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We calculate the intensity-field correlations in the light scattered by N cold atoms driven by a
quasi-resonant laser field. Fundamental differences occur if the atomic state is an entangled single-
excitation state or a coherent factorized state. We provide analytic expressions for the two-time
field and intensity correlation functions for the timed Dicke state and the quasi-Bloch state. The
comparison with multi-atom simulations shows good agreement between numerical and analytic
solutions.

I. INTRODUCTION

Statistical properties of the radiation scattered by N identical two-level atoms are usually studied by means of the
single-time second-order normalized correlation function g(2) [1]. When the system is in an excited state, g(2) roughly
equals two. This value is typical of the Hanbury Brown and Twiss effect for thermal or pseudothermal Gaussian
fields [2]. When the system decays from the excited state to the superradiant state [3, 4], the behavior of g(2) is
essentially classical, since it decreases from 2 to nearly 1, which is the value from a coherent state. However, as the
system further decays to the ground state, the intensity fluctuation function, calculated in a model where the field is
quantized, is quite different from the classical one [5]. Similar results are expected also for subradiance, the odd-twin
of superradiance, in which the excited atoms stay trapped or decay slower to the ground state. It has been shown
that subradiance can be considered to be a purely nonlocal, nonclassical phenomenon displayed by quantum sources
[6].

More recently, a renewed interest in superradiance and subradiance has increased in the context of the cooperative
light scattering in cold atomic samples [7, 8]. These studies stem from the seminal work by Scully et al. [9], which
described the single-photon superradiance from N two-level atoms prepared by the absorption of one photon of wave
vector k0 [10–12]. It has been shown that the photon is spontaneously emitted in the same direction of the incident
photon with a cooperative decay rate proportional to N and inversely proportional to the size of the atomic cloud.
These studies considered the decay of atoms prepared in the ‘timed Dicke state’:

|+〉k0
=

1√
N

N∑
j=1

eik0·rj |g1, g2, . . . , ej , . . . , gN 〉 (1)

where |g1, g2, . . . , ej , . . . , gN 〉 is a Fock state in which the jth atom is prepared in the excited state |ej〉 and all the
other atoms are in the ground state |gj〉, and rj is the position of the jth-atom. A natural platform for studying this
kind of superradiance is provided by the cooperative scattering, in which the atoms cooperate to scatter the photons
from an incident laser beam with wave number k0 and frequency ω0 = ck0 close to the atomic resonance, leading to a
directional emission. This phenomenon is due to the synchronization of the atomic dipoles with the laser. By different
experiments and comparing different models [13, 14] it has been shown that in the linear optics approximation, i.e.
with a weak excitation of the atoms, the behavior is almost classical and can be described by considering the atoms
as classical dipoles. Quantum effects detectable by measuring the scattered intensity or the cooperative radiation
force exerted on the atoms could be observed only with a strong pump such that saturation effects become important
[15], or by investigating the fluctuations of the system. The objective of this work is to give evidence of the quantum
or classical effects observable in the linear optics approximation, by evaluating the two-time correlation functions
g(1)(t, τ) and g(2)(t, τ) for the photons scattered by cold two-level atoms in different quantum states, i.e., (a) the
entangled single-excitation state, (b) the timed-Dicke state [9], (c) the product (or coherent) state, and (d) what
we call a quasi-Bloch [16] or Eberly’s [12] state. Whereas g(1)(t, τ) is the same for all these states, the intensity-
correlations function g(2)(t, τ) exhibits fundamental differences related to the quantum or classical description of the
atomic ensemble.

II. THE MODEL

Our system consists of a gas of N two-level atoms (with random, fixed positions rj , lower and upper states |gj〉 and
|ej〉 with j = 1, . . . , N , and transition frequency ωa with linewidth Γ = d2ω3

a/2π~ε0c3, where d is the electric dipole
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matrix element), driven by a uniform resonant radiation beam with wave vector k0 = k0êz, frequency ω0 = ωa + ∆0

and electric field E0. The atom-field interaction Hamiltonian in the rotating-wave approximation (RWA) is

Ĥ = Ĥ0 + Ĥ1 (2)

where

Ĥ0 = ~
N∑
j=1

{
−∆0

2
σ̂3j +

Ω0

2

(
σ̂je
−ik0·rj + σ̂†je

ik0·rj
)}

Ĥ1 = ~
N∑
j=1

∑
k

gk

[
â†kσ̂je

i(ωk−ω0)t−ik·rj + σ̂†j âke
−i(ωk−ω0)t+ik·rj

]
. (3)

Here Ω0 = dE0/~ is the pump Rabi frequency, âk exp(−iωkt) is the photon annihilation operator in the inter-

action picture, with wavenumber k and frequency ωk = ck, gk = d
√
ωk/(2~ε0Vph), Vph is the photon volume,

σ̂j = exp(i∆0t)|gj〉〈ej | and σ̂3j = |ej〉〈ej | − |gj〉〈gj |. We write the Heisenberg equations of the atomic and field
operators as

dσ̂j
dt

=
1

i~
[σ̂j , Ĥ] = i∆0σ̂j +

iΩ0

2
σ̂3je

ik0·rj + i
∑
k

gkσ̂3j âke
−i(ωk−ω0)t+ik·rj (4)

dσ̂3j

dt
=

1

i~
[σ̂3j , Ĥ] = iΩ0σ̂je

−ik0·rj + 2i
∑
k

gkâ
†
kσje

i(ωk−ω0)t−ik·rj + h.c. (5)

dâk
dt

=
1

i~
[âk, Ĥ] = −igkei(ωk−ω0)t

N∑
m=1

σ̂me
−ik·rm . (6)

We consider the atoms initially in their ground state and we assume weak excitation (Ω0 � Γ), so that we approximate

