fig. 16. Note
that in order to make the correlation between the planet mass and
the gap width independent of both the distance to the system and
of the distance between the planet and the star, we normalized the
gap width with the distance of the gap centre from the star. Finally,
to stress more the dependence on the planet mass, we show in the
figure the cube of the gap width. From the theoretical point of view,
this is justified by the fact that we expect the gap width to be set by
the Hill radius of the planet, and we thus expect the quantity we plot
to scale linearly with the planet mass. We can see how the gap width
is a good estimator of the planet mass. As discussed in Section 3.1,
there is still some time evolution on the time-scale of ∼103 orbits,
and therefore we show the correlation at two different times (400
and 3000 orbits) to bracket the importance of time evolution. A
linear fit to the data points in the form of log y = C0 + C1log x
(where the logarithms are in base 10) results in coefficients of C0

= −2.981, C1 = 0.797 and C0 = −3.953, C1 = 1.143 for 400 and
3000 planetary orbits, respectively. The masses derived from the
relations presented here should then be considered only as lower
limits in case the gap is created by a more massive planet at earlier
times. The uncertainty in the planet mass determination is a factor
of 2–3, although we stress that, unless the planet is very young,
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Figure 16. Gap width derived from the scattered light observations (nor-
malized to the gap distance from the star, and to the third power to stress
more the dependence on the planet mass), as a function of the planet mass
at the time of 400 (blue symbols) and 3000 (red symbols) planetary orbits.
The different markers indicate the different aspect ratios and we show a
linear fit. While a clear and tight correlation holds between the gap width
and the planet mass at any given time, the correlation evolves in time, which
leads to a factor of a few uncertainty in planet mass if the system is very
young. Note that gap width does not depend on the disc temperature, but the
gap depth does. The reason why the points for different aspect ratios cover
different ranges in planet masses is that in a warmer disc a higher planet
mass is required to open a gap. The planet masses assume a star of 1 M
.
For stars of different masses, the mass should be rescaled to the same mass
ratio accordingly.

observations are more likely to target planets where the gap width
has reached convergence. Note also that there is no need to have any
knowledge of the disc temperature to do this plot; quantities that
can be derived directly from the observations are sufficient. This
is because, as already mentioned, the gap width is mostly set by
the Hill radius of the planet (see Duffell & MacFadyen 2013 for a
discussion about the regimes where this holds).

One needs to keep in mind though that while the gap width does
not depend on the disc temperature, the gap depth does, and the
same planet in a colder disc creates a deeper gap. Along the same
line, in a warmer disc a more massive planet is necessary to create
a gap that is deep enough to be observed (which is the reason why
the points for different aspect ratios cover different ranges in planet
masses).

Finally, the third diagnostic that we consider is the radial distance
of the maximum in the submm images from the planet location. This
is similar to what has been proposed in the context of transition discs
(de Juan Ovelar et al. 2013), namely that the different location of the
holes at different wavelengths (normally scattered light in compari-
son with submm) is the smoking gun for the presence of a pressure
maximum, and in theory this effect can be used to measure the
planet mass. For the planet masses that we consider, we have shown
how the scattered light images always show gaps rather than holes.
We can therefore use the image to pinpoint the radial location of the
planet, which we assume to be at the centre of the gap. In transition
discs instead one has to resort to use the inner edge of the NIR image
(as there might be a hole). We can then use the submm image to find
the maximum in the dust surface density, which traces the pressure
maximum in the gas. This method thus requires two observations
at different wavelengths. While we use NIR and submm in what
follows, the requirement for the first wavelength is to show a gap
rather than a hole (so that one can constrain the radial position of the

Figure 17. Ratio of the radial distance of the pressure maximum outside
the planet orbit (as derived from the submm image) from the location of
the planet (reconstructed using the centre of the gap in the NIR image) to
the radius of the gap centre as a function of planet mass. The correlation is
evident and it holds even when varying the disc aspect ratio (indicated by the
marker). However, it varies with time as the two sets of points show (blue
data points: 400 orbits; red data points: 3000 orbits), so that the planet mass
derived from the final correlation can be considered only as a lower limit on
the planet mass, as one cannot exclude that the system is very young. The
planet masses assume a star of 1 M
. For stars of different masses, the
mass should be rescaled to the same mass ratio accordingly.

