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Abstract

We consider a gas of bosonic particles confined in a box with Neumann boundary conditions.
We prove Bose-Einstein condensation in the Gross-Pitaevskii regime, with an optimal bound
on the condensate depletion. Our lower bound for the ground state energy in the box implies
(via Neumann bracketing) a lower bound for the ground state energy of the Bose gas in the
thermodynamic limit.
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1 Introduction and main results

We describe a system of N interacting bosonic particles in a box A = [~L/2, L/2]® through the
Hamiltonian

N N
Hy ==Y Ai+r> V(zi— 1)) (1.1)
i=1 1<J

acting on L2(A%). This is the space of symmetrized L? functions, defined as
LA(AN) = {¢ € LA(AV) Y(To(1y, - Tony) = Y(21, ..., 2N) for every o € Sy},

where Sy is the set of all permutations of N objects. In (|1.1)), A; indicates the Laplacian with
Neumann boundary conditions acting on particle ¢. The interaction potential V' is a multipli-
cation operator and we will assume it to be a nonnegative, spherically symmetric, compactly



supported and bounded (k is a coupling constant). We denote a the scattering length of the
interaction potential kV. The scattering length is defined through the zero-energy scattering
equation

~A+5V(@)| fola) =0 (1.2)

with the boundary condition that fo(z) — 1, as |x| — co. Here A denotes the Laplacian on R3.
For |z| large enough (outside the support of V'), we have

folw)=1— = (1.3)

]

where a is the scattering length of kV. Equivalently, a can be obtained as

8ma = /RS KV () fo(x)dz. (1.4)

We are interested in static properties of the Bose gas. The ground state energy per particle
in the thermodynamic limit, i.e., the limit N,|A| — co with p = N/|A| fixed, is given by

e(p) = lim E(N.L)

N,Loco N (1.5)

where E(N, L) is the ground state energy of Hy, defined as

E(N,L) = inf ,H .
N L= ra ol o )
For dilute gases, i.e., when the density p is small, the ground state energy per particle in the
thermodynamic limit is described by the Lee-Huang-Yang formula [20] 2T]
E(N,L) 128

2
_ 4 1 3\1/2 3\1/2 1
N7L7\7\O| N mpa |1+ 15ﬁ<pa ) +0((pa ) ) , ( 6)
p=N,

proved in [32, (16, 4]. One of the main characteristics of is the universality of the first two
orders, where only the scattering length appears and other details of the interaction potential
do not matter.

To compute thermodynamic quantities such as the ground state energy e(p), a standard
method (see for example [26]) consists in dividing the box A into M? cells of size ¢ = L/M
and reducing the problem to the study of the localized system to each cell. The choice of
the boundary conditions on the cells is therefore very important, and while Dirichlet boundary
condition are suited to compute upper bounds, lower bounds require for example Neumann
boundary conditions. In particular, to compute a lower bound for e(p), we distribute the
N particles in the M? cells (so that the k-th box has nj particles) and neglect interactions
between particles in different cells, exploiting the positivity of the interaction potential. The
lower bound is then obtained by adding the lower bounds in the different cells and minimize
over all the possible ways of distributing the particles in the cells, i.e.,

e(p) = lim

MS
E(N,L) > inf E(ng, £). 1.7
(N, L) {nk}zzknk:N; (n, £) (1.7)

Here E(n, ) is the ground state energy of H,, (defined in (1.1)), with N substituted by n), acting
on L2(A3™), where Ay = [—£/2,¢/2]3, with Neumann boundary conditions. Rescaling lengths,
the Hamiltonian (|1.1)) takes the form

Huo==Y Aj+r Y CV(Uxi —x;)) (1.8)
i=1 i<j

and acts on L2(A$"), with Ay = [-1/2,1/2]3. Up to a factor ¢, H,, and H, , are unitarily
equivalent, i.e. there exists a unitaryﬂu such that U*H,, ;U = 02 H,,. Denoting with en,e the
ground state energy of (1.8), we have clearly e, , = (?E(n, ().

'The unitary transformation U acts as
U : L*(A}) — L*(A})
o(x1,. .. x0) = UR) (21, ..., xn) = L 2 0(lxy, ..., lx,)



In the case n = ¢ = N, describes the well known Gross-Pitaevskii regime. Here the
density is proportional to N2, and hence the energy per particle is of the same order as the
spectral gap of the Laplacian. In particular, in this regime the large volume and large particles
number limit is simultaneous to the low density limit. The Gross-Pitaevskii regime has been
studied for the translation invariant Bose gas, where periodic boundary conditions are imposed
on A1, and for the trapped Bose gas, where particles move in R? and are confined by an external
potential. In these cases, Bose-Einstein condensation has been proved [23] 24] 28] with optimal
rate [B 7, 27, 11} 18]. In the translation invariant case, the ground state energy has been shown
in [6] to be

1 87ma)?
en = 4n(N — 1)a+ bya® — 3 Z {pQ + 8ma — +/|p|* + 16map? — (2777? + O(N~Y), (1.9)
pEAT P
where by = 2 — limp/ oo Zpezg\{o}’ | <M Cosp(lp‘) is a boundary contribution. In addition in [6]
the excitation spectrum has been derived (these results have been also revisited in [19]). The
result has then later been generalized to the trapped Bose gas [29, [12].

In this paper we consider the Bose gas with Neumann boundary conditions in the Gross-
Pitaevskii regime. In Theorem [I.I] below we prove Bose-Einstein condensation with optimal
rate and we give a bound on the ground state energy for the system described by (|1.8).

Theorem 1.1. Let V' be positive, compactly supported, spherically symmetric and bounded, and
assume that r is a fized, small enough constant independent of all parameters and nt~! < 1.
Then, the ground state energy ey ¢ of Hy ¢ defined in (1.8) is such that

n? n  n?
— — < — N
€ne —4ma 7 ’ < C’<€ + ” ln(é)) (1.10)

for a constant C > 0 depending only on V.
Furthermore, let 1, € L2(A}) be a normalized wave function, with

<1/}n; Hn,2¢n> S €n,¢ + C
for some ¢ > 0. Let 77(11) = tra, . n|tn) (| be the one-particle reduced density associated with
. Then there exists a constant C' > 0 depending only on V' such that

1
1 — (00,7 o) < C(% + Z) (1.11)

where go(x) =1 for all x € A;.

Remarks.

1. For n = £ = N we recover in (1.11)) the condensate depletion rate N~!, as shown for
example in [7, Theorem 1.1] for periodic boundary conditions. However, the ground state
energy is different from the translation invariant case and for the trapped case, since here
we have

‘eN - 47raN‘ < C(l + 1n(N)) (1.12)

The logarithmic behavior of the error bound is actually sharp and is specific to the Neu-
mann boundary conditions.

2. We need the requirement that  is small to prove certain properties (see (2.18) below) of
the ground state of the two-body problem in a box with Neumann boundary conditions.

