Bridging the Gap Between Certification and Software
Development

Claudio A. Ardagna
Universita degli Studi di Milano
Department of Computer Science
Milan, Italy
claudio.ardagna@unimi.it

ABSTRACT

While certification is widely recognized as a means to increase
system trustworthiness and reduce uncertainty in decision mak-
ing, it faces severe challenges preventing a wider adoption thereof.
Certification is not adequately planned and integrated within the
development process, leading to suboptimal scenarios where certifi-
cation introduces the need to further modify the developed system
with high costs. We propose a methodology that bridges the gap
between software development and certification processes. Our
methodology automatically produces the certification requirements
driving all steps of the development process, and maximizes the
strength of certificates while taking costs under control. We formal-
ize the above problem as a multi-objective mathematical program
and solve it through a genetic algorithm. The proposed approach
is tested in a real-world, cloud-based financial scenario at Caixa-
Bank and its performance and quality is evaluated in a simulated
scenario.

CCS CONCEPTS

« Security and privacy — Security requirements; Software security
engineering; « Software and its engineering — Software design
techniques; Software design tradeoffs; Software design engineering;
Empirical software validation.

KEYWORDS

Certification, Software Development, Security

ACM Reference Format:

Claudio A. Ardagna, Nicola Bena, and Ramon Martin de Pozuelo. 2022.
Bridging the Gap Between Certification and Software Development. In
Proceedings of ARES 2022. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3538969.3539012

1 INTRODUCTION

We live in a globally interconnected society characterized by per-
vasive ubiquitous devices and communication technologies. ICT
systems, from small-scale smart homes to large-scale smart cities,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ARES’22, August 23-26, 2022, Vienna, Austria

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9670-7/22/08....$15.00
https://doi.org/10.1145/3538969.3539012

Nicola Bena
Universita degli Studi di Milano
Department of Computer Science
Milan, Italy
nicola.bena@unimi.it

Ramon Martin de Pozuelo
CaixaBank
Security Innovation &
Transformation
Barcelona, Spain
rmartindepozuelo@caixabank.com

govern many aspects of our life, with services such as smart health-
care, smart transportation, and smart grid improving the efficiency
and effectiveness of daily activities. The price we pay for such con-
venience is an increased risk for users’ security, safety, and privacy,
up to scenarios where users’ life can be endangered by malfunc-
tioning or malicious attacks. While this environment and the risks
it entails are known and, at least partially, addressed, many users
are still recalcitrant towards this smart revolution.

The main reason behind this negative attitude lies in the lack
of (perceived) trustworthiness and transparency of these systems,
which are often used as black-boxes with no clear evidence on
their behavior. The research and the industrial communities, as
well as international regulators, are increasingly focusing on so-
lutions aimed to boost system trustworthiness. In this context,
certification is becoming a preferred solution to prove whether
the system holds a set of certification requirements (e.g., reliability
and integrity), and, in turn, increase the confidence on its correct
behavior and trustworthiness [5]. Despite all efforts, the adoption
of certification is still limited, especially in modern (distributed)
systems where software is developed as a service and deployed on
cloud-edge infrastructures. This mainly relates to the difficult match
between current development processes and existing certification
methodologies, introducing high costs and making certification
a time-consuming, error-prone, and suboptimal process, which is
not easily applicable to the above modern systems. On one side,
certification is typically a rigid process, whose costs need to be care-
fully evaluated [13, 40, 44] in a world where security budgets are
often small [45]. On the other side, the development team cannot
cope with modern development practices, heavy-regulated envi-
ronments, and certification methodologies due to their intrinsic
mismatches [31, 44]. As a consequence, especially in domains where
certification is optional, only a fraction of traditional software is
statically certified [14], while nearly no modern systems come with
a certificate proving their non-functional properties [5].

Our approach aims to fill in the above gaps, departing from the
traditional assumption of considering development and certifica-
tion processes as loosely-coupled, often sequential, activities. We
rather target a development process that is driven by and adapts
to certification requirements since system design, producing a cer-
tification-ready system. Our approach supports the development
team in automatically retrieving the certification requirements in
terms of properties to be certified such that i) property strength
in certificates, and in turn system strength, are maximized, and

https://orcid.org/0000-0001-7426-4795
https://orcid.org/0000-0003-4909-9892
https://orcid.org/0000-0002-4476-2619
https://doi.org/10.1145/3538969.3539012
https://doi.org/10.1145/3538969.3539012
https://doi.org/10.1145/3538969.3539012

ARES’22, August 23-26, 2022, Vienna, Austria

ii) costs are kept under control. It shifts certification to the left, sup-
porting the development team in tightly integrating development
and certification processes in both traditional and modern systems.

The contribution of this paper is threefold. We first model the
strength and the costs of properties to be certified by enriching the
traditional notion of non-functional properties (Section 3). We then
formalize the problem of maximizing the strength while matching
a given budget, and prove it to be NP-hard. We finally propose a
heuristic based on genetic algorithm NSGA-III (Section 4), which
solves our problem retrieving a small and meaningful set of can-
didate solutions. The proposed approach is tested in a real-world,
cloud-based financial scenario at CaixaBank, a major financial com-
pany worldwide, and its performance and quality is evaluated (Sec-
tion 6) in a simulated scenario.

2 MOTIVATION AND REFERENCE SCENARIO
2.1 Motivation and State of the Art

Certification is an accepted practice especially in safety-critical
domains, such as avionics and medical, where malfunctions may
threat users’ life, and the development process must follow strict
guidelines [26, 41]. Certification practices in the industry involve
manual activities and documentation, and are mainly based on
the Common Criteria (CC) standard [25]. They are not applicable
in modern systems, including cloud and IoT, due to the intrinsic
dynamicity of such environments and the peculiarities of the corre-
sponding development practices requiring many integration and
deployment steps in small windows of time. Alternatives do exist
(e.g., [5, 35]) and are being developed (e.g., EUCC [19], EUCS [20],
5G Certification [21], promoted by the European Union Agency for
Cybersecurity), but are still rarely applied.

In general, a certification process is a rigorous process that aims
to certify a set of requirements on a target of certification (a soft-
ware, a service, or a system in the broader sense), by collecting
evidence from evidence collection points implemented on the target.
Evidence is collected according to manual documentation, testing,
monitoring, and formal methods [5, 22, 25, 37]. Requirements are
modeled in different ways according to the considered domain,
such as: i) fixed properties, modeling generic requirements such
as those forming the CIA triad (Confidentiality, Integrity, Avail-
ability) [7, 36]; ii) assurance cases, modeling requirements as high-
level assurance objectives (cases), for which developers have to
(manually) prepare supporting evidence [12, 24, 29]; iii) non-func-
tional properties, modeling requirements as a fixed property (here
referred to as abstract property) refined with specific attributes (e.g.,
the encryption algorithm for data confidentiality). Non-functional
properties mimics Protection Profiles of CC [25]. They have been
mostly considered in the context of service certification [2] and
later enhanced in the context of cloud certification [3, 34, 43], cloud
plan adaption [6], DevOps pipelines [4], and to complement and
validate risk management [1].

Figure 1(a) presents an overview of the relation between a state-
of-the-art certification process and the development process. The
certification process is decoupled from the development process and
applied a posteriori, when the target of certification is fully designed
and implemented. It is a complex and resource-demanding task,
adding a significant burden on the development team, including

Claudio A. Ardagna, Nicola Bena, and Ramon Martin de Pozuelo

| Functional Dev. | Functional | Dev.

| Requirements | Process : Requirements | Process

”””””” - 1 STt oo T
System System

(T T T T A} —— (T Tt T \ =

i Certification 1 Cert. i Certification 1 Cert.