planet) and for the second one to exhibit a maximum in the surface
brightness at the pressure maximum location. In Fig. 17, we show
the ratio of the radial distance of the maximum from the location of
the planet as a function of the planet mass estimated from the simu-
lated observations at 400 orbits and at 3000 orbits of the planet. To
make the plot independent of both the distance to the system and the
distance of the planet from the star, we normalize the radial distance
of the maximum from the planet by the distance of the gap centre
from the star. As can be seen, the correlation between the position of
the maximum and the planet mass is clear and tight at each epoch,
even though a clear time evolution is also present in the figure as in
the previous case, since the position of the maximum moves further
away from the gap with time (see Section 3.1). As shown in Fig. 3,
the position of the maximum has reached convergence after 3000
orbits, so that the red points are representative of the subsequent
evolution. A linear fit to the data points in the form of log y = C0 +
C1 log x (where, like before, the logarithms are in base 10) results
in coefficients of C0 = −1.238, C1 = 0.379 and C0 = −0.959, C1 =
0.320 for the points at 400 and 3000 planetary orbits, respectively.

Given that we expect the quantities plotted to scale with the in-
tensity of the pressure forces, the existence of a correlation shows
that the distance of the pressure maximum must scale with the Hill
radius (as is the case for the gap width). Indeed, this is confirmed by
performing a fit to the distance normalized by the disc scaleheight
as a function of the planet mass normalized to the gap opening
mass, which shows how the distance of the submm ring �mm is
�mm � 10(Mpl/Mth)1/3 H = 10RH after 3000 orbits (the same result
can be obtained from the coefficients of the fit given above). Using
non-normalized quantities has the advantage, though, that it is not
required to know the disc temperature. The same caveats as before
about the fact that it is the disc temperature that sets the minimum
threshold mass still hold. We also experimented with, instead of
using the simulated observations, deriving the same quantity from
the gas surface density, where we can also measure the locations of
the planet and of the pressure maximum. No noticeable difference
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is found for the pressure maximum position, which shows that this
quantity is a very robust indicator of the planet mass as from dust
(continuum) observations one can reconstruct fundamental prop-
erties of the (unseen) gas disc. Our method instead systematically
slightly underestimates the position of the planet, which we attribute
to radiative transfer effects. The error doubles in the final estimate as
we normalize the distance to the gap centre. Using directly the val-
ues from the simulations yields then a slightly different coefficient
C0 � −1.1, or �mm � 7.5RH.

Of the two criteria that we discussed, the gap width has the ad-
vantage of requiring observations only at one wavelength. However,
it needs to be borne in mind that scattered light observations have
a slightly higher threshold mass for observability. Moreover, ex-
perimenting with deriving a gap width has shown us how the gap
width is somehow sensitive to the exact way the fit is done and to
the details of the gap shape. The position of the pressure maximum
has instead the advantage of being straightforward to apply and
requiring little manipulation of the data.

5.2 Prospects for the future

While currently there are no instruments in operation in the MIR
with sufficiently high resolution for detecting low-mass planets, the
30 m telescope class will be a great improvement. It will provide the
same resolution we have currently with SPHERE or ALMA. This
work shows that the thermal emission of the disc in the MIR is a
good wavelength to use to probe the structures sculpted by planets
in the disc.

However, the hard boundary in the planet mass that we discuss
in this paper is set by an intrinsic property, that is, how strong is
the perturbation in the dust, rather than by a limitation in angular
resolution. The only requirement on the angular resolution is that
it is sufficient to detect the presence of a gap (if it is there). While
the resolutions we considered in this paper are enough for reaching
the ‘intrinsic’ boundary (i.e. resolving the gap width for a planet
of the minimum mass required to open a gap in the dust) at 30 au,
improvements in spatial resolution in the future will still allow us
to observe planets closer to the star or in discs further from Earth.