σ̂3j(t) ≈ −Îj , where Îj is the identity operator for the jth atom. This approximation amounts to neglecting satura-
tion and multiexcitation, i.e. all the processes generating more than one photon at the same time (linear regime).
Integrating Eq.(6) and substituting it into Eq.(4), neglecting ak(0) (since the initial field state is vacuum) we obtain

dσ̂j
dt

=

(
i∆0 −

Γ

2

)
σ̂j −

iΩ0

2
Îje

ik0·rj −
∑
k

g2
k

N∑
m=1

eik·(rj−rm)

∫ t

0

dt′σ̂m(t− t′) e−i(ωk−ω0)t′ . (7)

The last term in Eq.(7) describes the effect of the spontaneously emitted photons on the atoms. In the Markov
approximation (i.e. when the photon transit time through the atomic sample is much shorter than the excitation
decay time), we may approximate under the integral σ̂m(t− t′) ≈ σ̂m(t). Then, the remaining time integral yields a
real part [with a term proportional to δ(k − k0)] and an imaginary part (corresponding to the principal part of the
integral). We transform the sum over the modes k into an integral,

∑
k → (Vph/8π

3)
∫
dk. The real and imaginary

parts of the double integral over t and k yield the cooperative decay and frequency shift (collective Lamb shift),
respectively. The proper expression of the cooperative frequency shift has been obtained adding to the Hamiltonian
(3) the not-RWA contributions associated to virtual photons exchanged between different atoms. It results in the
following relation [17]: ∑

k

g2
ke
ik·R

∫ ∞
0

dt′e−ic(k−k0)t′ −→ Γ

2ik0|R|
eik0|R| (8)

where Γ = Vphg
2
k0
k2

0/(πc). Using Eq.(8) in Eq.(7) we obtain [18],

dσ̂j(t)

dt
=

(
i∆0 −

Γ

2

)
σ̂j(t)−

iΩ0

2
Îje

ik0·rj − Γ

2

N∑
m 6=j

γjmσ̂m(t). (9)

where γjm = exp(ik0rjm)/(ik0rjm) and rjm = |rj − rm|. Equation (9) describes the time evolution of the atomic
operators σ̂j of N weakly excited atoms. The real part of γjm describes the spontaneous emission decay and the
imaginary part of γjm describes the energy shift due to resonant dipole-dipole interactions. Note that we use a scalar
model for the field, neglecting thus any polarization and near field dependence. Detailed calculations for small and
large samples of various geometries show that near-field and far-field contributions as well as resonant and antiresonant
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terms need to be taken properly into account for quantitative predictions [19, 20], and the present model thus needs
to be considered with care illustrating only a part of the dipole-dipole coupling for real systems.

The positive-frequency part of the electric field is defined as

Ê(+)(r, t) = i
∑
k

Ekâk(t)e−iωkt+ik·r (10)

where Ek =
√
~ωk/2ε0Vph is the single-photon electric field. By integrating Eq.(6) and inserting it in Eq.(10) we

obtain

Ê(+)(r, t) =
∑
k

Ekgk
N∑
m=1

eik·(r−rm)−iω0t

∫ t

0

dt′e−i(ωk−ω0)t′ σ̂m(t− t′) (11)

Using Eq.(8), the Markov approximation leads to

Ê(+)(r, t) ≈ −i dk
2
0

4πε0

N∑
j=1

e−iω0(t−|r−rj |/c)

|r− rj |
σ̂j(t) (12)

which has a transparent interpretation as the sum of wavelets scattered by N dipoles of position rj and detected at
distance r and time t. In the far field limit, |r− rj | ≈ r − (r · rj)/r and [21]

Ê(+)(r, t) ≈ −i dk
2
0

4πε0r
e−iω0(t−r/c)

N∑
j=1

e−ik·rj σ̂j(t) (13)

where k = k0(r/r). The intensity of scattered radiation by N atoms measured at distance r and time t is

IN (r, t, r, t) =
cε0
2
〈Ê(−)(r, t)Ê(+)(r, t)〉 =

cd2k4
0

32π2ε0r2
sin2 θk · I(t) (14)

where θk is the detection angle and

I(t) =
∑
j,m

e−ik·(rj−rm)〈σ̂†m(t)σ̂j(t)〉 (15)

is the dimensionless intensity, where the bar calls for an average over positions, assuming that the locations of the N
atoms are not controlled. In that case an average over a series of experiments with many otherwise identical samples
will be needed to lead to a stable observed intensity.

III. CORRELATION FUNCTIONS

The first-order and second-order coherence of light can be described by the normalized two-time and equal position
correlation functions introduced by Glauber [22, 23]:

g(1)(t, τ) =
〈E(−)(r, t)E(+)(r, t+ τ)〉
〈E(−)(r, t)E(+)(r, t)〉

(16)

g(2)(t, τ) =
〈E(−)(r, t)E(−)(r, t+ τ)E(+)(r, t+ τ)E(+)(r, t)〉

〈E(−)(r, t)E(+)(r, t)〉2
(17)

(we drop the hats over the operators) where τ is the time difference between two-photon detection events within a
two-photon coincidence count. Two-photon bunching is defined as g(2)(0) > g(2)(τ) (τ 6= 0), whereas antibunching is
defined as g(2)(0) < g(2)(τ) (τ 6= 0), which is usually regarded as a nonclassical effect [24]. Using (13) we obtain

g(1)(t, τ) =
1

I(t)

∑
j,m

e−ik·(rj−rm)〈σ†m(t)σj(t+ τ)〉 (18)

g(2)(t, τ) =
1

I2(t)