: Requirements | Process | Requirements | Process

(a) State of art (b) This paper

Figure 1: Certification and development processes

software engineers, developers, and architects. The reason lies in
two assumptions that virtually all certification approaches made.

Assumption 1: certification requirements (from non-functional
properties [3] to assurance cases [12, 29]) are defined at de-
sign time before system development starts. This assumption
does not hold in real scenarios, since requirements are often
not considered at design time or provided by developers
without a rigorous process.

Assumption 2: evidence collection points (from written docu-
ments [25] to cloud APIs [3], monitoring infrastructures [34],
and Trusted Platform Modules [7]) are implemented in ad-
vance and are correct. This assumption does not hold in
real scenarios, since evidence collection points might not
be always available or might be inadequate to support a
certification process.

These assumptions are the main hurdles towards fully exploiting
certification and limit its adoption in modern systems. The soft-
ware development process happens well in advance with respect to
the certification process or they are just informally bound on the
basis of development team’s choices. If certification is not planned
adequately, it could require more effort than development [22]. Cer-
tification requirements are clarified at certification time only, or
the system to be certified could not include the correct evidence
collection points, requiring i) a huge effort in adapting certifica-
tion requirements to the existing system or vice versa; ii) large
modifications to the system to support evidence collection points.
Costs could then quickly go out of control, resulting in companies
avoiding system certification [44]. This is critical in static certifi-
cation approaches of traditional software systems like Common
Criteria, and is exacerbated in modern systems where code changes
and releases happen at high rates, with low budgets allocated for
security practices [45]. As a result, virtually no modern systems
are certified according to industrial standards [14].

Our methodology in Figure 1(b) bridges the gap between soft-
ware development and certification, supporting developers in the
implementation of certification-ready systems. It considers certifi-
cation and its impact on development earlier, guiding the realization
of a system where i) certification requirements are clear from the
beginning and drive the development of a system supporting them;
ii) evidence collection points are planned and implemented during
the development process. Following the latest research on certifica-
tion [2, 3], our methodology models a certification requirement as
a non-functional property defined as follows.

Definition 2.1. A non-functional property is a pair p=(p, {(a;.v)})
where i) p is the abstract property (e.g, confidentiality, integrity,

Bridging the Gap Between Certification and Software Development

availability); ii) {(a;.v;)} is the set of attribute values refining the
property, with a; the name of attribute and v;€V; the value of
attribute a;.

We note that V;={v;} is the set of possible values for attribute a;.
Each property includes attributes values referred to i) the property
itself and its implementation (e.g., RAID type for low-level data
integrity); ii) the software development process (e.g., programming
language), including deployment and operational details; iii) the
software certification process, including evidence collection points.

2.2 Reference Scenario

Our reference scenario considers financial services at CaixaBank,
a major financial company worldwide. The development team at
CaixaBank is currently challenged with development and oper-
ations of such services following a DevSecOps approach, often
lacking adequate tools and training when development meets se-
curity assurance and trustworthiness verification. This problem is
particularly critical in this sector, due to i) the proliferation of regu-
lations such as PCI-DSS, GDPR, or the upcoming EU Cybersecurity
Act, asking to show compliance with a large set of security, privacy,
and legal requirements; ii) the barriers posed by regulations at point
i) in integrating new services while assessing and enforcing secu-
rity and privacy requirements; iii) the increasing trend in migrating
existing services to the cloud, introducing the need of adapting the
development and assessment processes to the target cloud infras-
tructure. For these reasons, techniques supporting the development
and the certification of financial services become fundamental to
provide high-quality assurance while keeping costs under control.
These techniques drive developers in implementing certification-
ready services and increase the perceived trustworthiness of the
companies in the medium term [3, 5].

Our reference scenario focuses on the payment service at Caixa-
Bank, providing all functionalities for digital payments and financial
information management. CaixaBank wants to migrate its service
to the cloud and certify it against PCI-DSS. PCI-DSS is a major
standard to which all operators involved in cardholder data process-
ing must comply imposing, in short, to securely process such data,
from storage to transmission. The cloud migration requires to re-
architect the service and implement new functionalities to benefit
from the cloud and, at the same time, to make the certification
process faster and cheaper. The development team at CaixaBank
is currently integrating the payment service with a PCI-DSS-com-
pliant cloud infrastructure (e.g., Amazon AWS) and developing all
components at the basis of the payment service certification.

In the following, we discuss how our methodology can support
the development team in implementing a certification-ready ser-
vice minimizing costs and increasing the robustness of the certified
product [39]. To this aim, we focus on PCI-DSS requirement pro-
tect cardholder data, which includes properties confidentiality pc,
integrity pj, and availability p,.

3 CERTIFICATION-DRIVEN DEVELOPMENT

Our methodology supports the development team in finding the
best non-functional properties that balance the system strength and
the additional cost introduced on the development process in terms
of developer knowledge, certification endpoints, and additional

ARES’22, August 23-26, 2022, Vienna, Austria

functionalities to be included. The development process is driven by
the collected properties and results in a certification-ready system
with high quality and costs under control. A certification-ready
system means that evidence collection points are integrated since
the design phase, allowing the certification process to start right
after the software development process is completed and retrieve
the evidence needed for system certification.

Our methodology is modeled as an optimization problem (Sec-
tion 3.3) that builds on three main components. The first compo-
nent is the set of non-functional properties (Definition 2.1). Each
property can be initially defined at different levels of granularity,
ranging from an abstract property p to a fully-specified property
p=(p, {(ai.vj)}). We note that often the development team defines a
property where part of the attributes values are left empty, depend-
ing on its initial knowledge. Fully-specified properties {p} are the
output of the optimization problem and aim to balance the other
two components of the optimization problem: i) property strength
(Section 3.1) and ii) cost (Section 3.2).

3.1 Property Strength

Property strength models the robustness of a property verified on
a system. For instance, let us consider property integrity. The more
the strength of the property, the higher the integrity of the system.
We note that each attribute value can contribute to the strength of
the corresponding property and must be carefully evaluated. For
instance, the cryptographic algorithm used for signature and the
key length have an impact on the property strength.

Formally, let p; be an abstract property, and (a;, V;) an attribute.
The set V; of attribute values is partitioned in disjoint equivalence
classes c1, .. ., cp for Py, s.t. i) attribute values in class ¢; equally
contribute to the property strength; ii) the contribution of attribute
values in class ¢; to the property strength is higher than the contri-
bution of values in ¢;—1 and lower than the contribution of values
in ¢j4+1. We then define the contribution of a;.v; to pi, that is, the
contribution to the strength of p; when attribute (a;, V;) has value
vj, as gk(ai.vj):%, where je{1,...,n} is the sorted index of the
corresponding equivalence class, and n the number of classes. We
note that equivalence classes are typically defined by experts. The
contribution is 0 when attribute values do not contribute to the
property strength.

Example 3.1. Following our reference scenario in Section 2.2, we
consider an excerpt of property confidentiality of the data stored
by payment service as p.=(pc, {(standard, PCI-DSS), (dev-type,
DevSecOps), (storage, AWS-RDS-ENC), (key-length, 256bit)}). p. re-
quires the payment service to show PCI-DSS compliance, be de-
veloped according to a DevSecOps methodology, and integrate a
managed relational database RDS on AWS encrypting data at rest
(ENC) with key length 256bit. Attribute storage includes the follow-
ing attribute values, grouped according to their equivalence classes
for pe: Vstorage ={{ Custom-KV'}, { Custom-DBMS}, { AWS-RDS, AWS-
KV}, {AWS-RDS-ENC, AWS-KV-ENC}}. “Custom-” refers to unman-
aged databases, while “KV-" to key-value stores and non-relational
databases. The contribution of the above attribute values is there-
fore {0.25, 0.5, 0.75, 1} (i.e., 0.25 is the contribution of attribute
values in the first equivalence class, and so on).

