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Abstract—k-Anonymity and ‘-diversity are two well-known privacymetrics that guarantee protection of the respondents of a dataset by

obfuscating information that can disclose their identities and sensitive information. Existing solutions for enforcing them implicitly assume

to operate in a centralized scenario, since they require complete visibility over the dataset to be anonymized, and can therefore have

limited applicability in anonymizing large datasets. In this article, we propose a solution that extendsMondrian (an efficient and effective

approach designed for achieving k-anonymity) for enforcing both k-anonymity and ‘-diversity over large datasets in a distributedmanner,

leveraging the parallel computation of multiple workers. Our approach efficiently distributes the computation among the workers, without

requiring visibility over the dataset in its entirety. Our data partitioning limits the need for workers to exchange data, so that each worker

can independently anonymize a portion of the dataset.We implemented our approach providing parallel execution on a dynamically

chosen number of workers. The experimental evaluation shows that our solution provides scalability, while not affecting the quality of the

resulting anonymization.
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1 INTRODUCTION

GUARANTEEING privacy in datasets containing possible
identifying and sensitive information requires not only

refraining from publishing explicit identities, but also
obfuscating data that can leak (disclose or reduce uncer-
tainty of) such identities as well as their association with
sensitive information. k-Anonymity [3], [4], extended with
‘-diversity [5], offers such protection. k-Anonymity requires
generalizing values of the quasi-identifier attributes (i.e.,
attributes that can expose to linkage with external sources
and leak information on respondents’ identities) to ensure

each quasi-identifier combination of values to appear at
least k times. ‘-Diversity considers each sensitive attribute
in grouping tuples for quasi-identifier generalization so to
ensure each group of tuples (whose quasi-identifiers will
then be generalized to the same values) be associated with
at least ‘ different values of the sensitive attribute.

While simple to express, k-anonymity and ‘-diversity are
far from simple to enforce, given the need to balance privacy
(in terms of the desired k and ‘) and utility (in terms of infor-
mation loss due to generalization). Also, the computation of
an optimal solution requires evaluating (based on the dataset
content) which quasi-identifying attributes generalize and
how, and hence demands complete visibility of the whole
dataset. Hence, existing solutions implicitly assume to oper-
ate in a centralized environment. Such an assumption clearly
does not fit large scale systemswhere the amount of data col-
lected is huge (there are widely circulating estimates that a
smart car uploads to the cloud 25GB per hour). While scal-
able distributed architectures can help in performing compu-
tation on such large datasets, their use in computing an
optimal k-anonymous solution requires careful design. In
fact, a simple distribution of the anonymization load among
workers would affect either the quality of the solution or the
scalability of the computation (requiring expensive synchro-
nization and data exchange amongworkers [6]).

In this paper, we address the problem of efficiently ano-
nymizing large data collections. We propose a solution that
extends Mondrian [7], an efficient and effective approach
originally proposed for achieving k-anonymity in a central-
ized scenario, to enforce both k-anonymity and ‘-diversity
in a distributed scenario. With our approach, anonymiza-
tion is executed in parallel by multiple workers, each oper-
ating on a portion of the original dataset to be anonymized.
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The design of our partitioning approach aims at limiting the
need for workers to exchange data, by splitting the dataset
to be anonymized into as many partitions as the number of
available workers, which can independently run our
revised version of Mondrian on their portion of the data. A
distinctive feature of our proposal is that the partitioning
approach does not require knowledge of the entire dataset
to be anonymized. Rather, it can be executed on a sample of
the dataset whose size can be dynamically adjusted. The
approach is therefore applicable in scenarios where the
dataset is very large, maybe even distributed, and does not
entirely fit in main memory. We have implemented our
approach providing parallel execution on a dynamically
chosen number of workers. The experimental evaluation
confirms both the goodness of our partitioning strategy
with respect to maintaining utility of the anonymized data-
set and the scalability of our approach. The main contribu-
tions of this paper can be summarized as follows. First, we
propose and evaluate different partitioning strategies for
distributing data to workers. Second, we extend the original
Mondrian algorithm to operate in a distributed scenario
without asking workers to interact, and to enforce both
k-anonymity and ‘-diversity. Third, we support different
strategies for managing generalization, including the use of
generalization hierarchies that permit to produce semanti-
cally-aware anonymization. Fourth, we evaluate different
metrics for assessing the information loss caused by the dis-
tribution of the anonymization process.

The remainder of this paper is organized as follows.
Section 2 discusses basic concepts over which our solution
builds. Section 3 presents an overview of our approach for
distributed anonymization, modeling the reference scenario
and illustrating the actors involved, and a sketch of our ano-
nymization approach. Section 4 discusses our approach for
partitioning the dataset to be anonymized in fragments to
be assigned to the workers for anonymization. Section 5
illustrates how workers can independently anonymize the
fragments allocated to them. Section 6 describes how infor-
mation loss is assessed. Section 7 presents the implementa-
tion of our distributed anonymization algorithm. Section 8.2
illustrates experimental results. Section 9 discusses related
work. Finally, Section 10 concludes the paper.

2 BASIC CONCEPTS

Our solution is based on three main pillars: k-anonymity,
‘-diversity, and Mondrian.

k-Anonymity. k-Anonymity [3] is a privacy property
aimed at protecting respondents identities in data publica-
tion. k-Anonymity starts from the observation that a dataset,
even if de-identified (i.e., with explicit identifying information
removed) can contain other attributes, called quasi-identifiers
(abbreviated QI) such as gender, date of birth, and living area,
that can be exploited for linking the dataset with other data
sources and enable observers to reduce uncertainty on the
identity (or identities) to whom the tuples in the de-identified
dataset refer. k-Anonymity demands that no tuple in a
released dataset can be related to less than a certain number k
of respondents. k-Anonymity operates on the values of the QI

attributes to ensure that no tuple can be uniquely associated
with the identity of its respondent through its QI values, and

vice versa. In practice, k-anonymity is enforced by ensuring
(through generalization of data values) that each combination
of values of the quasi-identifier in a dataset appears with at
least k occurrences. In this way, any linking attack exploiting
the quasi-identifier will always find at least k individuals to
which each anonymized tuple can correspond and vice versa.
k-Anonymity can be guaranteed in different ways. The origi-
nal proposal of k-anonymity applies generalization to the QI

attributes [3]. Generalization is a data protection technique
that replaces attribute values with other, more general values.
For instance, an individual’s Age may be generalized in age
ranges (e.g., replacing all age values from 25 to 30 with a sin-
gle interval [25, 30]). While numeric attributes (i.e., attributes
defined on a totally ordered domain) naturally generalize to
ranges of values, the generalization of categorical attributes
(i.e., attributes defined on a non-ordered domain) can lever-
age generalization hierarchies (e.g., Fig. 1 illustrates a general-
ization hierarchy for attribute Country). Since generalization
(while maintaining data truthfulness) removes details from
data, it reduces the risk of finding unique correspondences
for QI values with external data sources. For example, the
dataset in Fig. 2c is a 3-anonymous version of the dataset in
Fig. 2a, considering attributes Age and Country as quasi-
identifer. In the figure, quasi-identifying attributes Age and
Country have been generalized so that their values appear
with at least 3 occurrences (for readability, the ith tuple in
Fig. 2a corresponds to the ith tuple in Fig. 2c). For example,
the Age and Country of the respondents of the first three
tuples have been generalized to range [25, 30] and to value
Europe, respectively. Note that neither the values for Age nor
the values for Country of the last three tuples have been gen-
eralized to obtain 3-anonymity, since they already share the
same values for the quasi-identifier (38 and USA, respec-
tively). It is easy to see that no record in external data sources
can be linked, through Age and Country, to less than three
tuples in the 3-anonymous dataset.