5.3 Limitations and other effects

We assumed that the planet is at several tens of au. Although very
little is known about planets at these locations (with only a handful
of planets around main-sequence stars detected by direct imaging;
Chauvin et al. 2015), this choice is backed up by an image like
HL Tau. Although other interpretations for the gap structure (which
do not invoke the presence of planets) have been proposed so far
(Zhang, Blake & Bergin 2015), if planets are responsible for the ob-
served morphology, it means that they can form at these large orbital
distances and be found in protoplanetary discs. Recent observations
of LkCa15 (Sallum et al. 2015) also point in the same direction;
moreover, a common explanation of transition discs (see Espaillat
et al. 2014 for a review) is the presence of massive planets at tens of
au. The presence of a super-Earth at tens of au is particularly chal-
lenging to explain by theoretical models as in core accretion the
time-scale for forming planets at these orbital distances is longer
than the disc lifetime (but see Lambrechts & Johansen 2012 for
an alternative), while gravitational instability tends to form much
more massive objects. A possibility (Ida, Lin & Nagasawa 2013;
Kikuchi, Higuchi & Ida 2014) is that they have been scattered by
giant planets that formed closer to the star. If they manage to accrete

gas, they might eventually turn into very massive giants (�10MJ)
given that most of the mass is in the outer part of the disc.

In this work, we assumed a constant Stokes number – we did
not include dust coagulation and fragmentation. Due to numerical
limitations, no work so far has implemented a full dust evolution
model on top of a hydro simulation, although approximate attempts
have been done (Gonzalez et al. 2015), or just static snapshots from
the hydro simulation have been used (Pinilla et al. 2012a; de Juan
Ovelar et al. 2013). This is an aspect that is worth exploring in future
works given that the time-scales that we have run our simulations
for are a sizeable fraction of the disc lifetime. In addition, it has
been proved that dust evolution alone can create gaps in scattered
light images (Birnstiel et al. 2015), and therefore is important to
disentangle the two effects. Our implementation also contains no
feedback of the dust on to the gas. However, this is a minor limitation
for the lowest mass planets we simulate (which are the real focus
of this paper) given the modest amount of dust pile-up at the outer
edge of the gap.

Our simulations are not 3D, a limitation that we share with other
works that have been done in this area (Zhu et al. 2012; Dong
et al. 2015; Picogna & Kley 2015). This is unlikely to affect the
big grains, whose dynamics is limited to the mid-plane due to set-
tling. In addition, at long wavelengths discs are optically thin so that
observations probe the disc mid-plane. If there is a vertical depen-
dence of the dynamics, it might however affect the small dust since
observations at short wavelengths (i.e. in scattered light) probe only
the surface of the disc. In particular, the temperature and the stop-
ping time depend on the height above the mid-plane – in addition
there might be vertical motions (e.g. Morbidelli et al. 2014; Fung,
Artymowicz & Wu 2015) that complicate the picture even more.
This should be explored in future papers. We remark in particular
that, of the two ways of estimating the planet mass that we dis-
cussed, this affects mostly the NIR gap width, which therefore we
regard as more uncertain. Given that the other method we propose
instead uses the NIR image only to pinpoint at the radial location
of the planet, we expect it to be resilient to potential 3D effects.

We did not include migration. Taken at face value, the relevant
migration rate, type I, is very fast (Tanaka, Takeuchi & Ward 2002),
so that our approximation might not appear fully justified. However,
it is known that such a rate is not compatible with the observed prop-
erties of exoplanetary systems (Ida & Lin 2008), and a reduction
in the migration rate of almost two orders of magnitude is needed
to reconcile with exoplanet statistics. While there is considerable
debate on the physical reasons (e.g. Masset et al. 2006; Bitsch &
Kley 2011; Hasegawa & Pudritz 2011), all explanations require
additional physics which is not present in our simulation. There-
fore, in light of these results, it is safe to say that the migration
rate as computed in our locally isothermal simulation would not
be the correct one anyway. We plan to explore this effect too in
future papers. Finally, it should be added that recent research (e.g.
Lyra, Paardekooper & Mac Low 2010; Bitsch et al. 2014) has also
highlighted the existence of zero-torque radii where the type I mi-
gration rate vanishes. The effectiveness of these ‘safe’ locations
depends on the planet mass (Bitsch et al. 2013), favouring planet
masses around ∼20 M⊕. If the planet is at one of those locations,
which might be likely as migration converges towards them, then
neglecting migration as we have done in this paper is justified.

