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Abstract
We survey some recent results concerning the so called Categorical Torelli problem. This 
is to say how one can reconstruct a smooth projective variety up to isomorphism, by using 
the homological properties of special admissible subcategories of the bounded derived cat-
egory of coherent sheaves of such a variety. The focus is on Enriques surfaces, prime Fano 
threefolds and cubic fourfolds.
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1 Introduction

During the last decades, derived categories of coherent sheaves on smooth projective varie-
ties have played a special role in algebraic geometry. In particular, their use in birational 
geometry and for the study of the geometry of moduli spaces has produced important and 
unexpected results.

One natural and related question is if a smooth projective variety can be reconstructed, 
up to isomorphism, from its derived category. Due to the seminal work by Bondal and 
Orlov [29] we know that this is indeed a theorem when the variety has canonical bundle 
which is either ample or anti-ample (meaning that its dual is ample). On the other hand, 
Mukai [114] showed that this is no longer the case when the canonical bundle is trivial.
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Of course, one may start wondering how one can study the derived category of coher-
ent sheaves and how one can extract geometric information from it. This is a fast growing 
research area where several fruitful ideas have come into the picture. Important results in 
this direction are due to the Russian school. The idea is to decompose the derived category 
in smaller pieces provided by nontrivial admissible subcategories which naturally generate 
the derived category and whose meaning is intrinsically connected to the geometry of the 
variety. This led to the notion of semiorthogonal decomposition which is certainly one of 
the main characters in this survey.

Semiorthogonal decompositions are not always available and when available they are 
not, in general, canonical. For example, again when the canonical bundle is trivial, the 
derived category is indecomposable. Nonetheless, when a semiorthogonal decomposition 
is given, then its components turn out to be extremely interesting. One special case, which 
is prominent in this paper, is when the derived category Db(X) of a smooth projective vari-
ety X contains a bunch of very simple objects, which are called exceptional, and a geo-
metrically meaningful residual category, which we call Kuznetsov component.

In this paper we focus our attention on these components. Indeed, the problem we want 
to deal with can be now formulated in the following slightly vague form:

Categorical Torelli problem. Let X1 and X2 be smooth projective varieties over a field, in 
the same deformation class and with Kuznetsov components Ku(X1) and Ku(X2) . Is it true 
that X1 and X2 are isomorphic if and only if their Kuznetsov components are equivalent?

As we mentioned above, semiorthogonal components are not in general canonical. Thus 
when such a problem has a positive answer, the corresponding Kuznetsov components 
have to emerge from very special geometric situations. This will be extensively explained 
in the examples of interest.

The Categorial Torelli theorems discussed in this paper are indeed the results that provide 
a positive answer to the Categorical Torelli problem above. As it turns out, we need to be 
more precise about the equivalence between the Kuznetsov component in the sense that, in 
some cases, it has to satisfy some additional property. We will discuss this along the paper 
and discover that some of these assumptions are probably removable once some related con-
jectures are proved. Others, unfortunately, cannot be avoided. Just to give a short summary, 
the Categorical Torelli theorems that we will review are the following geometric situations: 

 (CT1) Enriques surfaces with an equivalence between the Kuznetsov components which is 
of Fourier–Mukai type (Theorem 4.5);

 (CT2) Cubic threefolds with no further assumptions on the equivalence between the Kuznet-
sov components (Theorem 6.4);

 (CT3) Several additional prime Fano threefolds (Section 6.5);
 (CT4) Cubic fourfolds with an equivalence between the Kuznetsov components which is 

compatible with the so called degree shift functor (Theorem 7.7).

One important feature of the above results is the variety of techniques that are used to 
prove them. Indeed, (CT1) is a consequence of a general statement (see Propsition  4.1) 
which allows us to extend a Fourier– Mukai equivalence between the Kuznetsov compo-
nents of two Enriques surfaces to an equivalence of their bounded derived categories and 
then to apply what we call Derived Torelli theorem. This is somehow related to the pos-
sibility to enhance exact functors at the dg level. On the other hand, (CT2) and (CT3) use 
in an extensive way the notion of stability conditions which only recently were constructed 
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on Kuznetsov components (see Section  6.1). The case of cubic fourfolds (CT4) can be 
handled either by using Hodge theoretic techniques as in [60] or, again, by using stability 
conditions [14]. Both approaches will be discussed in Section 7.2. The reader may actu-
ally view this survey as an occasion to review the most recent developments in so many 
different directions and to appreciate their power in combination with the theory of semi-
orthogonal decompositions.

In a negative direction, the Categorical Torelli theorem in the above formulation does 
not hold in the case of Fano threefolds of index 1. For instance, a consequence of the results 
in [90] provides the existence of non-isomorphic but birational Gushel– Mukai threefolds 
with equivalent Kuznetsov components. A refined version, which takes into account the 
preservation of special objects in the Kuznetsov components, has been recently proved in 
[67, 69] (see Section 6.5 for more details). It becomes then natural to ask whether the exist-
ence of an isomorphism between the given varieties with equivalent Kuznetsov compo-
nents in (CT1)–(CT4) is just a special instance of the following more general problem:

Birational Categorical Torelli problem. Let X1 and X2 be smooth projective varieties over a 
field, in the same deformation class and with Kuznetsov components Ku(X1) and Ku(X2) . Is 
it true that if Ku(X1) and Ku(X2) are equivalent, then X1 and X2 are birational?

This will be carefully discussed in the paper but it is worth mentioning that a converse 
to the Birational Categorical Torelli problem should not hold true (see Remark 7.9).

As a related line of investigation, we recommend the reader to consult [94], where the 
authors study the problem of recovering the birational class of a smooth projective variety 
from its bounded derived category. More precisely, they conjecture that two smooth projec-
tive varieties are birational if there exists a (strongly) filtered exact equivalence between 
their bounded derived categories (see [94, Section 10] for some motivic foundations of this 
conjecture and more generally [73] for reconstruction problems). Another very interesting 
research topic which is tightly related to the discussion in this paper but which will not be 
covered in this survey is the so called infinitesimal version of the Categorical Torelli theo-
rems for Fano threefolds (see [67, 68]).

We conclude this presentation by pointing out that the paper is accompanied by a list of 
open problems in the form either of questions or of conjectures. Their relation to the exist-
ing results will be carefully explained, but we take the opportunity to stress that their role 
in this paper is as important as the one of the main results.

Plan of the paper The survey is organized as follows. In Section  2 we recollect some 
basic definitions and examples of semiorthogonal decompositions, and of Fourier–Mukai 
functors.

In Section 3 we focus on some special examples of smooth projective varieties of low 
dimension having a semiorthogonal decomposition with a nontrivial component, known as 
the Kunzetsov component. In particular, we consider Enriques surfaces, prime Fano three-
folds of index 1 and 2 and cubic fourfolds, and we recall the properties of their Kuznetsov 
component.

Section 4 is devoted to the proof of the Categorical Torelli theorem for Enriques sur-
faces following [97, 100]. The proof makes use of a general criterion, explained in Sec-
tion 4.1, which allows us to extend Fourier–Mukai equivalences among admissible subcat-
egories appearing in semiorthogonal decompositions under suitable assumptions. Then in 
Section 4.2 we characterize 3-spherical objects in the Kuznetsov component; this is used in 
the proof of the main theorem given in Section 4.3.
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Section 5 provides a quick introduction to the notion of (weak) stability conditions, the 
definition of stability manifold together with the associated group actions, the construction 
via tilt-stability on surfaces and on some threefolds, and the conjectural approach through 
generalized Bogomolov inequalities.

Section 6 is devoted to the case of cubic threefolds. In Section 6.1 we explain the first 
method to construct stability conditions on the Kuznetsov component of a cubic threefold 
and how to apply this result to prove the Categorical Torelli theorem; the main reference is 
[20]. In Section 6.2 we review the more recent method, introduced in [14], to induce sta-
bility conditions on admissible subcategories which are left orthogonal components to an 
exceptional collection in a triangulated category with a Serre functor. Then we introduce 
the notion of Serre-invariant stability conditions. This is applied to cubic threefolds in Sec-
tion  6.3 to construct stability conditions on the associated Kuznetsov component which 
are Serre-invariant. In Section 6.4 we explain some applications of this result on Serre-
invariant stability conditions to the study of the geometry of moduli spaces and to give an 
alternative proof of the Categorical Torelli theorem; the main references are [8, 51, 129]. 
In Section 6.5 we recall the state of art about these questions on Serre-invariant stability 
conditions and Categorical Torelli theorem for the Kuznetsov component of prime Fano 
threefolds of index 2 and 1.

Finally, in Section  7 we analyze the higher dimensional case of cubic fourfolds. We 
recall the construction of stability conditions on the Kuznetsov component with the method 
of [14]. Then we explain the two known ways to prove the Categorical Torelli theorem 
from [60] and [14], and how to deduce the Classical Torelli theorem from it. We end by 
discussing the analogous questions in the case of Gushel–Mukai fourfolds.

1.1  Notation/warning

All varieties and schemes appearing in this paper are defined over an algebraically closed 
field � . All categories are linear over such a field � as well. Depending on the results we 
are going to discuss, we will need to make further assumptions: either that char(�) is dif-
ferent from 2 or sufficiently large or equal to 0. We tried to point this out along the paper in 
the most careful way. But it is certainly true that the nonexpert reader might get confused at 
first sight. Such a reader is then encouraged to read the paper assuming that � is algebrai-
cally closed of characteristic 0 and come back to the discussion about the possible more 
general statements only during a second read.

2  Semiorthogonal decompositions: general results

This section is devoted to a quick discussion about some basic facts concerning semi-
orthogonal decompositions (see Section  2.1) and Fourier– Mukai functors (see Sec-
tion 2.3). We also recall some preliminary examples in Section 2.2.

2.1  The main definitions

Despite its relatively simple definition and even if it is one of the simplest examples of 
triangulated category, the bounded derived category Db(A) of an abelian category A  has a 



2953Categorical Torelli theorems: results and open problems  

1 3

very rich and often mysterious structure. This remains true when A  is the category Coh(X) 
of coherent sheaves on a smooth projective variety X defined over a field �.

In the latter case, there are several approaches to the study of the structure of 
Db(X) ∶= Db(Coh(X)):

• We can look at the way Db(X) is generated;
• Mimicking representation theory, we can look at the action of the autoequivalences group 

of Db(X) on a suitable vector space or lattice (e.g. the total cohomology of X);
• We can decompose Db(X) into smaller pieces and try to understand how the geometry of X 

is encoded by those pieces.

The first strategy has a long history, initiated by the beautiful paper [31] (see also [132]). More 
recently, it was discovered that this is intimately related to the way Db(X) can be enhanced to 
higher categorical structures (see, for example, [28, 34, 39, 105]).

The second viewpoint has been widely adopted in the case of K3 surfaces, abelian varieties 
or, more generally, varieties with trivial canonical bundle (see, for example the seminal papers 
[116, 121]). The reason being that, when the canonical bundle is trivial, Db(X) is indeed inde-
composable by [23] and thus the third strategy cannot be pursued. On the contrary, the auto-
equivalences group is usually very rich and intimately related to the topology of the stability 
manifold which we will discuss later.

In this paper, we are mainly interested in the third approach which can be made precise by 
introducing the following definition. Let T  be a triangulated category which, for simplicity, 
we assume from now on to be linear over a field � . A semiorthogonal decomposition for T  , 
denoted by

is a sequence of full triangulated subcategories D1,… ,Dm of T  such that: 

(1) Hom(F,G) = 0 , for all F ∈ Di , G ∈ Dj and i > j;
(2) For any F ∈ T  , there is a sequence of morphisms 

 such that �i(F) ∶= Cone(Fi → Fi−1) ∈ Di for 1 ≤ i ≤ m.
We call the subcategories Di components of the decomposition.

Remark 2.1 It is a nice and relatively easy exercise to verify that (1) above yields that 
the factors �i(F) in (2) are uniquely determined and functorial, for all F ∈ T  and for all 
i = 1,… ,m . Hence, in presence of a semiorthogonal decomposition, we get the i-th projec-
tion functor �i ∶ T → Di.

Given a semiorthogonal decomposition for T  as above, denote by �i ∶ Di ↪ T  the inclu-
sion. We say that Di is admissible if �i has left adjoint �∗

i
 and right adjoint �!

i
 . In presence of a 

semiorthogonal decomposition

then �1 and �2 coincide with the left adjoint �∗
1
 and the right adjoint �!

2
 . Furthermore, if D is 

an admissible subcategory of T  , we set

T = ⟨D1,… ,Dm⟩,

0 = Fm → Fm−1 → ⋯ → F1 → F0 = F,

T = ⟨D1,D2⟩,
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to be the left orthogonal and right orthogonal subcategories of D , respectively. These tri-
angulated subcategories yield semiorthogonal decompositions

when D is admissible.
One special feature of the triangulated category T = Db(X) , for X a smooth projective vari-

ety, is that it has Serre functor. Recall that a Serre functor of a triangulated category T  is an 
exact autoequivalence 𝖲T ∶ T → T  inducing, for all A and B in T  , an isomorphism

which is natural in both arguments. Such a functor is unique up to isomorphism of exact 
functors and thus we will refer to �T  as ‘the’ Serre functor of T .

Example 2.2 If X is a smooth projective variety, then the Serre functor �X ∶= �Db(X) takes 
the following explicit form

where �X is the dualizing sheaf of X. If � ∶ D ↪ Db(X) is an admissible subcategory, then

The latter is a general fact: if T  has Serre functor �T  , and it contains an admissible trian-
gulated subcategory D , then D has a Serre functor �D as well. The shape of �D is exactly 
the one above with �X replaced by �T  (see [27]).

Recall that T  is �-linear. An object E ∈ T  is exceptional if Hom(E,E[p]) = 0 , for all 
integers p ≠ 0 , and Hom(E,E) ≅ � . A set of objects {E1,… ,Em} in T  is an exceptional col-
lection if Ei is an exceptional object, for all i, and Hom(Ei,Ej[p]) = 0 , for all p and all i > j . 
An exceptional collection {E1,… ,Em} is

• orthogonal if Hom(Ei,Ej[p]) = 0 , for all i, j = 1,… ,m with i ≠ j and for all integers p;
• full if the smallest full triangulated subcategory of T  containing the exceptional collection 

is equal to T ;
• strong if Hom(Ei,Ej[p]) = 0 , for all p ≠ 0 and all i, j = 1,… ,m with i ≠ j.

Finally, assume that T  is a proper �-linear triangulated category. This means that

for all F and G in T  . Its numerical Grothendieck group N (T) is defined as the quotient

Here � denotes the Euler form on K(T) defined by

(2.1)⟂
D ∶= {E ∈ T ∶ Hom(E,D) = 0} D

⟂ ∶= {E ∈ T ∶ Hom(D,E) = 0}

T = ⟨D⟂,D⟩ = ⟨D, ⟂D⟩,

Hom(A,B) ≅ Hom(B, �T(A))
∨

�X(−) ∶= (−)⊗𝜔X[dim(X)],

�D ≅ �!
◦�X◦�.

dim�

(
⊕i Hom(F,G[i])

)
< +∞,

N (T) ∶= K(T)∕ ker� .

(2.2)�(−,−) =
∑

i

(−1)i dimHom(−,−[i])
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and K(T) stands for the Grothendieck group of T  , which is the free abelian group gener-
ated by isomorphism classes [F] of objects F ∈ D  modulo the relation [F] = [E] + [G] for 
every exact triangle E → F → G . Note that K(−) and N (−) are additive with respect to 
semiorthogonal decompositions.

2.2  Basic geometric examples

In this section we discuss the first examples of semiorthogonal decompositions of the 
derived categories of simple smooth projective varieties.

Example 2.3 (Points and exceptional objects) It is an easy exercise to show that if E is an 
exceptional object in a triangulated category T  , then the smallest full triangulated subcat-
egory ⟨E⟩ of T  containing E is equivalent to the bounded derived category of a point. On 
the other hand, if T  is a proper triangulated category and E ∈ T  is exceptional, then ⟨E⟩ is 
an admissible subcategory of T  (see, for example, [111, Proposition 2.6]).

In higher dimension we have two important and classical examples.

Example 2.4 (Projective spaces) In the case of the n-dimensional projective space ℙn , a 
classical result of Beilinson [18] shows that the set of line bundles

forms a full exceptional collection and so it yields a semiorthogonal decomposition

It should be noted that the collection (2.3) is also full and strong.

Example 2.5 (Quadrics) Assume now that Q is an n-dimensional smooth quadric in ℙn+1 
defined by an equation {q = 0} . We assume char(�) ≠ 2 . According to [71], the category 
Db(Q) has a semiorthogonal decomposition by exceptional bundles whose explicit form 
depends on the parity of n. More precisely, if n = 2m + 1 is odd,

where S is the spinor bundle on Q defined as coker(�|Q)(−1) and � ∶ Oℙn+1 (−1)2
m+1

→ O
2m+1

ℙn+1 
is such that �◦(�(−1)) = q ⋅ Id ∶ Oℙn+1 (−2)2

m+1

→ O
2m+1

ℙn+1.
If n = 2m is even, then we get

where S− ∶= coker(�|Q)(−1) , S+ ∶= coker(�|Q)(−1) , and �,� ∶ Oℙn+1 (−1)2
m

→ O
2m

ℙn+1 are 
such that �◦(�(−1)) = �◦(�(−1)) = q ⋅ Id . See [124] for more details on spinor bundles.

(2.3){Oℙn (−n),Oℙn (−n + 1),… ,Oℙn}

Db(ℙn) = ⟨Oℙn (−n),Oℙn (−n + 1),… ,Oℙn⟩.

Db(Q) = ⟨S,OQ,OQ(1),… ,OQ(n − 1)⟩,

Db(Q) = ⟨S−, S+,OQ,OQ(1),… ,OQ(n − 1)⟩,
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2.3  Fourier– Mukai functors

We now briefly recall how to define special classes of exact functors between admissible 
subcategories. The reader can have a look to [36] for a survey or to [55] for an extensive 
treatment. Note that all functors are derived.

Let X1 and X2 be smooth projective varieties over a field � with admissible embeddings

for i = 1, 2.

Definition 2.6 An exact functor 𝖥 ∶ D1 → D2 is of Fourier– Mukai type (or a Fourier– 
Mukai functor) if there exists E ∈ Db(X1 × X2) such that the composition �2◦� is isomor-
phic to the restriction

Here the exact functor ΦE is given by

where pi is the i-th natural projection.

By [79, Theorem  7.1], the projection functor onto an admissible subcategory 
D ↪ Db(X) is of Fourier– Mukai type. This motivates [85, Conjecture 3.7] which says that 
any exact equivalence 𝖥 ∶ D1 → D2 between admissible subcategories Di ↪ Db(Xi) , for Xi 
smooth projective over � , is of Fourier– Mukai type. Indeed, [79, Theorem 7.1] is a special 
case of this conjecture for � = id.

Here we propose the following restatement:

Question 2.7 Is any exact fully faithful functor 𝖥 ∶ D1 → D2 between admissible subcat-
egories Di ↪ Db(Xi) , for Xi smooth projective over � , of Fourier– Mukai type?

This is motivated by Orlov’s result that any fully faithful exact functor 
𝖥 ∶ Db(X1) → Db(X2) is of Fourier– Mukai type when Xi is smooth projective over a field � 
(see [121]). It should be noted that in [35, 38] the assumptions on � were weakened. In par-
ticular, assuming full is enough. More recently, [120] extended Orlov’s result to the smooth 
and proper case. Note that Question 2.7 is related to [85, Conjecture 3.7].

Motivated by the recent work [39, 105], we can actually state a weaker version of 
Question 2.7:

Question 2.8 Let 𝖥 ∶ D1 → D2 be an exact equivalence between admissible subcatego-
ries Di ↪ Db(Xi) , for Xi smooth projective over � . Is there a Fourier– Mukai equivalence 
D1 ≅ D2?

The problem above is mainly motivated by the recent developments about uniqueness 
of enhancements [105, Corollary 9.12] (see also [39, Section 7.2] and the recent improve-
ments in [34]). The idea is that, given an equivalence 𝖥 ∶ ���� (X1) → ����(X2) between 
the categories of perfect complexes on quasi-compact and quasi-separated schemes, one 

�i ∶ Di ↪ Db(Xi),

ΦE|D1
∶ D1 → Db(X2).

ΦE(−) ∶= p2∗(E⊗ p∗
1
(−)),
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can replace � with another equivalence which can be lifted to any dg model of ����(Xi) . 
Under additional suitable assumptions on Xi (e.g. if Xi is noetherian), the latter condition is 
equivalent to being of Fourier– Mukai type, due to [106, 143].