∑
j,m,p,q

e−ik·(rj−rm+rq−rp)〈σ†p(t)σ†m(t+ τ)σj(t+ τ)σq(t)〉. (19)

The determination of the correlation functions g(1)(t, τ) and g(2)(t, τ) requires the evaluation of the two-time quantum
averages 〈σ†m(t)σj(t+ τ)〉 and 〈σ†p(t)σ†m(t+ τ)σj(t+ τ)σq(t)〉, which can be related to that of averages evaluated at a
single time using the quantum regression theorem [25, 26].
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IV. SINGLE-EXCITATION STATE

Let us restrict the Hilbert space of the N atoms to the subspace spanned by the ground state |g〉 = |g1, . . . , gN 〉
and the single-excited-atom states |j〉 = |g1, . . . , ej , . . . , gN 〉 with j = 1, . . . , N :

|Ψ(t)〉 = α(t)|g〉+ e−i∆0t
N∑
j=1

βj(t)|j〉 (20)

where we approximate α ≈ 1, so that 〈σ̂j〉 = α∗βj ≈ βj where, from Eq.(9),

dβj(t)

dt
=

(
i∆0 −

Γ

2

)
βj(t)−

iΩ0

2
eik0·rj − Γ

2

∑
m 6=j

γjmβm(t) (21)

with initial conditions βj(0) = 0. Since 〈σ†m(t)σj(t)〉 = β∗m(t)βj(t), the dimensionless average intensity at the time t is

I(t) =

∣∣∣∣∣∣
∑
j

e−ik·rjβj(t)

∣∣∣∣∣∣
2

. (22)

Using the quantum regression theorem, it is possible to show that (see Appendix A)

g(1)(t, τ) =
1

I(t)

∑
j,m

e−ik·(rj−rm)β∗m(t)βj(t+ τ)e−iω0τ . (23)

and

g(2)(t, τ) =
1

I2(t)

∑
j,m,p,q

e−ik·(rj−rm+rq−rp)β∗p(t)Hmj(τ)βq(t) (24)

where Hmj(τ) is the solution of the equation

d

dτ
Hmj(τ) = −ΓHmj(τ)− iΩ0

2

[
eik0·rjβ∗m(τ)− e−ik0·rmβj(τ)

]
− Γ

2

∑
k 6=j

γjkHmk(τ) +
∑
k 6=m

γ∗mkHkj(τ)

 . (25)

with Hmj(0) = 0. We observe that, since g(1)(t, 0) = 1 and limt→∞ |g(1)(t, τ)| = 1, the system has full first-order
coherence. We can interpret this result also saying that the scattering is elastic, as expected by a system with a linear
response to a cw excitation. In this case the randomness of the system has no effect on the field correlation function.
Instead, g(2)(t, 0) = 0 since the state (20) has a single excitation and it is not possible to detect two photons at the
same time. The numerical solution of Eq.(24) will be discussed in Sec. VIII.

V. TIMED DICKE STATE

Let’s now consider the timed Dicke state of Eq. (1), assuming βj(t) = β(t)eik0·rj in Eq. (20). Then,

I(t) = N2|SN (k− k0)|2|β(t)|2 (26)

where

SN (k− k0) =
1

N

N∑
j=1

e−i(k−k0)·rj (27)

is the structure factor. Furthermore, since the dynamics is the same for all the atoms, with 〈σj(t)〉 = 〈σ(t)〉eik0·rj ,

g(1)(t, τ) =
〈σ†(t)σ(t+ τ)〉
〈σ†(t)σ(t)〉

e−iω0τ (28)

g(2)(t, τ) = R
〈σ†(t)σ†(t+ τ)σ(t+ τ)σ(t)〉

〈σ†(t)σ(t)〉2
(29)
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where the factor R is (assuming N � 1)

R =
|SN |4[
|SN |2

]2 ≈ 2 + 4N |S∞(k− k0)|2 +N2|S∞(k− k0)|4

(1 +N |S∞(k− k0)|2)2
(30)

and we have approximated the structure factor by a continuous distribution with number density n(r),

S∞(k− k0) =

∫
n(r)e−i(k−k0)·rjdr. (31)

The term R describes the classical intensity correlation function at zero delay, due to the spatial distribution of the
scatterers. It ranges from R = 1 to R = 2 for coherent and chaotic light, respectively. For instance, for a Gaussian
spherical distribution with rms size σr, S∞(k− k0) = exp[−2(k0σr)

2 sin2(θ/2)]. Hence R = 1 for k0σr| sin(θ/2)| � 1
and R = 2 for k0σr| sin(θ/2)| � 1 (see Fig. 1).

0 1 2 3 4 5
0 . 8

1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

2 . 2

R

σ

 n u m e r i c s
 t h e o r y

FIG. 1. R vs σ = k0σr for N = 103 and θ = 90◦, averaged over 104 iterations; solid black line: numerical simulation; dashed
red line: analytic solution.

For a timed Dicke state, 〈σ†(t)σ(t)〉 = |β(t)|2, with

β(t) = βst
{

1− e(i∆−ΓN/2)t
}
, (32)

βst =
Ω0

2∆ + iΓN
, (33)

ΓN = Γ + (NΓ/4π)
∫ 2π

0
dφ
∫ π

0
dθ sin θ|S∞(k0, θ, φ)|2 is the collective decay rate, ∆ = ∆0 − ∆N and ∆N =

(NΓ/8π2)P
∫∞

0
dκκ3/(κ − 1)

∫ 2π

0
dφ
∫ π

0
dθ sin θ|S∞(k0κ, θ, φ)|2 is the collective Lamb shift [18]. Since 〈σ(t)〉 = β(t),

then

〈σ(t+ τ)〉 = β(t+ τ) = βst + [β(t)− βst]e(i∆−ΓN/2)τ = 〈σ(τ)〉+ e(i∆−ΓN/2)τ 〈σ(t)〉. (34)