ARES’22, August 23-26, 2022, Vienna, Austria

The strength of a property py, denoted as A(py), is the sum of
the contribution of the composing attribute values, as follows.

A=), grlaioy) (1)

a;.vjEpg

3.2 Costs

Each choice made on the attributes of a given property p; has
an impact on the effort needed to develop a system supporting
Pk We therefore associate each attribute value with a monetary
cost, denoted by function ¢: V; — N, and define the cost of a non-
functional property p as a summation over the costs of the attribute
values composing it, as follows.

Z c(a;.vj), (2

a;.vjEpg
We note that the total cost introduced by the properties must be
within the budget available for the development process, which is
denoted as B. The cost of attribute values models the additional
developer knowledge to be formed/recruited (e.g., when a specific
programming language is selected), and the additional effort to
develop certification endpoints (e.g., preparing evidence collection
points for the certification process) and additional functionalities
(e.g., the integration of a new specific encryption algorithm). It also
models costs introduced by new services or infrastructures support-
ing system deployment. Some of these costs can be estimated by
models such as COCOMO 2.0 [11]. We note that our methodology
is independent of the solution adopted for cost estimation, which

is outside the scope of this paper.

Example 3.2. Following Example 3.1, we estimate the cost of
certifying property p. as the costs of the modifications to perform
on the payment service. The attribute values impacting the most on
pe are as follows: i) (dev-type, DevSecOps) as the cost of an external
DevSecOps expert responsible for the payment service migration;
ii) (storage, AWS-RDS-ENC) as the cost of an AWS-hosted instances
of the database, including the eventual cost to certify this additional
component. In this case, there are no additional costs beyond the
instance itself, since AWS services are already certified for PCI-DSS
compliance.

3.3 Problem Statement

Our methodology is modeled as an optimization problem that re-
ceives as input the budget and the set of (abstract) properties in
Definition 2.1 with the corresponding attributes, contributions, and
costs. It returns as output a set of (fully-specified) non-functional
properties whose strength is maximized and cost is below the bud-
get. We aim to optimize (and later certify) the properties globally;
optimizing (and certifying) each property individually would in fact
result in conflicting certification requirements and impair the certi-
fication process in the release of a certificate for each property. Each
property is composed of peculiar attributes whose value is differ-
ent (possibly not present) in other properties and shared attributes
whose value is the same in each property. Peculiar attributes mostly
refer to property-specific configurations, such as key-length with
value 256bit for property p.. Shared attributes mostly refer to the
development process. For instance, pc, p;, and p, have the following

Claudio A. Ardagna, Nicola Bena, and Ramon Martin de Pozuelo

shared attributes: standard, dev-type, and storage. We denote A as
the union of peculiar and shared attributes, with the latters added
only once.

PROBLEM 1 (MAX-PROPERTY). Given a set of abstract properties
{p} s.t. [{p}|=K taking values in A, find the best atiribute values for
A for each property €{p} s.t. properties strength {A(p)} is maximized
and budget 8B is honored.

In other words, MAx-PROPERTY aims to find a set of fully-speci-
fied non-functional properties refining the abstract properties while
maximizing property strength and addressing the budget. MAx-
PROPERTY can be generalized to a problem where the properties are
partially specified and the optimization must find the best values
for unspecified attributes.

THEOREM 3.3. The MAx-ProPERTY is NP -hard.

Proor. The proof is a reduction from the NP-hard problem of
the multi-objective multiple-choice knapsack problem, formulated as
follows: given a set of disjoint classes of items, each item j of class i
having a weight and K values (i.e., profits), pack exactly one item per
class in a knapsack of capacity C without violating it and maximizing
the sum of the corresponding values fork = 1,...,K [18, 32]. The
correspondence between the MAX-PROPERTY and the aforemen-
tioned knapsack problem is as follows. Each class i translates to an
attribute (a;, V;)€A; each item j of class i translates to an attribute
value a;.vj; each value k of item j of class i translates to the contri-
bution of the corresponding attribute value to the strength of the
k-th non-functional property (i.e., gp, (ai.v;)); the weight of item
j of class i translates to the monetary cost of the corresponding
attribute (i.e., c(a;.v;)); knapsack capacity C translates to monetary
budget 8. O

A binary programming formulation of MAX-PROPERTY is as fol-
lows.

max Z Z gk(ai-Uj)'xij k=1,....,K (3a)

(a;,Vi)eAv;€V;
[VieAl
s.t. Z Xij = 1

J
Z Z c(a;.vj) - xij <

(a;,Vi)eAvjeVi
Xij € {0,1}

i=1,...,]JA (3b)

R

(3¢)

i=1,.. L, ALj=1....[il (3d)

where i) equation (3a) presents the K objective functions, one for
each property, making MAX-PROPERTY a multi-objective problem.
Each objective function models the maximization of the correspond-
ing property strength according to the contribution of the chosen
attribute values; ii) equation (3b) requires to choose one value for
each attribute in A; iii) equation (3c) defines the requirement on
the monetary budget; iv) equation (3d) presents the binary decision
variables x;;, whose value is 1 when the j-th attribute value of the
i-th attribute is chosen. We note that a valid solution x to MAx-
PROPERTY is a set {p1, . .., px } of K non-functional properties, with
pi being a refinement of the corresponding abstract property p;
given as input and K the number of abstract properties.

Bridging the Gap Between Certification and Software Development

4 HEURISTIC SOLUTION

Multi-objective optimization problems lack the definition of optimal
solution, because, in general, there are no solutions simultaneously
optimizing all objectives. The resolution process then passes from
the definition of dominance [33], as follows.

Definition 4.1. Let x, x” be two feasible solutions and A(py.) (A(p}.),
resp.) the strength of py € x (p;. € x”, resp.). x” dominates x iff

) Vk € {1.....K}.A(p}) > App)s
i) 3k € {1,...,K}LAPL) > Mpg).

Consequently, x” is nondominated (or Pareto optimal) iff it does not
exist any other solution x dominating x’.

In other words, a solution x” dominates another x if, for each
non-functional property pl’c therein, the corresponding strength
A(pl’c) is never worse, and strictly better at least once. The set of
all nondominated solutions is called Pareto set, denoted as S(X),
and the corresponding image is called Pareto front, denoted as S(Y).
These sets have typically (very) large cardinality [38].

MAX-PROPERTY is NP-hard and cannot be solved to optimality,
that is, finding the complete and exact sets S(X) and S(Y). Our ap-
proach i) computes an approximation of the above sets (Section 4.1);
ii) selects a meaningful solution from such sets (Section 4.2). For
brevity, in the following, we only consider S(Y), whose retrieved
approximation is denoted as S(Y).

4.1 Finding the Nondominated Solutions

We use NSGA-III [17, 30], a genetic algorithm designed for solving
complex optimization problems with many objectives (> 3), to
compute S(Y). A set of encoded solutions, called population, evolves
during the algorithm iterations, until a stopping condition is met,
as follows.

Input. The algorithm receives as input the set of attribute values
A for abstract properties {p1,...,px}, each attribute value with
the corresponding contribution to the property strength and cost
(Section 3). It also receives as input a set of reference points, that
is, specific configurations of non-functional properties to guide
the evolutionary search. They are generated uniformly to let the
algorithm explore the whole search space with equal probability.