We expect Question 2.7 and Question 2.8 to have negative answers in general also due 
to the results in [34, Section 6.4] (see, in particular, Corollary 6.12 and Remark 6.13 there). 
We will discuss later when one can positively answer them in the geometric settings we are 
interested in.

3  Semiorthogonal decompositions for special projective varieties

In this section we would like to go beyond Example 2.4 and Example  2.5 and consider 
semiorthogonal decompositions for Db(X) for special but very interesting smooth projec-
tive varieties. In most of the examples discussed in this section, the derived category will 
contain a small set of exceptional objects of geometric origin and a nontrivial admissible 
subcategory right orthogonal as in (2.1) to the exceptional objects and which we will call 
Kuznetsov component.

3.1  Smooth projective curves

It is well known that if C is a smooth complex projective curve, then Db(C) determines C 
up to isomorphism:

Theorem 3.1 (Derived Torelli theorem for curves) Let C1 and C2 be smooth complex pro-
jective curves. Then Db(C1) ≅ Db(C2) if and only if C1 ≅ C2.

As it is explained in the proof of [55, Corollary 5.46], the delicate case which requires 
using the cohomology of the curve and then the classical Torelli theorem is when the genus 
of the curves is 1. All the other cases follow from the following beautiful result by Bondal 
and Orlov [29].

Theorem 3.2 (Derived Torelli theorem for (anti)Fano manifolds) Let X1 and X2 be smooth 
projective varieties with ample or antiample canonical bundle (i.e. either �Xi

 or �∨
Xi

 is an 
ample line bundle). Then Db(X1) ≅ Db(X2) if and only if X1 ≅ X2.

Apart from the case of ℙ1 which is covered by Example 2.4, in genus greater than 0 the 
triangulated category Db(C) does not have nontrivial semiorthogonal decompositions by 
[119].

Remark 3.3 Note that Theorem 3.1 remains true over any algebraically closed field � when 
the genus of the curves is not 1. This is because Theorem 3.2 holds in this more general 
setting. On the other hand, when the genus is 1, the assumption 𝕂 = ℂ cannot be removed 
as there are nonisomorphic smooth projective curves of genus 1 with equivalent derived 
categories (see [4, 139]).
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3.2  Enriques surfaces

Let � be an algebraically closed field of characteristic different from 2. An Enriques 
surface is a smooth projective surface X defined over � such that H1(X,OX) = 0 and 
the dualizing line bundle �X is nontrivial but 2-torsion. An Enriques surface X can be 
equivalently characterized as a quotient of a K3 surface by an involution acting without 
fixed points.

The derived category Db(X) of an Enriques surface determines the surface up to isomor-
phism in view of the following result which is a rewriting of [26, Proposition 6.1] and [54, 
Theorem 1.1]:

Theorem 3.4 (Derived Torelli theorem for Enriques surfaces) Let X1 and X2 be smooth pro-
jective surfaces defined over an algebraically closed field � of characteristic different from 
2. If X1 is an Enriques surface and there is an exact equivalence Db(X1) ≅ Db(X2) , then 
X1 ≅ X2.

Clearly the situation becomes much more involved when � has characteristic 2. In 
this case the definition has to be slightly modified: an Enriques surface is a minimal 
smooth projective surface whose canonical bundle is numerically trivial and such that 
the second Betti number is 10. If char(�) ≠ 2 , this definition coincides with the one 
above. But when char(�) = 2 , then one gets three families:

• Classical Enriques surfaces: they are characterized by the fact that dim(H1(X,O
X
)) = 0 ;

• Singular Enriques surfaces: in this case dim(H1(X,OX)) = 1 and such a cohomology 
group carries a nontrivial action of the Frobenius;

• Supersingular Enriques surfaces: in this case dim(H1(X,OX)) = 1 and this cohomol-
ogy group carries a trivial action of the Frobenius.

In the first case the canonical bundle is nontrivial and 2-torsion while, in the latter two 
cases, the canonical bundle is trivial. Singular Enriques surfaces are again realized as 
quotients of K3 surfaces. The reader can have a look at [44] and [48] for an extensive 
treatment of Enriques surfaces and [47] for a shorter but informative one.

It is then natural to raise the following question:

Question 3.5 Is Theorem 3.4 still true when char(�) = 2 for some/all of the three families 
above?

Remark 3.6 It is clear that we should not expect an analogue of Theorem 3.4 to hold for 
all smooth projective surfaces. Indeed, already for abelian surfaces [114] and K3 surfaces 
[118, 140], this is known to be false.

For the rest of this section we stick to the case where � is algebraically close and 
char(�) ≠ 2 . We can further analyze Db(X) by means of the following result which is 
certainly well-known to experts.
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Proposition 3.7 ([97, Proposition 3.5]) Let X be an Enriques surface over � as above. 
Then Db(X) contains an admissible subcategory L = ⟨L1,… ,Lc⟩ , where L1,… ,Lc are 
orthogonal admissible subcategories and

Here: 

(1) Li
j
 is a line bundle such that Li

j
= Li

1
⊗OX(R

i
1
+⋯ + Ri

j−1
) , where Ri

1
,… ,Ri

j−1
 form a 

chain of (−2) rational curves of Aj−1 type1;
(2) {Li

1
,… , Li

ni
} is an exceptional collection; and

(3) n1 +⋯ + nc = 10.

We can illustrate the geometry attached to the collection L  in some interesting cases.

Example 3.8 A generic Enriques surface does not contain (−2)-curves. Thus the collec-
tion in Propsition 3.7 gets much simplified. In particular, with the above notation, we have 
ni = 1 for every i = 1,… , c , and we get 10 completely orthogonal blocks Li = ⟨Li⟩ , where 
Li ∶= Li

1
 is an exceptional line bundle, for all i = 1,… , 10.

If 𝕂 = ℂ and X does not contain (−2)-curves, then [146] gives a very geometric inter-
pretation of these orthogonal line bundles. Indeed, any ample polarization on X of degree 
10 yields 10 elliptic pencils each containing 2 double fibers. Denote them by F+

i
 and F−

i
 . 

Then we can take Li ∶= OX(−F
+
i
) . One can prove that, for all i, we have the relation 

F+
i
= F−

i
+ KX , where KX is the canonical class. Using the Serre functor (see Example 2.2), 

one immediately sees that it is possible to change any Li to OX(−F
−
i
) and still get a com-

pletely orthogonal collection of 10 line bundles. In particular, Db(X) contains many dis-
tinct collections of exceptional objects, as we have at least 210 = 1024 possible choices of 
orthogonal exceptional collections of line bundles in Db(X) (see [97, Example 3.4] for a 
more detailed discussion).

Thus, if X is an Enriques surface and L  is a collection of exceptional line bundles as in 
Propsition 3.7, then we get a semiorthogonal decomposition

The admissible subcategory Ku(X,L ) ∶= L
⟂ is referred to as the Kuznetsov component of 

X. As the notation suggests, it is important to keep in mind that Ku (X,L ) depends on L  
and not just on X.

The Kuznetsov component is, at the moment, quite a mysterious subcategory. On one 
hand, it is certainly easy to show that it is nonzero. Indeed, its numerical Grothendieck 
group can be easily described:

Furthermore, if

Li = ⟨Li
1
,… , Li

ni
⟩.

(3.1)Db (X) = ⟨Ku (X,L ), L ⟩.

N (K u (X,L)) ≅ ℤ⊕ ℤ.

1 This is a pretty compact and standard way to say that the rational curves Ri
1
,… ,Ri

j−1
 form a root basis of 

type Aj−1.
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denotes the embedding with right adjoint �! , then the object

is nontrivial in Ku(X,L ) , for Li
1
 the line bundles in Propsition 3.7. On the other hand, three 

potentially interesting and related open problems are summarized by the following:

Question 3.9 (i) Does the Serre functor �Ku (X,L ) have an explicit and computable descrip-
tion (other than the abstract one in Example 2.2)?

(ii) Is Ku (X,L ) indecomposable2?
(iii) Does Question 2.7 or Question 2.8, with Di ∶= Ku (Xi,Li) , have a positive answer 

for the Kuznetsov component Ku (X,L )?

In Section 4.2 we will comment on the action of �Ku (X,L ) on some special objects of 
Ku (X,L ) and we will mention why a positive answer to Question 3.9 (ii) may be interest-
ing to provide yet another counterexample to the Jordan– Hölder conjecture. A positive 
answer to Question 3.9 (iii) (in either of the two forms) would yield a simpler statement for 
the Categorical Torelli theorem discussed later.

Remark 3.10 As we observed in the introduction, not all surfaces admit nontrivial semi-
orthogonal decompositions. Already for surfaces of Kodaira dimension 0, K3 and abelian 
surfaces have indecomposable derived categories. Additional interesting results in dimen-
sion 2 are contained in [72, Section 5].

3.3  Prime Fano threefolds

We turn now to the case of Fano threefolds, i.e. smooth projective threefolds X defined 
over an algebraically closed field � and such that �∨

X
= OX(−KX) is ample. We stick to the 

examples where the rank �X of the Picard group Pic(X) of X is 1, which are called prime 
Fano threefolds. Under these assumptions, we denote by HX the primitive ample generator 
of Pic(X).

The classification of prime Fano threefolds was achieved in [65, 117] in characteristic 
0. These classification results have been extended to positive characteristic in [138]. These 
threefolds are classified by two numerical invariants. The first one is the index which is the 
positive integer iX such that

The second one is the degree which is the positive integer d ∶= H3
X
.

It turns out that iX ∈ {1, 2, 3, 4} . The cases iX = 3 and iX = 4 correspond to X = Q and 
X = ℙ3 , respectively, where Q is a 3-dimensional quadric. In both cases, we know all about 
Db(X) in view of Example 2.4 and Example 2.5 (when char(�) ≠ 2 ), respectively. Thus we 
can stick to iX = 1, 2.

� ∶ Ku (X,L) ↪ Db (X)

(3.2)Si ∶= �!(Li
1
)

KX = −iXHX .

2 This would mean that K (X,L ) does not admit a nontrivial semiorthogonal decomposition.
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Prime Fano threefolds with index 1 are organized in 10 deformation types. Moreover, 
the degree of these Fano threefolds dX = 2gX − 2 is even and the deformation type is char-
acterized by the choice of 2 ≤ gX ≤ 12 but gX ≠ 11 , where gX is called the genus of X.

Now, for gX = 2, 3, 4, 5 we consider the semiorthogonal decomposition

On the other hand, if gX is even and greater than 4, then we have

where E2 is a rank-2 stable vector bundle on X whose existence is claimed in [115] (see 
[14, Section  6] for a careful proof of this fact which is valid for algebraically closed 
fields of characteristic either 0 or sufficiently large). For odd genus gX = 7, 9 , we use 
again [115] which yields a rank-5 and rank-3 vector bundle E5 and E3 and semiorthogonal 
decompositions

when X has genus 7 and 9, respectively.
In all the above cases, the residual category Ku(X) is called Kuznetsov component. 

It is worth pointing out that Ku(X) can be better understood in some interesting cases. 
What is known is summarized in the following table, where the third column indicates 
the reference where the semiorthogonal decomposition in the second column is pro-
vided. As above, the base field has characteristic either zero or sufficiently large.

�X = 1 & iX = 1

gX Semiorthogonal decomposition Reference

12 D
b
(X22) = ⟨E4, E3, E2,O⟩ [82, Thm. 4.1]

10 D
b
(X18) = ⟨Db

(C2), E2,O⟩ [86, §6.4]
9 D

b
(X16) = ⟨Db

(C3), E3,O⟩ [86, §6.3]
8 D

b
(X14) = ⟨Ku(X14), E2,O⟩ [81]

7 D
b
(X12) = ⟨Db

(C7), E5,O⟩ [86, §6.2]
6 D

b
(X10) = ⟨Ku(X10), E2,O⟩ [82, Lem. 3.6]

5 D
b
(X8) = ⟨Ku(X8),O⟩

4 D
b
(X6) = ⟨Ku(X6),O⟩

3 D
b
(X4) = ⟨Ku(X4),O⟩

2 D
b
(X2) = ⟨Ku(X2),O⟩

In the table, Xd denotes a prime Fano threefold of index 1 and degree d = 2g − 2 , Cg 
denotes a smooth curve of genus g while Ei refer to vector bundles which are explicitly 
described in the references in the third column. It is worth to point out that in some 
cases the semiorthogonal decomposition of Db(X6) can be refined. More precisely, note 
that X6 is a complete intersection of a quadric hypersurface and a cubic hypersurface in 
ℙ5 . When the quadric cutting X6 is smooth, there is a semiorthogonal decomposition

where S  is the restriction to X of a spinor bundle on the quadric.

(3.3)Db(X) = ⟨Ku(X),OX⟩.

(3.4)Db(X) = ⟨Ku(X), E2,OX⟩,

(3.5)Db(X) = ⟨Ku(X), E5,OX⟩ Db(X) = ⟨Ku(X), E3,OX⟩,

Db(X6) = ⟨AX ,S,O⟩,
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Prime Fano threefolds with index 2 are usually referred to as del Pezzo threefolds. 
They all have a canonical semiorthogonal decomposition

where Ku(X) is, as usual, the Kuznetsov component. The degree dX is subject to the bounds 
1 ≤ dX ≤ 5 and in some cases the Kuznetsov component can be further analyzed according 
to the following table:

�X = 1 & iX = 2

dX Semiorthogonal decomposition Reference

5 D
b
(X5) = ⟨F3,F2,O,O(H

X5
)⟩ [122]

4 D
b
(X4) = ⟨Db

(C2),O,O(H
X4
)⟩ [30, Thm. 2.9]

3 D
b
(X3) = ⟨Ku(X3),O,O(H

X3
)⟩

2 D
b
(X2) = ⟨Ku(X2),O,O(H

X2
)⟩

1 D
b
(X1) = ⟨Ku(X1),O,O(H

X1
)⟩

In the table, C2 is a smooth curve of genus 2 and F3,F2 are vector bundles of rank 
3 and 2, respectively, described explicitely in the reference in the third column. In the 
above list, when iX = 2 and dX = 3 we get the celebrated case of cubic threefolds (i.e. 
smooth degree 3 hypersurfaces in ℙ4 ) which are going to be important examples that 
we will analyze in full detail. The Kuznetsov components of cubic threefolds yield 
examples of the following special class of triangulated categories.

Definition 3.11 

 (i) A triangulated category T  is a fractional Calabi– Yau category if T  has Serre func-
tor �T  and there exist positive integers p and q ≠ 0 such that �q

T
= [p] . The fraction 

p

q
 is called the fractional dimension of T .

 (ii) A fractional Calabi– Yau category where q = 1 is a p-Calabi– Yau category.

The following result is going to be relevant later in the paper:

Proposition 3.12 Let X be a cubic threefold. Then the Kuznetsov component Ku(X) in (3.6) 
is a fractional Calabi– Yau of fractional dimension 5

3
.

Proof The admissible subcategory Ku(X) has Serre functor by Example 2.2. We can then 
simply apply [81, Corollary 4.4] (see also [81, Corollary 4.3] for a more general statement).

The following question is then natural.

Question 3.13 Is Ku(X) indecomposable, when X is a cubic threefold?

Remark 3.14 A list of other prime Fano threefolds with Kuznetsov component which is a 
fractional Calabi– Yau category can be deduced from [84] (see Section 2.4 therein) and 
[91]. One interesting example is provided by quartic threefolds, i.e. smooth hypersurfaces 
of degree 4 in ℙ4 . According to the first table above ( � = i = 1 and g = 3 ), if X is a quartic 

(3.6)Db(X) = ⟨Ku(X),OX ,OX(HX)⟩,
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threefold, we have a semiorthogonal decomposition as in (3.3). In this case, Ku(X) is a frac-
tional Calabi– Yau category of fractional dimension 10

4
 . We will comment on this case later.

After discussing the Categorical Torelli theorem for cubic threefolds, we will 
explain that Question 2.8 has a positive answer for Ku(X) , when X is a cubic threefold 
(see Corollary 6.5).

3.4  Higher dimensional Fano manifolds: cubic fourfolds

A cubic fourfold is a smooth cubic hypersurface in ℙ5 . Here we assume that X is defined 
over an algebraically closed field � such that char(�) ≠ 2.

The derived category of a cubic fourfold X has again a natural semiorthogonal 
decomposition

where H is the class of a hyperplane section of X. The admissible subcategory Ku(X) is the 
Kuznetsov component of X.

Proposition 3.15 If X is a cubic fourfold, then the Kuznetsov component Ku(X) is an inde-
composable 2-Calabi– Yau category for which Question 2.7 has a positive answer.

Proof The fact that Ku(X) is a 2-Calabi– Yau category is again a consequence of [81, Cor-
ollary 4.3]. Moreover, it is an indecomposable admissible subcategory due to the well-
known argument in [84, Section 2.6]. The fact that Question 2.7 has a positive answer is 
the content of [98] (based on [34, 37]).

It was observed by Kuznetsov in [80] that, in many cases, one can realize the Kuznet-
sov component of a cubic fourfold as the derived category of a K3 surface. For example, 
this happens for Pfaffian cubic fourfolds. Subsequent recent work carried out in [2] and 
[13] completely classified all cubic fourfolds whose Kuznetsov component is equiva-
lent to the derived category of a K3 surface. This body of work is very much related to 
the following very influential conjecture (see [80, Conjecture 1.1]) which we state even 
though it is not directly related to the rest of this paper.

Conjecture 3.16 (Kuznetsov) A cubic fourfold X is rational if and only if Ku(X) is equiva-
lent to the bounded derived category of a K3 surface.

None of the two implications is clear but the conjecture perfectly matches the classi-
cal Hodge theoretic still conjectural characterization of rational cubic fourfolds due to 
Harris and Hassett. Some important results in this direction are contained in [133, 134].

Remark 3.17 As it was first pointed out in [80], there are cubic fourfolds X such that Ku(X) 
is equivalent to the derived category Db(S, �) of twisted coherent sheaves, where S is a K3 
surface and � is an element in the Brauer group Br(S) ∶= H2(S,O∗

S
)tor of S (see [33, Chap-

ter 1] for an extensive introduction to twisted coherent sheaves and their derived catego-
ries). The complete classification of all cubic fourfolds for which this is true was carried 

(3.7)Db(X) = ⟨Ku(X),OX ,OX(H),OX(2H)⟩,
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out in [13, 57]. In view of Conjecture 3.16 it is certainly interesting to understand which 
geometric property of X corresponds to having an equivalence Ku(X) ≅ Db(S, �).

Because of the many similarities with the derived categories of K3 surfaces—only 
few of which have been discussed here—the Kuznetsov component Ku(X) is an example 
of so called noncommutative K3 surfaces.

Remark 3.18 For actual K3 surfaces, the description of the autoequivalences group of their 
bounded derived categories is a challenging problem (see, for example, [9, 59, 116, 121]). 
One could of course try to describe the autoequivalences group of a noncommutative K3 
surface as well. We will go back to this issue later in the paper. For later use, we content 
ourselves with the observation from [81] that, for a cubic fourfold X, the category Ku(X) 
has always an autoequivalence

where �∗ is the left adjoint of the inclusion � ∶ Ku(X) ↪ Db(X) and H is a hyperplane class. 
Such an autoequivalence is called degree shift functor. It is not difficult to see that, by defi-
nition, �X is of Fourier– Mukai type.

Assume now that 𝕂 = ℂ . It was observed in [2] (see also [111, Section 3.4]) that the 
Kuznetsov component Ku(X) of a cubic fourfold X is equipped with an even unimodular 
lattice H̃(Ku(X),ℤ) with a weight-2 Hodge structure induced by the Hodge decomposition 
of H4(X,ℂ) . Such a lattice is usually referred to as the Mukai lattice of X.

For the convenience of the reader let us spell out some details in the construction. First 
observe that the topological K-theory Ktop(X) of X comes equipped with the pairing

where p ∶ X → pt . As a group H̃(Ku(X),ℤ) is defined as the set of classes in Ktop(X) which 
are orthogonal, with respect to �(−,−) to the classes of the three line bundles OX(iH) , with 
i = 0, 1, 2 . This is nothing but the topological K-theory Ktop(Ku(X)) of the admissible sub-
category Ku(X) . Then the restriction of (−,−) ∶= −�(−,−) to Ktop(Ku(X)) defines a pair-
ing on it, called the Mukai pairing.

Remark 3.19 It was proved in [2] that the lattice H̃(Ku(X),ℤ) is deformation invariant. 
Moreover, when Ku(X) is equivalent to the derived category of a K3 surface, H̃(Ku(X),ℤ) 
is Hodge isometric to the Mukai lattice of the K3 surface. In particular, as a lattice, 
�H(Ku(X),ℤ) ≅ U⊕4 ⊕ E8(−1)

⊕2 , where U is the hyperbolic lattice and E8(−1) is the twist 
by −1 of the lattice corresponding to the root system E8.