From the quantum regression theorem,

〈σ†(t)σ(t+ τ)〉 = 〈σ†(t)〉〈σ(τ)〉+ e(i∆−ΓN/2)τ 〈σ†(t)σ(t)〉 (35)

and

g(1)(t, τ) =
β∗(t)β(τ) + e(i∆−ΓN/2)τ |β(t)|2

|β(t)|2
e−iω0τ =

1− e(i∆−ΓN/2)(t+τ)

1− e(i∆−ΓN/2)t
e−iω0τ . (36)
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As expected, limt→∞ |g(1)(t, τ)| = 1 and the scattered field has full first-order coherence. In order to evaluate g(2)(t, τ),
we note that

〈σ†(t+ τ)σ(t+ τ)〉 = |β(t+ τ)|2

=
∣∣∣βst + [β(t)− βst]e(i∆−ΓN/2)τ

∣∣∣2
= |βst|2 + |β(t)− βst|2e−ΓNτ +

{
(β(t)− βst)βst∗ei∆τ + c.c.

}
e−ΓNτ/2. (37)

where c.c. stands for the complex conjugate. It can be rewritten in the form

〈σ†(t+ τ)σ(t+ τ)〉 = A(τ) +B(τ)〈σ(t)〉+B∗(τ)〈σ†(t)〉+ C(τ)〈σ†(t)σ(t)〉 (38)

where

A(τ) = |βst|2
{

1 + e−ΓNτ − 2e−ΓNτ/2 cos(∆τ)
}

(39)

B(τ) = e−ΓNτ/2βst
∗
{
ei∆τ − e−ΓNτ/2

}
(40)

C(τ) = e−ΓNτ . (41)

From the quantum regression theorem,

〈σ†(t)σ†(t+ τ)σ(t+ τ)σ(t)〉 = A(τ)〈σ†(t)σ(t)〉+B(τ)〈σ†(t)σ(t)σ(t)〉+B∗(τ)〈σ†(t)σ†(t)σ(t)〉
+ C(τ)〈σ†(t)σ†(t)σ(t)σ(t)〉. (42)

Since σ(t)σ(t) = 0 and σ†(t)σ†(t) = 0,

g(2)(t, τ) = R
A(τ)

|β(t)|2
= R

1 + e−ΓNτ − 2e−ΓNτ/2 cos(∆τ)

1 + e−ΓN t − 2e−ΓN t/2 cos(∆t)
(43)

Hence, limt→∞ g(2)(t, τ) = g(2)(τ) where

g(2)(τ) = R
∣∣∣1− e(i∆−ΓN/2)τ

∣∣∣2 = R
{

1 + e−ΓNτ − 2e−ΓNτ/2 cos(∆τ)
}
. (44)

In conclusion, the timed Dicke state behaves as a single driven atom, but with a collective decay rate ΓN and Lamb
shift ∆N . As expected, g(2)(0) = 0 and limτ→∞ g(2)(τ) = R. Figure 2 shows Eq.(44) for R = 2 and two different
values of detuning, ∆ = 5ΓN (solid black line) and ∆ = 0 (red dashed line). Since g(2)(τ) > g(2)(0), the system
exhibits antibunching. Notice that, contrary to g(1), g(2) is proportional to the factor R, equal to 2 when the photons
are emitted isotropically and randomly out of the diffraction cone, with aperture ∆θ ∼ λ0/σr, and equal to 1 in the
opposite case. In the case of the timed Dicke state, Hmj(τ) = H(τ) and g(2)(τ) = H(τ)/|βst|2, where H(τ) is the
solution of the equation

dH(τ)

dτ
=
iΩ0

2
[β(τ)− β∗(τ)]− ΓNH(τ), (45)

yielding the solution (44).

VI. PRODUCT STATE

It has been noted that the results for the intensity I(t) emitted by N weakly-excited two-level atoms, obtained for a
symmetric timed Dicke state as described in Sec.V, could be obtained assuming a product state of N two-level atoms
[12] (named also ‘pure Bloch state’ by some authors [16]). More specifically, pure Bloch states are product states in
which every one of N two-level atoms is in the same superposition of ground and excited state. Such states are easily
produced experimentally. As it happens for the timed Dicke state, the driving field imposes a coherence in the photons
emitted spontaneously by each atom, so that superradiance arises because the state is symmetric under exchange of
particles. However, it is expected that the quantum statistic of the timed Dicke state will be quite different from that
of the pure Bloch state. The aim of this section is to obtain the stationary correlation functions g(1)(τ) and g(2)(τ)
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FIG. 2. g(2)(τ) vs ΓNτ for R = 2 and two different values of detuning: ∆ = 5ΓN (solid black line) and ∆ = 0 (red dashed line).

for such product state, in the presence of a cw driving field. To be more general, we assume first that the excitation
probability amplitudes βj are not the same for every atom,

|Ψ(t)〉 =

N∏
j=1

{
α(t)|gj〉+ βj(t)e

−i∆0t|ej〉
}

(46)

with |α(t)|2 + |βj(t)|2 = 1 for every j. Assuming α ∼ 1, we obtain 〈σj〉 = βj , 〈σ†mσj〉 = β∗mβj and

〈σmσj〉 =

 βmβj if j 6= m

0 if j = m
. (47)

Hence, for the product state all the expectation values of the operators factorize and the dynamics is determined
solely by βj , solution of Eq.(21). As a consequence, following the same reasoning adopted in Sec.IV, we arrive at the

same expression (23) for g(1)(t, τ) obtained assuming the entangled state (20). Differences between the product state
and the single-excitation state appear when higher-order expectation values are observed. We report the details of
the demonstration in Appendix B, leading to

g(2)(t, τ) =
1

I2(t)