To prove Theorem (L.I)), the main novelty of our analysis is the control of the Neumann
boundary conditions. To do so, we consider the energy functional for the two-body problem
(see below) which naturally lives in a six-dimensional space, and we study the properties
of its minimizer. We use then the minimizer to describe two-body correlations arising from
interactions. In this part, we follow the ideas of [5]: after transforming the Hamiltonian
with a unitary operator (taken from [22]) which maps L2(A7) to Fock space and extracts the
contribution of the factorized part of wave functions, we act with a (generalized) Bogoliubov



transformation. We define its integral kernel n(x,y) as a function of the minimizer of the two-
body problem (projected outside the space spanned by the constant in L?(A;) x L?(A;)). In
comparison to the case with periodic boundary condition and the case where the system in R? is
trapped by an external potential, the choice of Neumann boundary conditions makes the problem
considerably more involved from the technical point of view. In the former cases the kernel of
the Bogoliubov transformation 7j(z,y) can be chosen proportional to (1 — fo(z — y))¢(z + v)
(before projecting it outside the space spanned by the constant in L? x L2?), where fo has
been defined in and g represents the minimizer of the Gross-Pitaevskii functional. In
our case instead the integral kernel n(z,y) does not have such a simple structure; the center
of mass and relative coordinate do not decouple and ground state of the two-body problem is
not explicitly known. While the properties of can be studied by reducing the problem to
a one-dimensional problem (depending only on a radial coordinate), here we need instead to
study a full six-dimensional problem on L?(A;) x L?(A;). Moreover the Neumann boundary
conditions set a non-translation invariant problem with no conserved momentum (this of course
rules out also the use of Fourier series and Fourier transforms).

As mentioned above, the Neumann boundary conditions allow us to deduce very easily a
lower bound for the leading order of ground state energy of the Bose gas in the thermodynamic
limit, for the system described by , for a small coupling constant x > 0. This is the result

of Corollary

Corollary 1.2. Let V satisfy the same assumptions as in Theorem[I1] and k be small enough.
Then there exists a constant C > 0 such that e(p) as defined in (L.5) satisfies

e(p) = dmap(1 = C(pa®) /2 In(1/p)) (1.13)

for p small enough.

Remarks.

1. The bound (|1.13]) is not optimal, as evident from ([1.6)). The optimal result has been proved
in [I3] [16] with a different localization method which allows to avoid the explicit use of
boundary conditions, at the price of dealing with a modified kinetic energy.

2. To obtain Corollarywe take ¢ proportional to p~—!/2. Larger lengths ¢ would allow for
a better precision in ((1.13)), as achieved in [16] mentioned above. However, this requires
a more precise study , with larger n/¢. In the translation invariant setting, on a
torus with length slightly larger than p~'/2, Bose-Einstein condensation has been shown
in [1, [I5], while [9] also derives the excitation spectrum of (T.8).

Even though the lower bound is not optimal, we believe that our method can be
extended to allow for larger n/¢ (which would yield the Lee-Huang-Yang formula in the ther-
modynamic limit) as well as to give the excitation spectrum in the cells, which would allow for
giving precise bounds for the free energy at low temperature. We plan to return to this question

in a subsequent work. Bounds for the free energy are up to now restricted to leading order
[30, 33].

The paper is organized as follows. In Section [2] we introduce the setting for the analysis of
(1.8), while the detailed estimates are done in Section [3| In Section 4] we prove Theorem
and Corollary In Appendix [A] we study the two-body problem.

2 Excitation Hamiltonians

In this section we focus on the study of H, ¢, defined as in (|1.8). The Hamiltonian H, , acts
on L2(A%), which consists of square-integrable functions on A} that are symmetric with respect
to permutation of the variables. It is convenient to enlarge the space and work on Fock space,

defined as
F = Liam).



We call vacuum the vector = {1,0,...} € F. We define, for g € L?>(A;), the creation operator
a*(g) and the annihilation operator a(g) as

m

* m 1 m—
(Cl (g)\ll)( )(.ﬁl,...,l‘m): ﬁ g(l‘])\p( 1)(1‘1,...,.13]'_1,33_7'4_1,...,1‘771)
j=1

(a(g)®) ™ (21,.. ., 2m) = Vm + 1 /A g(@) O (2w, ) da

The creation operator a*(g) is the adjoint of the annihilation operator a(g) and they satisfy the
canonical commutation relations: for g,h € L*(A;),

[a(g), a”(R)] = (g, ), [a(g),a(h)] = [a"(g),a"(h)] = O

We introduce operator valued distributions d,, a} defined by

alg) = [9@)ards, a'(9)= [ga)aida

for g € L?(A1). It will be convenient to work in the basis of the eigenfunctions of the Laplacian on
the cube A1 with Neumann boundary conditions. We denote with {¢,}, for p € 7{0,1,2,3,...}?
such an orthonormal basis, which is given by ¢,(z) =1 for p = 0 and, for p # 1,

op(z) = (1/2)3/2 cos(p(l)(x(l) +1/2)) cos(p(Q)(:E(z) +1/2)) cos(p(B)(a:(3) +1/2))

where we used the notation (2, z(2),2()) for the three dimensional vector z. We call A} =
7{0,1,2,...}? the dual space to A;. We introduce the space A} ; = Aj\{0}, where the zero
momentum is removed. We adopt the notation

&; =a"(pp), and ap, = a(yp). (2.1)
We call the number of particles operator on F the operator
N = Z apa, = /a;am dz.
PEAT

Creation and annihilation operators are bounded with respect to N it is easy to check that, for
all g € L3(Ay),

la(g) ¥ < llgllINY2®]l,  la*(9)¥] < [lgllllNV + 1)/ ¥,
The Hamiltonian (|1.8]) lifted to Fock space takes the form
Ak oA 1 Ak Ak A A
Hy,o= Z p2apap + 3 Z Vi pgrs i, (2.2)
PEAT P,q,7,SENT
with
Vemars = (00 @00 KV (E) 0, @ 00) = [ da [y nfV(t(a = )orl@onu)en(2)onw)
1 1
(2.3)

The eigenfunction of the Laplacian ¢q(x) = 1 corresponding to the lowest eigenvalue p? = 0
represents the condensate wave function. It is convenient to separate the contribution of the
zero mode and consider a modified Fock space describing excitations. We define

FE =D L)%, (24)
j=0

where L2 (A;) is the orthogonal complement to the one dimensional space spanned by ¢g in
L?(A;). Additionally, in definition (2.4]), we truncated the Fock space up to the sector with n



particles. A vector ¥ = {40 M () 0.0,...} € F lies in ff", if 1™ is orthogonal to
o, in each of its coordinates, for all m =1,...,n, i.e. if

/ Go(@) ¥ (@, g1, ., ymt ) = 0

forallm=1,...,n. On ]-'f", we denote the number of particles operator with Ny = N| <.
+

We will use modified creation and annihilation operators

b(f) = a(f),  and  b*(f) =a"(f)

If f e L3 (A1), b(f), b*(f) map ]-"f" into itself. Moreover, for g € L?(A;1) and Q = 1—|¢o) (o,
b(g) = b(Qg) on ]—'f”. Analogously as before, we define operator valued distributions b, b as

W) = [ Fa)bade,  and 6(5) = [ fapide

satisfying modified canonical commutation relations

oty = (1= 55 ) ot =) - Sajes

n (2.5)
[b2, by] = [b7,b,] =0
and we define R R
b, =b"(pp), and b, =b(pp,). (2.6)
Every n-particle wave function 1,, € L?(A}) can be decomposed uniquely as
n
Py, = Z o™ sz,gi’(”*m)
m=0
where a(™) € L% (A)®™ for all m = 1,...,n. Following [22], we define a unitary operator

U, : L2(A}) — F£" such that
Unton = {a@,a® ... o™},

i.e., the unitary map U,, removes the condensate contribution from 1, € LZ(A}) and returns
the excitations over the condensate. As shown in [22], when we conjugate couples of creation
and annihilation operators with U,,, we obtain, for p,q € A] ,