The lattice H̃(Ku(X),ℤ) comes with a weight-2 Hodge structure defined as follows. 
Consider the natural map

which is usually called Mukai vector. See [2, Section 2] for more details. Taking its com-
plexification, we then set

𝖮X ∶ Ku(X) → Ku(X) E ↦ 𝜄∗(E⊗OX(H)),

𝜒(v1, v2) ∶= p∗(v
∨
1
⊗ v2) ∈ Ktop(pt) ≅ ℤ,

(3.8)� ∶ Ktop(X) → H∗(X,ℚ)
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Set H̃Hodge(Ku(X),ℤ) ∶= H̃1,1(Ku(X)) ∩ H̃(Ku(X),ℤ).
For later use, we are interested in describing special classes in H̃Hodge(Ku(X),ℤ) . To this 

extent, if we denote by �∗ ∶ Db(X) → Ku(X) the projection functor as above and by � any 
line in X, we can consider the classes

in the numerical Grothendieck group N (Ku(X)) of Ku(X).

Remark 3.20 The integral Hodge conjecture for cubic fourfolds was originally proved in 
[144, Theorem  18] and then reproved in [13, Corollary 29.8] (see also [125] for a gen-
eral treatment). As for the Kuznetsov component, one can prove that H̃Hodge(Ku(X),ℤ) is 
naturally isometric to the numerical Grothendieck group N (Ku(X)) of the Kuznetsov com-
ponent and thus not only it contains interesting classes as observed above but it entirely 
consists of algebraic classes (see [13, Theorem 29.2]).

It is then clear that the classes �1 and �2 are in �HHodge(Ku(X),ℤ) ⊆ �H(Ku(X),ℤ) as 
well. We set

to be the primitive sublattice of H̃Hodge(Ku(X),ℤ) generated by the classes �1 and �2 . With 
the choice of these generators, A2 is the free ℤ-module ℤ⊕ ℤ with intersection form given 
by the matrix

4  Enriques surfaces

In this section we want to state and prove the Categorical Torelli theorem for Enriques 
surfaces as in [97, 100]. As we will see, we need to consider the semiorthogonal decom-
positions in Section 3.2. The key idea is to prove and use an extension result for Fou-
rier– Mukai equivalences between admissible subcategories. In particular, no stability 
conditions are needed here.

H̃1,1(Ku(X)) ∶=�−1

(
⨁

p

Hp,p(X)

)

H̃2,0(Ku(X)) ∶=�−1(H3,1(X))

H̃0,2(Ku(X)) ∶=�−1(H1,3(X))

(3.9)�1 ∶= [�∗(O
�
(1))] �2 ∶= [�∗(O

�
(2))]

(3.10)A2 = ⟨�1,�2⟩

(
2 − 1

−1 2

)
.
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4.1  Extending Fourier– Mukai equivalences

In this section we illustrate a general criterion which was proved in [97]. It allows us 
to extend Fourier– Mukai equivalences between admissible subcategories under some 
assumptions on the nature of the semiorthogonal decompositions.

Proposition 4.1 ([97, Propositions 2.4 and 2.5]) Let �1 ∶ D1 ↪ Db(X1) be an admissible 
embedding and let E ∈⟂D1 be an exceptional object. Let ΦE ∶ Db(X1) → Db(X2) be a Fou-
rier– Mukai functor with the property that ΦE(

⟂D1) ≅ 0 . Suppose further that 

(a) ΦE|D1
 is an equivalence onto an admissible subcategory D2 with embedding 

�2 ∶ D2 ↪ Db(X2) , and
(b) there is an exceptional object F ∈ ⟂D2 and an isomorphism � ∶ ΦE(�1�

!
1
(E))

∼
�������→ �2�

!
2
(F) , 

where �!
i
 is the right adjoint of �i.

Then there exists a Fourier– Mukai functor ΦẼ ∶ Db(X1) → Db(X2) satisfying 

(1) ΦẼ(
⟂⟨D1,E⟩) ≅ �;

(2) ΦẼ|D1
≅ Φ|D1

 and ΦẼ(E) ≅ F;
(3) ΦẼ�⟨D1,E⟩ is an equivalence onto ⟨D2,F⟩.

In general, such a criterion is not easy to apply. We will try to clarify this with a brief 
vague discussion. Assumption (b) is hard to verify in concrete examples and, in some 
cases, it might happen that (b) is not satisfied by a given Fourier– Mukai equivalence ΦE 
which must then be composed with some additional autoequivalence of D2 (or D1 ). Heuris-
tically, we should expect to be able to apply such a result either when we have a good grip 
on the autoequivalence groups of D1 and D2 or when we have a good understanding of the 
object �1�!

1
(E) . We will show in the next section that for Enriques surfaces we are in the 

second scenario.
Of course, the criterion can be iterated when the orthogonal complement of Di con-

sists of more than one exceptional object. As we will see, this makes computations more 
complicated.

Remark 4.2 We conclude this section by pointing out that the above criterion is very much 
related to the gluing theory for dg categories and dg functors developed in [88]. The reader 
can have a look at [97, Section 2.3] for an extensive discussion.

4.2  Special objects and their classification

As we mentioned, the Categorical Torelli theorem for Enriques surfaces will be obtained 
as an application of Theorem 3.4 and Propsition 4.1. And, as we commented above, this is 
made possible by a complete understanding of the projection into the Kuznetsov compo-
nent of the 10 exceptional line bundles in L .

Let us begin with a general discussion.
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Definition 4.3 Let T  be a triangulated category that is linear over a field � and with Serre 
functor �T  . 

(a) An object E in T  is n-spherical if: 

 (i) There is an isomorphism of graded vector spaces �Hom(E,E) ≅ �⊕ �[−n];
 (ii) �T(E) ≅ E[n].

(b) An object E in T  is n-pseudoprojective if: 

 (i) T h e r e  i s  a n  i s o m o r p h i s m  o f  g r a d e d  ve c t o r  s p a c e s 
�Hom(E,E) = �⊕ �[−1]⊕⋯⊕ �[−n];

 (ii) �T(E) ≅ E[n].

Spherical objects were introduced and studied in [137]. They often appear in triangu-
lated categories of Calabi– Yau type and, more specifically, in the derived category of 
smooth projective Calabi– Yau varieties. They naturally define special autoequivalences 
which are called spherical twists and which correspond, under Mirror Symmetry, to Dehn 
twists in the mirror Fukaya category.

The notions of spherical object and spherical twist have been widely extended and gen-
eralized. Actually, n-pseudoprojective objects are part of this more general picture. Indeed, 
the graded vector space of derived endomorphisms is, up to multiplying by 2 the degree, 
the same as the graded vector space of the total cohomology of an n-dimensional complex 
projective space. Hence, n-pseudoprojective objects are slight generalizations of the kind 
of objects studied in [61, 76].

Let us go back to the geometric setting and let us assume that X is an Enriques surface. 
As we explained in Section 3.2, we have a semiorthogonal decomposition

as in (3.1), where the 10 exceptional line bundles in L  are as in Propsition  3.7. With-
out loss of generality, we can reorganize these exceptional objects to get a semiorthogonal 
decomposition

into blocks such that, if c ≠ 10 , then there is a positive integer 1 ≤ d ≤ c such that Lj con-
sists of more than one object if 1 ≤ j ≤ d and of just one object if d < j ≤ c.

Consider now the corresponding objects Si ∈ Ku(X,L ) defined in (3.2). They provide a 
complete classification of 3-spherical and 3-pseudoprojective objects in Ku(X,L ) accord-
ing to the following result.

Theorem 4.4 ([97], Proposition 4.10 & [100], Theorem 2.7) In the setting above, if F is an 
object in Ku(X,L ) , then 

(1) F is 3-spherical if and only if F ≅ Sj[k] for some d < j ≤ c and k ∈ ℤ;
(2) F is 3-pseudoprojective if and only if F ≅ Sj[k] for some 1 ≤ j ≤ d and k ∈ ℤ.

(4.1)Db(X) = ⟨Ku(X,L ),L ⟩

(4.2)L = ⟨L1,… ,Lc⟩
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Furthermore, all these 3-spherical and 3-pseudoprojective objects are not isomorphic.
As we pointed out in [100, Remark 2.9], this result (see also its easy consequence 

[100, Corollary 2.8]) together with a positive answer to Question 3.9 (ii) would provide 
another counterexample to the Jordan– Hölder property for semiorthogonal decomposi-
tions. Roughly, such a property predicts that if X is a smooth projective variety then the 
semiorthogonal decompositions of Db(X) are essentially unique, up to a reordering of the 
components and up to equivalence. The fact that this property does not hold in general is 
not new due to the counterexamples in [7, 77].

4.3  The categorical Torelli theorem

We are now ready to state the main result of this section which is a combination of [97, 
Theorem A] and [100, Theorem A] (where we refer to the result below as the Refined 
Derived Torelli theorem).

Theorem  4.5 (Categorical Torelli theorem for Enriques surfaces) Let X1 and X2 be Enr-
iques surfaces over an algebraically closed field � of characteristic different from 2. If they 
possess semiorthogonal decompositions

where i = 1, 2 and Ni  is defined as in Section 4.2 (with L  replaced by Ni  ), and there exists 
an exact equivalence 𝖥 ∶ Ku(X1,N1)

∼
�������→ Ku(X2,N2) of Fourier– Mukai type, then X1 ≅ X2.

For simplicity, we illustrate the proof of Theorem 4.5 when N1 and N2 consist of 10 
completely orthogonal line bundles. Hence,

for i = 1, 2 . By Theorem 4.4 (1), the projections Si,j of Li,j into Ku(Xi,Ni) are, up to shift 
and isomorphism, the only 3-spherical objects in Ku(Xi,Ni) . The more general case where 
Ni  contains blocks with more then one object is dealt similarly by using Theorem 4.4 (2).

The idea is to extend the Fourier– Mukai equivalence 𝖥 ∶ Ku(X1,N1) → Ku(X2,N2) 
step by step by adding all the 10 exceptional objects in Ni  . It is not difficult to see that, 
since these objects are completely orthogonal, it is enough to show how to add one of 
them. Thus, let us consider L1,1 and its projection S1,1 . Since being 3-spherical is a prop-
erty which is invariant under equivalence, the object �(S1,1) is 3-spherical as well. By 
Theorem 4.4 (1), up to shift, there is j ∈ {1,… , 10} and an isomorphism

Again, by orthogonality, we can permute the exceptional objects L2,j ’s and assume, without 
loss of generality, that j = 1.

Now, a direct application of Propsition 4.1 implies that the Fourier– Mukai equiva-
lence � extends to a Fourier– Mukai equivalence

The same argument can be applied again for the other exceptional objects in N1 and, in a 
finite number of steps, we get an equivalence Db(X1) ≅ Db(X2) . Now we can just invoke 

Db(Xi) = ⟨Ku(X1,N1),Ni⟩,

Ni = ⟨Li,1,… , Li,10⟩,

�(S1,1) ≅ S2,j.

𝖥1 ∶ ⟨Ku(X1,N1), L1,1⟩ → ⟨Ku(X2,N2), L2,1⟩.
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Theorem 3.4 and deduce that X1 ≅ X2 . The careful reader might have noticed that, a priori, 
the argument gets more complicated when we add more exceptional objects: one should 
classify 3-spherical objects in categories which are larger that the original Kuznetsov com-
ponent. But this is in reality much simpler because the line bundles Li,j are completely 
orthogonal and the projection of Li,j onto

is the same as the projection onto Ku(Xi,Ni) . Furthermore the situation gets even more 
involved when we deal with Enriques surfaces whose Kuznetsov component contains pseu-
doprojective objects. The detailed explanation about how these problems can be overcome 
are not suited for this survey and we refer to the original papers [97] and [100].

Remark 4.6 

 (i) The Categorical Torelli theorem above has a trivial converse: if X1 and X2 are iso-
morphic Enriques surfaces and Db(X1) has a semiorthogonal decomposition as in 
Section 3.2, then Db(X2) has a semiorthogonal decomposition of the same type and 
there is a Fourier– Mukai equivalence Ku(X1,L1) ≅ Ku(X2,L2) , for appropriate L1 
and L2 . This is simply because any isomorphism X1 ≅ X2 induces a Fourier– Mukai 
equivalence between the whole derived categories which then trivially restricts to a 
Fourier– Mukai equivalence between the Kuznetsov components.

 (ii) The technique used in the proof is quite powerful and it was also used in [97] to give 
a new and simple proof of [64, Conjecture 4.2] (see [97, Theorem B]).

We conclude this section by observing that our proof of Theorem 4.5 is almost com-
pletely characteristic free. The only point where we use that � is not only algebraically 
closed but also such that char(�) ≠ 2 is when we invoke Theorem  3.4. Thus, if we can 
answer Question 3.5 in the positive, then we can extend Theorem 4.5 to Enriques surfaces 
over fields of characteristic 2. Furthermore, if we provide a positive answer to Question 3.9 
(iii), we can avoid assuming that the equivalence between the Kuznetsov components is of 
Fourier– Mukai type.

5  A brief introduction to (weak) stability conditions

Stability conditions on triangulated categories have been defined for the first time by 
Bridgeland in [24], generalizing the notion of slope stability for sheaves on curves. Since 
then, the development of the theory has led to applications in classical algebraic geom-
etry and in the study of moduli spaces of stable objects in admissible subcategories of 
the bounded derived category. In this section, we review the definition of (weak) stability 
conditions and the construction in the case of the bounded derived category of a smooth 
projective variety via tilt stability. Our main references are [11, 13, 24].

⟨Ku(Xi,Ni), L1,i,… , Li,j−1⟩
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5.1  Definitions

Let � be an algebraically closed field of arbitrary characteristic. Let X be a smooth pro-
jective variety over � and D be a full admissible subcategory of Db(X) . A (weak) stabil-
ity condition on D is essentially the data of the heart of a bounded t-structure and of a 
(weak) stability function detecting the semistable objects, satisfying certain compatibility 
conditions.

Definition 5.1 The heart of a bounded t-structure on D is a full subcategory A ⊂ D such 
that 

 (i) for E,F ∈ A  and k < 0 we have Hom(E,F[k]) = 0 , and
 (ii) for every object E ∈ D  there is a sequence of morphisms 

 such that Cone(�i) is of the form Ai[ki] for some sequence k1 > k2 > ⋯ > km of 
integers and objects 0 ≠ Ai ∈ A .

Note that the heart of a bounded t-structure A  is not a triangulated category. By [19] 
we have that A  is an abelian category. We denote by K(A ) the Grothendieck group of 
A  . As an example, the abelian category Coh(X) of coherent sheaves on X is the heart of a 
bounded t-structure on D = Db(X).

Remark 5.2 Given E ∈ D , the objects Ai in Definition 5.1 are uniquely determined and 
functorial (also the integers ki are unique). They are called the cohomology objects of E in 
the heart A .

Definition 5.3 Let A  be the heart of a bounded t-structure on D . A group homomorphism 
Z ∶ K(A) → ℂ is a weak stability function on A  if for any 0 ≠ E ∈ A  we have ℑZ(E) ≥ 0 , 
and in the case that ℑZ(E) = 0 , we have ℜZ(E) ≤ 0 . A stability function on A  is a weak 
stability function Z such that for any 0 ≠ E ∈ A  with ℑZ(E) = 0 , we have ℜZ(E) < 0.

Given a (weak) stability function Z, the slope of E ∈ A  is

and the phase of E is

We point out that if Z(E) = 0 , then �Z(E) = +∞ and �(E) = 1 . If F = E[k] for E ∈ A  , then 
�(F) = �(E) + k.

Let K(D) be the Grothendieck group of D . It is not difficult to see that K(D) = K(A) . 
Fix a finite rank free abelian group Λ and a surjective morphism � ∶ K(D) ↠ Λ.

0 = E0

�1

����������→ E1 → …
�m

�����������→ Em = E

𝜇Z(E) =

{
−

ℜZ(E)

ℑZ(E)
if ℑZ(E) > 0,

+∞ otherwise,

𝜙(E) =

{ 1

𝜋
Arg(Z(E)) if ℑZ(E) > 0,

1 otherwise.
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Definition 5.4 A weak stability condition (with respect to � ) on D is a pair � = (A, Z) , 
where A  is the heart of a bounded t-structure on D and Z ∶ Λ → ℂ is a group morphism 
called central charge, satisfying the following properties: 

(a) The composition K(A ) = K(D)
�

�����→ Λ
Z
������→ ℂ is a weak stability function on A  (we will 

write Z(−) instead of Z(�(−)) for simplicity).
  We say that an object E ∈ D  is �-(semi)stable if E[k] ∈ A  for some k ∈ ℤ , and for 

every proper subobject F ⊂ E[k] in A  we have 𝜇Z(F) < (≤) 𝜇Z(E[k]∕F).
(b) Harder–Narasimhan property: Every object E ∈ A  has a filtration 

 where Ai ∶= Ei∕Ei−1 ≠ 0 is �-semistable and 𝜇Z(A1) > ⋯ > 𝜇Z(Am).
(c) Support property: There exists a quadratic form Q on Λ⊗ℝ such that the restriction 

of Q to kerZℝ ⊂ Λ⊗ℝ is negative definite and Q(E) ≥ 0 for all �-semistable objects 
E in A .

If Z◦� is a stability function, we say that � is a Bridgeland stability condition on D (with 
respect to �).
Remark 5.5 

 (i) It is possible to verify that the filtration in Definition 5.4(b) is unique and functorial. 
Moreover, the Harder–Narasimhan property and Definition 5.1(ii) imply that every 
object in D  has a filtration in �-semistable ones, which are called HN factors. We 
denote by �+(E) (resp. �−(E) ) the largest (resp. smallest) phase of the HN factors of 
0 ≠ E ∈ D .

 (ii) A (weak) stability condition � = (A, Z) determines a slicing, i.e. a collection of full 
additive subcategories P(𝜙) ⊂ D  for � ∈ ℝ , defined as follows: 

(1) for � ∈ (0, 1] , the subcategory P(�) is the union of the zero object and all �
-semistable objects with phase �;

(2) for � + n with � ∈ (0, 1] and n ∈ ℤ , set P(� + n) ∶= P(�)[n].

    We will use the notation P(I) , where I ⊂ ℝ is an interval, to denote the extension-
closed subcategory of D generated by the subcategories P(�) with � ∈ I . By Defini-
tion 5.4 we have P((0, 1]) = A .

The notion of weak stability condition is very useful for the construction of Bridge-
land stability conditions, as we will explain in Section 5.3.

A Bridgeland stability condition is a stability condition in the sense of [24]. Note that 
it is not clear whether there exist moduli spaces parametrizing semistable objects with a 
fixed class in Λ , since they do not have a GIT description. Following the recent develop-
ments in [13] about the theory of families of stability conditions and [3] about the exist-
ence of good moduli spaces, we introduce the notion of stability condition with moduli 
spaces, which is a Bridgeland stability condition with “well-behaved” moduli functors.

Assume that the base field � is of characteristic 0. Given a Bridgeland stability con-
dition � on D  with respect to � , fix v ∈ Λ and � ∈ ℝ such that Z(v) ∈ ℝ>0e

i𝜋𝜙 . Consider 
the functor

0 = E0 ↪ E1 ↪ …Em−1 ↪ Em = E
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from the category of schemes over � to the category of groupoids, which associates to 
T ∈ Ob(Sch) the groupoid M�(D, v)(T) of all perfect complexes E ∈ D(X × T) such that, 
for every point t ∈ T  , the restriction Et of E to the fiber X × Spec(k(t)) belongs to D , is �
-semistable of phase � and �(Et) = v.

Definition 5.6 A stability condition with moduli spaces on D (with respect to � ) is a 
Bridgeland stability condition � = (A, Z) satisfying: 

(d) Openness: For every �-scheme T and every perfect complex E ∈ D(X × T) , the set of 
points {t ∈ T ∶ Et ∈ D and is �-semistable} is open.

(e) Boundedness: For every v ∈ Λ the functor M�(D, v) is bounded, i.e. there exists a pair 
(B,E) , where B is a scheme of finite type over � and E  is an object in M�(D, v)(B) , 
such that for every E ∈ M�(D, v)(�) there exists a �-rational point b ∈ B satisfying 
Eb ≅ E.

If � is a stability condition with moduli spaces on D  with respect to � , then by [13, 
Theorem  21.24(3)], which makes use of [3], for every v ∈ Λ it follows that M�(D, v) 
admits a good moduli space M�(D, v) which is a proper algebraic space over �.

A natural choice for the lattice Λ is the numerical Grothendieck group N(D) of D . In 
fact, the numerical Grothendieck group is a free abelian group of finite rank. This follows 
from the fact that D is an admissible subcategory of Db(X) , thus we have the semiorthogo-
nal decomposition Db(X) = ⟨D, ⟂D⟩ . Since N(−) is additive, we have that N(D) is a sub-
group of the numerical Grothendieck group of X, which is a free abelian group of finite 
rank [52, 19.3.2]. This motivates the following definition.