∑
j,m,p,q

e−ik·(rj−rm+rq−rp)β∗p(t)Hmj(t, τ)βq(t) (48)

where Hmj(τ) is the solution of the equation

d

dτ
Hmj(t, τ) = −ΓHmj(t, τ)− iΩ0

2

[
eik0·rjF ∗m(t, τ)− e−ik0·rmFj(t, τ)

]
− Γ

2

∑
k 6=j

γjkHmk(t, τ) +
∑
k 6=m

γ∗mkHkj(t, τ)


(49)

with initial condition

Hmj(t, 0) =

 β∗m(t)βj(t) if p 6= m or j 6= q

0 otherwise
(50)

and Fj(t, τ) is the solution of

d

dτ
Fj(t, τ) =

(
i∆0 −

Γ

2

)
Fj(t, τ)− iΩ0

2
eik0·rj − Γ

2

∑
k 6=j

γjkFk(t, τ). (51)
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with

Fj(t, 0) =

 βj(t) if j 6= q

0 otherwise
. (52)

The numerical solution of Eq. (48) will be discussed in Sec. VIII.

VII. THE EBERLY’S STATE

As done for the timed Dicke state, we assume now that the excitation probability is the same for all the atoms [12],

|Ψ(t)〉E =

N∏
j=1

{
α(t)|gj〉+ β(t)e−i∆0t+ik0·rj |ej〉

}
(53)

with |α(t)|2 + |β(t)|2 = 1. In the following we will assume the linear approximation, so that α(t) ∼ 1 and β(t) is given
by Eq.(32). Then, defining

E(t) =
1

N

N∑
j=1

e−ik·rjσj(t) (54)

we have

〈E(t)〉 = SNβ(t) (55)

〈E(t+ τ)〉 = SNβ(t+ τ) = SNβ(τ) + e(i∆−ΓN/2)τ 〈E(t)〉 (56)

〈E†(t)E(t)〉 = |SN |2|β(t)|2 (57)

〈E†(t+ τ)E(t+ τ)〉 = A(τ)|SN |2 +B(τ)S∗N 〈E(t)〉+B∗(τ)SN 〈E†(t)〉+ C(τ)〈E†(t)E(t)〉 (58)

where SN has been defined in Eq.(27) and A(τ), B(τ) and C(τ) have been defined in Eqs.(39)-(41). From the quantum
linear regression theorem,

〈E†(t)E(t+ τ)〉 = SNβ(τ)〈E†(t)〉+ e(i∆−ΓN/2)τ 〈E†(t)E(t)〉
(59)

and

g(1)(t, τ) =
β(τ)β∗(t) + e(i∆−ΓN/2)τ |β(t)|2

|β(t)|2
e−iω0τ (60)

which coincides with Eq.(36). From Eq.(58) we obtain

〈E†(t)E†(t+ τ)E(t+ τ)E(t)〉 = A(τ)|SN |2〈E†(t)E(t)〉
+
[
B(τ)S∗N 〈E†(t)E(t)E(t)〉+ c.c.

]
+ C(τ)〈E†(t)E†(t)E(t)E(t)〉 (61)

The last two terms make the difference from the timed Dicke state, since in general they are not zero. It is possible
to demonstrate that (see Appendix C)

〈E†(t)E(t)E(t)〉 = β(t)|β(t)|2
{

2(N − 1)

N2
+K2

}
(62)

〈E†(t)E†(t)E(t)E(t)〉 = |β(t)|4
{

2(N − 1)

N3
+

4(N − 2)

N2
K2 +K4

}
(63)

where

K2 =
1

N2

∑
j

∑
p 6=j

ei(k0−k)·(rp−rj) ≈ |S∞|2 (64)

K4 =
1

N4

∑
m

∑
j 6=m

∑
p 6=j,m

∑
q 6=p,j,m

ei(k0−k)·(rp+rq−rj−rm) ≈ |S∞|4 (65)
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For N � 1 and after the statistical average,

〈E†(t)E†(t+ τ)E(t+ τ)E(t)〉 =

(
2

N2
+

4

N
|S∞|2 + |S∞|4

)(
A(τ)|β(t)|2 + C(τ)|β(t)|4

)
+

(
1

N
+ |S∞|2

)(
2

N
+ |S∞|2

)
[β(t)B(τ) + c.c.] . (66)

Using the definitions of A(τ), B(τ) and C(τ) and taking the limit t→∞, we obtain

g(2)(τ) = R+ 2Q
[
e−ΓNτ − e−ΓNτ/2 cos(∆τ)

]
, (67)

where

Q = R− 2 +N |S∞|2

1 +N |S∞|2
(68)

We observe that in the ”chaotic” limit N |S∞|2 � 1, R ≈ 2, Q � 1, and g(2)(τ) ≈ 2. Conversely, in the ”coherent”
limit N |S∞|2 � 1, R ≈ 1, Q� 1, and g(2)(τ) ≈ 1. More generally, g(2)(τ) depends on N , σ = k0σr, and the detection
angle θ. The parameter Q takes its maximum value Qmax = 1/2 for N |S∞|2 = 1, with R = 7/4. As an example,
Fig.3 shows g(2)(τ) vs ΓNτ for a spherical Gaussian distribution with N = 106 and k0σr = 20, a laser beam with
∆ = 5ΓN , and detection angles θ = 9◦, 10◦, 11◦, 12◦. Within a few degrees, the value of g(2)(τ) changes from 1 to 2,
with damped oscillations as a function of τ .