Uy o Uz = N — Ny
U, asiao Uy = @ 27

Un i, U = /N — Ny @y

Ak oA * _ Ak
Uy apaq Uy, = a,aq

The operator Ny = N — afag counts the number of excitations. Using the properties of U, it
is easy to see that U} = p®V.
With the transformation U,, we define the excitation Hamiltonian

L, = UHy US s FE™* — F2° (2.8)
As shown in [22], £,, consists of the sum

Loy =LY+ L0+ L2+ 8+ ) (2.9)



with
£ =1, N - Ny —1
nt = 5 Veoooo(n = Ny)(n — Ny —1)
ﬁﬁf} =n Z Vi,o00p(n — Ny — 1)131, + h.c.

peA]
ﬁf% - Z PPagay, + Z (Ve,0pog + Ve,0pq0)apiq(n — Ny)
PEAT 4 P.aEA] |
: (2.10)
T3 Z (nVe pgoobpby +h.c.)
PaEA]
5"3:‘)@ = Z (nl/Qw,Opqr&;qur + hC)

Conjugation with the map U,, does not extract from H,, ; all the leading order contributions
to the energy (by taking the vacuum expectation value); it extracts the contribution of the
condensate part of wave functions, but it does not extract the contribution due to correlations
(recall that (€, E;%Q) = (©®N H, 10®N)). In fact, the ground state wave function is far from
being factorized and correlations among particles play a crucial role. In order to describe the
correlation structure of the ground state wave function we need to transform L£,, further.

To model correlations we use the solution of the two-body problem with potential V: this
describes the simplest scattering process. We find it more natural to work now on the rescaled
double box A; x Ay, and impose Neumann boundary conditions (recall that A, = [-£/2,¢/2]).
We look for the minimizer of the functional

Flg] = /A N dzdy [%V(x — gz, v)° + [Vaeg(z, v)* + [Vyg(z, y)? (2.11)

among functions g € H'(A; x Ag) with [|g|lz2(a,xa,) = 1. In the next proposition we state the
properties of the minimizer we shall need.

Proposition 2.1. Let £ > 1 and Ay = [—0/2,0/2]> C R3. Let the functional F : H*(Ay x Ag) —
R be defined in (2.11). Then, in the subclass of functions such that

ol = [ dedyloeg)P = 1.
AzXA[

there is a unique function f (up to a constant phase factor) that minimizes F. If a is the
scattering length of the potential V' (defined in (1.4)), we have, for £ sufficiently large,

8ma a
A= inf F :/ dxd x, 2:17}214-(’) —In(¢/a 2.12
o= it {Pa [ dsdylatey) ro(Smem)) @
Moreover, the following properties of the minimizer f hold.
i) We have
| dway Vet + 19, )] < one? (213)
AgXA@

1) There exists a constant C > 0 such that

[f(z,y)| < C° (2.14)

for every x,y € Ay .



iii) There exists a constant C > 0 such that
/ drdy |67 — f(z,y)|* < C2R2072 (2.15)
Ag XA@
and
/ dxdy |€_3 — f(x,y)| < Crl? (2.16)
AZXAg
iv) There exists a constant C > 0 such that

1
L= £ (@, y)] < Cr (W) (2.17)

v) For k small enough, there exists a constant C > 0 such that
_ 5/3 -1
Vo f (@)l < Crt~3(d(252)"" 4 1) (2.18)

where d(z) is the distance of x to the boundary of the box Ay.

We postpone the proof of Prop. to Appendix The minimizer of (2.11)) satisfies the
eigenvalue equation

[ = Qe +8y) + 1V (@ = )] f(2.) = Mef (@), (2.19)
for z,y € Ay. We define fy(z,y) = f(lx, ly); by scaling, fo(z,y) satisfies
[ = (A0 + 8) + 62V (U = y) | folw,y) = Aol ), (2:20)
for x,y € A1. We set w, = 1 — £3f,, which solves

(Ap + Ay)we(z,y) + kCV Uz — y)) folx,y) = Ao fo(x,y), (2.21)

for x,y € A;. Using the function wy,, we construct a Hilbert-Schmidt operator 1 : L?(A1) —
L?(Ay). We set
n = (1= leo)(wol)k(1 — |po){wol) (2.22)

where k : L?(A1) — L?(A;) is the Hilbert-Schmidt operator with integral kernel
k(z,y) = —nw(z,y) (2.23)
It will be useful to decompose n = k + u, with
= —lpo){wolk — klpo){wol + |0) (wolk|eo) (ol (2.24)
Therefore, we can express the integral kernel of the operator 7 as

n(x,y) = k(z,y) + pu(z,y) (2.25)

with
p(o.y) =n [ dewitzy) +n [ dewnte,2) —n [ dndawa,z)
Using (2.21)) and (2.25)) we have

(A +Ay)n(z,y) = nl®(kV Uz —y)) — Xo) fe(z,y) + n/dz Agwe(z, 2) + n/dz Aywe(z,y)
(2.26)

We collect in Proposition below properties of the operators 7, k and u (we postpone the
proof of Proposition to the end of Appendix [A)).



Proposition 2.2. Let n be defined as in (2.22)) and let k be small enough and n/¢ < 1. Then
the following estimates hold true.

i) We have
2 _
| dsdylntepf = i} < Cxne? (227)
A1 ><A1
and
2 2 _
[ ety (Ve + [Vynte)] < Cuntet (2.28)
A1 ><A1
for a constant C > 0. Moreover, for any x,y € A1,
In(z,y)| < Cn (2.29)
and )
Kn
<o 2.
e < O | (2.30)

for a constant C > 0.
it) We indicate with n;(y) the function n(y,x). For any v € Ay

2|2 < Crne™? (2.31)

for a constant C > 0.

i11) Decomposin_(ﬂ o :=sinh(n) = n+r and v := cosh(n) = 1+ p, there exists a C > 0 such
that

loll2, lplle < Cllnll2 (2.32)

Moreover

Ir(z,y)l < Clinllzllnell2llnyllz,  p(z,y)] < Clingll2llmyll2 (2.33)

for every x,y € Ay. This implies that

Irallz < ClnlzInallz,  lIpall < Clinllzlingll2 (2.34)

With 7 introduced above, we define the generalized Bogoliubov transformation

1
eP = exp [/ dzdyn(x,y) byb, — h.c.] (2.35)
Al XAl
Equivalently we can express it as
1 TH7 %
e =exp [5 Z (nqupbq — h.c.)} (2.36)
P,qEAT
with
Mg = (Pp @ Pq, M) (2.37)

Note that B : }"f" — .an is unitary. In Section below we present some key properties of
eB. With the generalized Bogoliubov transformation e? we define a new excitation Hamiltonian
Gyt FE" — F5" as

Gue = e PLye? = e PULH, Upre? (2.38)

Proposition (which will be proved at the end of Section |3) presents our main estimates of
gn,f~

2As we did for n, we are going to use the symbols o, 7 and p to indicate both the operators and their integral
kernels.