Definition 5.7 A numerical stability condition on D is a stability condition with respect to 
the numerical Grothendieck group N(D) of D.

Example 5.8 (Slope stability) Let X be a smooth projective variety of dimension n with 
ample class H. Define

where ch0(E) and ch1(E) stand for the rank and the first Chern class of E, respectively. Set 
ΛH ∶= Im(�) . Then the pair �H = (Coh(X), ZH) , where

defines a weak stability condition on Db(X) with respect to ΛH . Indeed, if E is a sheaf on X, 
then Hn ch0(E) ≥ 0 and if it is 0 (i.e. E is a torsion sheaf), then Hn−1 ch1(E) ≥ 0 . Moreover, 
by [24, Lemma 2.4] the HN property holds, and by [14, Remark 2.6] the trivial form Q = 0 
fulfills the support property.

If n = 1 , i.e. X is a curve, then �H is a numerical stability condition on Db(X) , recovering 
the classical notion of slope stability.

M�(D, v) ∶ (Sch)op → Gpd

� ∶ K(Db(X)) → ℤ
2, �(E) = (Hn ch0(E),H

n−1 ch1(E)),

ZH ∶ ΛH → ℂ, ZH(−) = −Hn−1 ch1(−) +
√
−1Hn ch0(−),



2973Categorical Torelli theorems: results and open problems  

1 3

5.2  Stability manifold and actions

Assume � is an algebraically closed field of arbitrary characteristic3. We denote by 
StabΛ(D) the set of stability conditions on D with respect to � . We consider on StabΛ(D) 
the coarsest topology such that the maps (A, Z) ↦ Z , (A, Z) ↦ �+(E) , (A, Z) ↦ �−(E) are 
continuous for every 0 ≠ E ∈ D  . A celebrated result of Bridgeland states that StabΛ(D) has 
the structure of complex manifold.

Theorem 5.9 (Bridgeland Deformation Theorem, [13, 24], Theorem 1.2) The continuous 
map Z ∶ StabΛ(D) → Hom(Λ,ℂ) defined by (A, Z) ↦ Z , is a local homeomorphism. In 
particular, the topological space StabΛ(D) is a complex manifold of dimension rk(Λ).

The support property implies that if we fix an element v ∈ Λ , then there is a locally-
finite set of real codimension one submanifolds with boundary in StabΛ(D) , called walls, 
where the set of semistable objects with class v changes. The connected components of the 
complement in StabΛ(D) of the union of walls for v are called chambers.

On StabΛ(D) we have the following group actions:
(i) (Right action of G̃L

+

2
(ℝ) ) Consider the connected group GL+

2
(ℝ) of 2 × 2 real 

matrices with positive determinant. Note that GL+
2
(ℝ) acts on the right by multiplica-

tion on Hom(Λ,ℂ) via the identification ℂ ≅ ℝ2 . In order to lift this action to the sta-
bility manifold, we consider the universal covering space G̃L

+

2
(ℝ) of GL+

2
(ℝ) , whose 

objects are pairs (M, g) with M ∈ GL+
2
(ℝ) , g ∶ ℝ → ℝ an increasing function satisfying 

g(� + 1) = g(�) + 1 , such that the induced actions of M and g on (ℝ2 ⧵ {0})∕ℝ>0 = S1 are 
the same. For � = (A, Z) ∈ StabΛ(D) and (M, g) ∈ G̃L

+

2
(ℝ) , we define � ⋅ (M, g) as the sta-

bility condition with heart P((g(0), g(1)]) and central charge Z� = M−1
◦Z (see [24, Lemma 

8.2]). Concretely, the stability conditions � and � ⋅ (M, g) have the same set of semistable 
objects, but with different phases.

(ii) (Left action of AutΛ(D) ) Consider the group AutΛ(D) of pairs (Φ,ΦΛ) , where Φ is an 
exact autoequivalence of D and ΦΛ is an endomorphism of Λ such that ΦΛ◦� = �◦Φ∗ . Here 
Φ∗ is the automorphism of K(D) induced by Φ . For (Φ,ΦΛ) ∈ AutΛ(D) and � ∈ StabΛ(D) , 
we define the stability condition (Φ,ΦΛ) ⋅ � = (Φ(A ),Z◦Φ−1

Λ
) . Note that if Λ = N(D) , 

then the endomorphism ΦΛ is determined uniquely by Φ , hence AutΛ(D) = Aut(D) and 
one can talk about an action of Aut(D).

Assume that � is a stability condition with moduli spaces. We observe that, by defini-
tion, moduli spaces with respect to � ⋅ (M, g) and Φ ⋅ � are isomorphic to moduli spaces 
with respect to �.

Example 5.10 (i) Let X be a smooth projective curve of genus ≥ 1 and set Λ ∶= N (Db(X)) . 
Then

By [24, 109] the action of G̃L
+

2
(ℝ) is free and transitive, thus there is a unique orbit of 

numerical stability conditions with respect to the G̃L
+

2
(ℝ)-action, i.e.

Λ ≅ H0(X,ℤ)⊕ H2(X,ℤ) ≅ ℤ
⊕2.

3 In this section we could work in more generality without assuming � is algebraically closed, see [13, 
Theorem 1.2]. However, we prefer to keep this condition to be compatible with the following sections.
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where �H is the slope stability defined in Example 5.8.
(ii) (Action of the Serre functor) The Serre functor �D on D (see Example 2.2) defines 

an element in AutN(D)(D) = Aut(D) , thus we can consider its action on numerical stability 
conditions. In Section 6.2 we will introduce the notion of Serre-invariant stability condi-
tions, which are numerical stability conditions preserved by the Serre functor, up to the 
G̃L

+

2
(ℝ)-action. In fact, this notion plays an important role in a proof of the Categorical 

Torelli theorem for cubic threefolds and in the study of the geometry of moduli spaces of 
stable objects in the Kuznetsov component, as we will see in Section 6.3.

5.3  Tilt stability

The construction of stability conditions is a difficult task, even in the case of Db(X) for a 
smooth projective variety X of dimension n ≥ 3 over an algebraically closed field � . A con-
jectural approach is via the notion of tilt stability, whose definition is summarized in this 
section and which works perfectly for X of dimension n = 2 (see [1, 25]).

Let (X, H) be a polarized smooth projective variety. We have seen in Example 5.8 
that slope stability �H = (Coh(X), ZH) defines a stability condition on Db(X) when X is 
a curve. However, in higher dimension this is no longer true, as ZH vanishes on torsion 
sheaves supported in codimension ≥ 2 , and in higher dimensions slope stability is only 
a weak stability condition. Actually, the choice of Coh(X) as heart is not the correct one, 
since by [141, Lemma 2.7] it cannot be the heart of a numerical stability condition if 
dim(X) ≥ 2.

To overcome this problem, one can consider a new heart by tilting Coh(X) . More pre-
cisely, let � = (A, Z) be a weak stability condition on a triangulated �-linear category. Fix 
s ∈ ℝ and define the following subcategories of A :

As proved in [53], the category

is the heart of a bounded t-structure on T  and is called the tilting of A  with respect to � at 
slope s. In this context ⟨−,−⟩ means the smallest full subcategory closed under extensions 
and containing the two additive subcategories Ts

�
 and Fs

�
[1] . Note that if s > s′ , then we 

have

Indeed, consider F ∈ A  and �-semistable with 𝜇Z(F) > s , which is an object in A s

�
 . Then 

𝜇Z(F) > s� , so F ∈ A s�

�
 . Otherwise, consider F ∈ A  and �-semistable with �Z(F) ≤ s , so 

F[1] ∈ A s

�
 . If �Z(F) ≤ s� , then F[1] ∈ A s�

�
 , while if 𝜇Z(F) > s� , then F[1] ∈ A s�

�
[1] . By the 

definition of As

�
 , we deduce the desired property.

In the case of slope stability, we consider the heart

(5.1)StabΛ(D
b(X)) ≅ �H ⋅ G̃L

+

2
(ℝ)

T
s

𝜎
∶= {E ∈ A ∶ all HN factors F of E satisfy 𝜇Z(F) > s},

F
s

𝜎
∶= {E ∈ A ∶ all HN factors F of E satisfy 𝜇Z(F) ≤ s}.

A
s

�
∶= ⟨Ts

�
,F

s

�
[1]⟩

(5.2)A
s

𝜎
⊂ ⟨A s�

𝜎
,A

s�

𝜎
[1]⟩.
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obtained by tilting Coh(X) with respect to �H at slope s. In analogy to the curve case, define

where ch2(E) denotes the degree-2 part of the Chern character of E, and set ΛH ∶= Im(�) . 
For s, q ∈ ℝ , define Zs,q ∶ ΛH → ℂ by

The slope associated to Zs,q is denoted by �s,q . We can now state the main result of this 
section.

Theorem 5.11 ([1, 11, 12, 24]) Let X be a smooth projective variety of dimension n ≥ 2 . 
There is a continuous family of weak stability conditions with respect to � , parametrized by

defined as

with a locally-finite wall and chamber structure.

If n = 2 , i.e. X is a surface, then {�s,q} is a continuous family of stability conditions on 
X.

Cohs(X) ∶= Coh(X)s
�H

(5.3)� ∶ K(Db(X)) → ℚ
3, �(E) = (Hn ch0(E),H

n−1 ch1(E),H
n−2 ch2(E))

Zs,q(E) = −(Hn−2 ch2(E) − qHn ch0(E)) +
√
−1(Hn−1 ch1(E) − sHn ch0(E)).

Δ ∶=
{
(s, q) ∈ ℝ

2 ∶ q >
1

2
s2
}
,

(s, q) ↦ �s,q = (Cohs(X), Zs,q),

Fig. 1  We can compare the �s,q-slope of �s,q-semistable objects E and F, using the picture: E has larger 
slope than F if and only if the ray connecting E to (s, q) is after the ray connecting F with (s, q) moving 
from the dashed ray in counterclockwise direction (see [102, Lemma 2])
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The proof of Theorem 5.11 is slightly involved and we refer to [112, Sections 6.2, 6.3] for a 
detailed summary. We only mention that a key ingredient is the classical Bogomolov Inequal-
ity, which implies that every �H-semistable sheaf E satisfies

Moreover, one can choose ΔH as the quadratic form fulfilling the support property for 
�s,q . This also implies that �s,q satisfies well-behaved wall-crossing: for fixed v ∈ ΛH , the 
boundary of the locus in Δ where an object of class v is stable is defined by a locally-finite 
set of submanifolds of real codimension one.

The weak stability conditions �s,q defined in Theorem 5.11 are called tilt-stability condi-
tions. A useful way to visualize tilt stability conditions has been introduced in [101, Section 1]. 
Note that given E ∈ Db(X) such that Zs,q(E) ≠ 0 , its truncated at degree 2 Chern character

defines the point

in a projective plane ℙ2
ℝ
 . If ch0(E) ≠ 0 , we consider the affine coordinates

By (5.4) and [11, Theorem 3.5], we have that �s,q-semistable objects correspond to points 
below the parabola q =

1

2
s2 and points above parametrize tilt stability conditions. Further-

more, the phase of a �s,q-semistable object E ∈ Cohs(X) is the angle between the line con-
necting (s, q) and (s(E), q(E)) and the vertical half-ray from (s, q) to −∞ divided by � (see 
Figure 1).

It is now natural to wonder whether the above procedure can be generalized to construct 
stability conditions when X has dimension > 2 . In this case, it is easy to see that Zs,q does 
not define a stability function, as it vanishes on objects supported in codimension ≥ 3.

Assume X is three-dimensional. In analogy to the surface case, in [12] the authors con-
sider a new heart obtained by tilting Cohs(X) with respect to the tilt stability �s,q and a weak 
stability function on it, involving the third Chern character of the objects. The key observa-
tion, made in [11, 12], is that this new weak stability condition is a stability condition on 
Db(X) if and only if tilt semistable objects satisfy some quadratic inequality, called gener-
alized Bogomolov inequality, involving the Chern characters till degree 3. Following this 
approach, stability conditions have been constructed on the bounded derived categories of 
Fano threefolds [12, 21, 95, 110, 135], abelian threefolds [11, 107, 108], some resolutions 
of finite quotients of abelian threefolds [11], and threefolds with nef tangent bundle [21, 
74].

A further progress in this direction has been made in [96], where a stronger Bogomolov 
inequality, namely an inequality involving the Chern characters up to degree 2 of slope 
semistable torsion free sheaves (see [96, Theorem 1.1] for the precise statement), has been 
proved in the case of quintic threefolds, giving the first highly nontrivial example of stabil-
ity conditions on a strict (i.e. simply-connected) Calabi–Yau threefold. The involved strat-
egy makes use (among other things) of a restriction lemma, first appeared in [50], which 
allows one to reduce to show a Clifford type bound for the dimensions of global sections 
of stable vector bundles on curves defined as complete intersections of two quadrics and a 

(5.4)ΔH(E) ∶= (Hn−1 ch1(E))
2 − 2(Hn ch0(E))(H

n−2 ch2(E)) ≥ 0.

(ch0(E), ch1(E), ch2(E))

(Hn ch0(E) ∶ Hn−1 ch1(E) ∶ Hn−2 ch2(E))

(
s(E) ∶=

Hn−1 ch1(E)

Hn ch0(E)
, q(E) ∶=

Hn−1 ch2(E)

Hn ch0(E)

)
∈ 𝔸

2
ℝ
.
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quintic hypersurface in ℙ4 . The existence of stability conditions is then obtained by using 
this stronger Bogomolov inequality to prove the following statement (see [11, Conjecture 
4.1]): if E is �s,q-semistable for a certain choice of (s, q) ∈ Δ , then E satisfies

where chs
1
(E) = ch1(E) − sH ch0(E) , chs

2
(E) = ch2(E) − sH ch1(E) +

s2

2
H2 ch0(E) , 

chs
3
(E) = ch3(E) − sH ch2(E) +

s2

2
H2 ch1(E) −

s3

6
H3 ch0(E).

This method has been recently generalized to the case of some three-dimensional 
weighted hypersurfaces in weighted projective spaces [75], and to three-dimensional com-
plete intersections of quartic and quadric hypersurfaces in ℙ5 [103]. An interesting problem 
would be trying to adapt this argument to treat other examples of Calabi–Yau complete 
intersections in ℙN . For instance, the next case to address could be the following:

Question 5.12 Let X be a complete intersection of a cubic and two quadric hypersurfaces 
in ℙ6 . Is it possible to show a stronger Bogomolov inequality for slope semistable torsion 
free sheaves on X, similarly to [96, Theorem 1.1], [103, Proposition 1.1], which implies 
(5.5)?

We end this section with a sort of negative twist. Indeed, while the possibility to 
prove the generalized Bogomolov inequality (5.5) is still plausible for threefolds with 
trivial canonical bundle, we know that (5.5) is false in general. The first counterexam-
ple was provided in [136]. A replacement for this too optimistic guess was recently 
provided in [10]. In order to state the revised conjecture, we proceed as follows. 
Let (X, H) be a polarized projective variety of dimension n. We denote by CH∙

num
(X) 

the Chow ring of X modulo numerical equivalence. Let B ∈ NS(X)⊗ℝ , where 
NS(X) = CH1

num
(X) , let Γ ∈ CH2

num
(X)⊗ℝ be such that Γ ⋅ Hn−2 = 0 , and pick �3,… �n 

to be arbitrary classes with 𝛾i ∈ CHi

num
(X)⊗ℝ . Let

and set ch� (−) ∶= � ⋅ ch(−) . Using the class � and the modified Chern character, one can 
repeat the discussion above, define �-slope semistable objects and thus the notion of �-tilt 
stability ��

s,q
 for (s, q) ∈ Δ (see [10, Section 4] for more details).

For an object E ∈ Db(X) we then set

Set v�
i
 to be the i-th component of v�

H
(E) . We can then state the following which is [10, 

Conjecture 4.7]:

Conjecture 5.13 (Bayer– Macrì) Let (X,  H) be a smooth complex projective polar-
ized variety. There exists a class � as in (5.6) and an upper semicontinuous function 
f ∶= f � ∶ ℝ → ℝ such that, for any ��

s,q
-semistable object E,

for all (s, q) ∈ Δ , such that q > f 𝛾 (s).

(5.5)(2q − s2)ΔH(E) + 4(H chs
2
(E))2 − 6H2 chs

1
(E) chs

3
(E) ≥ 0,

(5.6)𝛾 ∶= e−B ⋅ (1, 0,Γ, 𝛾3,… , 𝛾n) ∈ CH∙
num

(X)⊗ℝ

v
�

H
(E) ∶= (Hn

⋅ ch
�

0
(E),Hn−1

⋅ ch
�

1
(E),… ,H ⋅ ch

�

n−1
(E), ch�

n
(E)).

Qs,q(E) ∶= q((v
�

1
)2 − 2v

�

0
v
�

2
) + s(3v

�

0
v
�

3
− v

�

1
v
�

2
) + (2(v

�

2
)2 − 3v

�

1
v
�

3
) ≥ 0,
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We do not explain the origin of this conjecture here. We only remark that it is 
proved for the above mentioned cases (prime Fano threefolds, abelian threefolds, quin-
tic threefolds, complete intersections of quadratic and quartic hypersurfaces in ℙ5 , the 
blow-up of ℙ3 at a point, threefolds with nef tangent bundle) which justifies the way it 
is formulated. For an extensive and very interesting discussion, one can have a look 
at [10, Section 4]. The key point is that, if n = 3 , the conjecture implies the existence 
of stability conditions on Db(X) . Finally, it is clear that the original conjecture in [11, 
12] implies Conjecture 5.13 for some particular function f � while the counterexamples 
mentioned above do not apply in this case.

6  Cubic threefolds and beyond

As we mentioned in Section 3.3, if X is a cubic threefold, we have a semiorthogonal 
decomposition

where H is a hyperplane section. In this section we investigate the existence of stability 
conditions on Ku(X) and discuss several applications including, of course, the Categorical 
Torelli theorem for these hypersurfaces.

6.1  Cubic threefolds: first approach

In this section we want to recall the approach in [20] to the construction of stability condi-
tions on the Kuznetsov component of a cubic threefold. Even though a much more modern 
technology is, at the moment, available (see Section 6.2 and Section 6.3 below), this circle 
of ideas have interesting applications to geometric problems and it is an important illustra-
tion of what will be proven later about cubic fourfolds.

Assume that X is defined over a field � which is algebraically closed with char(�) ≠ 2 . 
The starting point is the following observation. Fix a line �0 in a cubic threefold X ↪ ℙ4 
and consider a plane ℙ2 ⊆ ℙ4 which is skew with respect to �0 . The rational map 
�0 ∶ X ⤏ ℙ2 given by the projection from �0 can be resolved as follows. Consider the 
blow-up ℙ̃4 of ℙ4 along �0 and the strict transform X̃ of X inside ℙ̃4 . They all sit in the com-
mutative diagram

X

π0

P4

q

P2,

 where q is the ℙ2-bundle induced by the projection from �0 and its restriction �̃0 to X̃ is 
the corresponding conic fibration. We denote by h the pull-back to X̃ of a hyperplane sec-
tion of ℙ2 , by H the pull-back to X̃ of a hyperplane section of ℙ4 and by e the exceptional 
divisor.

As a beautiful application of [83] (see also [6] for the case of arbitrary odd charac-
teristic), the conic bundle �̃0 ∶ X̃ → ℙ2 yields a sheaf B0 on ℙ2 of even part of Clifford 

Db(X) = ⟨Ku(X),OX ,OX(H)⟩,
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algebras. The explicit description of B0 is not needed here but it is worth remembering that 
we have an isomorphism

of Oℙ2-modules. Moreover, B0 is noncommutative and is an Azumaya algebra away 
from the discriminant of the conic bundle. One can further consider the abelian category 
Coh(ℙ2,B0) of coherent B0-modules and the corresponding derived category Db(ℙ2,B0).

It is clear from the discussion above that we can regard X̃ both as a blow-up of X and as 
a conic fibration on ℙ2 . In the first case, [123] yields a semiorthogonal decomposition

where Ku(X) is embedded via the pullback along the blowup morphism X̃ → X . On the 
other hand, [83, Theorem 4.2] provides another semiorthogonal decomposition

(see [20, (2.7)]). These decompositions are obtained from the standard semiorthogo-
nal decompositions by a sequence of mutations, using the equalities e = H − h and 
KX̃ = −H − h . We should note here that, in general, it is important to give an explicit 
description of the way Ku(X) and Db(ℙ2,B0) are embedded in Db(X̃) in (6.2) and (6.3) 
respectively. Here we can safely ignore this and just observe that a direct comparison of the 
semiorthogonal decompositions in (6.2) and (6.3) yields a new one:

where E ∶= OX̃(h − H) is an additional exceptional object. Again, we are harmlessly 
ignoring the fact that Ku(X) is embedded in Db(ℙ2,B0) in a nontrivial way.