0 1 2 3 4 5 6 7 8 9 1 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

 θ= 1 2 0

 θ= 1 1 0

 θ= 1 0 0

 θ= 9 0

g(2)
(τ)

ΓΝτ

FIG. 3. g(2)(τ) vs ΓNτ from Eq.(67) for ∆ = 5ΓN , N = 106, k0σr = 20 and angles θ = 12◦ (dashed black line), θ = 11◦

(continuous red line), θ = 10◦ (dashed-dotted blue line) and θ = 9◦ (dotted green line).

VIII. NUMERICAL RESULTS

In this section we compare the exact solution of g(1)(t, τ) and g(2)(t, τ), calculated numerically from Eqs. (23), (24),
and (48) with the analytic expressions of Eqs. (36), (43), and (67). The expression of g(2)(t, τ) assuming N classical
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dipoles is

g(2)(t, τ) =
1

I2(t)

∑
j,m,p,q

e−ik·(rj−rm+rq−rp)β∗p(t)β∗m(t+ τ)βj(t+ τ)βq(t). (69)

where I(t) is given by Eq.(22). In this case g(2)(τ) = limt→∞ g(2)(t, τ) = R, i.e. is independent on τ . Hence the
oscillations observed in Eq.(67) for Eberly’s state seem to have a quantum nature (see Fig.3). Figure 4 shows the
result of a numerical simulation calculating g(2)(t, τ) from Eq.(24) for a spherical Gaussian distribution with N = 100,
k0σr = 5, detuning ∆ = 5Γ, detection angle θ = 90◦, and Γt = 5, averaged over 20 iterations (solid blue line). The
numerical result is compared with the analytic expression of Eq.(44) obtained assuming the timed Dicke state (red
dashed line). The numerical value R ≈ 1.7 obtained for Γτ →∞ is less than the chaotic value 2 because of the small
number of particles and iterations. The exact result differs from the approximated timed Dicke solution because of the
spread of values of βj around the average value, causing a decoherence which reduces the oscillation amplitudes. Figure

0 1 2 3 4 5 6 7 8 9 1 0
0

1

2

3

4

5

g(2)
(τ)

Γτ

FIG. 4. g(2)(τ) vs Γτ , calculated from Eq. (24), for N = 100, k0σr = 5, ∆ = 5Γ, θ = 90◦ and average after 20 iterations
(continuous blue line). The dashed red line is the analytic expression of Eq. (44), with R = 1.7.

5 shows the result of a numerical simulation calculating g(2)(t, τ) from Eq.(48) for a spherical Gaussian distribution
with N = 100, k0σr = 5, detuning ∆ = 5Γ, detection angle θ = 16.26◦, and Γt = 5, averaged over 20 iterations (solid
blue line). The numerical result is compared with the analytic expression of Eq. (67) obtained assuming Eberly’s state
with R ≈ 1.025, Q ≈ −0.042, and ΓN ≈ 2Γ (dashed red line). These parameters have been calculated numerically for
the spatial distribution. Also in this case, the ideal case of Eberly’s state shows oscillations with amplitudes larger
than the ones of the exact solution. Nevertheless, the transient oscillations are clearly visible and detectable. We
outline again that these oscillations disappear in the classical limit, when the atoms are described as classical dipoles.

IX. CONCLUSIONS

We have calculated the two-time field and intensity correlation functions of the light scattered by an ensemble
of two-level atoms driven by a cw resonant laser beam, in the linear optics regime. The atoms have fixed random
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0 1 2 3 4 5 6 7 8 9 1 0
0 . 9 5

1 . 0 0

1 . 0 5
g(2)

(τ)

Γτ

FIG. 5. g(2)(τ) vs Γτ , calculated from Eq. (44), for N = 100, k0σr = 5, ∆ = 5Γ, θ = 16.26◦ and average after 20 iterations
(continuous blue line). The dashed red line is the analytic expression of Eq. (67), with R=1.025,, Q = −0.042, and ΓN = 2Γ.

positions. We have calculated the correlation functions for two different quantum atomic states, i.e., the single-
excitation state and the product state, obtaining exact expressions to be evaluated numerically. Furthermore, we
have obtained analytic expressions of g(1)(t, τ) and g(2)(t, τ) in the case of uniform excitation. This approximation
leads to the well-known timed Dicke state [9] for the single-excitation state and to the pure Bloch state [16] for the
product state (named here Eberly’s state, in honor of Eberly [12] who first discussed the differences between these
two states). Our conclusions are that both these states lead, as expected, to g(1)(τ) = limt→∞ g(1)(t, τ) = 1, as it
results in also describing the atoms as classical dipoles. This result is independent on the statistical properties of the
atomic distribution, and corresponds to elastic scattering at the frequency of the incident driving beam. Differences
between the single-excitation state and the product state appear when the stationary intensity correlation function
is considered, g(2)(τ) = limt→∞ g(2)(t, τ). In the classical limit (i.e., atoms as classical dipoles), g(2)(τ) = R, where
R depends on the randomness and spatial distribution of the atomic sample, varying from R = 1 when the emission
is coherent (i.e., within the diffraction cone for an extended cloud) to R = 2 for a chaotic random distribution. For
the timed Dicke state, g(2)(0) = 0 and limτ→∞ g(2)(τ) = R, with a transient time of the order of 1/ΓN , where ΓN is
the cooperative decay rate for N atoms. In this case we observe antibunching, since g(2)(0) < g(2)(τ). For Eberly’s
state, g(2)(0) = R and limτ→∞ g(2)(τ) = R. However, it is possible to observe transient oscillations as a function of
τ in an intermediate regime with 1 < R < 2 and in the detuned case, where the coherent and chaotic emission are
competing. These oscillations are purely quantum and are not visible when the atoms are treated as classical dipoles.