Encoding and Initial Population. The algorithm randomly gen-
erates the initial population. Random non-functional properties are
extracted according to the provided attributes, without consider-
ing their costs wrt the total budget (feasibility). Each population
member represents a set of non-functional properties, encoded as
an integer vector. The i-th attribute is encoded at position i, taking
value j € [0, |V;|] representing the value v;€V; of attribute a;. The
vector length is |A| (Section 3.3). The population size equals the
number of reference points, denoted as N.

Offsprings Generation. At each iteration, the algorithm applies
selection, crossover, and mutation to the current population to gen-
erate offsprings (i.e., a new population) of the same size. Selection
extracts pairs of parents. It selects each parent out of two random
candidates from the current population, preferring feasibility over
infeasibility, and smaller constraint violation values over larger ones
(binary tournament selection [15]). Crossover combines each pair of

ARES’22, August 23-26, 2022, Vienna, Austria

Vstorage = {Custom-KV, Custom-DBMS, AWS-KV, AWS-RDS, AWS-KV-ENC, AWS-RDS-ENC}
J

|

be key-length dev-type storage standard protocol provision

i !
Selection Selection
B Crossover

]

Figure 2: Overview of NSGA-III

parents to generate a new pair of offsprings. For each offspring, it
combines the parents according to a probability distribution (simu-
lated binary crossover [17]). Mutation modifies offsprings according
to the same probability distribution of crossover (polynomial mu-
tation [16]). Finally, a repair operator ensures that the generated
offsprings respect the encoding.

Population Generation. At each iteration, the algorithm pro-
cesses current population and offsprings to generate the population
for the next iteration. It extracts a set (called front) from the union of
current population and offsprings according to a constraint-domina-
tion relationship [30] s.t., for any pair of solutions in the combined
population, i) a feasible solution is chosen over an infeasible one;
ii) an infeasible solution with the smallest constraint violation value
is chosen over another infeasible one; iii) a feasible nondominated
solution is chosen over another feasible one. Once a first front is
filled up with all the members satisfying the requirements, the pro-
cedure is repeated over and over with the remaining members, until
they are all assigned to a front. Fronts are then associated with a
rank: the first created front is associated with 1, the second with
2, and so on. Population for the next iteration is built by taking N
members from the fronts in ascending rank order. This way, feasible
solutions are chosen first, followed by infeasible solutions with the
smaller constraint violation values.

Output. The algorithm returns the first-ranked front in the last
generated population. Recalling that a population member encodes
a possible configuration for all the K non-functional properties,
each population member is a potential, approximated solution of
Max-PROPERTY. We note that some members might be infeasible,
as they are approximation. Nevertheless, among all the computed
infeasible non-functional properties (if any), the algorithm favors
non-functional properties violating the least the given budget.

Example 4.2. Following Example 3.2, Figure 2 shows an iteration
of NSGA-III, reporting one population member with attributes of
pc and p;. Dotted boxes group attributes in properties. Each solid
square indicates an attribute (single line for peculiar attributes,
double line for shared ones), whose content is the position of the
value in the set of attribute values. For instance, attribute storage has
value 6 and refers to AWS-RDS-ENC, which is at 6-th position in the
set Vstorage. Selection selects pairs of parents used in crossover to
generate pairs of offsprings. Each offspring is then mutated to obtain

ARES’22, August 23-26, 2022, Vienna, Austria

modified attribute values. For instance, offspring {2,5,6,2, 1,2}
is mutated obtaining {2, 5, 7, 2, 2, 2}. These operations produce an
invalid offspring, since storage has value 7 while the largest possible
value is 6, requiring repair to {2, 5, 6, 2, 2, 2}. Offsprings and current
population are then merged to generate the new population.

4.2 Selecting Significant Solutions

Let P be the set of solutions returned by NSGA-III, py ; the k-th
property encoded in the I-th population member. Our approach
returns the best solution according to one of the following metrics.
We note that these metrics are based on the strength or costs of
the properties in P (i.e., operate in the codomain), but return the
corresponding properties in P (i.e., the domain).

Maximum Strength. It proposes the solution maximizing the cu-
mulative strength, according to the following equation.

K
A 4
argz:f?’,ﬂp\ kZ:; (Px,1) (4)

Minimum Cost. It proposes the solution minimizing the cumula-
tive monetary cost, according to the following equation

ar, min Z c(aj.vj 5
g,_min (ai.vj) ©)
a;.v;€EA;
where Aj is the set of attribute values across all properties in the
I-th population member.

Minimum Penalty. It proposes the solution with minimum high-
est difference (i.e., penalty) from an utopian solution. The utopian
solution A*™ is retrieved by adding a small € to the ideal solution
A*, which is computed according to the following equation.

A= A k=1,...,K 6
kS omax (P, 1) (6)

where Af (A", resp.) corresponds to the maximum strength
of property k (the strength increased by e, resp.). The minimum

penalty solution is retrieved according to the following equation [38].

K
arg,_min | max (e O = Ape) +p D wie O ~A(pi.1)

k=1
™)
For each member [in the population P and for each property
strength A(pg ;) in it, equation (7) first retrieves the difference be-
tween A(py ;) and the utopian solution A7 ; this difference is called
penalty. Second, for each solution in the population, it retrieves the
highest penalty (i.e., max). Third, it retrieves the solution whose
penalty is minimum (i.e., min). Weights w;. favor solutions that
are closer to the utopian values [42]. The additive term permits to
retrieve a solution that is p-properly Pareto optimal [38]. Formally,
a Pareto optimal solution x’={p7, .. ., py }€P is p-properly Pareto
optimal if [38]:

1. it is Pareto optimal (Definition 4.1), and

2. itexists M=1+1/p s.t. for each feasible solution x={p1,. . . ,px } €P

and for each property prex where A(py) > A(p;() there ex-
ists at least one property p;ex where A(p]’) > A(pj) and

Claudio A. Ardagna, Nicola Bena, and Ramon Martin de Pozuelo

’
Apr) = Apy) <M
@)~ Apy)

A solution is p-properly Pareto optimal if there is at least one
pair of properties strength (objectives) s.t. an improvement in one
property strength is possible only by decreasing the other property
strength; p bounds this variation [38].

®)

Example 4.3. Following Example 4.2, the development team at
CaixaBank chooses the solution minimizing the overall cost. It
includes pc as pc=(pc, {(standard, PCI-DSS), (dev-type, DevSecOps),
(storage, AWS-RDS-ENC),(key-length, 256bit)}) with strength 3.5.
The total cost of the retrieved pc, pi, pa is discussed in Section 5.

5 WALKTHROUGH

We present a walkthrough of our methodology in the reference
scenario in Section 2.2. Developers at CaixaBank need to migrate
their payment service to the cloud and then certify it according to
PCI-DSS standard, in general, and requirement protect cardholder
data, in particular. Their goal is to extend the payment service in a
way that, once migrated, it can be easily certified with minimum
effort. This means that the service must support all the require-
ments imposed by the PCI-DSS standard in advance, including the
evidence collection points to collect relevant evidence.

Cost model. For clarity, we consider a simple cost model inspired
by the work in COCOMO [11]. The cost of each attribute value
is defined using labels in the set {Very Low, Low, Medium, High,
Very High}. Each label is then associated with a cost modeled as the
effort in person-day (pd) requested to the development team to ad-
dress the specific attribute value, that is, Very Low=1pd, Low=7pd,
Medium=15pd, High=30pd, Very High=60pd. We note that these
values represent an average estimation and depend on the consid-
ered scenario. The monetary costs are finally calculated assuming
an average hourly labour cost of 23€ in Spain.! We note that, for
simplicity, costs related to the adoption of services and infrastruc-
tures have been assumed to be negligible; more sophisticated cost
models can be applied in our methodology.