Now, the semiorthogonal decomposition (6.4) and the observation that Db(ℙ2,B0) 
behaves like the derived category of a (twisted) surface are the keys to apply the follow-
ing general (and as such, at the moment, vague) idea: 

Dimension reduction trick: to study the geometric/homological properties of the 
Kuznetsov component Ku(X) of a Fano threefold/fourfold X, embed Ku(X) in the derived 
category of a smaller dimensional (twisted) variety.

This is particularly rewarding when we want to construct stability conditions on 
Ku(X) . Indeed, as we explained in the previous sections, we have standard strategies to 
construct stability conditions on surfaces, the situation is less clear but, by now, man-
ageable for threefolds and mostly obscure in higher dimension. We show now how this 
works for the Kuznetsov component of cubic threefolds. Then in Section  6.2 we will 
see that there is a more direct way to contruct stability conditions in the cubic threefold 
case, without relying on a dimension reduction trick. On the other hand, we will observe 
later that the dimension reduction trick is crucial while dealing with cubic fourfolds.

Let us now go back to X a cubic threefold. As we observed in the previous section, a 
standard way to construct (weak) stability conditions on surfaces is by using slope sta-
bility and tilt with respect to it.

In the case of the abelian category Coh(ℙ2,B0) , the fact that B0 is an Oℙ2-algebra 
(see (6.1)), allows us to define a forgetful functor

(6.1)B0 ≅ Oℙ2 ⊕Oℙ2 (−h)⊕Oℙ2 (−2h)⊕2

(6.2)Db(X̃) = ⟨Ku(X),OX̃(h − H),OX̃ ,OX̃(h),OX̃(H)⟩,

(6.3)Db(X̃) = ⟨Db(ℙ2,B0),OX̃ ,OX̃(h),OX̃(H)⟩

(6.4)Db(ℙ2,B0) = ⟨Ku(X),E⟩,
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and thus the functions

where N(ℙ2,B0) stands for the numerical Grothendieck group of Db(ℙ2,B0) . For 
F ∈ Coh(ℙ2,B0) with rk(F) ≠ 0 , we define the slope

As usual we can recast �h in terms of a central charge

Given F ∈ Coh(ℙ2,B0) , when we say that F is either torsion-free or torsion of dimen-
sion d, we always mean that Forg(F) has this property. It is then not difficult to show (see 
[20, Section  2.3]) that the pair �h = (Coh(ℙ2,B0),Zh) is a weak stability condition on 
Db(ℙ2,B0).

Note that if F ∈ Coh(ℙ2,B0) has rank 0, then �h(F) = +∞ . Given this, we can apply 
the tilting procedure described in the previous section and define the two full additive 
subcategories

Tilting with respect to the pair (F0,T0) yields the abelian category Coh−
5

4 (ℙ2,B0) , which 
is the heart of a bounded t-structure. Set

It turns out that A0 is the heart of a bounded t-structure on Ku(X) (see [20, Lemma 3.4]).

Remark 6.1 A useful computation shows that if � ⊆ X is any line, then the ideal sheaf I
�
 is 

contained in A0 (see [20, Proposition 3.3]).

Consider now the function

on the numerical Grothendieck group N(ℙ2,B0) of Db(ℙ2,B0) . The restriction 
Z0 ∶= Z|N(Ku(X)) of Z to the numerical Grothendieck group of Ku(X) is a stability function. 
For this, see [20, Lemma 3.5]. This means that it satisfies the condition in Definition 5.3.

These preliminary observations allow us to conclude that we have stability condi-
tions on Ku(X) . Assume that the base field � has characteristic 0. Applying the recent 
results in [3, 13, Proposition 25.3] one can further show that �0 is a stability condi-
tion with moduli spaces. For later use, we are also interested in studying special moduli 
spaces of stable objects. The precise result is the following:

Forg ∶ Coh(ℙ2,B0) → Coh(ℙ2)

rk ∶ N(ℙ2,B0) → ℤ, rk(F) ∶= rk(Forg(F))

deg ∶ N(ℙ2,B0) → ℤ, deg(F) ∶= c1(Forg(F)) ⋅ h,

�h(F) ∶= deg(F)∕ rk(F).

Zh(−) ∶= −deg(−) +
√
−1 rk(−).

T0 ∶= T
−

5

4

𝜎h
=
{
F ∈ Coh(ℙ2,B0) ∶ 𝜇−

h
(F) > 𝜇h(B0) = −

5

4

}

F0 ∶= F
−

5

4

𝜎h
=
{
F ∈ Coh(ℙ2,B0) ∶ 𝜇+

h
(F) ≤ 𝜇h(B0) = −

5

4

}
.

A0 ∶= Coh−
5

4 (ℙ2,B0) ∩Ku(X).

Z(−) ∶= rk(−) +
√
−1

�
deg(−) +

5

4
rk(−)

�
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Theorem 6.2 ([20], Theorems 3.1 and 4.1) In the assumptions above 

(1) The pair �0 ∶=
(
Z0,A0

)
 is a stability condition with moduli spaces on Ku(X).

(2) Let � be any line in X. The moduli space M�0
(Ku(X), [I

�
]) of �0-stable objects in A0 and 

with numerical class [I
�
] is isomorphic to the Fano surface of lines F1(X) in X.

Remark 6.3 The construction of (weak) stability conditions on Db(ℙ2,B0) and on Ku(X) , 
for X a cubic threefold, was realized in [92] in a similar fashion as above, and it has been 
used to answer some very geometric questions. In particular, in [92, Theorem B] the 
authors reprove and generalize the main result of [40] about the nonemptiness of moduli 
spaces of Ulrich bundles of arbitrary rank on cubic threefolds. Let us recall that an Ulrich 
bundle E is an aCM (arithmetically Cohen– Macaulay) bundle whose graded module ⨁

m∈ℤ H0(X,E(m)) has 3 rk(E) generators in degree 1. On the other hand, a vector bundle 
E on a cubic threefold X is aCM if dim Hi(X,E(j)) = 0 , for i = 1, 2 and all j ∈ ℤ . We will 
come back to related questions in Section 6.4 where the results mentioned above are stated 
in a precise form (see also [92, Remark 2.20] for comments on the used normalization in 
the definition of Ulrich bundle).

The result above is the key to prove the following which is indeed [20, Theorem 1.1].

Theorem  6.4 (Categorical Torelli theorem for cubic threefolds) Let X1 and X2 be cubic 
threefolds defined over an algebraically closed field � with char(�) ≠ 2, 3 . Then there 
exists an exact equivalence Ku(X1) ≅ Ku(X2) if and only if X1 ≅ X2.

Proof (Idea of proof) One implication is trivial. Indeed, if X1 ≅ X2 , then the isomorphism 
preserves the line bundles OXi

 and OXi
(HXi

) . Thus we get an induced exact equivalence 
Ku(X1) ≅ Ku(X2).

Let us now start with an exact equivalence 𝖥 ∶ Ku(X1) → Ku(X2) . Let � ⊆ X1 be a line, 
seen as a point in F1(X1) . By Theorem  6.2 (2), the object I

�
 is �0-stable in Ku(X1) . We 

would like to conclude that �(I
�
) is again the ideal sheaf of a line in X2 , but this is not true 

in general. Nevertheless, by the result of the discussion in [20, Section  5.1] based on a 
delicate argument in [20, Section 4], we can compose � with a suitable power of the Serre 
functor �Ku(X2)

 and a shift, in order to get another exact equivalence 𝖥� ∶ Ku(X1) → Ku(X2) 
such that:

• The class [��(I
�
)] is in N (Ku(X2)) the class of the ideal of a line in X2;

• �
�(I

�
) is �0-stable and contained in the heart A0 in Ku(X2).

Thus, Theorem 6.2 (2) implies that �′ induces a bijection between F1(X1) and F1(X2) . By 
[20, Section 5.2] such a bijection can be turned into an isomorphism f ∶ F1(X1) → F1(X2) . 
It was observed in [42] that F1(Xi) is a surface of general type whose canonical bundle 
coincides with the ample class induced by the Plücker embedding of the Grassmannian of 
lines in ℙ4 . Thus, the isomorphism f must preserve the induced ample class given by the 
Plücker embedding. The trick in [41, Proposition 4] applies and thus f induces an isomor-
phism X1 ≅ X2.

One interesting consequence is the following.
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Corollary 6.5 Question 2.8 has a positive answer for cubic threefolds.

Proof Let X1 and X2 be cubic threefolds with an exact equivalence 𝖥 ∶ Ku(X1) → Ku(X2) . 
By Theorem 6.4, there is an isomorphism f ∶ X1 → X2 and, as observed in the proof of 
the result above, f yields an exact equivalence between the Kuznetsov components. For the 
same reason as in Remark 4.6 (i), such an equivalence is of Fourier– Mukai type.

Let us conclude this section with the following question:

Question 6.6 Is it possible to prove Theorem 6.4 by using the extension techniques that 
we discussed in Section 4.1?

6.2  Inducing stability conditions

In this section we aim at explaining the methods introduced in [14], which allow us to 
induce stability conditions on the Kuznetsov component of prime Fano threefolds defined 
in Section 3.3, so in particular of cubic threefolds, and, with a dimension reduction trick as 
in Section 6.1, of cubic fourfolds. Then we introduce the notion of Serre-invariant stability 
conditions, whose existence in the context of cubic threefolds will have interesting conse-
quences on the study of moduli spaces.

Let T  be a proper triangulated category which is linear over an algebraically closed 
field � and with Serre functor �T  . Assume T  has an exceptional collection E1,… ,Em . 
Then we have a semiorthogonal decomposition of the form

where D ∶= ⟨E1,… ,Em⟩⟂ . Note that rk(N(D)) = rk(N(T)) − m by additivility of the 
numerical Grothendieck group. This could vaguely suggest that D has “smaller dimension” 
than T  , so it might be easier to construct Bridgeland stability conditions on D than on T .

In fact, the following key result provides a criterion which guarantees that a weak stabil-
ity condition � on T  restricts to a Bridgeland stability condition on D.

Proposition 6.7 ([14], Proposition 5.1) Let � = (A, Z) be a weak stability condition on T  . 
Assume that the exceptional collection {E1,⋯ ,Em} satisfies the following conditions: 

(1) Ei ∈ A ;
(2) �T(Ei

) ∈ A [1];
(3) Z(Ei) ≠ 0 for all i = 1,⋯ ,m;
(4) there are no objects 0 ≠ F ∈ A � ∶= A ∩D  with Z(F) = 0 , i.e., Z� ∶= Z|

K(A �) is a 
stability function on A ′.

Then the pair �� = (A �, Z�) is a Bridgeland stability condition on D.
Note that, if the weak stability condition � in the statement is with respect to a lattice Λ , 

then �′ is defined over the sublattice Λ� of Λ determined by the image of K(A �).
We point out that the conditions (1),(2) are used to show that the restriction A � = A ∩D  

is the heart of a bounded t-structure on D , since they imply that the cohomology factors 

T = ⟨D,E1,… ,Em⟩
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with respect to A  of an object in D belong to D as well. By (4) the restriction Z′ is a sta-
bility function on A ′ . For the proof of the Harder– Narasimhan property and the support 
property the authors make use of the notions of Harder– Narasimhan polygon and mass of 
an object in the heart. We suggest the interested reader to consult [14, Section 5] for more 
details.

Remark 6.8 We should not expect Propsition 6.7 to be applicable in all situations where 
Db(X) has semiorthogonal decomposition with a Kuznetsov component which is residual 
to finitely many exceptional objects. One crucial example is when X is an Enriques surface 
with a semiorthogonal decomposition as in (3.1). Indeed, more should be true: if that X is 
very general, then Ku(X,L ) should not carry Bridgeland stability conditions at all. The 
heuristic reason is the following. The objects Si ∈ Ku(X,L ) in (3.2) are, at the same time, 
3-spherical and numerically trivial. The latter condition implies that the stability function 
of any stability condition on Ku(X,L ) would map the class of Si to 0. On the other hand, 
motivated by the case of K3 surfaces, one would expect that, if a stability condition � on 
Ku(X,L ) exists, then the fact that Si is spherical implies that it is also �-stable. These two 
facts together would immediately lead to a contradiction and thus to the fact that such a � 
cannot exist. Of course, it would be very interesting to make the previous argument rigor-
ous and show that Si is stable in any stability condition on the Kuznetsov component.

An interesting consequence of Propsition  6.7 is the existence of Bridgeland stability 
conditions on the whole category T  , using results in [43] about gluings of t-structures.

Proposition 6.9 ([14], Proposition 5.13) With the assumptions of Propsition 6.7, the pair 
��� = (A��, Z��) on T  , where

is the extension-closure and

is a Bridgeland stability condition on T .

When T = Db(X) , slope stability and tilt-stability, defined in Section 5.3, are weak sta-
bility conditions and we could ask whether they satisfy the conditions in Propsition 6.7. We 
will actually use the following tilting of �s,q defined in Theorem 5.11. For � ∈ ℝ , let u be 
the unit vector in the upper half plane with � = −

ℜ(u)

ℑ(u)
 . We denote by

the heart of a bounded t-structure obtained by tilting Cohs(X) with respect to �s,q at 
�s,q = � . Set

If we were working with Bridgeland stability conditions, the above process would cor-
respond to consider u as an element of GL1(ℂ) ⊂ GL+

2
(ℝ) , lift it to ũ ∈ �GL

+

2
(ℝ) and act 

on �s,q by ũ . On the other hand, the G̃L
+

2
(ℝ)-action is not a priori well-defined on weak 

A
�� = ⟨A�,E1[1],… ,Em[m]⟩

Z��|K(D) = Z�, Z��(Ei) = (−1)i+1 for i = 1,…m,

Coh�
s,q
(X) ∶= Cohs(X)�

�s,q

Z�
s,q

∶=
1

u
Zs,q.
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stability conditions, because of the existence of objects with vanishing central charge. For 
instance, consider an extension E of the form

where F is �s,q-semistable in Cohs(X) with �s,q(F) ≤ � and T ∈ Coh(X) supported in codi-
mension > 2 . Then E ∈ Coh�

s,q
(X) , but E is not in Cohs(X) and thus cannot be �s,q-semista-

ble. This suggests that there could be objects which are semistable with respect to ��
s,q

 , but 
not with respect to �s,q (see [131, Lemma 5.4] for a concrete example). This prevents us to 

have a well-defined G̃L
+

2
(ℝ)-action on these weak stability conditions. Nevertheless, we 

have the following result.

Proposition 6.10 ([14], Proposition 2.15) Let X be a smooth projective variety. The pair 
��
s,q

= (Coh�
s,q
(X), Z�

s,q
) is a weak stability condition on Db(X) with respect to � defined in 

(5.3).

We end this paragraph by introducing a notion which will be very useful in the case of 
prime Fano threefolds.

Definition 6.11 A (Bridgeland) stability condition � on a triangulated category T  with 
Serre functor �T  is Serre-invariant (or �T -invariant), if there exists g̃ ∈ G̃L

+

2
(ℝ) such that

Remark 6.12 Note that the property of �T -invariance is stable under the G̃L
+

2
(ℝ)-action.

Remark 6.13 One may wonder why we use the word invariant in the previous definition, 
which would be more suitable to identify a stability condition which is fixed by the Serre 
functor. However, recall that stability conditions in the same orbit with respect to the 
G̃L

+

2
(ℝ)-action have the same set of semistable objects. In particular, (if they exist!) the 

corresponding moduli spaces are isomorphic. From this viewpoint, we are interested in 
distinguishing or identifying stability conditions, up to the G̃L

+

2
(ℝ)-action.

Example 6.14 If X is a curve of genus g(X), then the slope stability �H (see Example 5.8) is 
a Serre-invariant stability condition on Db(X) . Actually, if g(X) ≥ 1 , then there is a unique 
G̃L

+

2
(ℝ)-orbit of stability conditions on Db(X) , so the condition in Definition 6.11 is trivi-

ally satisfied. Anyway, the fact that slope stability is Serre-invariant can be checked directly 
as follows. The Serre functor of Db(X) is

Tensoring by the line bundle �X preserves the slope stability of a coher-
ent sheaf and �X(Coh(X)) = Coh(X)[1] . On the level of central charges, since 
(rk(�X), deg(�X)) = (1, 2g(X) − 2) , we have

Then the matrix M =

(
−1 2g(X) − 2

0 − 1

)
 satisfies ZH◦(�−1X )∗ = M−1

◦ZH . Now note that

F[1] → E → T ,

�T ⋅ � = � ⋅ g̃.

�X(−) = (−)⊗𝜔X[1].

ZH◦(�
−1
X
)∗ = deg(−) + (2 − 2g(X)) rk(−) −

√
−1 rk(−).
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This implies that, if P is the slicing defined by �H , then there exists a lifting 
(g,M) ∈ G̃L

+

2
(ℝ) of M, such that P((g(0), g(1)]) ⊂ Coh(X)[1] (since Coh(X) = P((0, 1]) 

and Mei𝜋𝜙 ∈ ℝ>0e
i𝜋g(𝜙) ). Since they are both hearts of bounded t-structures, we have the 

equality P((g(0), g(1)]) = Coh(X)[1].

One could first wonder whether an admissible subcategory D  of Db(X) of a smooth 
projective variety X admits Serre-invariant stability conditions. This has been recently 
proved to be false in [91], using the notion of Serre dimension, in the case of the 
Kuznetsov component of almost all Fano complete intersections. Anyway, we could 
focus on prime Fano threefolds and consider the following less general question:

Question 6.15 When does the Kuznetsov component of a prime Fano threefold with index 
1 or 2 admit Serre-invariant stability conditions?

We will see in the next section that Question  6.15 has a positive answer for the 
Kuznetsov components of cubic threefolds and some other prime Fano threefolds. In 
these cases, we will also see that there is a unique G̃L

+

2
(ℝ)-orbit of Serre-invariant sta-

bility conditions. Motivated by this, we could also ask the following:

Question 6.16 Assume that D is an admissible subcategory of Db(X) which admits Serre-
invariant stability conditions. If N(D) has rank 2, is there a unique orbit of Serre-invariant 
stability conditions with respect to the G̃L

+

2
(ℝ)-action?

The question above is very much related to several expectations concerning the topol-
ogy of the stability manifold of D . In particular, one my wonder whether such a manifold is 
connected. A positive answer to Question 6.16 may give a positive indication in the direc-
tion of this expectation as well.

6.3  Cubic threefolds: a modern view

Let us now apply the methods introduced in Section 6.2 to the Kuznetsov component of a 
cubic threefold X defined over an algebraically closed field �.

Consider first the slope stability �H = (Coh(X), ZH) . Unfortunately, it does not satisfy 
the assumptions in Propsition 6.7 using the exceptional collection OX , OX(HX) . Indeed, we 
see for instance that

Let us try with the weak stability conditions �s,q = (Cohs(X), Zs,q) on Db(X) for (s, q) in the 
set Δ =

{
(s, q) ∈ ℝ2 ∶ q > 1

2
s2
}

 (see Section 5.3). Note that OX , OX(HX) are slope stable, 
as they are line bundles, with slope 0 and 1, respectively. Choosing s < 0 , we have OX , 
OX(HX) ∈ Cohs(X) . On the other hand, we observe that if s < −1 , then 
�X(OX(HX)) = OX(−HX)[3] ∈ Cohs(X)[3] , while if −1 ≤ s < 0 , then 
OX(−HX)[3] ∈ Cohs(X)[2] . For later use, we point out that we have shown:

M

(
1

0

)
=

(
−1

0

)
, M

(
0

1

)
=

(
2g(X) − 2

−1

)
.

�X(OX) = OX(−2HX)[3] ∈ Coh(X)[3].
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Even if we cannot apply directly Propsition 6.7, this computation suggests that if we tilt 
another time, we could find a suitable heart. In fact, consider the weak stability condition 
��
s,q

 defined in Propsition 6.10.

Theorem 6.17 ([14, Theorem 6.8]) Assume that (s, q) ∈ Δ and q < −
1

2
s . Then the pair

is a stability condition with moduli spaces on Ku(X) with respect to the lattice N(Ku(X)) , 
for every � ∈ ℝ satisfying

Moreover, for � , �′ satisfying (6.6), the stability conditions ��
s,q
|Ku(X) , ���

s,q
|Ku(X) belong to the 

same orbit with respect to the G̃L
+

2
(ℝ)-action.