We outline again that the aim of this work is to propose a method to distinguish between the possible states
generated in the cooperative scattering, by measuring the second-order correlation function g(2)(τ). In fact, it gives
different results for the single-excitation entangled state or the factorized coherent state. Generally, these states
should necessitate a different preparation, as discussed in the original papers by Scully and co-workers [9, 27] and
more recently studied experimentally by Felinto and co-workers [28]. Intuitively, it is likely that an ensemble of N
two-level atoms driven by a classical field will be described by the product state. However, this has not been proved
yet, and an experiment measuring g(2)(τ) can do it.

This study has assumed a cw driving beam and neglected any atomic motion, either due to temperature or recoil
[29]. It would be interesting in the future to extend it to include the temperature inducing a decay of the correlations
(see, for instance, Ref. [30]). Also, the statistical properties of subradiance [8] should deserve attention, which may
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be investigated with the present formalism just switching off the driving laser and observing the fluorescence light
emitted by the excited atoms at sufficiently long time, such that only the subradiance component survives. All these
points will be the object of a future publication.
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Appendix A: Evaluation of g(1)(τ) and g(2)(τ) for the single-excitation state (20)

Using Eqs. (9) with the quantum regression theorem,

d〈σ†m(t)σj(t+ τ)〉
dτ

=

(
i∆0 −

Γ

2

)
〈σ†m(t)σj(t+ τ)〉 − iΩ0

2
eik0·rjβ∗m(t)− Γ

2

∑
k 6=j

γjk〈σ†m(t)σk(t+ τ)〉, (A1)

where β∗m(t) is the solution of Eq. (21). Equation (A1) is integrated with the initial condition, at τ = 0, 〈σ†m(t)σj(t)〉 =
β∗m(t)βj(t). Let us note that, setting 〈σ†m(t)σj(t+ τ)〉 = β∗m(t)Gmj(t, τ), Eq. (A1) becomes

dGmj(t, τ)

dτ
=

(
i∆0 −

Γ

2

)
Gmj(t, τ)− iΩ0

2
eik0·rj − Γ

2

∑
k 6=j

γjkGmk(t, τ). (A2)

with Gmj(t, 0) = βj(t). It is clear from (A2) that Gmj is independent on m and, comparing Eq.(A2) with Eq.(21),
Gmj(t, τ) = βj(t+ τ), so that

g(1)(t, τ) =
1

I(t)

∑
j,m

e−ik·(rj−rm)β∗m(t)βj(t+ τ)e−iω0τ . (A3)

In order to obtain g(2)(t, τ), we need to evaluate gpmjq(t, τ) = 〈σ†p(t)σ†m(t + τ)σj(t + τ)σq(t)〉. First, we obtain the
equation

d

dτ
(σ†mσj) = −Γσ†mσj −

iΩ0

2

[
eik0·rjσ†m − e−ik0·rmσj

]
− Γ

2

∑
k 6=j

γjkσ
†
mσk +

∑
k 6=m

γ∗mkσ
†
kσj

 . (A4)

and then, from the quantum regression theorem,

d

dτ
gpmjq(t, τ) = −Γgpmjq(t, τ)− iΩ0

2

[
eik0·rjf∗qmp(t, τ)− e−ik0·rmfpjq(t, τ)

]
− Γ

2

∑
k 6=j

γjkgpmkq(t, τ) +
∑
k 6=m

γ∗mkgpkjq(t, τ)

 , (A5)

where fpjq(t, τ) = 〈σ†p(t)σj(t+ τ)σq(t)〉 are solutions of the equations:

d

dτ
fpjq(t, τ) =

(
i∆0 −

Γ

2

)
fpjq(t, τ)− iΩ0

2
eik0·rjβ∗p(t)βq(t)−

Γ

2

∑
k 6=j

γjkfpkq(t, τ). (A6)

The initial conditions for Eqs.(A5) and (A6) are gpmjq(t, 0) = 0 and fpjq(t, 0) = 0. By setting fpjq(t, τ) =
β∗p(t)βq(t)Fpjq(t, τ), Eq.(A6) yields

d

dτ
Fpjq(t, τ) =

(
i∆0 −

Γ

2

)
Fpjq(t, τ)− iΩ0

2
eik0·rj − Γ

2

∑
k 6=j

γjkFpkq(t, τ). (A7)
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with Fpjq(t, 0) = 0. Hence Fpjq(t, τ) is independent on p, q, t and, comparing Eq. (A7) with Eq. (21), Fpjq(t, τ) = βj(τ)
and fpjq(t, τ) = β∗p(t)βj(τ)βq(t), so that Eq. (A5) becomes

d

dτ
gpmjq(t, τ) = −Γgpmjq(t, τ)− iΩ0

2
β∗p(t)

[
eik0·rjβ∗m(τ)− e−ik0·rmβj(τ)

]
βq(t)

− Γ

2

∑
k 6=j

γjkgpmkq(t, τ) +
∑
k 6=m

γ∗mkgpkjq(t, τ)

 . (A8)

Setting gpmjq(t, τ) = β∗p(t)Hpmjq(t, τ)βq(t), Eq. (A8) becomes

d

dτ
Hpmjq(t, τ) = −ΓHpmjq(t, τ)− iΩ0

2

[
eik0·rjβ∗m(τ)− e−ik0·rmβj(τ)

]
− Γ

2

∑
k 6=j

γjkHpmkq(t, τ) +
∑
k 6=m

γ∗mkHpkjq(t, τ)

 (A9)

with Hpmjq(t, 0) = 0. It is evident from (A9) that Hpmjq(t, τ) does not depend on p, q or t, i.e., Hpmjq(t, τ) = Hmj(τ).
Hence the second-order correlation function is

g(2)(t, τ) =
1

I2(t)

∑
j,m,p,q

e−ik·(rj−rm+rq−rp)β∗p(t)Hmj(τ)βq(t) (A10)

where Hmj(τ) is the solution of the equation

d

dτ
Hmj(τ) = −ΓHmj(τ)− iΩ0

2

[
eik0·rjβ∗m(τ)− e−ik0·rmβj(τ)

]
− Γ

2

∑
k 6=j

γjkHmk(τ) +
∑
k 6=m

γ∗mkHkj(τ)

 . (A11)

with Hmj(0) = 0.