Information collection. Developers translate PCI-DSS require-
ments in non-functional properties pc, p;, and p,, defining attributes,
their possible values, and their costs. We note that cost estimation
has been done manually and validated by CaixaBank. Table 1 sum-
marizes this information. For instance, attribute standard defines
possible standards including PCI-DSS, HIPAA, and GDPR. Attribute
lang defines possible programming languages with different contri-
butions to the properties’ strength: Go and Rust have high contribu-
tion (0.75 and 1, resp.) and high cost (High and Very High, resp.). The
same applies for attribute dev-type. Configuration attributes such as
key-length and protocol have different contributions with the same
cost; their choice in fact does not add any additional burden. Similar
to storage in Example 3.1, a managed platform on AWS (either EKS,
that is, Kubernetes, or Lambda) requires less effort than a non-man-
aged one. We note that shared attributes (i.e., attributes referred
to more than one property) have equal contribution to any of the
corresponding properties. The monetary budget 8 is calculated

!https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Hourly_labour_
costs

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Hourly_labour_costs
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Hourly_labour_costs

Bridging the Gap Between Certification and Software Development

Table 1: Attributes values of our reference scenario. Selected
property attributes are highlighted in bold.

Attr. name | Values Contrib. Cost Properties
PCI-DSS 0.5 Very High

standard HIPAA 0.5 Very High Pes Pis Pa
GDPR 1 Very High
C 0.25 Very High
Python 0.5 Medium

lang Java 0.75 Low Pes Pis Pa
Go 0.75 High
Rust 1 Very High
Waterfall 0.2 Very High
Prototype 0.4 Very High

dev-type Spiral 0.6 Medium Pe Dis Pa
DevOps 0.8 High
DevSecOps 1 High
Custom-KV 0.25 Very High
Custom-DBMS 0.5 Very High

storage AWS-KV 0.75 Low Por P Pa
AWS-RDS 0.75 Low ’
AWS-KV-ENC 1 Low
AWS-RDS-ENC 1 Low
128bit 0.5 Very Low

key-length 256bit 1 Very Low pe

protocol TLSv1.2 0.5 Very Low e
TLSv1.3 1 Very Low

provision manual 0.5 High 2
auto 1 Very Low
none 0.25 High

platform Kube-Custom 0.5 Very High o
AWS-EKS 0.75 Low
AWS-Lambda 1 Medium

assuming a Medium cost (15pd) for each attribute, that is, a total
of 120pd (i.e., 15pdx8 attributes). According to the average hourly
labour cost of 23€ in Spain, the monetary budget B is 22.080€.

Property optimization. Information collected in Table 1 is fed
in our methodology, finding the set of fully-specified, non-func-
tional properties honoring the specified budget, as described in
Section 4.1. Developers select metric Minimum Cost in Section 4.2,
retrieving the fully-specified properties pc, pi, pa minimizing the
overall cost. The selected property attributes are highlighted in
bold in Table 1 and are as follows: pc=(pc, {(key-length, 256bit)}),
pi=(pi, {(protocol, TLSv1.3), (provision, auto)}), pa=(pa, {(platform,
AWS-EKS)}). The solution has shared attributes {(standard, PCI-
DSS),(language, Java), (dev-type, DevSecOps), (storage, AWS-RDS-
ENC)}, with strengths A(pc)= 4.25, A(p;)=5.25, A(pa)=4, and total
cost of 20.976€ (i.e., 114 person-day), under the budget of 22.080€.

Development. The development team then starts the migration,
adapting the payment service to AWS cloud. This includes modifica-
tions on the codebase to support the new managed database (prop-
erty pc), the configuration of automatic provision of TLS certificates
(property p;), the deployment on AWS Kubernetes (property p,).
Once the migration is complete, payment service can successfully
undergo PCI-DSS certification.

Discussion. By considering certification earlier in the develop-
ment process, CaixaBank developers can adapt an existing service

ARES’22, August 23-26, 2022, Vienna, Austria

Table 2: Settings for NSGA-III

Parameter Value Parameter Value
Prob. of crossover 1 Variation of obj. |0.0025
Prob. distrib. in crossover (1) 30 Variation of constr.| 17°
Prob. of mutation 1/|N]| Max iterations 100
Prob. distrib. in mutation (7) 20 Iterations window | 30

(a) main parameters (b) stopping conditions

to a cloud-based certification-ready service minimizing the over-
all effort. The global optimization of all the properties leads toa
solution (i.e., development plan) without conflicting requirements,
while keeping development and certification costs under control.
For instance, following a traditional development process decou-
pled by the certification process, the developers could integrate an
unmanaged database within the VM deploying the payment service.
This choice gives an immediate benefit in terms of development
costs, while requiring significant costs at certification time, since
the custom DBMS as well as the service should be certified against
PCI-DSS from scratch. By contrast, following our methodology, the
developers opt for a PCI-DSS-compliant AWS cloud infrastructure.
This stresses the importance of planning certification from the be-
ginning, building an adequate plan to support developers. Due to
the large number of variables involved, our approach automate this
planning phase, driving developers in the identification of the best
properties according to the selected metric.

6 EXPERIMENTS

We experimentally evaluated the performance and quality of our
approach in a simulated environment. Experiments have been run
on a VM featuring 8 vCPU Intel® Xeon Silver 4216 CPU@2.10 GHz,
64 GBs of RAM, operating system Ubuntu 20.04 x64, using Python
3.8.10 with libraries numpy [23], and pymoo [9].

We configured NSGA-III following best practices in the litera-
ture [17, 30] with i) non-functional properties varying in 4, 5, 6, 7
and population size (N) in 160, 212, 280, 360, resp. (Table 2(a)), i)
stopping conditions considering the average variation in the ob-
jective functions, the average variation in the constraint violation
(the monetary budget), and the number of generations (iterations)
(Table 2(b)); conditions are evaluated every 30 iterations, and the
condition reached first stops the algorithm. Reference points have
been generated using the method in [10].

6.1 Performance

We compared the performance of our heuristic approach in Sec-
tion 4.1 with an exhaustive brute force search realized in Python.
We varied i) the number K of properties in 4, 5, 6, 7; ii) the total
number of attributes in i+ixK, with i€{4, 8, 12}, such that there ex-
ists i shared attributes among all properties and i peculiar attributes
for each property (a total of i*K peculiar attributes); iii) the number
of attribute values |V;| for each attribute i in 10, 25, 40. Partitions
in equivalence classes (Section 3.1) and costs (Section 3.2) were
randomly generated. Each combination of the above parameters
corresponds to an instance of problem MAX-PrROPERTY. The number
of possible solutions is equal to [] |V;| for i=1,.. ., |A], that is, the
combinations of all attributes values. The brute force algorithm
splits the search space in the number of CPU cores (8) and proceeds

ARES’22, August 23-26, 2022, Vienna, Austria

14 4K 08 8K -©-12 12K o1z 12K
225+ 2.95 ‘ : ‘ ‘
O
220 @ R 2t O o]
2 [er g 5 22 g
o B P
E £
& aas) 1 F a5t ,
3 S 21))))
10 15 20 25 30 35 40 13 1 5 3 7
Vil K
@) (b)
-Et Max strength ~0-Min cost -O-Min penalty
O -0
_ 0.1 G"“O" R
g
v
£ 0.05) |
=
T
of o < O 4
3 4 5 6 7
K
(©

Figure 3: Performance of NSGA-III (a), (b), and selection of
relevant solutions (c).

in parallel, exploring all the possible solutions forming the Pareto
front S(Y), with a maximum execution time of 15 minutes.