Proof By (6.5) we have that OX , OX(HX) , OX(−2HX)[1] , OX(−HX)[1] belong to Cohs(X) for 
−1 ≤ s < 0 . Since they define points on the parabola q =

1

2
s2 , by [11, Corollary 3.11(a)], 

they are �s,q-stable for every (s, q) ∈ Δ . Comparing the slopes with respect to �s,q via a pic-
ture as in Figure 2 (or by a direct computation), we deduce that

(6.5)if − 1 ≤ s < 0, then OX ,OX(HX),OX(−2HX)[1],OX(−HX)[1] ∈ Cohs(X).

��
s,q
|Ku(X) = (Coh�

s,q
(X) ∩Ku(X), Z�

s,q
|N(Ku(X)))

(6.6)𝜇s,q(OX(−HX)[1]) ≤ 𝜇 < 𝜇s,q(OX).

Fig. 2  The boundary of the region of points (s, q) inducing stability conditions on Ku(X) is represented in 
bold. For (s, q) in this region the slope with respect to �s,q of OX is bigger than the slope of OX(−HX)[1] . 
Note that the sharp angle in grey between the interval connecting the point (s, q) to the point OX and contin-
uation of the interval connecting OX(−H) to (s, q) beyond (s, q) is the region that corresponds to the values 
of � for which ��

s,q
|Ku(X) is a stability condition on Ku(X)
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for (s,  q) as in the statement. Thus if � satisfies (6.6), then OX , OX(HX) , OX(−2HX)[2] , 
OX(−HX)[2] belong to Coh�

s,q
(X) . Note that an object E ∈ Coh�

s,q
(X) with Zs,q(E) = 0 is a 

torsion sheaf supported in codimension 3 by [14, Lemma 2.16], which is not in Ku(X) since 
Hom(OX ,E) ≠ 0 . We can then apply Propsition 6.7 which proves that ��

s,q
|Ku(X) is a Bridge-

land stability condition on Ku(X) with respect to

Then ��
s,q
|Ku(X) is a numerical stability condition on Ku(X) and [3, 13] (see, in particular, 

Proposition 25.3 in the latter paper) implies that it is a stability condition with moduli 
spaces. We leave to the reader the check of the second part of the statement, using [14, 
Lemma 4.3] and considering the rotation between two sides of the sharp angle on Figure 2 
which is provided by the segment connecting the point (s, q) to OX and the segment which 
is the continuation of the one connecting OX(−HX) to (s, q).

We denote the induced stability conditions on Ku(X) by

where

As we explain below, these stability conditions satisfy the nice property of being Serre-
invariant, answering positively Question 6.15 for cubic threefolds.

From now on, we assume 𝕂 = ℂ as in the papers we are referring to, although the 
same proof should apply in more generality over an algebraically closed field of charac-
teristic 0.

Theorem  6.18 ([129],  Corollary 5.5) Let � be a stability condition on Ku(X) in the 
same orbit of �(s, q,�) defined in (6.7), with respect to the G̃L

+

2
(ℝ)-action. Then � is 

Serre-invariant.

Proof (Idea of proof) Since the Serre functor commutes with the G̃L
+

2
(ℝ)-action, it is 

enough to show the statement for �(− 1

2
, q,−

1

2
) with 1

8
< q < 1

4
 . By [81, Lemma 4.1] the 

Serre functor of Ku(X) satisfies the relation

where Φ(−) = (−)⊗OX(HX) . Thus we can further reduce to prove the statement for the 
autoequivalence �OX

◦Φ . Recall that �OX
 is the left mutation in the exceptional object OX . 

This means that if � denotes the embedding of the admissible subcategory generated by OX 
into Db(X) , the functor �OX

 is defined by the canonical triangle of exact functors

where the first arrow is given by adjunction.
The second step is to show that the heart �OX

(Φ(A (−
1

2
, q,−

1

2
))) is a tilt of A (−

1

2
, q,−

1

2
) . 

This is the hardest part in the proof. One key ingredient is [102, Lemma 3], which allows 

𝜇s,q(OX(−2HX)[1]) < 𝜇s,q(OX(−HX)[1]) < 𝜇s,q(OX) < 𝜇s,q(OX(HX))

Im (K(Ku(X)) → N (X)) ≅ N (Ku(X)) ≅ ℤ
2.

(6.7)�(s, q,�) = (A (s, q,�),Z(s, q,�)),

A (s, q,�) ∶= Coh�
s,q
(X) ∩Ku(X), Z(s, q,�) ∶= Z�

s,q
|N (Ku(X)).

(6.8)�
−1
Ku(X)

= (�OX
◦Φ)◦(�OX

◦Φ)[−3],

��!
→ idDb(X) → �OX
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us to control the slope of the semistable factors with respect to �s′,q′ of a �s,q-semistable 
object in Cohs(X) , when deforming (s, q) to (s�, q�).

Finally, it is not difficult to show that there exists M ∈ GL+
2
(ℝ) such that 

Z(s, q,−
1

2
)◦(�OX

◦Φ)−1
∗

= M−1Z(s, q,−
1

2
) . Then we can use a similar argument to the one 

in the proof of the second part of Theorem 6.17, to get the statement.

In this case we can also give a positive answer to Question 6.16, as a consequence of 
the following general criterion, which provides sufficient conditions in order for a frac-
tional Calabi– Yau category to admit a unique G̃L

+

2
(ℝ)-orbit of Serre-invariant stability 

conditions.

Theorem 6.19 ([51], Theorem 3.2) Let T  be a proper �-linear triangulated category over 
a field � . Assume T  satisfies the following conditions: 

(1) Its Serre functor �T  satisfies �r
T
= [k] when 0 < k∕r < 2;

(2) The numerical Grothendieck group N (T) is of rank 2 and 

 where � is the Euler form defined in (2.2).
(3) There is an object Q ∈ T  satisfying 

Let �1 and �2 be Serre-invariant numerical stability conditions on T  . Then there exists 
g̃ ∈ �GL

+

2
(ℝ) such that 𝜎1 = 𝜎2 ⋅ g̃.

Remark 6.20 Note that [51, Theorem  3.2] also deals with the case r = 2 and k = 4 . In 
that situation, we need the additional condition that there are two objects Q1,Q2 ∈ T  
satisfying (6.9) such that Q1 is not isomorphic to Q2 or Q2[1] , Hom(Q2,Q1) ≠ 0 and 
Hom(Q1,Q2[1]) ≠ 0.

The assumptions in the statement could seem unnatural at a first glance, but actually 
they are not. Indeed, in (1) we require T  to be fractional Calabi– Yau of dimension < 2 , 
while in (2) we require N (T ) to have rank 2 as a noncommutative curve (although the 
analogy with curves is not totally correct, as for instance in one case the numerical Groth-
endieck group is negative definite, while in the latter it is not, as pointed out by the referee). 
Condition (3) is also inspired by the case of curves: the objects Q and �T(Q) for T  play a 
similar role as the one of the skyscraper sheaves and line bundles on a curve in Macrì’s 
proof [109], e.g. they are stable with controlled phase.

We now see how to apply the above criterion to Ku(X) of a cubic threefold.

Corollary 6.21 Question 6.16 has a positive answer for the Kuznetsov component Ku(X) of 
a cubic threefold X.

Proof By Propsition  3.12 we know that Ku(X) is fractional Calabi– Yau of dimension 
5∕3 < 2 . By [20, Proposition 2.7] and [82], the numerical Grothendieck group N (Ku(X)) is 
a rank-2 lattice and a basis is given by

�T ∶= max{𝜒(v, v) ∶ 0 ≠ v ∈ N (T)} < 0,

(6.9)−�T + 1 ≤ dimExt1(Q,Q) < −2�T + 2.
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where I
�
 is the ideal sheaf of a line � in X, with respect to which the Euler form � is rep-

resented by

An easy computation shows that �(v, v) ≤ −1 for every 0 ≠ v ∈ N (Ku(X)) , thus 
�Ku(X) = −1 . Since dimExt1(I

�
, I

�
) = 2 , we see that

Thus Theorem 6.19 applies to Ku(X) and implies the statement.

In the next section, we will see how to apply these results on Serre-invariant stabil-
ity conditions to study the properties of moduli spaces of stable objects in Ku(X) and to 
reprove the Categorical Torelli theorem.

6.4  Cubic threefolds: applications

Assume 𝕂 = ℂ . The first application of the results presented in the previous section con-
cerns the relation between the stability conditions �(s, q,�) , defined in (6.7), and the stabil-
ity condition �0 , introduced previously in Theorem 6.2. Similarly to Theorem 6.18, we can 
show the following statement.

N (Ku(X)) = ℤ [I
�
]⊕ ℤ [�(I

�
)],

(6.10)
(
−1 − 1

0 − 1

)
.

dimExt1(I
�
, I

�
) = 1 − �Ku(X) = 2.

Fig. 3  We represent the region U parametrizing the weak stability conditions �b,w , which is the region 
w > 1

2
b2 +

11

32
 . The strip with bold boundary corresponding to the region above the parabola in the interval 

−
5

4
≤ b < −

3

4
 represents those inducing the stability conditions �(b,w) on Ku(X)



2990 L. Pertusi, P. Stellari 

1 3

Theorem 6.22 ([51], Theorem 5.4) The stability condition �0 on Ku(X) introduced in Theo-
rem 6.2 is Serre-invariant.

Corollary 6.23 The stability conditions �0 and �(s, q,�) defined in (6.7) on Ku(X) are in the 
same G̃L

+

2
(ℝ)-orbit.

Proof It is a consequence of Theorem 6.18 and Theorem 6.22 and Corollary 6.21.

Remark 6.24 Consider the continuous family of Bridgeland stability conditions on 
Db(ℙ2,B0) , parameterized by

given by

By using Propsition 6.7, one can show [51, Proposition 5.3] that for any (b,w) ∈ U with 
−

5

4
≤ b < −

3

4
 , the pair

is a stability condition on Ku(X) which is in the G̃L
+

2
(ℝ)-orbit of �0 (see Figure 3).

An interesting consequence of these results is that all the known stability conditions 
on Ku(X) are Serre-invariant, hence belong to the same G̃L

+

2
(ℝ)-orbit. A positive answer 

to the following (hard) question would complete the analogy of Ku(X) with the curve 
case in [109].

Question 6.25 Let � be a stability condition on Ku(X) of a cubic threefold X. Is � in the 
same orbit of �(s, q,�) ? Equivalently, is � Serre-invariant?

The second application, which makes use of Corollary 6.23, concerns the study of 
Ulrich bundles on X, whose definition is recalled in Remark  6.3. Note that an Ulrich 
bundle E belongs to Ku(X) . Indeed, by [92, Lemma 2.19] we have

where d is the rank of E. Note that Ulrich bundles are Gieseker semistable [40, Propo-
sition 2.8]. The Gieseker stability of E implies that Hom(OX(kHX),E) = 0 for k ≥ 0 . 
Since �(OX(kHX),E) = 0 for k = 0, 1 , the definition of Ulrich bundles implies that 
Hom(OX(kHX),E[3]) = 0 . We conclude that E ∈ Ku(X).

By using the embedding of Ku(X) in Db(ℙ2,B0) , the following existence result has 
been proved.

Theorem 6.26 ([92], Theorem B) The moduli space of stable Ulrich bundles of rank d ≥ 2 
on X is non-empty and smooth of dimension d2 + 1.

U ∶=

{
(b,w) ∈ ℝ

2 ∶ w >
b2

2
+

11

32

}
,

(b,w) ∈ U ↦ �b,w = (Cohb(ℙ2,B0), Zb,w = −ch2 +w ch0 +
√
−1(ch1 −b ch0)).

(6.11)�(b,w) = (Ab ∶= Cohb(ℙ2,B0) ∩Ku(X), Zb,w|N (Ab)
)

ch(E) =
(
d, 0,−

d

3
H2

X
, 0
)
= d ch(I

�
),
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The property of Serre-invariance of �0 and �(s, q,�) and the uniqueness result allows 
us to prove the irreducibility of the moduli space of Ulrich bundles.

Theorem 6.27 ([51], Theorem 6.1) The moduli space �U
d

 of Ulrich bundles of rank d ≥ 2 
on X is irreducible.

Proof (Idea of proof) The first step consists in proving that all Ulrich bundles E of rank 
d are �(s, q,�)-semistable. Since the condition of being Ulrich is open, we get an open 
embedding

where the latter is the moduli space of �(s, q,�)-semistable objects in Ku(X) with numeri-
cal class d[I

�
] (see Section 5.1). Now using that �(s, q,�) is Serre-invariant and that �0 is 

in the same G̃L
+

2
(ℝ)-orbit of �(s, q,�) , we have the isomorphisms between moduli spaces

where v ∶= [�Ku(X)(I�)] in N (Ku(X)) ⊂ N (Db(ℙ2,B0)).
The last step is to show that M�0

(Ku(X), dv) is identified to the moduli space �d of 
Gieseker semistable sheaves in Coh(ℙ2,B0) with class dv. A standard argument (see [92, 
Theorem 2.12], [70, Lemma 4.1]) whose key point is the vanishing of Ext2 for sheaves in 
this moduli space, allows us to show that �d is irreducible, and thus �U

d
 is such (see [51, 

Proposition 6.4] for more details).

Let us now discuss some interesting properties of moduli spaces of stable objects in 
Ku(X) with respect to a Serre-invariant stability condition � , e.g. for �(s, q,�) and �0 . 
We have already seen in Theorem 6.2 that the Fano surface of lines is identified with 
a moduli space of �0-stable objects in Ku(X) . We mention the following more general 
statement.

Theorem 6.28 ([51], Theorem 4.5, [129], Lemma 5.16) Let � be a Serre-invariant stability 
condition on Ku(X) . 

(1) The moduli space M�(Ku(X), [I�]) is isomorphic to the moduli space of slope-stable 
sheaves on X with Chern character ch(I

�
) = 1 −

H2
X

3
.

(2) The moduli space M�(Ku(X), [�Ku(X)(I�)]) is isomorphic to the moduli space of slope-
stable sheaves on X with Chern character 2 − HX −

H2
X

6
+

H3
X

6
.

(3) The moduli space M�(Ku(X), [�
2
Ku(X)

(I
�
)]) is isomorphic to the moduli space of large 

volume limit stable complexes of character ch(I
�
) − ch(�Ku(X)(I�))

4.

�U
d
↪ M�(s,q,�)(Ku(X), d[I�]),

M�(s,q,�)(Ku(X), d[I�]) ≅ M�(s,q,�)(Ku(X), d[�Ku(X)(I�)]) ≅ M�0
(Ku(X), dv),

4 Inspired by [142] and to simplify the exposition, we give the following definition. A two-term complex 
E ∈ Db(X) supported in degree 0 and −1 is said to be large volume limit stable if H−1(E) is a line bundle, 
H

0(E) is a sheaf supported in dim ≤ 1 , and Hom(T ,E) = 0 for every torsion sheaf T supported in dimension 
≤ 1 . By [142, Lemma 3.12 and Lemma 3.13(ii)], a complex E ∈ Db(X) is large volume limit stable if and 
only if E lies in Cohs(X) and is �s,q-stable for s > 𝜇H(E) and q ≫ 0 . The condition on the rank of H−1(E) 
could be relaxed, but we restrict to this case which is the one relevant to our discussion.
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The moduli spaces M�(Ku(X), [I�]) , M�(Ku(X), [�Ku(X)(I�)]) , M�(Ku(X), [�
2
Ku(X)

(I
�
)]) are 

isomorphic to the Fano surface of lines F1(X) in X.
Note that ±[I

�
] , ±[�Ku(X)(I�)] , ±[I�] − [�Ku(X)(I�)] are the only vectors of square −1 in 

N (Ku(X)) . We also have the following result.

Theorem  6.29 Let � be a Serre-invariant stability condition on Ku(X) . Then non-empty 
moduli spaces of �-stable objects in Ku(X) are smooth.

Proof Let E be a �-stable object in Ku(X) . Up to shifting, we can assume that E is in the 
heart of � . Since � is Serre-invariant, we have that �Ku(X)(E) is �-stable. By using the rela-
tion �3

Ku(X)
= [5] , it is not difficult to show (see [129, Lemma 5.9]) that the phases with 

respect to � satisfy

As a consequence, by Serre duality we have

for i ≥ 2 , i < 0 . Indeed, the objects E[i], �Ku(X)(E) are �-stable and if i ≥ 2 , then 
𝜙(E[i]) > 𝜙(�Ku(X)(E)) by (6.12). Thus there are no nontrivial morphisms from E[i] to 
�Ku(X)(E) . The vanishing for i < 0 follows from E being in the heart. Since E is stable, we 
have that dimHom(E,E) = 1 , so dimExt1(E,E) = 1 − �(E,E) is constant. Since Ext1(E,E) 
is identified with the tangent space to the moduli space at the point corresponding to E 
and the obstruction is given by Ext2(E,E) (see [93, 125, Lemma 4.8]) which is vanishing, 
we conclude that the moduli space M�(Ku(X), [E]) , where [E] ∈ N (Ku(X)) , is smooth of 
dimension 1 − �(E,E) at the point corresponding to E.

Last but not least, we focus on the Categorical Torelli theorem. Using the same strat-
egy as in Theorem 6.4, it is possible to reprove this theorem by using any Serre-invariant 
stability condition and by applying the modular description of the Fano surface of lines by 
Theorem 6.28 (see [129, Theorem 5.17]). We end this section by explaining an alternative 
beautiful proof, given in [8], which is based on a description of the desingularization of the 
theta divisor of the intermediate Jacobian of X as a moduli space of stable sheaves on X, 
and then of semistable objects in Ku(X).

Recall that the intermediate Jacobian of X is the complex torus

It has the structure of a principally polarized abelian variety of dimension 5 and plays a 
key role in the seminal paper [42] for the proof of the (classical) Torelli Theorem and the 
nonrationality of X. If T denotes the closure in the Hilbert scheme of the subvariety para-
metrizing twisted cubic curves in X, then we have the Abel– Jacobi map � ∶ T → J(X) 
defined by �(t) = t − H2

X
 (which is an element of J(X) through the cycle class map). Then 

by [16, Proposition 4.2] the image of � in J(X) is a theta divisor Θ ⊂ J(X) and its generic 
fiber is isomorphic to ℙ2 . In fact, the linear span of a twisted cubic C is ⟨C⟩ ≅ ℙ3 , so C is 
contained in the cubic surface S = ⟨C⟩ ∩ X for C general. Then the generic fiber of � is the 
ℙ2 of twisted cubic curves which are linearly equivalent to C on S.

Let MX(v
�) be the moduli space of Gieseker stable sheaves on X with Chern charac-

ter 3 − H −
1

2
H2 +

1

6
H3 , hence having numerical class v� ∶= [I

�
] + [�Ku(X)(I�)] . Note that 

(6.12)𝜙(E) < 𝜙(�Ku(X)(E)) < 𝜙(E) + 2.

Ext i(E,E) = Hom(E,E[i]) ≅ Hom(E[i], �Ku(X)(E)) = 0,

J(X) ∶= H1(X,Ω2
X
)∕H3(X,ℤ).
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the projection Kx in Ku(X) of the skyscraper sheaf of a point x ∈ X has numerical class 
v′ and it turns out to be �-stable with respect to any Serre-invariant stability condition � 
on Ku(X) , which motivates the choice of this particular moduli space to recover the iso-
morphism class of X. Consider the Abel– Jacobi morphism � ∶ MX(v

�) → J(X) defined by 
𝛽(E) = c̃2(E) − H2

X
 , where c̃2(E) corresponds to the second Chern class c2(E) of E via the 

cycle map. The key ingredient is the following result.

Theorem 6.30 ([8], Theorem 7.1) The moduli space MX(v
�) is smooth and irreducible of 

dimension 4. The Abel-Jacobi morphism � maps MX(v
�) birationally onto the theta divisor 

Θ . More precisely, MX(v
�) is the blow-up of Θ in its singular point. The exceptional divisor 

is isomorphic to the cubic threefold X, and parametrizes non-locally free sheaves in MX(v
�)

.

The proof of the above theorem makes use of classical results on the properties of Θ 
together with techniques of wall-crossing to describe the objects in MX(v

�) . In particular, 
the embedding of X in MX(v

�) is obtained by sending a point x ∈ X to the projection Kx in 
Ku(X) of the corresponding skyscraper sheaf. The objects Kx sweep a divisor in this moduli 
space. Also note that the Abel–Jacobi map � factors through �.

The second key ingredient is the identification of MX(v
�) with a moduli space of semi-

stable objects in Ku(X).