Proposition 2.3. Let V' be positive, compactly supported, spherically symmetric and bounded.
Moreover, define

2 Ak A 1 AXKAKA A
K= Z pra,ap and Ve = 5 Z Vi parspQqras. (2.39)

PEAT | P,q,T,SEAT
where we defined Vi pgrs in (2.3). For k be small enough and n/¢ <1, we have
Onie=Cne+K+Ve+Eny (2.40)

where Cy, ¢ is given by

2
1
Coe =" [ dedy sV (e~ ) = 50, (A1 + Do)

1 (2.41)
D Vepaooep @)+ 5 D Viparsps @ 00, 0p ® 00,
P,qEAT P,q,T,SEAT |
and the error £, ¢ is such that for any § > 0 there exists a constant C > 0 so that
&0 <K+ Vo) + or (N+ +1) (2.42)

3  Analysis of the excitation Hamiltonian

In this section we analyze the excitation Hamiltonian G, , defined in (2.38). We decompose it
as

Got =6+ 6" +6%) + 6%+ 6!
with . ‘
g(]% = 67313557)563

where £V é was defined in , for j € {0,1,2,3,4}. We examine G, ; and identify its main
contrlbutlons The goal of thls sectlon is to prove Proposition [2.3] While the analysis is simi-
lar to [5 Section 4], special care needs to be taken due to the Neumann boundary conditions.

In Subsectlons ﬂq g ﬁ 3.6 we extract from gn y: gn ), gn ), g(3e and gn4z the main
be

contributions w expressions that are constant, linear and quadratlc in creation and
annihilation operators, and we prove that cubic and quartic contributions are small. In Subsec-
tion[3:7 we bound the linear and quadratic contributions, obtaining Proposition[2:3] Throughout
the whole section we will use some properties of the generalized Bogoliubov transformation e?,

which we review in Subsection B.11

3.1 Generalized Bogoliubov transformation

The generalized Bogoliubov transformation in the form has been introduced in [10]; we
refer to [I0, Section 3] for a detailed discussion about it; we mention below only the results that
are relevant in our analysis.

As proved in [31} [10], e does not change substantially the number of excitations. This is
the content of the following Lemma.

Lemma 3.1. Let n € L?(A; x Ay) be such that n(z,y) = n(y,z) and let B be defined as in
. Then, for every myi,ms € Z, there exists a constant C' > 0 such that, on ff”,
BN+ )™ (n+1—=N)m2eB < CeClllz( (N 4 1)™ (n+1 - Nyp)™2

The action of e® on creation and annihilation operators can be expressed as follows. We
define

1

Vz(y) = COShn(ya IL’) = Z W 772n(y7 IL‘) )
= 1 2n+1 (31)
. (y) = sinhy(y, z) :nzzo@"“)'n (y, ),



where 1™ indicates the product in the sense of operators (the symbol 1 denotes the Hilbert-
Schmidt operator whose kernel is 7(z,y)). Note that 7°(y,r) has to be interpreted as a &
distribution. With these definitions, we write

eiBbxeB = b(Vx) =+ b*(ga:) + dg, 67Bb:ceB =0b" ('Yac) + b(ax) + d:: (3.2)

for a remainder operator d,. Lemma below states that d, is a bounded operators on ]-'f”
and it is small on states with a small number of excitations; the main contributions in the right
hand sides of correspond to those of the usual Bogoliubov transformation. Lemma is
a generalization of [0, Lemma 2.3], and can be proved in the same way.

Lemma 3.2. Letn € L?(A; xAy) be such that n(z,y) = n(y,x) and let j € Z. Let the remainder
operator d be defined as in (3.2). Then, if ||n|| is small enough, there exists a C > 0 such that

IV + 172,80 < n7C [ malll Vs + D72 + b (Vs + DI272¢)| 3.5

[ + 1) 2aydiel) < = C [l llmy IOV + D72+ Iy, )| + 104272
+ 17 M1be (N + DI 2¢| 4 |Inl]lay Ny +1)0F3/2¢||
T Inlllayas Vs + 1G22
(3.4)
|+ 1Y72dudy €] < n72C el iy N + 1) 2+ il lllay (W + DI+
+nllny, 2N + DI + Il lllaa (N +1)I+9)2¢]
+ lnlllaya (N + 1072

(3.5)
for all € € ]—'f”. Moreover, for any g € L*>(Ay x A1) such that g(z,y) = g(y,z),
[Ny + 1)”2/61159(33, Y)da€ll < n7 Cllgy (W + DUF72¢| .
Ny + 1)j/2/dxg($, Y&l < n7 Cllgy WV + DYUF72¢) |
3.2 Analysis of Qr(fg
Recall from that
£l = % /d:cdy KOV Uz —y))(n— Ny )(n— Ny — 1) (3.7)
We define the error operator &, () ¢ through
gl =" / drdy KOV (U(x —y)) + E) (3.8)

and we estimate it in the next proposition.

Proposition 3.3. Let 5 ) be as defined in . Then, under the same assumptions as in
Proposition [2.3, there e:z;zsts a C >0 such that

+60) < Crnt™ '\, (3.9)
as operator inequalities on ]-"f"
Proof. Equation (3.8) implies that
57(32 =— e P(n+nNy + N, /2-N7/2)eP /dxdy kOCV (U(z —y)) (3.10)

The bounds in (3.9) follow from [ dady €3V (¢(z—y)) < k [ dz V(z), Lemma[3.1]and (2:27).
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3.3 Analysis of QT%

On F:" we can write as
L 1% =vn(n—-Ny—1) /dmdy KOV (0(z — y))be + hec. (3.11)
We define the error S,(Ll) by

gf:}z = e*BLS}eB = /2 / dzdy K€V (U(z — y)) [b(72) + b* (o) + hec] + 57(:[2 (3.12)

where 7, and o, were defined in (3.1). We estimate Efllg in the next proposition.

Proposition 3.4. Let 57(112 be defined as in (3.12). Then, under the same assumptions as
Proposition there exists a C > 0 such that

+&) < Crnt™ (N, +1) (3.13)

)

, iy <
as operator inequalities on FZ".

Proof. Comparing (3.11)) and (3.12) we obtain
8(12 = —n1/2/dxdy KOV (U(z —y)) [efB(N'_,_ + 1)be? + h.c.}

n7

+n3/? / dady K02V (U(x — y)) [eiBbmeB — (b(2) + 0" (02)) + h.c.] (3.14)

=:D; 4+ D2
We analyze D; first. Using the identity (Ny + 1)%/2b, = bm/\/}rﬂ, we write it as
D, = —n'/? /dxdy KOV (U(z —y)) [e*B(Jw + 1) 20, N 2eB + h.c.] (3.15)
For any ¢ € ]—'f" we have
(€ Dig] < Cnl2e [l e P + 112N 6B [ dyrtV(Ua - )
< Chnt 21N + DR [ do oY %]
With Lemma [3.I] and Cauchy-Schwarz we obtain

(€, D1€)| < Crn! 207 |(Ny + DYV + DEN < Crnl ™ [(Ny +1)12¢]?

We consider now D,. Using (3.2)), we have
Dy = n?/? / dzdy K0V ({(z — y))[dy + h.c] (3.16)
By (with j = —1) and Cauchy-Schwarz, we conclude that
(€ Dag) <2070 [[do (N + D126 W+ 1)) [ dyntV (e )

< Crnt2E (NG + DY) [ da el + DE+ Il a0+ 17172

< Crn' 20 |V + D)V2E IV + 1€
(3.17)

This concludes the proof of estimate (3.13)) if we use bound ([2.27) for the norm of 7. O
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3.4 Analysis of Q’T(fg

Recall, from (2.10) and (2.39), that
2) (2,V)
P =K+Ly

with

DN | =

5512,};/) = Z (Ve,0p0q + Vf,OpqO)&;&q(n - Ny)+ Z (nvf,pqool;;l;:; +h.c.) (3.18)

PgEA] | PgEA] |

We consider now

G = e BL)eP = e BKeP e PP (3.19)

To prove Proposition and Proposition below, we will use the bounds contained in the
following lemma, taken from [§, Lemma 3.6].