‘-Diversity. ‘-Diversity [5] extends k-anonymity to pre-
vent attribute disclosure, that is, to protect against possible
inferences aimed at associating a value for the sensitive attri-
bute to the respondent’s identity. With reference to the data-
sets in Fig. 2, suppose that the TopSpeed of the respondent
aged 30 from France (third tuple) were 132. The 3-anonymous
dataset in Fig. 2c would have, for the first three tuples, the
same sensitive value (132). While, thanks to the protection
offered by 3-anonymity, no record in an external data source
(e.g., a voter list) can be uniquely mapped to any of these
tuples, this 3-anonymous dataset would still leak the fact
that European respondents with Age between 25 and 30
have TopSpeed equal to 132. ‘-Diversity extends k-anonym-
ity by demanding that each equivalence classE (i.e., each set
of tuples sharing the same generalized values for the quasi-
identifier) have at least ‘well-represented values for the sen-
sitive attribute(s). Several definitions of well-represented have

Fig. 1. Generalization hierarchy for attribute Country.
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been proposed, and a natural interpretation requires at least
‘ different values for the sensitive attribute(s). For example,
the 3-anonymous dataset in Fig. 2c is also 2-diverse, since
each equivalence class contains at least two different values
for TopSpeed.

Mondrian. Mondrian [7] is a multi-dimensional algorithm
that provides an efficient and effective approach for achieving
k-anonymity. Mondrian leverages a spatial representation of
the data, mapping each quasi-identifier attribute to a dimen-
sion and each combination of values of the quasi-identifier
attributes to a point in such a space. Mondrian operates a
recursive process to partition the space in regions containing
a certain number of points (which corresponds to splitting the
dataset represented by the points in the space in fragments
that contain a certain number of records). In particular, at
each iterationMondrian cuts the set of tuples in each fragment
F computed at the previous iteration (thewhole dataset at the
first step) based on the values (e.g., for numerical attributes,
whether lower/higher than the median) for a quasi-identify-
ing attribute chosen for each cut. The algorithm terminates
when any further cut would generate only sub-fragments
with less than k tuples, at which point values of the quasi-
identifying attributes in each fragment are substituted with
their generalization. Fig. 2b shows the spatial representation
and partitioning of the dataset in Fig. 2a, where the number
associated with each data point is the number of tuples with
such values for quasi-identifier Age and Country in the data-
set. The 3-anonymous version of the dataset in Fig. 2c has
been obtained by first partitioning the dataset in Fig. 2a based
on attribute Age: fragment FAge�38 includes all the tuples with
Age less than or equal to themedian value 38, and FAge> 38 the
remaining tuples. FAge�38 is further partitioned based on attri-
bute Country, obtaining FAge�38; Country in fCanada;USAg includ-
ing all tuples with Country equal to Canada or USA, and
FAge�38; Country in fFrance;Italyg including the remaining tuples.
No further partitioning is possible (all fragments include
exactly three tuples), and the quasi-identifying attributes in
each fragment can be generalized. The dataset in Fig. 2c has
been obtained generalizing the dataset in Fig. 2a according to
the partitioning in Fig. 2b and leveraging the generalization
hierarchy in Fig. 1 for attribute Country.

3 DISTRIBUTED ANONYMIZATION

We consider a scenario where a large and maybe distributed
dataset D needs to be anonymized, and may not entirely
fit into the main memory of a single machine. Our goal is
then to distribute the anonymization of D to a set W ¼
fw1; . . . ; wng of workers so that they can operate in parallel

and independently from one another, to have benefits in
terms of performance while not compromising on the qual-
ity of the solution (with respect to a traditional centralized
anonymization of D). To this purpose, we extend Mondrian
to operate in such a way that workers in W are assigned
(non-overlapping) partitions of D (i.e., sets of tuples of D,
which we call fragments) and can operate limiting the need
for data exchanges with other workers. Each worker w 2 W
can independently anonymize its fragment satisfying k-ano-
nymity and ‘-diversity, with the guarantee that the combi-
nation of the anonymized fragments is a k-anonymous and
‘-diverse version of D. The overall process is overseen by a
Coordinator, and includes a pre-processing phase (which parti-
tions the dataset D in fragments and assigns fragments to
workers) and a wrap-up phase (which collects the anony-
mized fragments from the workers, recombines them, and
evaluates the quality of the computed solution). Our refer-
ence scenario (as graphically represented in Fig. 3) is then
characterized by a (distributed) storage platform, storing and
managing the dataset D to be anonymized (as well as its anony-
mized version D̂, after workers have anonymized their frag-
ments), the anonymizing workers, and the Coordinator. In the
remainder of this paper, given a dataset D with quasi-iden-
tifier QI ¼ fa1; . . . ; aqg and privacy parameters k and ‘, we
denote with D̂ the k-anonymous and ‘-diverse version of D;
with t̂2D̂ the generalized version of t in the anonymized
dataset, 8t2D; and with F̂ the anonymized version of
fragment F (i.e., 8t 2 F , 9t̂ 2 F̂ s.t. t̂ is the generalized
version of t).

The pre-processing phase is crucial for our distributed
anonymization. The first problem to be addressed is the def-
inition, by the Coordinator, of a fragmentation strategy, regu-
lating which tuples belong to which fragment. An effective
strategy, as demonstrated by our experimental results (Sec-
tion 8.2), is to fragment D based on the values of (some of
the) quasi-identifying attributes a1; . . . ; ah, in such a way
that a tuple t of D is assigned to a fragment F based on the
values of t½a1�; . . . ; t½ah�. To illustrate, consider the dataset in
Fig. 2a and suppose to define two fragments F1 and F2

based on the values of Age. The Coordinator may define a
strategy such that F1 contains all tuples of D with values
lower than or equal to 38 (i.e., the first three and last three
tuples of the table), and F2 the remaining tuples of D. In
principle, this would require the Coordinator to have com-
plete visibility over D for defining fragments. However, D
might be too large to fit into the main memory of the
Coordinator. We then propose a strategy in which the
Coordinator can define the conditions that regulate the frag-
mentation of D based on a sample of D, whose size can be
dynamically adjusted according to the storage capabilities
of the Coordinator. The Coordinator then communicates the

Fig. 2. An example of a dataset (a), its spatial representation and parti-
tioning (b), and a 3-anonymous and 2-diverse version (c), considering
quasi-identifier QI = {Age,Country} and sensitive attribute TopSpeed.