Theorem 6.31 ([8], Theorem 8.7) Let � be a Serre-invariant stability condition on Ku(X) . 
Then we have the isomorphism

Proof (Idea of proof) Since � is Serre-invariant, the Serre functor �Ku(X) induces an 
isomorphism

where 2[I
�
] − [�Ku(X)(I�] = �

−1
Ku(X)

(v�) . The moduli space M�(Ku(X), 2[I�] − [�Ku(X)(I�])) 
has been fully described in [5, Theorem 1.2] (see also [8, Proposition 8.5]). The proof then 
follows by computing the image via �Ku(X) of the objects.

As a consequence, the authors get a new proof of the Categorical Torelli Theorem 6.4 
(see [8, Theorem 8.1]):

Proof (New proof of Theorem 6.4) As usual, there is only one nontrivial implication to 
prove. Assume that there is an exact equivalence Φ ∶ Ku(X1)

∼
�������→ Ku(X2) (not necessarily of 

Fourier–Mukai type). Up to composing with a power of the Serre functor and shifting, we 
can assume Φ∗(v

�) = v� , namely that Φ maps the numerical class of the projection Kx1
 of the 

skyscraper sheaf of a point x1 ∈ X1 to the numerical class of Kx2
 for a point x2 ∈ X2 , using 

that the Serre functor acts transitively on all classes that have the same square as v′ with 
respect to � (see [8, Lemma 8.3]). Since � is Serre invariant and the Serre functor com-
mutes with equivalences, we have that Φ ⋅ � is Serre invariant. Theorem 6.31 applied two 
times gives the isomorphisms between moduli spaces

M�(Ku(X), v
�) ≅ MX(v

�).

M�(Ku(X), 2[I�] − [𝖲Ku(X)(I�])) ≅ M�(Ku(X), v
�), E ↦ 𝖲Ku(X)(E),

MX1
(v�) ≅ M�(Ku(X1), v

�) ≅ MΦ⋅�(Ku(X2), v
�) ≅ MX2

(v�).
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By [8, Lemma 7.5] we have that X1 and X2 are the unique rationally connected divisors 
in MX1

(v�) and MX2
(v�) , respectively, which get contracted by any morphism to a complex 

abelian variety. Thus the above chain of isomorphisms implies X1 ≅ X2.

6.5  More prime Fano threefolds

After the success of the above techniques in the case of cubic threefolds, it is natural to 
wonder whether we can get similar results for other prime Fano threefolds of index 1 and 
2 (see Section 3.3 for the classification and properties). The goal of this section is to sum-
marize the state of art in these cases concerning the existence and uniqueness of Serre-
invariant stability conditions and the Categorical Torelli theorem. We assume the base field 
is 𝕂 = ℂ for simplicity.

Let us start by considering the index 2 case. We denote by Yd a prime Fano 
threefold of index 2 and degree 1 ≤ d ≤ 55 and take its Kuznetsov component 
Ku(Yd) ∶= ⟨OYd

,OYd
(HYd

)⟩⟂ . The strategy of [14], reviewed in Section 6.3 for cubic three-
folds, works more generally for Yd and allows one to construct stability conditions on 
Ku(Yd) , which we denote by �(s, q,�) . We have the following results: 

(1) By [129, Proposition 5.7] the stability conditions �(s, q,�) on Ku(Yd) are Serre-invariant 
for every 1 ≤ d ≤ 5.

(2) By [67, Theorem 4.25] (see also [51, Remark 3.7]) there is a unique G̃L
+

2
(ℝ)-orbit of 

Serre-invariant stability conditions on Ku(Yd) for every 2 ≤ d ≤ 5.
(3) The Categorical Torelli theorem holds for general Y2 by [5, Theorem 1.3], and for every 

Y2 under the assumption that the equivalence is of Fourier– Mukai type by [22, Corol-
lary 6.1]. Note that by [98] every equivalence is of Fourier– Mukai type in this case.

(4) The Categorical Torelli theorem holds for Y4 by [29], and for Y5 since it is unique up to 
isomorphism by [66].

The case d = 1 remains mysterious. Recall that Y1 is a hypersurface of degree 6 in the 
weighted projective space ℙ(1, 1, 1, 2, 3) , known as the Veronese double cone. The Serre 
functor of Ku(Y1) satisfies �3

Ku(Y1)
= [7] by [78, Corollary 4.2]. As a consequence, we cannot 

apply the criterion of Theorem 6.19 and the homological dimension of the heart of a Serre-
invariant stability condition is 3. This makes this case quite different from the others. A 
remarkable difference is that this time the Fano surfaces of lines is an irreducible compo-
nent of a moduli space of stable objects in Ku(Y1) and in [131] the authors classify all the 
objects in this moduli space. We can then formulate the following questions:

Question 6.32 Is there a unique G̃L
+

2
(ℝ)-orbit of Serre-invariant stability conditions on 

Ku(Y1)?

Question 6.33 Does the Categorical Torelli theorem holds for Y1?

5 Note that these prime Fano threefolds of index 2 were denoted by Xd in Section 3.3. The sudden change 
of notation is motivated by the fact that soon we will need discuss the relation between prime Fano three-
folds of index 1 and 2.
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We now focus on the index 1 case and denote by Xd such a prime Fano threefold of 
degree d = 2g − 2 , where 2 ≤ g ≤ 12 , g ≠ 11 . We first consider g ≥ 6 , so that the Kuznet-
sov component is defined by Ku(Xd) ∶= ⟨Er,OXd

⟩⟂ , where Er is an exceptional vector bun-
dle of rank r on Xd (see Section 3.3). Again by [14], there are stability conditions �(s, q,�) 
on Ku(Xd) defined following the same procedure explained in Section 6.3 for cubic three-
folds. In these cases we have the following results: 

(1) By [130, Theorem 3.18] the stability conditions �(s, q,�) on Ku(Xd) are Serre-invariant 
for every d = 10, 14, 18, 22 . Among all, the most interesting case is d = 10 , i.e. when 
Xd is a Gushel– Mukai threefold.

(2) Denote by Mi
d
 the moduli space of Fano threefolds of index i and degree d for i = 1, 2 . 

By [82, Theorem 3.3], for d = 3, 4, 5 there is a correspondence Zd ⊂ M
2
d
×M

1
4d+2

 , 
which we call Kuznetsov’s correspondence, dominant over each factor, such that for 
every point (Yd,X4d+2) ∈ Zd , there is an equivalence 

 By this equivalence and the results for Y3 , Y4 , Y5 , we deduce that Ku(Xd) has a unique 
orbit of Serre-invariant stability conditions for d = 14, 18, 22 . Moreover, by [67, 
Theorem 4.25] (see also [130, Corollary 4.5]) this uniqueness result holds also for 
Ku(X10) . In the remaining cases, i.e. d = 12, 16 , we have Ku(Xd) is equivalent to the 
bounded derived category of a curve of genus 7 and 3, respectively. In particular, by 
(5.1) the stability manifold of Ku(Xd) is identified with the G̃L

+

2
(ℝ)-orbit of the slope 

stability on the curve. Thus there is a unique orbit of Serre-invariant stability condi-
tions and actually every stability condition � is Serre-invariant, using that the action 
of any autoequivalence commutes with the action of G̃L

+

2
(ℝ) . We conclude that for 

every d ≥ 10 , there exists a non-empty and unique orbit of Serre-invariant stability 
conditions.

(3) The Categorical Torelli theorem does not hold for Xd in the form stated above. For 
instance, by [90] it is known that there are Gushel– Mukai threefolds with equivalent 
Kuznetsov components but which are not isomorphic (only birational). Nevertheless, a 
refined version of the Categorical Torelli theorem has been proved in [67] for Gushel– 
Mukai threefolds and more generally in [69] for every Xd with d ≥ 10 , making use 
(among all) of the existence and uniqueness of Serre-invariant stability conditions. 
The precise statement is the following. Consider Xd and X′

d
 two prime Fano threefolds 

of index 1 and same degree d ≥ 10 . Denote by i! and i�! the right adjoints of the embed-
ding functors Ku(Xd) ⊂ Db(Xd) and Ku(X�

d
) ⊂ Db(X�

d
) , respectively. Assume there is an 

equivalence Φ ∶ Ku(Xd) ≅ Ku(X�
d
) such that 

 Then Xd ≅ X�
d
 . In other words, (the other direction is trivial) the knowledge of i!(Er) is 

necessary and sufficient to reconstruct Xd from Ku(Xd) for d ∈ {10, 12, 14, 16, 18, 22}.
As noted in the introduction to [67], the Categorical Torelli theorem for cubic threefolds 
and the Kuznetsov’s correspondence, discussed in item (2) above, imply that the birational 
class of X14 is determined by its Kuznetsov component. Inspired by [90, Conjecture 1.7], 
we can formulate the following question, which is nothing but the Birational Categorical 
Torelli theorem for Gushel– Mukai threefolds:

Ku(Yd) ≅ Ku(X4d+2).

Φ(i!(Er)) ≅ i
�!(Er).
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Question 6.34 ([67], Question 1.1(1)) Let X1 and X2 be prime Fano threefolds of index 
1 and degree 10. Assume that there is an equivalence Φ ∶ Ku(X1)

∼
�������→ Ku(X2) (of Fourier– 

Mukai type). Is it true that X1 and X2 are birational?

As noted by the referee X12 , X16 , X18 , X22 are rational (over an algebraically closed 
field), so the above question is void in these cases. Furthermore, this question has 
been positively answered in [67, Theorem  1.5] for general ordinary Gushel– Mukai 
threefolds.

Let us consider the remaining Fano threefolds Xd with d = 2, 4, 6, 8 , where 
Ku(Xd) ∶= ⟨OXd

⟩⟂ . Even if the construction in [14] still applies and there are stability 
conditions �(s, q,�) on Ku(Xd) , the situation is far less understood. Note that N (Ku(Xd)) 
has rank 3 in this case, so the stability manifold of Ku(Xd) has a bigger dimension than in 
the previous cases and Ku(Xd) does not look like a noncommutative curve. Up to now, we 
know the following results: 

(1) By [69, Remark 1.2] the Fano threefold Xd is a moduli space of stable objects with 
respect to the stability conditions �(s, q,�) on Ku(Xd) . As one could expect, the objects 
in the moduli spaces are shifts of ideal sheaves of points in Xd.

(2) If d = 6 , then X6 is a smooth intersection of a quadric and a cubic hypersurfaces. Then 
by [91, Corollary 1.9] there does not exist Serre-invariant stability conditions on Ku(X6)

.
(3) If d = 4 , then X4 is either a quartic threefold (see Remark 3.14) or a double cover of a 

quadric hypersurface Q in ℙ4 ramified in the intersection of Q with a quartic. Assume 
X4 belongs to the second class. Using the recent results in [91], we can compute explic-
itly the Serre functor of Ku(X4) and show that the induced stability conditions �(s, q,�) 
cannot be Serre-invariant (see [63]).

We can focus on the case of quartic threefolds and ask the following questions:

Question 6.35 If X is a quartic threefold, are the stability conditions �(s, q,�) Serre-invar-
iant for some (s, q)?

Question 6.36 Is there a version of the Categorical Torelli theorem for quartic threefolds? 
Does the birational Categorical Torelli theorem hold for quartic threefolds?

In these notes we have seen many methods to show the Categorical Torelli theorem for 
the Kuznetsov components of Enriques surfaces and cubic threefolds. The first tentative 
to approach Question 6.36 could be trying to adapt one of these techniques to the case of 
quartic threefolds. This is the line of investigation we are following in the work in progress 
[63].

7  Cubic fourfolds

Let us now move back to the case when X is a cubic fourfold defined over a field � which is 
algebraically closed with char(�) ≠ 2 . Let us recall from Section 3.4 that we have a semi-
orthogonal decomposition
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where H is a hyperplane class. The aim of this section is to show that Ku(X) carries stability 
conditions which we will use to prove both a categorical and a classical Torelli theorem for 
these Fano fourfolds. We conclude this section with a brief discussion on Gushel– Mukai 
fourfolds (see Section  7.3) which, quite surprisingly, are at the same time very close in 
spirit to cubic fourfolds but very different for some key features.

7.1  Stability conditions on the Kuznetsov component

In this section we want to prove that Ku(X) carries stability conditions. Ideally, we would 
like to apply the techniques discussed in Section 6.2 but what prevents us from a successful 
output is the fact that X has dimension 4 while the inducing strategy works perfectly fine 
for threefolds.

Thus the idea is to embed Ku(X) into the derived category of a new threefold whose 
construction is intimately related to the geometry of X as in Section 6.1.

More precisely, we follow [14, Section 7]. Now, as in the case of cubic threefolds, we 
pick a line � ⊆ X which is not contained in a plane in X and we consider the projection 
�
�
∶ X ⤏ ℙ3 onto a skew 3-dimensional projective plane. We further consider the blow-up 

X̃ ∶= Bl
�
(X) of X in � which makes the rational map �

�
 into an actual morphism

whose fibers are conics.
On the categorical side, the conic fibration �̃

�
 yields a sheaf B0 of even parts of Clifford 

algebras which is analogous to the one considered in Section 6.1 (in particular, it is non-
commutative and generically Azumaya). As in Section 6.1 the fact that we can either view 
X̃ as a conic fibration or as a blow-up, gives two fully faithful embeddings

A direct comparison between the two inclusions shows that the embedding of the Kuznet-
sov component can be made compatible by mutations with the one of Db(ℙ3,B0) . Hence, 
according to [14, Proposition 7.7], we get a semiorthogonal decomposition

where Ei is an exceptional B0-coherent sheaf. As in (6.4), we omit the explicit description 
of the embedding Ku(X) ↪ Db(ℙ3,B0) which is indeed relevant for computations but use-
less for the purposes of this paper.

Remark 7.1 Despite the analogy between (6.4) for cubic threefolds and (7.1) for cubic four-
folds, the complexity of the twisted projective space (ℙ3,B0) and of its derived category 
has secretly increased a lot. Indeed, while the numerical Grothendieck group of Db(ℙ2,B0) 
has always rank 3 for all cubic threefolds (see [20, Proposition 2.12]), the rank of the 
numerical Grothendieck group of Db(ℙ3,B0) varies when the cubic fourfold varies.

Db(X) = ⟨Ku(X),OX ,OX(H),OX(2H)⟩,

�̃
�
∶ X̃ → ℙ

3

Ku(X) ↪ Db(X) ↪ Db(X̃) Db(ℙ3,B0) ↪ Db(X̃).

(7.1)Db(ℙ3,B0) = ⟨Ku(X),E1,E2,E3⟩,
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This is, indeed, not surprising because the Kuznetsov component behaves like a non-
commutative curve (with a rather simple cohomology) for cubic threefolds while it behaves 
like a noncommutative K3 surface (hence with a rich cohomology) for cubic fourfolds.

In order to construct stability conditions on Ku(X) we are now in a good position to 
apply the dimension reduction trick described in Section  6.1: indeed, Ku(X) is now an 
admissible subcategory of the derived category of a (twisted) threefold with residue cat-
egory generated by three exceptional objects.

To make this precise, we proceed as in the cubic threefold case and take the forgetful 
functor Forg ∶ Db(ℙ3,B0) → Db(ℙ3) . The twisted Chern character is then defined as

where L is the class of a line in ℙ3 . We denote by chB0,i
 the degree i component of chB0

 . 
Since this is a cohomology class of ℙ3 , it gets naturally identified with a rational number.

Remark 7.2 The mysterious numerical correction 11
32

 is needed to provide a Bogomolov 
inequality for the twisted derived category Db(ℙ3,B0) . The role of such an inequality is to 
give the correct quadratic inequality in the support property for the Kuznetsov component. 
This is similar to (5.4). For the purposes of this paper the numerical correction above can 
be ignored.

Next, we define

and consider the lattice ΛB0
∶= Im(��) . Finally, we denote by ΛB0,Ku(X)

 the image of the 
composition of the natural maps K(Ku(X)) → K(Db(ℙ3,B0)) → ΛB0

 . The main result is 
then the following.

Theorem 7.3 ([14], Theorem 1.2, [13], Proposition 25.3) If X is a cubic fourfold, then there 
are stability conditions with moduli spaces on Ku(X) with respect to ΛB0,Ku(X)

.

It is worth pointing out that the result is actually more precise. Following Bridgeland’s 
notation, a full numerical stability condition on Ku(X) is a stability condition on Ku(X) with 
respect to the lattice H̃Hodge(Ku(X),ℤ) ≅ N (Ku(X)) whose definition is recalled in Sec-
tion 3.4 (see Remark 3.20). For later use, a Mukai vector is an element in the image of 
the restriction � ∶ K(Ku(X)) → H̃Hodge(Ku(X),ℤ) of �′ . We denote by Stabm(Ku(X)) the set 
of full numerical stability conditions with moduli spaces on Ku(X) . Note that the twisted 
Chern character induces a natural map u ∶ H̃Hodge(Ku(X),ℤ) → ΛB0,Ku(X)

.

Example 7.4 It is explained in [14, Section 9], that if � = (A, Z) is a stability condition con-
structed in Theorem 7.3, then the pair �Ku(X) ∶= (A, Z◦u) is in Stabm(Ku(X)) which is then 
nonempty.

Theorem 7.3 and Propsition 6.9 yield the following

Corollary 7.5 Let X be a cubic fourfold. Then Db(X) has a stability condition.

chB0
(−) ∶= ch(Forg(−))

(
1 −

11

32
L
)
,

�
� ∶ K(Db(ℙ3,B0)) → ℚ

3, �
�(E) ∶=

(
chB0,0

(E), chB0,1
(E), chB0,2

(E)
)
∈ ℚ

⊕3
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Furthermore, we consider the natural continuous map

defined in the following way. First, using the pairing on H̃(Ku(X),ℤ)) (see Remark 3.19), 
we get a natural identification between Hom(H̃Hodge(Ku(X),ℤ),ℂ) and the vector space 
�HHodge(Ku(X),ℂ) =

�HHodge(Ku(X),ℤ)⊗ℤ ℂ . Then � is nothing but the continuous map Z 
in Theorem 5.9 composed with such an identification.

Set now P ⊆ �HHodge(Ku(X),ℂ) to be the open subset consisting of vectors whose real 
and imaginary parts span positive-definite two-planes in H̃Hodge(Ku(X),ℝ) . Then we set

where Δ ∶= {� ∈ H̃Hodge(Ku(X),ℤ) ∶ (�, �) = −2} . Note that for �Ku(X) as in Example 7.4 
we have, by [14, Proposition 9.10],

Here A2 is the lattice in (3.10). Let P+
0
 be the connected component of P0 which contains 

�(�Ku(X)) , for �Ku(X) as in Example 7.4. In addition, let Stab†(Ku(X)) be the connected com-
ponent of Stabm(Ku(X)) which contains �Ku(X).

The complete result is then the following.

Theorem  7.6 ([13],  Theorem  29.1 and [14],  Proposition 9.9) The preimage 
�−1(P+

0
) contains the connected component Stab†(Ku(X)) . Moreover, the restriction 

� ∶ Stab†(Ku(W)) → P
+
0
 is a covering map.

7.2  Categorical Torelli theorem

In this section we want to discuss the following result which is one of the main results of 
[60].

Theorem 7.7 (Categorical Torelli theorem for cubic fourfolds) Let X1 and X2 be cubic four-
folds. Then X1 ≅ X2 if and only if there is an equivalence Φ ∶ Ku(X1)

∼
�������→ Ku(X2) such that 

�X2
◦Φ = Φ◦�X1

.

Here �Xi
 is the degree shift autoequivalence of Ku(Xi) described in Remark 3.18. Note that 

we do not require Φ being of Fourier–Mukai type. The assumption concerning the compat-
ibility between the equivalence Φ and the degree shift functors �Xi

 is crucial. Indeed, it was 
proved in [127, Theorem 1.1], that given any positive integer N one can find N non-isomor-
phic cubic fourfolds with equivalent Kuznetsov components. This is another striking similar-
ity with the case of K3 surfaces (see, for example, [140]). It is then natural to raise the follow-
ing question (see [111, Question 3.25] and the discussion therein):

Question 7.8 (Huybrechts) Does a Birational Categorical Torelli theorem for cubic four-
folds hold? Namely, let X1 and X2 be cubic fourfolds. Is it true that the existence of an 
equivalence Ku(X1)

∼
�������→ Ku(X2) implies that X1 and X2 are birational?

� ∶ Stabm(Ku(X)) → H̃Hodge(Ku(X),ℂ)

P0 ∶= P ⧵
⋃

�∈Δ

�⟂,

(7.2)𝜂(𝜎Ku(X)) ∈ (A2 ⊗ ℂ) ∩ P ⊆ P0.
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Note that Question 7.8 is compatible with Conjecture 3.16.

Remark 7.9 Note that the reverse implication of Question 7.8 is not true. More precisely, 
this amounts to asking whether two birational cubic fourfolds X1 and X2 have equivalent 
Kuznetsov components. However, as suggested by the referee, two general Pfaffian cubic 
fourfolds are birational (as both are rational), but their Kuznetsov components are not 
equivalent.