Lemma 3.5. Let V € LY(R3), V > 0. Let j1,j2 € L>(A1 x A1). Consider the operators

A = /dmdy KOV (U(x — y))a* (j1.2)a* (ja,)

(3.20)
Ay = /dxdy KBV Uz — y))a* (j1.2)ay
where at indicates either a or a*. Then, for every £ € ff”, we have
6, A1)] < wlIV 1 el |V + 1)*/2¢] o

(€, A26)] < KIVIR L ll2 |V +1)Y2€)1?

Proof. By Cauchy-Schwarz, we have
(€, Ar8)| = /dxdy RV Uz = y))lla* (1,0 )€ o (G, €|

< /dxdy RV Uz = )il iz NN +1)Y2€)1

1/2 1/2
<+ 126 P | [ oy V(6o = )lial?] | [ dody sV = )iy
< & [VIlljllallall2 | (A + 1)1/2€]12.
(3.22)
Similarly we obtain the second estimate in ([3.21)).
O
3.4.1 Analysis of e BKeP
We define the error operator 57(5;{) through
_ 1 1 7% 7k
e PKe” = K - §<77, (A1 + Ag)n) — 3 Z (¢p @ @r, (A1 + Do) )by
p,rEAT |
. (3.23)
g 2,K
3 Z (A1 4 A2)n, 0p @ 1) bpby. + 5,(174 ).
p,reA{7+

We estimate it in the following proposition.

Proposition 3.6. Let Sr(féK) be defined as in (3.23)). Then, under the same assumptions as
Proposition[2-3, for every 6 > 0 there exists a C > 0 such that

&) < 5V + Crnt ™Y (W + 1) (3.24)

. iy <N
as operator inequalities on F .

13



Proof. We write
1
e BKeP =K + / dse *P[K, Ble*P (3.25)
0
With definition (2.36]) we have

1 Akon TRk 1 Ak A 7T
(K, B] = 5 Z r? {ep ® g, m)]arar, bpbq] ) Z 7"2<77790p ® pg)layar, byby] (3.26)

P,q,TEAT | p,q,TEAT |

We use now
[Grar, b;b*} = [d*d,, q] + [d:&r,b;]bz = 6rqb;bjf + 5prib2
to obtain

1 ~ ~
P (3.27)
- _% /df”dy [(Ay +Ay)n(z,y)]bsb, + h.c.

With relations , we decompose
/01 dse B[, Ble®? = —% /01 ds /dxdy (A +Ay)n(z,y)] e *PbyePe *Phe’” + hee.
_ (E1 Y E + Eg) the.
with
E, = %/ ds /dxdy [(As + Ay, )] (b(357) + " (0§)) (b(v87) +b* (o))
_ %/ ds /d:pdy (B + An(z. )] (b(1) + b () de)
— 5 [ dody [0+ 0t (01) + 57 (08)

1
Bam oy [ ds [ dedy [(8s + )0ty
0

where 4% = cosh(sn,), ot = sinh(sn,) (recall the notation 7, (y) = n(y, z)) and d. is defined

as in (3.2) with  in B, v and o substituted by sn. We expand E; as

(3.28)

By — 2 / ds / dady [(Ay + Ay)n(z, )] (6(1B(OE) + 5 (010)b(r)

+ (Y (08)) + 0% (a§))b* (0))
=Ei +Ei+Ei3+Eu

Writing 7(*) = 1 + p(®) we express E; as
e .
Ei; = —5/ ds /dxdy [(Aa: + Ay)n(z, y)]bybs + Enq (3.29)
0
with
Bu=— [ o [ oy (804 A0 )] (005 + 0000 + 50005
The first term in (3.29) contributes to (3.23)); with equation (2.26) we write E1; as

1
Bu = [ ds [ dody [Px = kOV(Uo — )] folar) (H05) + bl + b 0(61)
0

14



(Here we also used that the last two terms in (2.26)) are zero when projected onto the orthogonal

subspace to g.) To estimate E11 we bound f; using (2.14]) and Cauchy-Schwarz; for the term
proportional to Ay we use (2.12), Cauchy-Schwarz and (2.32)), while for the term proportional
to V we use Lemma [3.5|and (2.32)). This leads to

(&, End)] < Crnt™||(N4 + 1)/2¢? (3.30)
Similarly we estimate Ei5 and E14, with the result that
(€, E128)], [(€, Erad)| < Crnd ™ |(V4 + 1)/2¢12. (3.31)

We consider now E;3. Here we cannot use Lemma directly (since the L? norm of v(*) is not
finite); in fact, this is not an error term and we will extract from it an important contribution to

(3.23). We write b(’yg(,s))b* (ol = byb* (o S b(py (Np*(o{")) and we put the product b b*( o))
in normal order. Splitting o(*) = n(*) 4+ r( 5) we arrive at

By = _%/0 ds /dmdy [(As + Ay, y)]b(r{)b* (o) (3:32)

= _%/0 dss/dxdy (A + Ay)n(z, y)|n(y, z) + Eis

with

- 1 /1
Ei3 = —5/ ds /dzdy [(AgC + Ay)n(x,y)] (r(s)(y,x)
0
+b*<a§f>>b — 7 (o) —n~ 1o (g, N+ (b (0))

The first contribution in appears in 3) (the integration over s gives an additional
factor 1/2, but we still need to add its hermltlan conjugate, which is equal to the term itself),
while E13 is now an error term. As we did for Eu7 in E13 we plug in equation 1-) and we
use estimates (2.14]) and (| - For the term proportional to r(*)(y, ) we use Cauchy-
Schwarz and (2.27)), while for the term proportional to o(®)(y, z) = sn(y,z) + r ( Y, x) We use
additionally (2.29). For all the other contributions in E;3 we use Lemma - and -
This way we obtain

(6, Eas&)| < Crnt ™M |[(N + 1)) (3.33)
We consider now Eo, which we split in Eo = Eo; + Eoo with

1 1
By =—2 [ ds [ dwdy [(As + Ay)n(z,y)] (b(3S)) + b (04))dl)
2 /0 / (3.34)

Eg2 = —%/0 ds /dxdy [(Az 4+ Ay)n(z, y)}dg(f) (b(~ )y 4 b* (o ))

We focus on Eo; first. As before, using equation (2.26]) and observing that only the first term
contributes on the orthogonal subspace to ¢, we get

n 1
Ba = [ ds [ dudy (63— kV (e = )] ) (o) + 5 () )

We write it as
1
By — g/ ds /dxdy [mg — kOOV (U — y))}fg(x,y)bydgf)
0

1
5 [ ds [dudy [70 = nV e - 9] 1) (05 + (0
0
=Eo11 + Ea12

To estimate Eg1o we use (3.3) (with j = 0 and the factors s bounded by 1, together with the
bound N? < n?) and Proposition [2.2] to obtain

(6 E2126)| < COn [ dady|©*2eil.9) = ntV (U = ) fol)

/OdSII(b*( )+ b(og ))i\l[llnzllll(fﬁ+1)1/2£||+||77H|\bz§||]
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With the aid of the Cauchy-Schwarz inequality and estimates (2.14)) and (2.12]) we obtain
1 1/2
6. Bana)l < Con | [ doay 672 = we2v(e(o - )| [ a1 + 1of? )l + 11261
0

1/2
x [ [ dmay|et = w2V e - )| (I PG + 10727 + ||77|2||bz§2>] .
Using estimates (2.34]) and (2.27)) to bound the norm of p, o and 1 we get

(€, Ba126)| < Cronl™|(N + 1)12¢|12.