Finally, we were limited to study dust smaller than St = 1 by the
choice of modelling dust as a fluid. In practice, given that the planets
that we simulate in this paper only open shallow gaps, this is not
a real limitation. Using particles rather than a fluid we could study
bigger dust, but dust diffusion, which we showed to be an important
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contribution in setting the dust radial velocity, would have been
considerably more difficult to implement.

6 C O N C L U S I O N S

In this paper, we have undertaken a systematic study to establish
how the observational signatures of low-mass planets embedded in
protoplanetary discs depend on the disc properties. We can conclude
that the following.

(i) Low-mass planets (tens of M⊕), even if they are not fully in
the gap opening regime, can generate observational signatures in
protoplanetary discs, consisting in a gap at the radial location of the
planet and a bright ring at the gap edge.

(ii) The observational signatures are always azimuthally sym-
metric.

(iii) In terms of current facilities, we find that the observational
signatures can be traced both in the submm (with ALMA) and in the
scattered light (with instruments such as SPHERE or GPI). We have
highlighted how the observational signatures are present also in the
MIR, which will become observable with the upcoming generation
of 30 m class telescopes.

(iv) For an aspect ratio H/R of 0.05, the threshold to perturb the
dust surface density is ∼15 M⊕, with some dependence on the wave-
length of the observations which favours the submm. In particular,
the threshold is closer to ∼12 M⊕ in the submm and ∼20 M⊕ in
the NIR or MIR. More importantly, though, the threshold is highly
dependent (roughly with the third power) on the disc aspect ratio.
We predict thus that the minimum mass is ∼15((H/R)/0.05)3 M⊕.
This is an intrinsic boundary.

(v) Real observations are limited though by the finite resolution.
We show that at the fiducial distance of 30 au from the star, the
threshold for detection with existing instruments in the NIR and
submm and planned instruments in the MIR is set by the intrinsic
properties of the disc. Improvements in the telescope capabilities
will allow us to sample regions closer to the star.

(vi) We find (in agreement with Lambrechts et al. 2014) that a
planet mass �0.2Mth ∼ 20((H/R)/0.05)3 M⊕ is required to create
a pressure maximum in the gas at the gap outer edge. After enough
time has passed, the inescapable consequence for these planets is to
create a hole in the submm dust. Planets smaller than this threshold
can still affect the dust significantly and create a gap in the submm,
although the relevant range of planet masses is rather limited (a
planet 2.5 times less massive than the quoted threshold does not
produce any observational signature).

(vii) It is interesting also to explore the inverse problem, that
is, to derive the planet mass from high-resolution observations.
Using the gap width or contrast in the submm (ALMA) images to
measure the planet mass is complicated by the fact that the gaps will
eventually turn into holes over a wide range of planet masses. We
thus disfavour this method to measure the planet mass and prefer to
use other diagnostics.

(viii) We find that the gap width as derived from the scattered
light images is a good indicator of the planet mass. This indicator is
affected by time evolution and it takes roughly 1000 orbits (which
at 30 au corresponds to ∼1.6 × 105 yr) to reach the final value.
If the system is very young, this might lead to a factor of 2–3
underestimate in the planet mass determination. Additionally, the
exact definition of gap width is sensitive to the details of the gap
shape.

(ix) We find also the location of the bright ring in the submm
images, which traces the gas pressure maximum, to be a robust

indicator of the planet mass. In the case the submm image shows a
hole, it is necessary to use the scattered light image to pinpoint the
radial location of the planet. We expect this method to be the most
resilient to the details of the dust dynamics; the same caveats about
time dependence as before apply.
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