Fig. 3. Overall view of the distributed anonymization process.
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conditions to the workers, which will then download the
tuples inD that satisfy such conditions directly from the stor-
age platform (i.e., without the need for the Coordinator to send
any dataset to the workers). With reference to the example
above, where fragments are defined based on the values of
Age, the Coordinator communicates to workers the value
ranges (e.g., lower than or equal to 38, and greater than 38)
for the tuples in their fragments. The anonymization phase
following the pre-processing operates in parallel at the work-
ers. For the design of this phase, we specifically focus on the
support, for categorical attributes, of generalization hierar-
chies to the aim of producing semantically-aware generalized
(anonymous) data. Our pre-processing phase is discussed in
Section 4, while the anonymization and wrap-up phases are
described in Sections 5 and 6, respectively.

4 DATA PRE-PROCESSING

The pre-processing phase of our approach operates on a
sample D of D, whose size is tuned depending on the stor-
age capabilities of the Coordinator. For the sake of readability,
we refer our discussion to a generic dataset D with the note
that D is a sample of the original dataset D to be anony-
mized (clearly the quasi-identifier attributes considered for
D are those defined for D).

4.1 Partitioning Strategies

Selecting a strategy for partitioning the dataset D is crucial in
our scenario, since a randompartitioningmay cause consider-
able information loss. Indeed, if fragments include tupleswith
heterogeneous values for the quasi-identifier, each worker
(which independently operates on its fragment) would need a
considerable amount of generalization to satisfy k-anonymity.
On the contrary, information loss is mitigated if partitioning
does not spread across fragments tuples that assume similar
values for the quasi-identifier. To illustrate, consider a dataset
with four tuples t1; . . . ; t4 having values 25, 25, 60, and 60 for
Age, which needs to be partitioned in two fragments. If parti-
tioning generates two fragments F1 ¼ ft1; t2g and F2

¼ ft3; t4g, no generalization is needed to enforce 2-anonym-
ity. On the contrary, fragments F1 ¼ ft1; t3g and F2 ¼ ft2; t4g
requires generalizing Age to the range [25,60] in each frag-
ment, causing higher information loss.

To limit the information loss implied by the partitioning of
a dataset D with quasi-identifier QI among a set W ¼ fw1;
. . . ; wng ofworkers, we propose two strategies.

� The quantile-based approach selects an attribute a from
the QI, and partitions D in n fragments F1; . . . ; Fn

according to the n-quantiles of a inD.
� The multi-dimensional approach recursively partitions

D in a similar way as the Mondrian approach (see
Section 2). Given a fragment F (the entire dataset D
at the first iteration), the multi-dimensional strategy
selects an attribute a2QI and partitions F in two
fragments according to the median value of a in F .
Each of the resulting fragments is then further parti-
tioned, until n fragments have been obtained.

Both the quantile-based and the multi-dimensional parti-
tioning approaches rely on an ordering among the values
that the attribute a selected for partitioning assumes in D to

compute quantiles (for the quantile-based approach) and
median values (for the multi-dimensional approach). In
fact, given a sample D of the dataset and the attribute a
selected for partitioning, the tuples in D are first ordered
according to their value of a, establishing a ranking among
the attribute values. Quantiles and the median values are
then computed on such a ranking. When a is numerical,
ordering among values is naturally defined. When a is cate-
gorical and has a generalization hierarchy HðaÞ, attribute
values are considered with the order in which they appear
in the leaves of HðaÞ, aiming at keeping in the same frag-
ment values that generalize to a more specific value. Indeed,
leaf values that are close in the hierarchy will have a com-
mon ancestor (to which they would be generalized) at a
lower level in the hierarchy (see Section 5), thus limiting
information loss. For instance, with reference to the hierar-
chy in Fig. 1, we use order hItaly, France, Spain, USA, Canada,
Greenland, China, Japan, Indiai. This ordering would combine
in the same fragment values Italy and France, which general-
ize to a more specific value (i.e., Europe) than a fragment
with values Italy and Canada (i.e.,World).

Fig. 4 illustrates the procedure implementing quantile-
based partitioning executed by theCoordinator. Given a dataset
D and a setW ofworkers, the procedure selects the attribute a
for partitioning, orders the tuples in D according to t½a�, and
determines the rank rankðt½a�Þ of each value t½a� (lines 1–2). It
then computes the jW j-quantiles of such ranking R (line 3).
The first fragment F1 is obtained by including all the tuples
t2D with rank of t½a� lower than or equal to the first com-
puted quantile (line 4). The remaining fragments F2; . . . ; FjW j
are obtained by including in Fi all the tuples t2D with ranks
of t½a� in the interval ðqi�1; qi�, with qi the ith jW j-quantile of
the computed ranks (lines 5–6). To illustrate, consider parti-
tioning in 4 fragments the dataset in Fig. 2a with the quantile-
based approach over attribute Age (for simplicity, we con-
sider the dataset in Fig. 2a as a sample). For the first tuple t1,
we have that rankðt1½Age]) ¼ rankð25Þ ¼ 1, since 25 is the
first value (i.e., the smallest) in the ordering for Age. Simi-
larly, for the third tuple t3 we have that rankðt3½Age])
=rankð30Þ ¼ 2, since 30 is the second value in the ordering
for Age. The 4-quantiles q1; . . . ; q4 for such ranks are q1 ¼ 2,
q2 ¼ 3, q3 ¼ 4, and q4 ¼ 6. The first fragment F1 then
includes all the tuples t such that rankðt½Age]) � 2, that is,
all the tuples such that t½Age] � 30. Fragment F2 includes
all tuples t such that 2<rankðt½Age]) � 3. Fragments F3

and F4 are computed in a similar way.
Fig. 5 illustrates the recursive procedure implementing

multi-dimensional partitioning executed by the Coordinator.
The procedure takes as input a datasetD, the setW of work-
ers, and the recursive level of iteration i (1 at the first
invocation). The procedure first selects the attribute a for
partitioning, orders the tuples in D according to t½a�, and

Fig. 4. Quantile-based partitioning.
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determines the rank rankðt½a�Þ of each value t½a� (lines 1–
2). It then computes the median value m for R (line 3),
and defines two fragments F1, including the tuples t of
D having rank for t[a] lower than or equal to m, and F2,
including the remaining tuples (lines 4–5). The procedure
then recursively calls itself on the two computed frag-
ments (lines 7–8) with iþ 1 to further fragment them,
unless the necessary number of iterations have already
been executed (i.e., i ¼ dlog 2jW je, since at each iteration
the number of fragments doubles and dlog 2jW je frag-
ments are sufficient to assign at least a fragment to each
worker) (line 6). To illustrate, consider partitioning in 4
fragments the (sample) dataset in Fig. 2a with the multi-
dimensional approach, and suppose that at the first itera-
tion (i ¼ 1) the attribute chosen for partitioning is Age.
The median of the ranks for the values of Age is 3, and
the sample is split in two fragments F12 and F34 such
that F12 includes all tuples t for which rankðt½Age)] � 3,
and F34 the remaining ones. At the second (and last) iter-
ation (i ¼ 2), the procedure selects an attribute (which
could possibly be different from Age) for fragment F12

and an attribute for F34, and partitions each fragment in
two more fragments based on the median of the ranks of
such attribute values in F12 (F34, respectively). Since 4
fragments have been obtained, the partitioning process
terminates.