To estimate Eg17 we use the second bound in Lemma, |3.2

6B < BV + 026l [ s [ dedy|Frustenn) + OV sty
[N+ 172,
< CIWi + 1) 7% [ dady|©2ail.g) ~ RtV (e~ ) fulan)
[ Ml O+ 101726+ by, ) O + 1)1 2]

+ Iy 11b2€ 1+ NI Hlay (N + DEN+ Inllllayas (Vg + 1)1/2£||}
< Ont~|(N +1)Y%¢)?

/
+CING + 02| [ deody Y (6o~ )y + V2]

In the last step we used ([2.14)), Cauchy-Schwarz (similarly as above) and additionally (2.29) for
the term containing |n(z,y)|. With (2.27) we conclude that

(€, Ea116)| < Crnt ™[Ny + 1)Y2€)2 + CrY2n 202 (W + 1)V2¢) v, %)
Therefore
(€, Ea16)| < Crnt ™[Ny + D)V2€)2 + CrM2n 20 2N + DY2¢) 1V, %)l (3:35)

The second term in ([3.34) can be estimated as follows

1 1
(€B26)| < I+ 1)7%¢) [ ds [ dody (8, + Aty
0
<N+ 1720 (b)) + 5 ()¢
1
<t [ds [ dedy|(Ba + A0tV + D)
0

x [Ilnyl\ll (b(v$?) + 6" (08 (N + DE + [Imlllby (b(25)) + " (0 $))) (W + 1)1/2£H]
(3.36)

Substituting (2.26) for (A, + Ay)n(z,y) and arguing as before we obtain
(€. Eaa)| < Crint ™ [Ny + 1)V + Okl 2 2| (N + 1) V2 [0l (3:37)
Finally we examine E3 in (3.28); with the third estimate in Lemma we have
1
(€, Esé)] < Cl(N + 1)V /O ds /dffdy (A + Ay )z, IV + 1) 2P e

< O N+ 12| [ dedyl(A, -+ Ayt )l [l I IV + 1)°%]

+ {172 116y (N + DEN + Iy, 2NN + D] + [y llllae (Vg + DEN + llayan (N + 1)1/2£H]
(3.38)
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leading to

(€, Bs€)| < Crunt ™ [N+ 1)M2€] + C2n 2071 2| (N + 1) 2¢ 1V, % (3.39)
The estimates (3.30), (3-31)), (3.33), (3.35), (3.37) and (3.39) prove (3.24). O

3.4.2 Analysis of e*Bﬁf’eV)eB

With ES,’ZV) introduced in (3.18)), we define the error operator 57(3@‘/) through

— 2,V 1 7% Lk 2,V
e Bﬁi,e JeP = n > Vepgoo(n, p @ ¢g) + 3 > (nVepgoobjby +hoc.) +57(1,e ) (3.40)
P,qEAT P,qEAT |
Proposition provides an estimate for & (2"/).

Proposition 3.7. Let 5(2 V) be defined as in . Then, under the same assumptions as
Proposition[2-3, for every 5 > 0 there exists a C’ > O such that

+ &3V < 6V + Crnt ™M (N + 1) (3.41)
as operator inequalities on ffN
Proof of Proposition[3.7 We split e B£(2 VIeB o
e BLEeP = F| + Fy + Fs
with

Fl = Z ‘/EOqu apaq( —N.i,.)eB

PgEAT
Fy = Z Viopgo €~ Pasig(n — Ny)e? (3.42)
p.a€A} | '
1 —Bix1x
Fs =5 > (nVipgoo e Porbie” +hic)
D,qEAT

It is convenient to rewrite
1
F, = /sn/dxdyﬁV(ﬁ(x —y))e B (b*b - ayay)eB
The expectation of F; on any £ € ff" can be estimated as

(€, F1€)] < Iin/dy|<§,e_B(bey—n a* ay Bf |/dx€2 Uz —y)) < Crnl™HENLE)
(3.43)

where we used Lemma [3.1] Similarly we have
1
(€ Fad)| < wn [ dody @V (6 = 9) (672 (550 — ajan )P < Crnt e NE) (341
We focus now on on the last contribution in ([3.42)).

- % / dzdy *V (U(z — y)) (e Pbibye” + h.c.) (3.45)
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Using equations (3.2)), we get
Kn
Fs = = /dxdy EQV(K(JU —v)) [(b(fym) + 0" (03) + ds) (b(yy) + 0" (oy) + dy) + h.c.]

=3 / dady 2V ({(x = y)) [(b(12) + " (02)) (b)) +b*(0)) + hoc]

+ % /dxdyEQV(é(x — ) [(b(v2) + b*(02))dy + du(b(7y) + b* (o)) + h.c.] (3.46)

+ % /dacdy CV Uz —y))[dedy + h.c.]

=F31 + F32 + Fa3

We start analyzing F3;. After normal ordering, a simple calculation (similar to the one done in
(13.32) gives

Fs31 = mz/dxdy CV((x —y))n(z,y) + F;—n/dxdy CV Uz —y))[baby +hc] + &1 (3.47)
with
&3 = % /dxdnyV(H(x —)) [r(;v,y) —n(z,y)n Ny

+ 0" (1y)bs + % (1) bz + nila*(ny)ax + b(pz)b* (ny) + b(pz)b* (ry)
+ b(pa)by + b(72)b(py) + 0*(02)b(yy) + b (02)b* (o) + h.c.]

where again we used the notation v, = 6, + p, and o, = 1, + r,. Lemma [3.5| and Proposition
show that &3;1 satisfies

(3.48)

(6, Es1)€] < Crnt ™M |[(Ny + 1)V2¢)1? (3.49)
Next we consider F3o. Again splitting v =1+ p and 0 = n + r, we write
Fay =: F321 4 Fa22 4 F323 + h.c. (3.50)
with
Kn
Fgo1 = 5 /dxdy€2V(E(x —y))bad,
Kn 9
Fago = 5> dady 2V (L(x — y))dzby (3.51)
RN * *
Fagg = - [ dudy CV Uz — 9)) [(b(p2) + b"(02))dy + da(b(py) + b7 (0y))]
To bound F3o1, we use (3.4) and Proposition
(€, Fsa1)¢| < Cr||(Ny +1)%¢]| /dl”dysz(f(l” —y)) { 2 1l 1| (V-4 + 1))

+ InCys )N+ 1)M2€] + g [1102€]1 + 1 lay (N + 1)§H}

(3.52)
+ Crn Pl (N + 17172 [ dady V(ew ) o, b
< Crnt = nlla | + 1)Y2€]12 + Cr12n1 2612 [Ny, + 1)/2€ |V %€
The estimate for Fyss follows from (3.3):
(€ Fazad)| < k(N + 1] [ dody @V (6 = )|V + 1) 2,0
< Coenl| (N +1)17%¢] [ dady V(eo — 9)) el €] .