Figure 3(a) shows the performance of NSGA-III with K=7 vary-
ing the number of attributes and attributes values. Figure 3(b) shows
the performance of NSGA-III varying the number of properties and,
in turn, the population size (Table 2(b)), in a worst case with 12
attributes and 40 attribute values. We observe that the performance
never exceeds 2.25s in the worst case. Also, the impact of the in-
put size on the performance is negligible thanks to the optimized
libraries we used. On the contrary, brute force algorithm never
yielded a solution within the 15-minute threshold, exploring a very
negligible part of the search space, 1.12 X 107'2% on average.

Figure 3(c) shows the performance of the selection of the best so-
lution according to the metrics in Section 4.2, in a worst case with 12
attributes and 40 attribute values. We note that the time complexity
depends on the number of properties only. As expected, selection
is faster when using minimum cost and maximum strength; the
metric minimum penalty is the slowest, as it involves more complex
computations. Execution time never exceeds ~0.125ms.

6.2 Quality

We executed NSGA-III 100 times on each generated instance of MAx-
PROPERTY (Section 6.1). We repeated each individual execution 5
times and considered the best according to its Hypervolume. For
each instance, we retrieved the accumulated Pareto front 5*(Y),
by combining the individual S(Y) of each execution according to
the dominance relationship in Definition 4.1. This served as our
reference solution. We note that this approach is recommended
when exact solutions are not available, like in our case [27]. We then
evaluated the quality of our approach by i) measuring how much our
approximated Pareto front S(Y) covers the accumulated Pareto front

Claudio A. Ardagna, Nicola Bena, and Ramon Martin de Pozuelo

K=4 O K=5 -0-K=6 -©K=7 O K=4 ©K=5 -O0K=6 -©K=7
1 T T T T T T T T T T T T T
08l oasf S——8— 5|
g e
w06 o
& g e ’
= 04f 1 = £
E -
0.05 1
0.2 B

10 15 20 25 30 35 40 00 15 20 25 30 35 40
Vil Vil

(a) (b)

Figure 4: Hypervolume quality (a) and IGD+ (b).

§*(Y); ii) comparing, for each instance, the best solution retrieved
in each execution and the best among all executions, following the
metrics in Section 4.2.

6.2.1 Pareto Front Coverage. We measured the quality of the ap-
proximated Pareto front S(Y) found by NSGA-III using quality indi-
cators Hypervolume and IGD+.

e Hypervolume measures the volume of the area enclosed by
S(Y)and a given reference point far from S(Y). It is an indi-
cator to be maximized. In our case, we normalized S~(Y) and,
for the sake of computation, transformed MAX-PROPERTY
into a minimization problem, where the ideal is (0)X and
reference point is (1.1)X. We note that there is no consensus
on the choice of the reference point, yet this is the typical
approach [33].

o IGD+ measures the average (modified) Euclidean distance d
between each point in S*(Y) and the closest pointin S(Y) [28].
It is defined as

~ 1 &
IGD+(S(Y), $*(Y)) = — Z _ min
K= apnesm

d (1*(Pk)j(Pk)) ,

1/2

whered (1 (pi). A(pe)) = (K. (mas(F () = i), 0))°)

For each execution, we calculated the Hypervolume HV and
computed the quality as HV /HV " where HV is the Hypervolume
of S*(Y). We then averaged such quality over the 100 executions
of each instance. We note that Hypervolume computation is it-
self NP-hard; we therefore used the approximation algorithm in
PygMO [8], which yields an Hypervolume value far from the exact
value of a factor of 10~! with probability of 0.9. For each instance,
taking S*(Y) as reference, we also retrieved the average IGD+ (i.e.,
the average over IGD+ computed for each of the 100 executions).

NSGA-III exhibits a good quality. Figure 4(a) shows our results
based on the Hypervolume in the worst case scenario with 12+12K
attributes. As expected, the quality worsens as the number of prop-
erties increases, that is, as the problem becomes more difficult. We
report detailed values in Table 3 in Appendix A. According to Hy-
pervolume, the algorithm captured x73% of the quality of HV"
on average. Figure 4(b) shows our results based on IGD+ for the
same instances used in the Hypervolume evaluation. Similar to the
Hypervolume, IGD+ becomes larger as the problem becomes more
difficult, never exceeding ~0.16. According to IGD+, the quality of

Bridging the Gap Between Certification and Software Development

HK=4 0K=5 -0K=6 -©K=7 HK=4 0K=5 -OK=6 -©K=7
1 T T T T T T T 1 T T T T T T T
= 09] 1 = 09) 1
2 fd
E |
ot 0.8 Bl Ot 0.8F 4
0770 15 20 25 30 35 40 07790 15 20 25 30 35 40
|Vil |Vil
(a) (b)

G K=4 O K=5 -0-K=6 --&K=7

10 15 20 25 30 35 40
Vil

©

Figure 5: Quality of the best solution according to maximum
strength (a), minimum cost (b), minimum penalty (c).

the algorithm is ~0.13 on average, corresponding to an average
distance between solutions in §(Y) and S*(Y) of 0.13.

In general, Table 3 shows that Hypervolume and IGD+ are mostly
affected by the number of properties, that is, the number of objec-
tives of MAx-ProPERTY. For instance, Hypervolume has a quality
of ~85% with K=4, degrading to ~63% with K=7, while IGD+ value
degrades from ~0.09 to ~0.16. We note that the decrease in quality
is larger for Hypervolume since it also evaluates the cardinality.
The cardinality of S$*(Y) is in fact 33x on average larger than the
one of single-execution S(Y). More in details, $*(Y) is ~12x larger
with K=4 and ~58x with K=7.

6.2.2 Quality of the Best Solution. We evaluated the quality of the
best solution returned by the three metrics in Section 4.2 with re-
spect to the best solution returned among all executions, as follows.
We denote m as the value of the best solution according to a specific
metric of an individual execution, and m* the best value among all
executions. We averaged the quality of the three metrics over the
100 executions of each setting.

e Maximum strength: quality is defined as m/m"*. Maximum
strength exhibits a quality of #91% on average, increasing
to x92% with K=6 and K=7.

e Minimum cost: quality is defined as m*/m. Minimum cost
exhibits a quality of ~86% on average, increasing to ~87%
with K=7.

e Minimum penalty: quality is defined as m*/m. Minimum
penalty exhibits a stable quality of ~79%, slightly increasing
to =79.58% with K=7.

Figure 5 shows the result for the three metrics in the worst
case scenario with 12+12K attributes, while Table 4 in Appendix
A reports detailed values. All metrics exhibit a stable to slightly
increasing quality when varying the number of properties, despite
the increasing complexity of MAX-PROPERTY.

ARES’22, August 23-26, 2022, Vienna, Austria

7 CONCLUSIONS

Today, the coordination between development and certification
processes is more an art than a science and builds on the skills
and competences of the development team, potentially impacting
on the cost, time, and quality of certification. This problem is am-
plified by the smart service revolution that promises unmatched
efficiency and effectiveness in most of our activities, at the cost
of an ever-increasing reliance on digital technologies, which are
now ubiquitous. In this paper, we posed the basis for a certification-
driven development process that bridges the gap between soft-
ware development and certification processes where i) certification
requirements are clear from the beginning and drive the develop-
ment of the system supporting them, ii) evidence collection points
are implemented during the development process. We formulated
our problem as an optimization problem and defined an heuristic
approach based on a genetic algorithm solving it. Our approach
retrieves a set of non-functional properties driving the implemen-
tation of certification-ready systems with highest system strength
and according to an estimated budget.

ACKNOWLEDGMENTS

Research supported, in parts, by EC H2020 Project CONCORDIA
GA 830927, and Universita degli Studi di Milano under the program
“Piano sostegno alla ricerca”.