The quantile-based and the multi-dimensional partition-
ing exhibit different behavior in the definition of the frag-
ments. The quantile-based partitioning ensures balancing
among the fragments, since all n fragments will include
(approximately) the same number of tuples, but its applica-
tion can be limited by the domain of the attribute a chosen
for partitioning (it cannot be used if the number n of work-
ers is larger than the domain of a). On the contrary, while
being always applicable, the multi-dimensional approach
may result in some workers being assigned twice the work-
load of other workers. Since multi-dimensional partitioning
doubles the number of fragments at each iteration, when
the number n of workers is a power of 2, the recursive pro-
cess can be executed log 2n times, obtaining n fragments of
(approximately) the same size. However, n may not be a
power of 2. Aiming at using all the workers, the partitioning
strategy stops when n � 2i (multi-dimensional partitioning
generates 2i fragments at the ith iteration) and 2i � n work-
ers are assigned two fragments, resulting in some workers
having twice the workload of the others. For instance,
assume W ¼ fw1; . . . ; w7g and jDj ¼ 1000. Multi-dimen-
sional partitioning needs 3 iterations for generating at least
7 fragments (22 < 7 � 23). Since 2i � n ¼ 8� 7 ¼ 1, one
worker (e.g., w1) will be assigned two fragments, resulting

in a workload of nearly 250 tuples for w1 and of 125 tuples
for each of the other workers.

The computational complexity of the two approaches is
slightly different, with quantile-based partitioning resulting
more efficient than multi-dimensional partitioning (as con-
firmed by the experimental results in Section 8). Procedure
Q_Partition costs OðjDjÞ, while procedure M_Partition
costs OðjDjlog jW jÞ. The first two steps (lines 1-2) are the
same for the two procedures and cost OðjDjÞ, and the com-
putation of quantiles has the same cost as the computation
of the median and cost OðjDjÞ. The for each loop at line 5 of
procedure Q_Partition has cost OðjW jÞ, and therefore the
overall cost of quantile-based partitioning is OðjDjÞ, since
the number of workers is smaller than the number of tuples
in the dataset. The recursive calls of procedure M_Partition
imply a cost of OðjDjlog jW jÞ since the procedure recur-
sively calls itself with i from 1 to dlog 2jW je and, for each
value of i, the overall size of the fragments input to the dif-
ferent recursive calls is jDj.

4.2 Fragments Retrieval

While the Coordinator operates on a sampleD of the datasetD
to be anonymized for defining fragments, workers need to
operate on the whole fragment assigned to them. To mini-
mize communication overhead, our approach defines frag-
ments assigned to workers according to the partitioning
conditions identified by the Coordinator to partition D. These
conditions, comparing the attribute a selected for partition-
ing with the values in its domain corresponding to the quan-
tiles or median value of the ranking of tuples inD according
to a, are communicated to workers (see Section 7). Each
worker can then retrieve the tuples in its fragment directly,
without need for the Coordinator to retrieve and communicate
such tuples. For instance, consider two fragments F1 and F2

computed over a sampleD of D with the multi-dimensional
approach, and assume to adopt attribute Age for partitioning
and that themedian of the ranking corresponds to value 38 in
the attribute domain. The worker in charge of the anonym-
ization of F1 will retrieve all the tuples inD having Age� 38,
while the worker in charge of the anonymization of F2 will
retrieve all the tuples inD having Age> 38.

Given a set W¼fw1; . . . ; wng of workers, ci denotes the
condition describing the fragment Fi assigned to wi, i ¼
1; . . . ; n. When using the quantile-based approach, condi-
tion ci, i ¼ 1; . . . ; n, describes the values for a that are
included in the ith n-quantile of D (i.e., its endpoints). For
example, with reference to the example in Section 4.1 for the
quantile-based partitioning of the dataset in Fig. 2a in 4 frag-
ments over attribute Age, the conditions identifying frag-
ments F1; . . . ; F4 would be defined as c1=“(Age � 30)”; c2=“
(Age> 30) AND (Age � 38)”; c3=“(Age> 38) AND (Age �
42)”; and c4=“(Age> 42) AND (Age � 50)”. When using the
multi-dimensional approach, condition ci, i ¼ 1; . . . ; n, is a
conjunction of conditions of the form a � v or a > v
describing the recursive partitioning performed by the
Coordinator to obtain fragment Fi. Intuitively, each recursive
call to M_Partition (Fig. 5) partitions the input fragment D
into two fragments F1 and F2, described by condition c AND

ða � vÞ or c AND ða > vÞ, respectively, with c the condition
describing the input fragment D (empty at the first itera-
tion), a the attribute selected for partitioning, and v the

Fig. 5. Multi-dimensional partitioning.
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value in the domain of a corresponding to the median m
of the ranking of the tuples in D according to a (i.e.,
v ¼ t½a� s.t. rankðt½a�Þ ¼ m). To illustrate, consider the
example in Section 4.1 for themulti-dimensional partitioning
of the dataset in Fig. 2a in 4 fragments. The first partitioning,
based on attribute Age, produces F12 and F34 described by
conditions Age � 38 and Age> 38, respectively. At the sec-
ond iteration, assume that F12 is split into fragments F1 and
F2 according to the value of attribute Country, which is Italy
or France in F1 and USA or Canada in F2. The conditions
describing fragments F1 and F2 (and communicated to the
corresponding workers) would be c1 = “(Age � 38) AND

(Country IN {Italy, France})”; c2 = “(Age � 38) AND (Country
IN {USA, Canada})”. Figs. 6a and 6b graphically illustrate the
pre-processing operated by the Coordinator to partition a sam-
ple D of D assuming to produce 4 fragments (to be then
assigned to 4 workers) adopting quantile-based and multi-
dimensional partitioning. In the figure, we denote with ci...j
the condition describing the fragment of D that will be fur-
ther partitioned to generate Fi; . . . ; Fj.

We close this section with a note on the possibility of
leveraging the availability of multiple workers for the pre-
processing. The multi-dimensional approach (Figs. 5
and 6b) could in fact be performed in parallel by workers
(see Fig. 6c). Intuitively, each of the two fragments F1 and
F2 produced by the partitioning of a fragment F (D at the
first iteration) can be assigned to two different workers for
further partitioning, so that partitioning can run in parallel
(i.e., one fragment can be partitioned by the same worker in
charge of splitting F while the other can be delegated to a
different worker). We investigated this strategy, both theo-
retically and experimentally and, while clearly permitting
to reduce the computation effort for the Coordinator, it would
require data transfer among workers, resulting in lower per-
formance than the traditional (non parallelized) multi-
dimensional partitioning.