+ Crn 2|l |(Ny + 1)Y2¢]| / dady *V (£(z — y))||baby€]|

< Crnt oWy + )22 + CrM 2t 202 |l |y + 1))V, %]
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and similarly the estimate for Fos:
(€ Faat)| = 5 [ dady £V (ela = ) [002) + 5 (), + da(blp) +(0,)]
< wn [ dody V(U — ) |0 (02) + Ho)E ¢
40 (N + DY) [ dedy £V (e = )| N+ 172, 0,) + (o)
< Cron (N + 16| [ dody 2V (ex = ) (Il + ) (3.54)
x| Im IO + DM€+ linlby€ ]
+ O (N + Y] [ dedy £V (6t = ) [ Ina 1A+ 1)(bloy) + 80,
o nllloa (N +1)M2(b(py) + b (0, )¢ ]
We normal order the last term and use estimates (2.27), and to get

(€. Fa258)| < Crnd ™ ||(N4 + 1)1/2¢)1? (3.55)

Finally we consider the last contribution in (3.46]). With estimate (3.5 and Proposition
we conclude that

(€ Faa€)l < Crnt ™ [PV +1)/%¢]12
1/2
+ Con 2P+ )2 | [ dady £V (€ - p)laya ] (3.56)
< Crnt ™ Il + 1) )2 4+ Cx2nl 20712 gl P (N + D)2, )

Estimates (3.43)), (3.44), (3.49), (3.52)), (3.53)), (3.55) and (3.56) prove (3.41)). O

. (3)
3.5 Analysis of G
As defined in ,

£n?j% = Z (n1/2w,q7‘0p6:d2dp +h.c)

p,qrEAT |

=nl/? / drdy K0V (U(z — y)) [b;a;az + h.c.}
We define 87(5’2 through
G = e BLl¥)eB = nl/? / dady K0V ((x — y))n(y, @) [b(ys) + 0" (o) +he] +EP). (3.57)

Proposition 3.8. Let 87(2 be defined as in (3.57). Then, under the same assumptions as
Proposition[2.3, for any 6 > 0 there exists a constant C > 0 such that

+ ) <6V + Crnl ™ (N + 1) (3.58)

as operator inequalities on ff”.
To prove Proposition we need the following lemma, taken from [8, Lemma 3.8].
Lemma 3.9. Let V € LY(R3), V > 0. Let ji,jo € L*(Ay X A1) with

M, = max{sup [tz [ dmx,y)P} < oo
xT Yy
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fori=1,2. Then we have
/dwdy RV (U = y)lla* (j1,0)0* (. )€ NP < Crwmin(My | 72l[3, Mol 1 13) |V + 1)1
[ dzay Vet - et o€l < CoMNG + 1))

for all € € F (with a* we indicate either a or a*).

Proof. The first inequality simply follows from Cauchy-Schwarz

/dxdy KOV Uz = y)|a* (j1,0)a* (o, )E]* < /dwdy KOV Uz = y))llj1,2 1372, 3N + 1))
< Crmin(Mi 7213, Ml 3| (N4 + 1)9|?
The second inequality can be obtained similarly. O

Proof of Proposition[3.8 We compute

1
e Ba;axeB =aya; + [ ds eiSB[aZax,B] = a,a, +/ dse™*B (b(n,)b, + b* (nx)b*)

’ (3.59)

We have therefore

g,(fz I/Q/dxdyﬁé V(l(x—1y)) [efBb; a ax—|—hc}

+n1/2/dxd KOV (0(z — e_Bb;eB/ ds e *Pb* (1, )b’ e*B + h.c.
YRV (U~ y))| i (n:)0 ] 5.0

1
a2 [ dady sV (o~ ) e e [ dsePhinh,e? + hc
0
=: G; + G2 + Gz + h.c.

We start analyzing G;. Using (3.2)) and
b(oz)aya. = /dz o(z,2)b.aya, = aya.b(o,) + o(x,y)bs (3.61)
we write it as (adopting always the notation o =7+ r)
G = n1/2/dxdy KOV (U(z — ) (b* () + b(o) + di) ajaq
(3.62)
=n!/? / dady 0V (U(z — y))n(z,y)bs + G11 + G2 + G134+ G4
with
Gqy = n'/? / dxdy K0V (0(z — y))r(z, y)be
Grz =" [ dedy eV (t(z = )V (12)aas
(3.63)
Gz = nt/? / dady K0V (0(z — y))aya.b(o.)
Gpq = nt/? / dady K0V (U(x — y))dya,a;

With (2.33) and Cauchy-Schwarz we see that for any normalized £ € ff”

(€.Gné)| < Cn'?|ln] /dwdy KV (€ = ) [y 1]102€]]
1/2

1/2
< On'2y| [ [ oy v - y))lbman] [ [ oty stV @@ = el
(3.64)
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In the last factor we use and we arrive at
(& Guig)| < Crn! 21|V + 1)1 2¢] 2, (3.65)
To bound Giz we split v = 1 4 p and use estimate and , so that
(6:Gua) < ' [ dedy kY (6o~ 9)) oy bt st
nt/2 [ dady nfV (e - )N 0, oIV a] (3.66)

< On' PR+ 1)1V, e 4 Ot (N 4 1),

In the last step we used the Cauchy-Schwarz inequality and note that the first term is propor-
tional to Vy, as defined in ([2.39)). Similarly

(€, G1s€)| < n}/? / drdy K0PV (U(a — ) [N} P aub(on)Ell N a €]

(3.67)
< Crnl ™[N+ 1)%¢)2
In order to bound Gi4, we use to estimate
(&, Grag)| < n'/2 / dady £V (((x = 9)) N7 ayd €l ING *ang|
1/2
< A2 G 1090 | [ dedy Y (U = )00+ 206
< Cn1/2m1/2ﬁ_1/2||(/\f+ n 1)3/4£|| (3.68)

| [y nev e = ) (V- + 0560+ Il + 15| "
< O/t (N + 1)
Next we consider Ga. With (3.2), we have
Gq =n'/? / dzdy kCV (U(z — y)) (0" (72) + b(ow) + d2) /0 1 ds e *Burb* (1, )e*? (3.69)
and we split Go = Go1 + Gog + Gaog, where
Goy =n'/? / dady K0V (U(x — y))b(os) /01 ds e_‘ngZb* (1.)e*B
Gaa :nl/Q/dxdy KOV (U(z — y)b* (V2) /01 ds e *Pbb* (1) e (3.70)
Ga3 =n'/? / dxdy K0V (U(x — y))d: /01 ds eiSBbe*(nx)eSB
In Gyy we expand further

1
Goy =n'/? /dzdy wOV (U(z — y))b(oy) / ds (by + b* (pg(f)) + b(az(f)) + (dés))*)efst*(nx)eSB
0
(3.71)

where we denote again o(*) = sinh(sn), p®) = cosh(sn) — 1 and (d?(,s))* is defined as dj in (3.2)
with nin B, v and o substituted with sn. We commute b, to the left using (2.5, so that

b(oz)b, = /dw o(w,z)byb, = /dw o(w, z)(bybw 4+ 0(y — w)(1 — Ny /n) — nflal";aw)

=o(y,z)(1 = Ny/n)+ b;b(am) - nila;a(om)

(3.72)
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Hence

1
Goy :nl/Q/dxdy/-eEQV(é(x—y))a(y,x)/ ds e *P* (1, )e*B
0

+ nt/? /dxdy KOV (U(x —y))

x (= oy, x)Ny/n+bib(oy) —n~ " aja(oy)) /0 dse™*Pb" (n,)e™” (3.73)

+nt/? /dmdy KOV (U(z — y))b(os)

« [ s (7 60) + Do) + (d)")e P ()es?
=: Ga11 + G212 + Gai3
We use that )
/0 ds/dz n(z, x) coshgy,(w, z) = sinh, (z, w)
and

[ f e s = s, ),

resulting in

1
Goa11 :n1/2/dwdy HEQV(E(zfy))a(y,x)/dzn(z,z)/o ds(b*(fygs)) +b(0§3)))

+n1/2/dxdy/<;€2V(£(x—y))U(y,x)/dzn(z,x)/O ds(d))*

/2 / dady 5V (0(z — y))o(y,2) (b (02) + b(pa)) (3.74)