REFERENCES

[1] Marco Anisetti, Claudio A. Ardagna, Nicola Bena, and Andrea Foppiani. 2021.
An Assurance-Based Risk Management Framework for Distributed Systems. In
Proc. of IEEE ICWS 2021. Chicago, IL, USA.

[2] Marco Anisetti, Claudio A. Ardagna, and Ernesto Damiani. 2012. A Low-Cost
Security Certification Scheme for Evolving Services. In Proc. of IEEE ICWS 2012.
Honolulu, HI, USA.

[3] Marco Anisetti, Claudio Agostino Ardagna, Ernesto Damiani, and Filippo Gau-
denzi. 2020. A Semi-Automatic and Trustworthy Scheme for Continuous Cloud
Service Certification. IEEE Transactions on Services Computing (TSC) 13, 1 (2020).

[4] Marco Anisetti, Claudio A Ardagna, Filippo Gaudenzi, and Ernesto Damiani.
2019. A Continuous Certification Methodology for DevOps. In Proc. of MEDES
2019. Limassol, Cyprus.

[5] C.A.Ardagna, R. Asal, E. Damiani, and Q.H. Vu. 2015. From Security to Assurance
in the Cloud: A Survey. ACM Computing Surveys (CSUR) 48, 1 (August 2015).

[6] Claudio A. Ardagna, Rasool Asal, Ernesto Damiani, Theo Dimitrakos, Nabil El
Ioini, and Claus Pahl. 2021. Certification-Based Cloud Adaptation. IEEE Transac-
tions on Services Computing 14, 1 (2021).

[7] Mudassar Aslam, Bushra Mohsin, Abdul Nasir, and Shahid Raza. 2020. FONAC -
An automated Fog Node Audit and Certification scheme. Computers & Security
93 (June 2020).

[8] Francesco Biscani and Dario Izzo. 2020. A parallel global multiobjective frame-
work for optimization: pagmo. Journal of Open Source Software 5, 53 (2020).

[9] J. Blank and K. Deb. 2020. pymoo: Multi-Objective Optimization in Python. IEEE
Access 8 (2020).

[10] Julian Blank, Kalyanmoy Deb, Yashesh Dhebar, Sunith Bandaru, and Haitham
Seada. 2021. Generating Well-Spaced Points on a Unit Simplex for Evolutionary
Many-Objective Optimization. IEEE Transactions on Evolutionary Computation
25,1 (2021).

Barry Boehm, Bradford Clark, Ellis Horowitz, Chris Westland, Ray Madachy,
and Richard Selby. 1995. Cost models for future software life cycle processes:
COCOMO 2.0. Annals of Software Engineering 1, 1 (Dec 1995).

Radu Calinescu, Danny Weyns, Simos Gerasimou, Muhammad Usman Iftikhar,
Ibrahim Habli, and Tim Kelly. 2018. Engineering Trustworthy Self-Adaptive Soft-
ware with Dynamic Assurance Cases. IEEE Transactions on Software Engineering
44,11 (2018).

Yihai Chen, Mark Lawford, Hao Wang, and Alan Wassyng. 2013. Insulin Pump
Software Certification. In Proc. of FHIES 2013. Macau, China.

[14] Common Criteria. [n. d.]. Certified Products. https://www.commoncriteriaportal.
org/products/

Kalyanmoy Deb and Ram Bhushan Agrawal. 1995. Simulated Binary Crossover
for Continuous Search Space. Complex systems 9, 2 (1995).

[11

[12

[13

[15

https://www.commoncriteriaportal.org/products/
https://www.commoncriteriaportal.org/products/

ARES’22, August 23-26, 2022, Vienna, Austria

[16]

[17

[18

[19]

[20

[21

[22

[23]

[24

[25]

[26

[27]

[28

™~
o

[30]

[31]

[32

[33]

[34

[35

[36]

@
o

[38]

[39]

[40

[41]

Kalyanmoy Deb and Samir Agrawal. 1999. A Niched-Penalty Approach for
Constraint Handling in Genetic Algorithms. In Proc. of [CANNGA 1999. Portoroz,
Slovenia.

Kalyanmoy Deb and Himanshu Jain. 2014. An Evolutionary Many-Objective
Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on
Evolutionary Computation 18, 4 (2014).

Matthias Ehrgott. 2005. Multicriteria Optimization. Springer-Verlag, Berlin,
Germany.

ENISA. 2020. Cybersecurity Certification: Candidate EUCC Scheme
V1.1.1. https://www.enisa.europa.eu/publications/cybersecurity-certification-
eucc-candidate-scheme-v1-1.1

ENISA. 2020. EUCS - Cloud Services Scheme. https://www.enisa.europa.eu/
publications/eucs-cloud-service-scheme

ENISA. 2021. Securing EU’s Vision on 5G: Cybersecurity Certifica-
tion. https://www.enisa.europa.eu/news/enisa-news/securing_eu_vision_on_
5g_cybersecurity_certification

Gabriella Gigante and Domenico Pascarella. 2012. Formal Methods in Avionic
Software Certification: The DO-178C Perspective. In Proc. of ISOLA 2012. Herak-
lion, Greece.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020).

Richard Hawkins, Ibrahim Habli, Tim Kelly, and John McDermid. 2013. Assurance
cases and prescriptive software safety certification: A comparative study. Safety
Science 59 (2013).

Debra S Herrmann. 2002. Using the Common Criteria for IT security evaluation.
CRC Press.

IEC. 2006. Medical device software — Software life cycle processes. Standard.
International Electrotechnical Commission, Geneva, CH.

Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima. 2014.
Difficulties in specifying reference points to calculate the inverted generational
distance for many-objective optimization problems. In Proc. of IEEE MCDM 2014.
Orlando, FL, USA.

Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima. 2015. Mod-
ified Distance Calculation in Generational Distance and Inverted Generational
Distance. In Proc. of EMO 2015. Guimaraes, Portugal.

Sharmin Jahan, Ian Riley, Charles Walter, Rose F. Gamble, Matt Pasco, Philip K.
McKinley, and Betty H.C. Cheng. 2020. MAPE-K/MAPE-SAC: An interaction
framework for adaptive systems with security assurance cases. Future Generation
Computer Systems 109 (2020).

Himanshu Jain and Kalyanmoy Deb. 2014. An Evolutionary Many-Objective
Optimization Algorithm Using Reference-Point Based Nondominated Sorting
Approach, Part II: Handling Constraints and Extending to an Adaptive Approach.
IEEE Transactions on Evolutionary Computation 18, 4 (2014).

Samuel Paul Kaluvuri, Michele Bezzi, and Yves Roudier. 2013. Bringing Common
Criteria Certification to Web Services. In Proc. of IEEE SERVICES 2013. Santa Clara,
CA, USA.

Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Knapsack Problems.
Springer.

Miging Li and Xin Yao. 2019. Quality Evaluation of Solution Sets in Multiobjective
Optimisation: A Survey. ACM Computing Surveys (CSUR) 52, 2 (2019).
Sebastian Lins, Stephan Schneider, Jakub Szefer, Shafeeq Ibraheem, and Ali Ali.
2019. Designing Monitoring Systems for Continuous Certification of Cloud
Services: Deriving Meta-requirements and Design Guidelines. Comm. of the
Association for Information Systems 44 (2019).

Sara N. Matheu, José L. Hernandez-Ramos, Antonio F. Skarmeta, and Gianmarco
Baldini. 2020. A Survey of Cybersecurity Certification for the Internet of Things.
ACM Computing Surveys (CSUR) 53, 6 (Dec. 2020).