4.3 Attributes for Partitioning

The first step for partitioning the dataset, regardless of the
approach (i.e., quantile-based ormulti-dimensional) adopted,
is the selection of the quasi-identifying attribute a used to split
(line 1 in proceduresQ_Partition in Fig. 4 andM_Partition in
Fig. 5).

For quantile-based partitioning, we select the attribute
ai2QI with more distinct values in D. This strategy distrib-
utes the values for ai among different fragments, limiting
the necessary amount of generalization over ai. Indeed, gen-
eralization needs to operate only over the subset of values
for ai appearing in the fragment, which are expected to be
close. On the contrary, partitioning according to a different
attribute aj having a limited number of values might cause
excessive generalization for ai, if a fragment has tuples with
values at the extremes of the domain for the attribute.

For multi-dimensional partitioning, similarly to the origi-
nal Mondrian approach, we select the attribute a2QI that
has, in the fragment F to be partitioned, the highest repre-
sentativity of the values it assumed in D. If a is numerical,
its representativity is defined as the ratio between the span
(i.e., the width of the range) of the values in F and the span
of the values in the entire dataset D. If a is categorical, its
representativity can be defined as the ratio between the

number of distinct values in F and the number of distinct
values inD. Formally, the representativity repðaÞ of a quasi-
identifying attribute a 2 QI is defined as follows:

repðaÞ ¼
maxF ft ½a�g�minF ft½a�g
maxDft ½a�g�minDft½a�g if a is numerical

countF ðdistinct t ½a�Þ
countDðdistinct t½a�Þ if a is categorical

8<
: (1)

where maxF ft½a�g and minF ft½a�g (maxDft½a�g and
minDft½a�g, resp.) are the maximum and minimum values
for a assumed by the tuples in fragment F (in dataset D,
resp.); and countF ðdistinct t½a�Þ (countDðdistinct t½a�Þ, resp.),
is the number of distinct values assumed by attribute a in F
(in D, resp.). For both numerical and categorical attributes,
repðaÞ 2 ð0; 1�. For example, consider a fragment F withQI ¼
fa1; a2; a3g, where a1 is categorical and a2 and a3 are numeri-
cal. Suppose that: i) the distinct values for a1 are 1000 in D
and 100 in F ; ii) the values for a2 are in a range of width 1000

Fig. 6. Partitioning strategies.
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in D and of width 500 in F ; and iii) the values of a3 are in a
range of width 1000 in D and of width 700 in F . Since
repða1Þ ¼ 100=1000 ¼ 0:1 < repða2Þ ¼ 500=1000 ¼ 0:5 < repða3Þ ¼
700=1000 ¼ 0:7, a3 is chosen for partitioning F .

Note that, at the first iteration of multi-dimensional parti-
tioning, all quasi-identifying attributes have representativ-
ity equal to 1 because F = D (the entire dataset D is to be
partitioned). In these cases, we select the attribute with the
maximum number of distinct values in the dataset (like in
quantile-based partitioning).

5 DATA ANONYMIZATION

During the anonymization phase of our approach, each
worker anonymizes the fragment assigned to it, indepen-
dently (i.e., without interacting with other workers) execut-
ing our distributed version of the Mondrian algorithm.
In particular, our version of the algorithm enforces also
‘-diversity, besides k-anonymity considered by the original
approach [7]. To this end, the recursive partitioning at the
core of the anonymization algorithm (Section 2) terminates
when any further sub-partitioningwould generate fragments
that have less than k occurrences for the combination of
values for the quasi-identifying attributes (which would vio-
late k-anonymity), or less than ‘ values for the sensitive attrib-
utes (which would violate ‘-diversity). The anonymization
phase of our distributed Mondrian has computational com-
plexity OðjF jlog jF jÞ, with F the fragment input to function
Anonymize in Fig. 7. Indeed, the cost of lines 1–8 isOðjF jÞ, as
discussed in Section 4. Due to the recursive calls on a partition
of F including two fragments of size jF j

2 , the overall com-
plexity is OðjF jlog jF jÞ, which is in line with the complexity
of the originalMondrian algorithm [7].

Fig. 7 illustrates the anonymization algorithm executed
by each worker for anonymizing the fragment assigned to
it. The recursive partitioning (lines 3–10), which operates
according to the same logic as multi-dimensional partition-
ing in the pre-processings phase (Section 4), terminates
when any further sub-partitioning of a fragment would vio-
late k-anonymity or ‘-diversity (lines 1–2). The attribute a
with maximum representativity Eq. (1) is chosen for parti-
tioning (line 4). Clearly, since during the anonymization
phase each worker wi has visibility only on its fragment Fi,
representativity is computed over Fi (in contrast to the
entire dataset D in Eq. (1)). Like in multi-dimensional parti-
tioning, at the first recursive call, representativity is equal to
1 for all quasi-identifying attributes. Our approach then
selects the attribute that has the highest number of distinct

values in the fragment. When a fragment F cannot be fur-
ther partitioned as this would violate k-anonymity or
‘-diversity, the anonymization algorithm produces the ano-
nymized version of F , obtained generalizing the values of
the quasi-identifying attributes to guarantee that all the
tuples share the same (generalized) quasi-identifier values
(line 2). Our distributed Mondrian approach supports the
following generalization strategies.

� Generalization hierarchies: applicable to categorical
attributes only, the values for attribute a2QI are
substituted with their lowest common ancestor in
the generalization hierarchy HðaÞ defined for a (Sec-
tion 3). To illustrate, consider the dataset in Fig. 2a
and suppose, for simplicity, it is a fragment retrieved
by a worker for anonymization. Its anonymized ver-
sion in Fig. 2c is obtained generalizing attribute
Country according to the generalization hierarchy
in Fig. 1, considering the partitions in Fig. 2b. For
example, values Italy, Italy, and France of the first
three tuples (partition at the bottom-left of Fig. 2b)
are generalized to their lowest common ancestor in
the hierarchy (i.e., Europe).

� Common prefix: applicable to categorical and numeri-
cal attributes interpreted as strings, the values for
attribute a2QI are replaced with a string that
includes their common prefix (substituting with a
wildcard character the characters that differ). For
example, values 10010, 10020, 10030 for attribute
ZIP can be generalized to 100��, maintaining com-
mon prefix 100 and redacting the last two characters.

� Set definition: applicable to both categorical and
numerical attributes, the values for attribute a2QI are
replaced with the set of values including all of them.
For example, values Italy, Italy, and France for attribute
Country can be generalized to the set fItaly; Franceg.

� Interval definition: applicable to numerical attributes
defined on a totally ordered domain, the values for
attribute a2QI are replaced with a range of values
including all of them. While the smallest range con-
taining all the values to be generalized (i.e., the one
delimited by the minimum and maximum value) is
the most natural choice, also larger (possibly pre-
defined) intervals may be adopted. Note that this gen-
eralization is different from set definition: while the
set definition explicitlymaintains all the (original) val-
ues generalized in a set, interval definition maintains
only the extremes of the range. To illustrate, consider
the dataset in Fig. 2a and suppose, for simplicity, it is
a fragment retrieved by a worker for anonymization.
Its anonymized version in Fig. 2c is obtained general-
izing attribute Age by grouping its values in intervals,
considering the partitions in Fig. 2b. For example, val-
ues 42, 50, and 43 (fourth, fifth, and sixth tuples, corre-
sponding to the partition on the right-hand-side of
Fig. 2b) are generalized to [42, 50].