Appendix B: Evaluation of g(2)(τ) for the product state (46)

In the chain of the derivation of the expectation values gpmjq(t, τ) = 〈σ†p(t)σ†m(t + τ)σj(t + τ)σq(t)〉 with Eq.(A5)

and fpjq(t, τ) = 〈σ†p(t)σj(t+ τ)σq(t)〉 with Eq.(A6), their initial conditions are

gpmjq(t, 0) =

 β∗p(t)β∗m(t)βj(t)βq(t) if p 6= m or j 6= q

0 otherwise
. (B1)

and

fpjq(t, 0) =

 β∗p(t)βj(t)βq(t) if j 6= q

0 otherwise
. (B2)

By setting fpjq(t, τ) = β∗p(t)βq(t)Fpjq(t, τ), Eq.(A6) yields

d

dτ
Fpjq(t, τ) =

(
i∆0 −

Γ

2

)
Fpjq(t, τ)− iΩ0

2
eik0·rj − Γ

2

∑
k 6=j

γjkFpkq(t, τ). (B3)

with

Fpjq(t, 0) =

 βj(t) if j 6= q

0 otherwise
. (B4)
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Hence Fpjq(t, τ) is independent on p, q, Fpjq(t, τ) = Fj(t, τ). Comparing Eq. (B3) with Eq. (21), we deduce that
Fj(t, τ) = βj(t+τ) if j 6= q and Fj(τ) = βj(τ) if j = q. The same reasoning will be true for gpmjq(t, τ): from Eq.(A5),

d

dτ
gpmjq(t, τ) = −Γgpmjq(t, τ)− iΩ0

2
β∗p(t)

[
eik0·rjF ∗m(t, τ)− e−ik0·rmFj(t, τ)

]
βq(t)

− Γ

2

∑
k 6=j

γjkgpmkq(t, τ) +
∑
k 6=m

γ∗mkgpkjq(t, τ)

 . (B5)

Setting gpmjq(t, τ) = β∗p(t)Hpmjq(t, τ)βq(t), Eq. (B5) becomes

d

dτ
Hpmjq(t, τ) = −ΓHpmjq(t, τ)− iΩ0

2

[
eik0·rjF ∗m(t, τ)− e−ik0·rmFj(t, τ)

]
− Γ

2

∑
k 6=j

γjkHpmkq(t, τ) +
∑
k 6=m

γ∗mkHpkjq(t, τ)

 (B6)

with

Hmj(t, 0) =

 β∗m(t)βj(t) if p 6= m or j 6= q

0 otherwise
. (B7)

It is evident from (B6) that Hpmjq(t, τ) depends on p, q only for the initial condition at τ = 0, so that Hpmjq(t, τ) =
Hmj(t, τ). Hence, the second-order correlation function is

g(2)(t, τ) =
1

I2(t)

∑
j,m,p,q

e−ik·(rj−rm+rq−rp)β∗p(t)Hmj(t, τ)βq(t) (B8)

where Hmj(τ) is the solution of the equation

d

dτ
Hmj(t, τ) = −ΓHmj(t, τ)− iΩ0

2

[
eik0·rjF ∗m(t, τ)− e−ik0·rmFj(t, τ)

]
− Γ

2

∑
k 6=j

γjkHmk(t, τ) +
∑
k 6=m

γ∗mkHkj(t, τ)

 . (B9)

Appendix C: Evaluation of 〈E†(t)E(t)E(t)〉 and 〈E†(t)E†(t)E(t)E(t)〉 for the Eberly’s state (53)

From the definition, we have

〈E†(t)E(t)E(t)〉 =
1

N3

∑
jmp

ei(k0−k)·(rm+rp−rj)〈σ†jσmσp〉 (C1)

〈E†(t)E†(t)E(t)E(t)〉 =
1

N4

∑
jmpq

ei(k0−k)·(rp+rq−rj−rm)〈σ†jσ
†
mσpσq〉 (C2)

and the not vanishing expectation values are

〈σ†jσmσp〉 = β|β|2


if m = j 6= p

if p = j 6= m

if p 6= j 6= m

(C3)
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and

〈σ†jσ
†
mσpσq〉 = |β|4



if j = p 6= m = q

if j = q 6= m = p

if j = p, j 6= m, j 6= q,m 6= q,

if j = q, j 6= m, j 6= p, p 6= m,

if m = p,m 6= q,m 6= j, q 6= j,

if m = q, p 6= m, p 6= j,m 6= j,

if p 6= j 6= m 6= q

(C4)

From them we obtain:

〈E†(t)E(t)E(t)〉 = β|β|2
{

2(N − 1)

N2
+K2

}
(C5)

〈E†(t)E†(t)E(t)E(t)〉 = |β|4
{

2(N − 1)

N3
+

4(N − 2)

N2
K2 +K4

}
(C6)

where

K2 =
1

N2

∑
j

∑
p 6=j

ei(k0−k)·(rp−rj) ≈ |S∞|2 (C7)

K4 =
1

N4

∑
m

∑
j 6=m

∑
p6=j,m

∑
q 6=p,j,m

ei(k0−k)·(rp+rq−rj−rm) ≈ |S∞|4. (C8)
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