Sara N. Matheu-Garcia, José L. Hernandez-Ramos, Antonio F. Skarmeta, and
Gianmarco Baldini. 2019. Risk-based automated assessment and testing for the
cybersecurity certification and labelling of IoT devices. Computer Standards &
Interfaces 62 (February 2019).

Dominique Méry and Neeraj Kumar Singh. 2010. Trustable Formal Specification
for Software Certification. In Proc. of ISOLA 2010. Heraklion, Greece.

Kaisa Miettinen. 2008. Introduction to Multiobjective Optimization: Noninter-
active Approaches. In Multiobjective Optimization: Interactive and Evolutionary
Approaches. Springer Berlin Heidelberg.

Havard Myrbakken and Ricardo Colomo-Palacios. 2017. DevSecOps: A Multivocal
Literature Review. In Proc. of SPICE 2017. Palma de Mallorca, Spain.

Daniel Port and Joel Wilf. 2013. The Value of Certifying Software Release Readi-
ness: An Exploratory Study of Certification for a Critical System at JPL. In Proc.
of ACM/IEEE ESE, 2013. Baltimore, MD, USA.

Leanna Rierson. 2017. Developing safety-critical software. CRC Press.

[42

[43

[44

[45

A
Tal

Claudio A. Ardagna, Nicola Bena, and Ramon Martin de Pozuelo

] F. Ruiz, M. Luque, and J. M. Cabello. 2009. A classification of the weighting
schemes in reference point procedures for multiobjective programming. Journal
of the Operational Research Society 60, 4 (2009).

] Philipp Stephanow, Gaurav Srivastava, and Julian Schiitte. 2016. Test-Based

Cloud Service Certification of Opportunistic Providers. In Proc. of IEEE CLOUD

2016. San Francisco, CA, USA.

Christoph Torens, Florian-M. Adolf, and Lukas Goormann. 2014. Certification

and Software Verification Considerations for Autonomous Unmanned Aircraft.

Journal of Aerospace Information Systems 11, 10 (2014).

] Elaine Venson, Xiaomeng Guo, Zidi Yan, and Barry Boehm. 2019. Costing Secure
Software Development: A Systematic Mapping Study. In Proc. of ARES 2019.
Canterbury, UK.

ADDITIONAL EXPERIMENTAL RESULTS
ble 3 shows detailed results of Hypervolume and IGD+ exper-

iments. The two indicators degrade as the number of objectives
increase, and they are virtually unaffected by variations in the
number of attributes and attributes values.

Table 3: Hypervolume and IGD+for all settings

K N.Attr |V;| HVqual.(%) IGD+ K N.Attr |Vj| HVqual.(%) IGD+
4 444K 10 78.7 0.11 6 4+4K 10 33.2351 0.1616
4 444K 25 80.9 0.1 6 4+4K 25 36.6431 0.1674
4 444K 40 81.19 0.11 6 4+4K 40 26.8122 0.1432
4 848K 10 90.89 0.07 6 8+8K 10 32.3279 0.1402
4 848K 25 80.43 0.1 6 8+8K 25 21.1256 0.1166
4 848K 40 94.43 0.05 6 8+8K 40 29.0331 0.137
4 12+12K 10 80.48 0.1 6 12+12K 10 28.3816 0.1362
4 12+12K 25 87.42 0.08 6 12+12K 25 29.4604 0.1294
4 12+12K 40 91.56 0.06 6 12+12K 40 27.2143 0.1338
AVG 85.11 0.09 AVG 70.76 0.14
5 4+4K 10 76.1 0.12 7 4+4K 10 57.92 0.17
5 4+4K 25 72.87 0.13 7 4+4K 25 62.06 0.16
5 4+4K 40 68.07 0.15 7 4+4K 40 66.62 0.16
5 8+8K 10 69.33 0.15 7 8+8K 10 62.44 0.16
5 8+8K 25 69.43 0.15 7 8+8K 25 63.82 0.18
5 8+8K 40 72.09 0.13 7 8+8K 40 62.53 0.16
5 12+12K 10 70.41 0.14 7 12+12K 10 63.99 0.16
5 12+12K 25 65.03 0.16 7 12+12K 25 67.91 0.16
5 12+12K 40 82.36 0.11 7 12+12K 40 63.5 0.15
AVG 71.74 0.14 AVG 63.42 0.16
HVqual.(%) IGD+
AVG 72.76 0.13

Table 4 shows detailed results of quality evaluation based on the

three selection metrics in Section 4.2. They all show a consistent
quality across all settings.

Table 4: Solution selection quality for all settings

K N.Attr [V;| Str.(%) Cost(%) Pen.(%) K N.Attr |Vj| Str.(%) Cost(%) Pen.(%)
4 444K 10 90.89 87.05 81.77 6 4+4K 10 92.42 88.39 84.73
4 444K 25 90.88 80.06 79.5 6 4+4K 25 92.55 80.55 82.15
4 4+4K 40 92.48 83.58 72.62 6 4+4K 40 93.04 78.12 81.95
4 8+8K 10 91.61 82.27 84.34 6 8+8K 10 91.89 89.35 78.63
4 848K 25 90.7 85.02 81.88 6 8+8K 25 88.66 88.9 76.05
4 8+8K 40 88.98 79.83 78.25 6 8+8K 40 87.44 82.42 70.66
4 12+12K 10 90.49 84.14 80.38 6 12+12K 10 90.46 93.67 76.45
4 12+12K 25 88.37 89.65 76.79 6 12+12K 25 92.54 88.3 79.95
4 12412K 40 88.84 84.71 74.26 6 12+12K 40 92.17 89.68 80.38
AVG 90.36 84.03 78.86 VG 91.24 86.6 78.99
5 444K 10 91.68 86.36 75.33 7 4+4K 10 93.19 86.84 81.29
5 4+4K 25 90.52 83.15 82.92 7 4+4K 25 91.52 80.09 78.06
5 4+4K 40 90.82 83.83 77.54 7 4+4K 40 91.57 82.88 83.97
5 8+8K 10 89.12 89.6 77.86 7 8+8K 10 89.41 91.23 68.16
5 8+8K 25 90.98 89.73 79.8 7 8+8K 25 90.1 90.42 80.36
5 8+8K 40 89.57 82.66 78.97 7 8+8K 40 92.26 88.48 80.08
5 12+12K 10 90.95 89.63 79.85 7 12+12K 10 91.95 88.46 79.85
5 12+12K 25 90.52 85.36 80.8 7 12+12K 25 92.34 89.74 78.75
5 12412K 40 88.04 88.61 74.14 7 12+12K 40 92.71 88.02 85.7
AVG 90.24 86.55 78.58 AVG 91.67 87.35 79.58
Str.(%) Cost(%) Pen.(%)
AVG 90.88 86.13 79

https://www.enisa.europa.eu/publications/cybersecurity-certification-eucc-candidate-scheme-v1-1.1
https://www.enisa.europa.eu/publications/cybersecurity-certification-eucc-candidate-scheme-v1-1.1
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.enisa.europa.eu/news/enisa-news/securing_eu_vision_on_5g_cybersecurity_certification
https://www.enisa.europa.eu/news/enisa-news/securing_eu_vision_on_5g_cybersecurity_certification

	Abstract
	1 Introduction
	2 Motivation and Reference Scenario
	2.1 Motivation and State of the Art
	2.2 Reference Scenario

	3 Certification-Driven Development
	3.1 Property Strength
	3.2 Costs
	3.3 Problem Statement

	4 Heuristic Solution
	4.1 Finding the Nondominated Solutions
	4.2 Selecting Significant Solutions

	5 Walkthrough
	6 Experiments
	6.1 Performance
	6.2 Quality

	7 Conclusions
	Acknowledgments
	References
	A Additional Experimental Results