6 WRAP UP AND INFORMATION LOSS ASSESSMENT

The wrap-up phase of our approach is aimed at collecting
anonymized fragments, and at assessing information loss.

Fig. 7. Anonymization algorithm for a fragment F .
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To this purpose, each worker stores the anonymized frag-
ment F̂ assigned to it in the storage platform, and computes
the information loss implied by the anonymization of F .
The information loss characterizing the anonymized frag-
ments are collected and combined by the Coordinator to
assess the information loss of the entire dataset. In the fol-
lowing, we describe the information loss metrics we adopt.
For the sake of readability, we refer to a dataset D and its
anonymized version D̂, with the note that each worker
operates on the fragment F (and its anonymization F̂ )
assigned to it.

� Discernibility Penalty (DP [7], [8]) assigns a penalty to
each tuple in D based on the size of the equivalence
class E (the larger an equivalence class, the larger
the penalty) to which the tuple belongs (i.e., number
of tuples generalized to the same values). Formally,
the Discernibility Penalty of an anonymized dataset
D̂ is computed as follows:

DPðD̂Þ ¼
X
E2D̂

jE j2 (2)

� Normalized Certainty Penalty (NCP [9]) assigns penal-
ties based on the amount of generalization (more gen-
eralization resulting in higher penalties) applied to
the values of the quasi-identifying attributes. NCP is
applicable to numerical attributes generalized in
intervals, and to categorical attributes forwhich a gen-
eralization hierarchy exists. Given a tuple t2D, the
normalized certainty penalty NCPa (t̂) of its generali-
zation t̂2D̂ for attribute a2QI is computed as follows:

NCPaðt̂Þ ¼
vmax�vmin
RangeðaÞ if a is numerical

jIndðv̂Þj
jDomðaÞj if a is categorical

8<
: (3)

where t̂[a] = ½vmax; vmin� and RangeðaÞ is the range of
the values assumed by a, if a is a numerical attribute
generalized in intervals; t̂[a] = v̂ and Indðv̂Þ is the set
of values in DomðaÞ that could be generalized to v̂
(i.e., the number of leaves of the generalization hier-
archy HðaÞ for a that are descendants of v̂), if a is a
categorical attribute with generalization hierarchy.

Given an anonymized dataset D̂with quasi-identi-
fierQI, the Normalized Certainty Penalty of D̂ is com-
puted summing the Normalized Certainty Penalties
of the attributes inQI for all the tuples in D̂ as follow:

NCPðD̂Þ ¼
X
t̂2D̂

X
a2QI

NCPaðt̂Þ (4)

Given the information loss measures DPðF̂1Þ; . . . ;DPðF̂jW jÞ
(NCPðF̂1Þ; . . . ;NCPðF̂jW jÞ, resp.) for the fragments, the
Coordinator can compute the information loss for the whole
dataset by simply summing them. We consider both DP and
NCP metrics since they take a different approach in the
assessment: DP is independent from the amount of generali-
zation adopted and only considers the size of equivalence
classes, while NCP precisely assesses the amount of generali-
zation, regardless of the number of tuples in equivalence
classes.

7 IMPLEMENTATION

In this section, we illustrate the architectural design and the
deployment of our distributed anonymization approach.
The implementation is available at https://github.com/
mosaicrown/mondrian.

7.1 Architecture

Our implementation is based on an Apache Spark cluster,
whose nodes perform the three phases (pre-processing, ano-
nymization, and wrap-up) of our approach. Fig. 8 illustrates
the components and working of our implementation. The
dataset D to be anonymized can be stored on any storage
platform (centralized or distributed) reachable by Apache
Spark with a URL. The Spark cluster includes a Spark Cluster
Manager, which coordinates the cluster, and a setW of Spark
Workers, which perform the tasks assigned to them by the
Cluster Manager. We implemented our distributed ano-
nymization application in Python to leverage Pandas frame-
work [10], [11], which can be conveniently used for
managing very large datasets.

In the Spark cluster architecture in Fig. 8, the Spark Driver
plays the role of our Coordinator: it is responsible for calling
the Spark Context in the user-written code, implementing
the partitioning process. (Note that the Spark Driver and
the Spark Cluster Manager are not necessarily hosted on the
same node of the cluster.) The Spark Driver is also responsi-
ble for translating the code to be executed in the cluster into
jobs, which are further divided into smaller execution units,
called tasks (implementing the distributed anonymization in
our scenario), executed by the workers.

To anonymize a dataset D, first the Spark Driver down-
loads from the storage platform a sample D of D that fits
into its memory. It then locally executes the pre-processing
phase. In particular, the Spark Driver locally partitions the
downloaded sample D running procedure Q_Partition in
Fig. 4 (if quantile-based approach is adopted), or procedure
M_Partition in Fig. 5 (if multi-dimensional approach is
adopted), keeping track of the conditions describing the
computed fragments. The Spark Driver then defines a set of
jW j Spark Tasks. Each task corresponds to the anonymiza-
tion of a fragment Fi and includes the conditions defining
Fi. Once the Spark Driver has terminated the pre-processing
phase, the Spark Cluster Manager selects the workers that
will be involved in the distributed anonymization process.
The Spark Driver then sends to each identified worker wi its

Fig. 8. Spark-based distributed anonymization system.
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anonymization task, enabling wi to download from the stor-
age platform the tuples in the fragment Fi assigned to it.
Each Spark Worker w then retrieves from the storage plat-
form the fragment of D satisfying the conditions included in
the task assigned to it. The Spark Worker anonymizes the
fragment with our distributed Mondrian (Fig. 7, Section 5),
computes the amount of information loss caused by ano-
nymization (Eqs. (2) and (4), Section 5), and stores the
results in the storage platform using the services of the
Spark Driver. The Spark Driver combines the information
loss computed by the Spark Workers to obtain the informa-
tion loss of the overall dataset.

7.2 Deployment

Aiming at creating a solution that can be easily deployed in
a cloud infrastructure (e.g., AWS or Google Cloud), we
opted for a multi-container application, leveraging Docker
containers, for the deployment of our approach. We
deployed the Spark architecture in Fig. 8 with: i) a Docker
container for the Spark Driver; ii) a Docker container for the
Spark Cluster Manager; iii) a variable number of Docker
containers for the Spark Workers; and iv) a Docker container
to expose a Spark History Server, for additional information
about the task scheduling and assignment performed by
Spark.