Of course, one could continue the analysis of the analogies with K3 surfaces. Assume that 
𝕂 = ℂ . In this case, one knows that the derived categories of two K3 surfaces are equivalent if 
and only if there is an orientation preserving Hodge isometry of the Mukai lattices of the two 
surfaces (see [59, 121]). It is then natural to ask whether the same happens for the Kuznetsov 
components of cubic fourfolds (see [111, Question 3.24]).

We will skip this discussion and, in the rest of this section, we will deal with two proofs of 
Theorem 7.7 based on two different approaches.

7.2.1  Idea of proof 1 (Jacobian rings)

Let us first explain the original approach in [60] which is close in spirit to the one in [49]. For 
this we have to stick to the case 𝕂 = ℂ.

Let us first introduce the main ingredients in the proof. If Y is a smooth hypersurface in 
ℙn+1 described as the zero locus of a homogeneous polynomial F, then the Jacobian ring of Y 
is

If the degree d of Y is such that d ≤ n + 1 (i.e. Y is a Fano manifold), then there is a semi-
orthogonal decomposition

where H is a hyperplane section. Let Ku(Y)(−(n + 1 − d)) be the admissible subcategory of 
Db(Y) obtained by tensoring Ku(Y) by OY (−(n + 1 − d)H).

Denote by Ku(Y)(−(n + 1 − d))⊠Ku(Y) the full subcategory of Db(Y × Y) which is gen-
erated by objects of the form E1 ⊠ E2 , where E1 ∈ Ku(Y)(−(n + 1 − d)) and E2 ∈ Ku(Y)6. 
Note that it is admissible by [79, Theorem 5.8]. Denote by

its fully faithful embedding and set P0 ∶= j∗
Y
OΔ , where j∗

Y
 is the left adjoint of jY . Simi-

larly, for a given n ≥ 1 , we set Pn to be the Fourier– Mukai kernel of the Fourier– Mukai 
functor obtained by composing �Y with itself n times. It worth pointing out that �Y is a 
Fourier– Mukai functor with Fourier– Mukai kernel given by the convolution of P0 and 
OΔ(1) [60, Remark 1.10]. By construction Pn ∈ Ku(Y)(−(n + 1 − d))⊠Ku(Y) . Note that 
P0 and Pn are related by convolution, namely P1 ≅ P0◦OΔ(1)◦P0 and Pn ≅ P◦n

1
 by [60, 

Remark 1.11].
Now, assume that d > 2 , set N = (n + 2)(d − 2) and

Jac(Y) ∶= ℂ[x0,… , xn+1]∕(�iF).

Db(Y) = ⟨Ku(Y),OY ,… ,OY ((n + 1 − d)H)⟩,

jY ∶ Ku(Y)(−(n + 1 − d))⊠Ku(Y) ↪ Db(Y × Y)

6 This means that Ku(Y)(−(n + 1 − d))⊠Ku(Y) is the smallest full triangulated subcategory of Db(Y × Y) 
containing the objects E1 ⊠ E2 as above and which is closed under taking direct summands.
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This comes with the ring structure induced by the composition (see [60, Sec-
tion  3.1]). Indeed, applying the convolution with Pi , we have a natural map 
�Hom(P0,Pj) → �Hom(Pi,Pi+j) and thus

requiring that the multiplication is trivial if i + j > N . Standard arguments show that this 
endows L(Y) with the structure of a graded ring. We denote by Lj(Y) the graded piece of 
degree j. We set HH∗(Ku(Y),�Y ) to be the graded subalgebra of L(Y) generated by L1(Y)7.

We are now ready to relate Jac(Y) and HH∗(Ku(Y),�Y ).

Theorem  7.10 ([60],  Theorem  1.1) Let Y ⊆ ℙn+1 be a smooth hypersurface of degree 
d ≤

n+2

2
 . Then there exists a natural surjection

of graded rings which is an isomorphisms if n + 2 is divisible by d.

Now let Y1 and Y2 be smooth hypersurfaces in ℙn+1 of degree 2 ≤ d ≤
n+2

2
 and assume 

that d divides n + 2 so that �Yi is an isomorphism, for i = 1, 2 . If Φ ∶ Ku(Y1)
∼
�������→ Ku(Y2) 

is a Fourier– Mukai equivalence such that �Y2
◦Φ = Φ◦�Y1

 , by [60, Proposition 3.9], Φ 
induces an isomorphism of graded algebras HH∗(Ku(Y1),�Y1

) ≅ HH∗(Ku(Y2),�Y2
) . 

By Theorem 7.10, this lifts to an isomorphism of graded algebras Jac(Y1) ≅ Jac(Y2) . By 
Yau– Mather theorem (see [49, Proposition 1.1], we get Y1 ≅ Y2 . Thus we proved:

Corollary 7.11 Let Y1 and Y2 be smooth hypersurfaces in ℙn+1 of degree 2 ≤ d ≤
n+2

2
 and 

such that d divides n + 2 . Then Y1 ≅ Y2 if and only if there is an equivalence of Fourier– 
Mukai type Φ ∶ Ku(Y1)

∼
�������→ Ku(Y2) such that �Y2

◦Φ = Φ◦�Y1

Since cubic fourfolds satisfy the assumptions of Corollary 7.11, we immediately get 
Theorem 7.7 in view of Propsition 3.15.

7.2.2  Idea of proof 2 (stability conditions)

We now outline the strategy of proof via stability conditions which is pursued in the appen-
dix to [14] and, as explained later, allows one to get another proof of the classical Torelli 
theorem as well.

In this second proof, we can assume that � is an algebraically closed field with char(�) ≠ 2 . 
As above, there is only one implication in the statement that needs to be proved.

L(Y) ∶=

N⨁

i=0

�Hom(P0,Pi).

�Hom(P0,Pi) × �Hom(P0,Pj) → �Hom(P0,Pi) × �Hom(Pi,Pi+j) → �Hom(P0,Pi+j)

�Y ∶ Jac(Y) → HH∗(Ku(Y),𝖮Y )

7 The notation HH∗(Ku(Y),�Y ) clearly suggests a relation with the Hochschild cohomology of the category 
Ku(Y) as defined in [87]. Indeed, as explained in [60], we should think of HH∗(Ku(Y),�Y ) as the Hochschild 
cohomology of the pair (Ku(Y),�Y ) . Even though the relation between the Hochschild cohomology of the 
pair (Ku(Y),�Y ) and the usual HH∗(Ku(Y)) is not of interest for this paper, the reader may find a discussion 
about this in [60, Section 3].
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The strategy is very close in spirit to the one in Section 6.1 and Section 6.3 where we 
proved the Categorical Torelli theorem for cubic threefolds. Indeed, let X be a cubic 
fourfold and let F1(X) be the Fano varieties of lines in X. By [17], when 𝕂 = ℂ , the vari-
ety F1(X) is a 4-dimensional smooth and projective irreducible symplectic manifold (i.e. 
a simply-connected manifold such that H0(F1(X),Ω

2
F1(X)

) is generated by an everywhere 
nondegenerate holomorphic 2-form). In general, as F1(X) is embedded in the Grass-
mannian of lines in ℙ5 , it carries a privileged ample polarization which is the restriction 
of the Plüker polarization. To shorten the notation we will refer to such a polarization 
on F1(X) as the Plücker polarization.

The key point is that one can interpret F1(X) as a moduli space of stable objects 
in the Kuznetsov component Ku(X) . This approach was initiated in [113] and pursued 
in [14, 99]. Let X be a cubic fourfold and fix a stability condition � ∈ Stab†(Ku(X)) 
such that 𝜂(𝜎) ∈ (A2 ⊗ ℂ) ∩ P ⊆ P

+
0
 . As we observed in (7.2) any stability condition 

constructed in the proof of Theorem 7.3 would work. By the general theory of moduli 
spaces of (semi)stable objects in the Kuznetsov component Ku(X) which we discussed in 
Section 5.1, we can take the moduli space M�(Ku(X), v) for every Mukai vector v. By the 
results in [13], any such moduli space M�(Ku(X), v) carries a natural ample polarization 
��.

The result is then the following (recall the class �1 defined in (3.9) and that 
� ∈ H̃Hodge(Ku(X),ℤ) such that (�, �) = −2 is called (−2)-class):

Theorem  7.12 ([14],  Theorem A.8) Let X be a cubic fourfold such that 
H̃Hodge(Ku(X),ℤ) does not contain (−2)-classes. For any � ∈ Stab†(Ku(X)) such that 
𝜂(𝜎) ∈ (A2 ⊗ ℂ) ∩ P ⊆ P

+
0
 , the Fano variety of lines in X is isomorphic to the moduli 

space M�(Ku(X),�1) of �-stable objects with numerical class �1 . Moreover, the ample line 
bundle �� on M�(Ku(X),�1) is identified with a multiple of the Plücker polarization by this 
isomorphism.

Remark 7.13 In [99, Theorem 1.1] the previous result has been generalized by showing that 
the Fano variety of lines of every cubic fourfold is isomorphic to a moduli space of �-sta-
ble objects for � as in Section 7.1.

Now, let X1 and X2 be cubic fourfolds with an equivalence Φ ∶ Ku(X1)
∼
�������→ Ku(X2) com-

muting with the rotation functors. By Propsition 3.15, Φ is of Fourier– Mukai type. Then Φ 
induces a Hodge isometry

between the Mukai lattices. It is a simple exercise, using our assumption �X2
◦Φ = Φ◦�X1

 
and [57, Proposition 3.12], to show that ΦH sends the A2-lattice of X1 to the corresponding 
one of X2.

Remark 7.14 It is clear that, for this argument, one can weaken the assumption 
�X2

◦Φ = Φ◦�X1
 in Theorem 7.7 to its cohomological version �H

X2
◦ΦH = ΦH

◦�
H
X1

 . Here we 
have that 𝖮

H
Xi
∶ H̃Hodge(Ku(Xi),ℤ)

∼
�������→ H̃Hodge(Ku(Xi),ℤ) denotes the Hodge isometry 

induced by �Xi
.

ΦH ∶ H̃(Ku(X1),ℤ)
∼
�������→ H̃(Ku(X2),ℤ),
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Recall that if X is a cubic fourfold, the middle cohomology H4(X,ℤ) has a natural lattice 
and Hodge structure (see [56] for an excellent introduction). If H is the class of a hyper-
plane section then the self-intersection H2 is an algebraic class in H4(X,ℤ) . Then we 
denote by H4

prim
(X,ℤ) the orthogonal to H2 in H4(X,ℤ) . Clearly, such a sublattice inherits a 

Hodge structure from H4(X,ℤ) . By [2] there is (up to Tate twist) a Hodge-isometry

In our setting, using the above identification and the fact that ΦH preserves the A2-lattices 
of X1 and X2 , it follows that ΦH induces a Hodge isometry

Theorem 7.7 then follows from the following beautiful classical result. Its first proof was a 
masterpiece in Hodge theory due to Voisin [145]. Alternative and more recent proofs are 
due to Looijenga [104] and Charles [41].

Theorem 7.15 (Classical Torelli theorem) Two smooth complex cubic fourfolds X1 and X2 
are isomorphic if and only if there exists a Hodge isometry H4

prim
(X1,ℤ) ≅ H4

prim
(X2,ℤ).

Since we promised that the second proof of Theorem 7.7 would have been based on 
stability conditions, we are going to provide an alternative proof of Theorem 7.15 based on 
these techniques and following the Appendix of [14].

Proof of Theorem  7.15 Of course, if X1 ≅ X2 , then there is a Hodge isometry 
H4

prim
(X1,ℤ) ≅ H4

prim
(X2,ℤ) . For the other implication, we start with a Hodge isometry

The argument proceeds now by taking a local deformation of Xi . Indeed, as explained in 
[60], in view of the local Torelli theorem, � extends to the bases of the universal defor-
mation spaces Def(X1) ≅ Def(X2) , which are considered as open subsets of the period 
domain. More precisely, one can find an identification Def(X1) ≅ Def(X2) such that paral-
lel transport induces a Hodge-isometry

where Xi,d is the local deformation of Xi parametrized by d ∈ Def(Xi) . Then a lattice theo-
retic argument (see [60, Proposition 4.2]) shows that for every d ∈ Def(X1) ≅ Def(X2) the 
Hodge-isometry �d lifts to an orientation preserving Hodge isometry

which commutes with the action of the degree shift functors on the Mukai lattices.
Consider the set Di of points of Def(Xi) corresponding to cubic fourfolds X such that 

Ku(X) ≅ Db(S, �) , for S a K3 surface and � ∈ Br(S) , and H̃Hodge(Ku(X),ℤ) does not con-
tain (−2)-classes. Since the condition of having Kuznetsov component equivalent to 
the bounded derived category of a twisted K3 surface is determined by the Mukai lat-
tice [57, Theorem  1.4], [13, Proposition 33.1], we see that �d preserves this property. 

H4
prim

(X,ℤ) ≅ A⟂
2
⊂ �H(Ku(X),ℤ).

� ∶ H4
prim

(X1,ℤ)
∼
�������→ H4

prim
(X2,ℤ).

� ∶ H4
prim

(X1,ℤ)
∼
�������→ H4

prim
(X2,ℤ).

�d ∶ H4
prim

(X1,d,ℤ)
∼
�������→ H4

prim
(X2,d,ℤ),

�d ∶ H̃(Ku(X1,d),ℤ)
∼
�������→ H̃(Ku(X2,d),ℤ)
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Analogously, �d preserved the property of not having (−2)-classes. We thus conclude that 
Def(X1) ≅ Def(X2) restricts to an isomorphism D1 ≅ D2 . Thus we can set D ∶= D1 ≅ D2 . 
As explained in the appendix to [14], the set D is dense. Moreover, for all d ∈ D , the 
Hodge isometry �d can be lifted to an equivalence

by the derived Torelli theorem for twisted K3 surfaces [62, Theorem 0.1]. By construction, 
the isometry ΦH

d
 commutes with the action of the degree shifts functors in cohomology.

Now, for d ∈ D , pick �1 ∈ Stab†(Ku(X1,d)) such that 𝜂(𝜎1) ∈ (A2 ⊗ ℂ) ∩ P ⊆ P
+
0
 and set 

�2 ∶= Φd(�1) . By [58, Theorem 1] the stability manifold Stab†(Ku(Xi,d)) has a unique con-
nected component of maximal dimension. Since the action of Φd on the stability manifolds 
exchanges components of the same dimension, it follows that the image �2 of �1 belongs to 
Stab†(Ku(X2,d)) . Moreover, by definition, 𝜂(𝜎2) ∈ (A2 ⊗ ℂ) ∩ P as well. Thus we can apply 
Theorem 7.12 twice and obtain a string of isomorphisms

The isomorphism in the middle is induced by Φd and, as explained in [14, Appendix A], 
it sends the polarization ��1

 to ��2
 . Thus, by Theorem 7.12, the whole sequence of isomor-

phisms sends the Plücker polarization on F1(X1,d) to the Plücker polarization on F1(X2,d) . 
The proof then continues as in the one of Theorem 6.4 and it consists in applying Chow’s 
trick (see [41, Proposition 4]) in order to conclude that X1,d ≅ X2,d for all d ∈ D . Since D is 
dense, separatedness of the moduli space of cubic fourfolds implies that X1 and X2 have to 
be isomorphic (since any open neighborhood of the point corresponding to X1 in Def(X1) 
intersects any open neighborhood of the point corresponding to X2 in Def(X2) , precisely in 
the points which belong to D). This ends the proof.

7.3  Gushel– Mukai fourfolds

We could wonder whether the techniques explained in the previous sections may be adapted 
to other classes of Fano fourfolds. This turns out to be true in the case of Gushel– Mukai 
fourfolds (more generally for Gushel– Mukai varieties of even dimension).

Recall that a general complex Gushel– Mukai (GM) fourfold X is a smooth four-dimen-
sional intersection of the form

where Gr(2, 5) is the Plücker embedded Grassmannian and Q is a quadric hypersurface 
in a hyperplane section of ℙ9 . GM fourfolds share many similarities with cubic fourfolds. 
For instance, from a geometric viewpoint, there are known examples of rational GM four-
folds, but it is still unknown whether the very general one is irrational or rational. From the 
point of view of derived categories, Kuznetsov and Perry proved in [89] that the bounded 
derived category of X has a semiorthogonal decomposition of the form

Φd ∶ Ku(X1,d)
∼
�������→ Ku(X2,d)

F1(X1,d) ≅ M�1
(Ku(X1,d),�1) ≅ M�2

(Ku(X2,d),�1) ≅ F1(X2,d).

X = Q ∩ Gr(2, 5) ⊂ ℙ
9,

Db(X) = ⟨Ku(X),OX ,U
∨
X
,OX(1),U

∨
X
(1)⟩,
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where UX is the restriction of the tautological bundle of rank 2 on the Grassmannian 
Gr(2, 5) and Ku(X) ∶= ⟨OX ,U

∨
X
,OX(1),U

∨
X
(1)⟩⟂ . The residual component Ku(X) is the 

Kuznetsov component of X and is a noncommutative K3 surface.
Full numerical stability conditions on Ku(X) have been constructed in [126], using a 

dimension reduction trick. More precisely, the authors show that X is birational to a conic 
fibration over a quadric threefold Y and then provide an embedding of Ku(X) in the bounded 
derived category Db(Y ,B0) , where (Y ,B0) is a twisted quadric threefold.

On the other hand, it is known that the Torelli Theorem does not hold for GM fourfolds. 
In fact, in this case the period map has four-dimensional fibers by [45]. Nevertheless, we 
can still wonder whether a (refined) Categorical Torelli theorem holds for GM fourfolds.

More precisely, note that GM fourfolds in the same fiber of the period map have equiva-
lent Kuznetsov components by [90, Theorem 1.6]. On the other hand, by [32, Theorem 1.3] 
there are examples of GM fourfolds with equivalent Kuznetsov components, but defining 
different period points. These considerations suggest that we have to impose some addi-
tional conditions to an equivalence between the Kuznetsov components to recover the 
period point or the isomorphism class of a GM fourfold.

Recall that the degree shift functor of Ku(X) is defined by

where �⟨OX ,U
∨
X
⟩ is the left mutation in ⟨OX ,U

∨
X
⟩ (see, for example, [78, Section 2] for the pre-

cise definition). We can formulate the following question:

Question 7.16 Let X1 and X2 be Gushel– Mukai fourfolds. Assume that there is an equiva-
lence Φ ∶ Ku(X1)

∼
�������→ Ku(X2) which commutes with the degree shift functors of X1 and X2 . 

Then under which assumptions on Φ we have that X1 and X2 are isomorphic?

To address this question, it may be helpful to use the stability conditions defined on 
Ku(X) and the associated moduli spaces having the structure of hyperkähler manifolds 
[126], as done for cubic fourfolds in the last part of Section 7.2.

Remark 7.17 Let X1 and X2 be Gushel– Mukai fourfolds. Assume that there is an equiva-
lence Φ ∶ Ku(X1)

∼
�������→ Ku(X2) which commutes with the degree shift functors. One could ask 

the intermediate question whether Φ induces a Hodge isometry H4
van

(X1,ℤ) ≅ H4
van

(X2,ℤ) 
between the degree-four vanishing cohomologies of X1 and X2 (see [46, Section 3.3] for the 
definition). This is answered positively by [15, Proposition 1.12].

Note that if X1 and X2 are very general, then the above statement holds for every exact 
equivalence Φ ∶ Ku(X1)

∼
�������→ Ku(X2) . This can be proved exactly as in [57, Corollary 3.6]. 

Indeed, by [98] every equivalence as above is of Fourier-Mukai type. Then by [57, Corol-
lary 3.5], it induces a Hodge isometry ΦH between the Mukai lattices of Ku(X1) and Ku(X2) . 
Note that the condition of being very general means that the algebraic part of the Mukai 
lattice of Ku(Xi) is generated by two classes �1 , �2 (see [89] and [128, Lemma 2.4] for the 
precise definitions). As a consequence, the Hodge isometry ΦH restricts to a Hodge isom-
etry H4

van
(X1,ℤ) ≅ H4

van
(X2,ℤ) . Of course, we cannot say X1 and X2 are isomorphic (and in 

general they are not), since there is no Torelli theorem.

We finally recall the following conjecture about Birational Categorical Torelli theorem 
for Gushel– Mukai varieties. The same comment in Remark 7.9 applies to this setting.

�X ∶= �⟨OX ,U
∨
X
⟩(−⊗OX(1))[−1],
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Conjecture 7.18 ([90],  Conjecture 1.7) If X1 and X2 are Gushel– Mukai varieties of the 
same dimension such that there is an equivalence Ku(X1)

∼
�������→ Ku(X2) , then X1 and X2 are 

birational.
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