In our implementation, Docker containers are spawned
with Docker Compose. To manage the distribution of the
containers to the nodes (machines) of the Spark cluster, dif-
ferent orchestrator tools (e.g., Kubernetes) can be adopted.
We leveraged Docker Swarm due to its simplicity. Fig. 9
illustrates an example of the Docker Swarm distribution of
Docker containers to the nodes of a Spark cluster. In the
figure, white solid boxes represent the nodes in the Spark
cluster, while blue (gray, in b/w printouts) boxes represent
Docker containers. Note that each node in the Spark cluster
can spawn more than one Docker container. One of the
nodes in the cluster acts as Docker Swarm Manager, while the
other nodes act as Docker Swarm Workers. The Docker
Swarm Manager coordinates and is in charge of distributing
the workload on the Docker Swarm Workers, which in turn

are used to spawn the Docker containers modeling Spark
Manager, Spark Driver, and Spark Workers. One of the
Docker SwarmWorkers is then dedicated to spawn one con-
tainer for the Spark Cluster Manager and one container for
the Spark Driver. The other Docker Swarm Workers spawn
the containers modeling Spark Workers.

8 EXPERIMENTAL RESULTS

We performed a set of experiments to evaluate the scalabil-
ity and applicability of our distributed Mondrian anonym-
ization approach, compared to the traditional centralized
Mondrian algorithm, considered as the baseline.

8.1 Experimental Settings

In the following, we describe the settings and dataset used
in our experimental evaluation.

Server Specifications and Cloud Deployment. Since our solu-
tion does not require any specific cloud environment, to
obtain reproducible results, in our experiments we simu-
lated a cloud environment leveraging Docker Compose. We
run our experiments on a machine equipped with an AMD
Ryzen 3900X CPU (12 physical cores, 24 logical cores), 64
GB RAM and 2 TB SSD, running Ubuntu 20.04 LTS, Apache
Spark 3.0.1, Hadoop 3.2.1, and Pandas 1.1.3. Each worker is
equipped with 2GB of RAM and 1 CPU core. Centralized
Mondrian relies on 1 CPU core, with no limitation on the
use of the RAM. To prove the applicability and scalability of
our solution in a real-world distributed environment, we
deployed it on Amazon Elastic Compute Cloud (t2.medium
instances equipped with 2 cores, 4GB of RAM, and 8GB of
gp3 SSD, running Ubuntu 20.04 LTS, and located in the us-
east-1 region). The results obtained in this real-world cloud
environment confirm the ones obtained in our simulated
environment illustrated in Section 8.2.

Storage Platform. We used Hadoop Distributed File System
(HDFS) as the distributed storage platform for storing the
dataset to be anonymized. We deployed the HDFS cluster
leveraging Docker containers, with one container for the
Hadoop Namenode (responsible for the cluster manage-
ment); and multiple containers for the Hadoop Datanodes
(responsible for storing data and servicing read and write
requests).

Dataset. We considered the Poker Hand dataset [12] and
ACS PUMS USA 2019 dataset [13]. The choice has been dic-
tated by the need to consider very large datasets, to test the
scalability of our approach. We refer the reader to [1] for
performance and information obtained by our distributed
Mondrian on the well known (but smaller) ACS PUMS USA
2018 dataset [13].

The Poker Hand dataset is composed of 1,000,000 tuples.
Each tuple represents the cards in a hand of Poker. Each
card is described through 2 attributes: the seed (an integer
value in the range f1; . . . ; 4g) and the rank (an integer value
in the range f1; . . . ; 13g). We considered these attributes as
the quasi-identifier. We considered an additional attribute
identifying the entire hand (an integer value in the range
f0; . . . ; 9g) as the sensitive attribute.

For the ACS PUMS USA 2019 dataset, we extracted a
sample of 1,500,000 tuples. Each tuple of the dataset repre-
sents an individual respondent with attributes ST, OCCP,

Fig. 9. Container deployment in a cloud environment.
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AGEP, and WAGP, representing respectively the respondent’s
US State of residence, occupational status (expressed with a
numeric code), age, and annual income. We considered ST,
OCCP, AGEP as the quasi-identifier, and WAGP as the sensi-
tive attribute. While OCCP, AGEP, and WAGP are numeric
attributes, ST is categorical. For attribute ST, we consider a
generalization hierarchy HðSTÞ defined according to the cri-
teria adopted by the US Census Bureau [14], where States
are at the leaf level of the hierarchy and are grouped in Divi-
sions, which are in turn grouped in Regions. For example,
States NJ, NY, and PA (leaf level) can be generalized to Mid-
dleAtlantic (which is their parent in the hierarchy), which in
turn can be generalized to Northeast, which in turn can be
generalized to US (which is the root of the hierarchy).

8.2 Results

To assess the scalability of our approach, we analyzed the
computation time of our distributed Mondrian varying the
number of workers. Also, to assess the quality of the solu-
tion computed by our distributed Mondrian, we analyzed
the information loss varying the size of the sample used for
partitioning the dataset among workers. Both computation
times and information loss values reported in this section
have been obtained as the average over 5 runs. The values
are compared with centralized Mondrian, considered as our
baseline. In the following, we report and comment more in

the details the results obtained over Poker Hand dataset,
where the evolution exhibited by execution time and infor-
mation loss is more visible. We note however that the
results obtained with ACS PUMS USA 2019 dataset have a
similar behavior.

Computation Time. Fig. 10 compares the computation times
of our distributed Mondrian anonymization algorithm over
Poker Hand dataset, using both quantile-based and multi-
dimensional partitioning, with centralized Mondrian ano-
nymization, varying the number of workers and parameters k
and ‘. In particular, we considered k varying in f5; 10; 20g, ‘
varying in f2; 3; 4g, and a number of workers between 2 and
12 workers (12 is the largest number of partitions that quan-
tile-based partitioning can produce due to the domain of the
attributes of the dataset). As expected, the execution time
decreases when the number of workers grows, with savings
with respect to centralized Mondrian between 28% and 98%,
confirming the scalability of our distributed approach. (We
note that similar results were observed on the ACS PUMS
USA 2019 dataset, with savings between 45% and 98%.) As
visible from the figures, the chosen pre-processing strategy
does not significantly affect computation times. Quantile-
based and multi-dimensional partitioning exhibit the same
execution time when using two workers. Indeed, both
approaches would perform the same partitioning. We
also note that, when using quantile-based partitioning, each

Fig. 10. Execution times of centralized Mondrian and distributed Mondrian varying the number of workers, k, and ‘.
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additional worker provides a saving in computation time. On
the contrary, when using multi-dimensional partitioning,
computation time saving can be enjoyed when the number of
workers reaches a power of 2 (i.e., it is necessary to have 2i

workers for saving on computation time). For instance, there
is a marginal saving when passing from 6 to 7 workers, but
there is a considerable saving from 7 to 8 workers. This is due
to the fact that, when the number of workers is not a power of
2, someworkers are assigned twice theworkload as the others
(see Section 4.1) and therefore represent a bottleneck.

Information Loss. Our distributed Mondrian might cause
additional information loss compared to the centralized
Mondrian, since each worker independently operates on its
fragment without coordinating with other workers. We
observe that the information loss caused by distribution can
be impacted by: 1) the number of workers (and hence of frag-
ments), and 2) the size of the sample used to partition the
dataset. Fig. 11 compares the average information loss (and
its variance) obtained in 5 runs of the distributed (with 5 and
10 workers) Mondrian with the average information loss of
the centralized Mondrian for computing a k-anonymous
(with k ¼ 5, k ¼ 10, and k ¼ 20) 2-diverse version of the
Poker Hand dataset, assuming different sampling sizes

(0.1%, 0.01%, 0.001%). While in the figure we report only the
values obtainedwith ‘ ¼ 2 for Poker Hand dataset, we tested
also ‘ ¼ 3 and ‘ ¼ 4, also considering ACS PUMS USA 2019,
obtaining similar results. The results in Fig. 11 show that, for
all values of k, sampling has a very limited impact on infor-
mation loss. The results also confirm that, for all values of k,
also the number of workers has negligible impact on infor-
mation loss. More precisely, multi-dimensional partitioning
performs similarly for all tested numbers of workers, while
quantile-based partitioning produces higher information
loss when the number of workers grows. The values in
Fig. 11 for DP reveal that multi-dimensional partitioning pro-
duces equivalence classes similar to the ones produced by
centralized Mondrian, while the quantile-based approach
produces slightly smaller equivalence classes, especially
when the sample used for partitioning is small. The results
also show that, in some of the tested scenarios, the values for
DP are higher in the centralized scenario. Even if the differ-
ence is negligible, it reveals that, when using sampling for
partitioning the dataset, (a subset of) the equivalence classes
are smaller compared to the equivalence classes obtained
without sampling. Smaller equivalence classes, however,
do not imply less generalization, as testified by the values of

Fig. 11. DP and NCP information loss varying the number of workers and k.
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NCP. Indeed, quantile-based partitioning, multi-dimensional
partitioning, and the centralized algorithm present similar
(small) values for NCP.

The experiments confirm that our distributed Mondrian
provides high scalability, while causing limited impact on
information loss. When the number of workers is a power
of 2, multi-dimensional and quantile-based partitioning
exhibit similar computation time. However, when the num-
ber of workers is not a power of 2, quantile-based partition-
ing provides better performance. Both approaches have
limited impact on information loss, with multi-dimensional
partitioning having smaller values for NCP and higher val-
ues for DP than quantile-based partitioning (and vice versa).

9 RELATED WORK

The problem of protecting privacy in data publishing has
been widely studied (e.g., [3], [15], [16], [17], [18]). The solu-
tions proposed in the literature include both syntactic (e.g.,
k-anonymity [3] and ‘-diversity [19]) and semantic techni-
ques (e.g., differential privacy [15] and its variations [20]).
Traditional algorithms aimed at enforcing k-anonymity
and/or ‘-diversity (e.g., [7], [21], [22]) operate in centralized
scenarios. The problem of distributing and parallelizing
anonymization has been recently studied, to the aim of pro-
tecting also large datasets (e.g., [23], [24]). The approach
in [23] partitions the dataset and anonymizes the resulting
fragments, leveraging MapReduce [25] paradigm to paral-
lelize the centralized anonymization solution in [26]. The
proposal in [23] takes a different approach in partitioning
with respect to ours, since it aims at maintaining in each
fragment the same value distribution as the whole dataset
while we aim at maintaining in each fragment homoge-
neous values for the quasi-identifier, so to reduce the
amount of generalization needed to enforce k-anonymity
(and hence the information loss due to generalization). The
distributed anonymization approach in [24] partitions data
so that fragments contain records that are semantically simi-
lar (leveraging Locally Sensitive Hashing, semantic distance
measure, and k-member clustering), but it does not leverage
Mondrian for computing fragments.

Different distributed anonymization approaches rely,
similarly to our proposal, on distributed architectures for
parallelization (e.g., [6], [27], [28], [29], [30], [31], [32]). The
approach in [6] parallelizes Mondrian considering Apache
Spark, but relies on data exchange among workers to coor-
dinate anonymization of different portions of the original
dataset distributed to workers. Our approach instead aims
at limiting data exchange among workers. The solution
in [27] differs from ours since it uses hierarchical clustering
and k-means to provide ‘-diversity instead of performing
partitioning according to Mondrian strategy. The approach
in [28] considers Apache Spark for parallelizing different
anonymization approaches, but does not discuss the
Spark-based adaptation of Mondrian. The solution in [29]
randomly assigns tuples to workers, while our solution spe-
cifically studies a strategy for distributing tuples to workers
to minimize information loss. The first approach aimed at
parallelizing Mondrian algorithm has been proposed in [30]
and is based on MapReduce paradigm. This solution differs
from ours since it heavily relies on data exchanges among

workers, while we aim at minimizing the need for workers
to communicate for anonymization purposes so to reduce
the delays and costs inevitably entailed by exchanging data
over a network. A more recent approach relying on MapRe-
duce for parallelizing Mondrian algorithm has been pro-
posed in [31]. Besides the use of MapReduce in contrast to
Apache Spark, this solution differs from ours in the strategy
adopted for splitting the dataset among workers. The
approach in [31] operates on the whole dataset (and not on
a sample of the same) and adopts a distributed algorithm
for partitioning, using a tree structure shared among the
workers in the cluster, while we specifically aim at limiting
inter-worker exchanges and coordination to improve per-
formance. Also, the proposal in [31] does not use quantiles
for partitioning. The proposal in [32], which enforces Mon-
drian using Spark, is complementary to ours as it focuses on
improving performances by optimizing data structures
used by Spark. We instead propose a novel distributed
enforcement approach for Mondrian, which ensures scal-
ability with limited information loss through a careful data
partitioning design.

The idea of distributing the execution of Mondrian for
anonymizing a large dataset based on partitioning a sample
of the dataset, while limiting data exchange among workers,
has been proposed by us in [1], [2]. In this paper, we consid-
erably extend (both theoretically and experimentally) our
prior work in [1], [2] with the definition of, and support for,
novel partitioning strategies, generalization approaches,
and metrics for selecting the most suitable attributes for
data partitioning and for computing information loss.

A related line of work has investigated the anonymiza-
tion of distributed data and/or multiple datasets (e.g., [33],
[34], [35], [36]). While related, these solutions address a dif-
ferent problem, characterized by multiple sources of data
(e.g., [33], [34]), possibly with multiple privacy require-
ments (e.g., [35]) and with different owners, each with visi-
bility on its own portion of data (e.g., [36]).

Other solutions based on data fragmentation for ano-
nymization use vertical fragmentation of the private table.
Fragmentation operates in such a way to enforce ‘-diversity
(e.g., [37]) or to protect sensitive associations among attrib-
utes in the relation schema (e.g., [38], [39]).

10 CONCLUSION

We presented a scalable approach for distributed anonym-
ization of very large datasets. Our approach partitions a
dataset to be anonymized in fragments which are then dis-
tributed to multiple workers operating in parallel and inde-
pendently. We proposed different partitioning strategies
operating on a sample of the dataset, and a distributed ver-
sion of Mondrian anonymization algorithm aimed at limit-
ing information exchange among workers. The experimental
results confirm that our approach is scalable and does not
affect the quality of the computed solution in terms of infor-
mation loss caused by anonymization.
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