1
—|—n1/2/da:dyfi€2V(£(sc—y))a(y,x)/dzn(z,x)/ ds(d)*
0
=1 Go111 + Ga112

In Gai11 we split ¢ =+ 7 and write
Gap1q =n'/? / dxdy KZQV(Z(;B —y))n(y, ) (b*(dw) + b(pm)) +& (3.75)

The first contribution plus its hermitian conjugate adds up to the first term in the second line
of (3.62)) plus its hermitian conjugate to give the first contribution in (3.57]), while

(€, &1€)] < nl/z/dxdy KV (U = y)r(y, @)l (6" (o) + b(pa) )€
< Crn' 20|V + 1) 2€ €]

(3.76)

where we used (2.33]) and (2.31)). We estimate Goj12 using estimate (2.29)), (2.33) and (2.31)) to
bound o(y, z), and then estimates (3.3)) and (2.31))

[(€, Ga1128)| < C’n3/2||(./\/+ + 1)1/2f||
% / dedy KV (0(z — 1)) / dz In(z, 2)|| (M + 1) /2dg]

1/2
< on I+ 026 ([ dedynt?Vitia =) [ @zl oR) @)

1/2
X (/ dady K0V (0(z — y))/dz (N + 1)1/2dzf||2>
< Crn' 207 |(N4 + D)MW + 1]
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Next we analyze Goi2 in (3.73]). Using (2.29), (2.33) and (2.31) to bound o(y, ), as well as
7z, Lemma [3.1] and Lemma we estimate

(€, Ga126)| < nl/? / dxdy k02V (U(z — y))

1
< 11 = oy, )N/ + b(o2)*by — n~a* (02)ay)é] / ds [b* (n2)e*Be|

< rn! PNy 4 DENTVE + 1)V
(3.78)

Similar arguments lead to the estimate for the last term in (3.73)):

|(€, Ga136)| < n'/? / dady K0PV (U(z —y))

1
x / ds | (b)) + b (08) + )b ()€l [* (no)e e BT

< k! POV + DEN WG+ 1)V2¢)

We consider Gag in (3.70) next. We expand it as

1
Gaz =n1/2/dxdy KOV (U — y))b*(%)/ ds (b (7”) + (o) + (d))")e~*P0" (ns)e”
0

(3.80)
and estimate it as
(6 Gaat)| </ [ dady ne?V (e )
1
x /O ds || (by + b(p{)) + b (08)) + (d()) (bs + b(pa) ) ENIb* (1) e B¢
(3.81)

1
<0 [ ddywV(t(a = y) [ ds b (e el [Ibyat]
0
+ by )€l + 1 (b5) + b (o§) + d5) (b + b(p2) )€1
< ORI AT+ 1)V2EIVEE] + Coan 2 N+ 1D -+ 1E

where we used Lemma Lemma 3.9 and Lemma [3.2] In order to bound the last contribution
in (3.70]), we estimate, similarly as we did for Gao,

1
(€, G2s&)| < nl/Q/dwdy KOV (0 —y))/o ds || (b(vy?) + b*(o7) + (di)) du | 16" (11 )e* P

< CRMPp! 202 (NG + 1)V Vel + Crn 20 [y + D)2V + 1]

(3.82)
We analyze finally the last contribution in (3.60]), given by
C3 =n'/? /dmdy KOV (U(x —y))e Pbtel
1
[ (n),) 4 5 (00 ,) (06) + (087 + )
0
(3.83)

+nt/? / dady K02V (U(x — y))e PbteP

1
x / ds / dz (2 )d) (b() + b (01) + d)
0

=: G31 + G32
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With Lemma H Lemma and Lemma E and the bounds and ( - we get
(€, Cne)| < " / dedy sV (U(z — ) [bace]

x / s [|(B((mr*))y) + B ((909),)) (1) + b (o)) + d)e]

< Crn' 207Ny 4+ D)Y2¢)) (V. + DE);
(3.84)

and

(€, Can)] < /2 / ddy kOV (E(x — y))|[b5¢]
/ds/dzmwmw(( N+ ol) +de G5
< Crn 207N + )Y€ (VS + 1€

Putting together , (3-67), (3.68)), (3.76), (3.77), (3.78), (3.79), (3.81), (3.82), (. 84[)
and (| we arrive at 1

3.6 Analysis of 9(4)
Recall the definition of £( o in . We define the error 87(14) by

_ 1
Gi) = e PLie® =V, + 3 > Vipars(®s ® 01 (0, 0p ® @)

,
D,q,T,SEAT |

1 7 A*
vy 2 (Vawsles@ernmih +he) (3.56)

P,q,r,SEAT

+EW
It can be estimated as in the Proposition below.

Proposition 3.10. Let 57(L4) be defined as in (3.86)). Then, under the same assumptions as
Proposition [2.3 for every 6 > 0 there exists a C' > 0 such that

+ &%) <0V + Crnt Y (N + 1) (3.87)
as operator inequalities on ]-'_EN

Proof. The proof of (3.87)) follows closely [10, Section 5.6] and [, Section 4.5]. We write

7y

1
e BrWeb — 5/dgcdy KOV (U(x —y))e Patalaza,e®?
aly

1
=Ve+ = L /dmdyk;EQV(ﬁ(x - y))/ dse *Blata’aya,, Ble*?
0

1
=Ve+3 / dady £V ({(x — ) / ds =203ty (aza” (1) + a” (1:)ay + hic)e™”
0

(3.88)
We expand e~ (aza*(ny) + a*(n,)ay)e*? further and get
e BLWeP — v, = (W) + Wa + W3 + Wy) + hec. (3.89)
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with
1 1
Wi =5 [ dady sV (e —g)aty) [ dseErines
0

1
Wgz/d:cdy/sz(ﬁ(:cfy))/ ds e *Pvibre*Pa* (n,)ay
0 (3.90)

1 s
W3 = /dxdy KOV (0(x — y))/ ds e_SBb;bZeSB/ dt e "Bb(n?)b,e'B
0 0

1 s
W4:/dxdym€2V(€(:r—y))/0 dse_SBb:,b;eSB/O dt e~ "Bb*(n, )b* (1, )e'?

The term W; results from normal ordering of a,a*(n,); in W5 the notation n2(w) stands for
J dzn(w, z)n(z,z). We start with analyzing W;. With the relations (3.2]) we further expand it
as

Wi =g [ dedy sV (ta = (o) [ s (76E) +00) (764 + o)

1
+ % /dxdy _OCV Uz — y))n(z,y) /0 ds (dzs))* (b* (’yés)) + b(oz(ls)))

+ % /dﬂcdy KOV (U(x — y))n(, y)/o ds (b*(fya(f)) + 5(03(05))) (d?(f))* (3.91)

1
+ %/dmdy _OV (U — y))n(x,y)/ ds (dzs))*(dy(f))*
0
=: W11+ Wio + Wi+ Wiy,

where, for z,y € A1, v (y), o8 (y) and di are defined as in (3.1) and (3.2) respectively,
with n substituted by sn. Multiplying out the product in W1; and normal ordering the term

b(og(cs))b* (’yz(f)) leads to

1
Wi = 3 /dxdy Ksz(E(m —y))n(z,y)ds (b*b* + n(m y))
+ Wi

(3.92)

with

1
Wiie = 1/dacdy KOV (L(x — y))n(x,y)/o ds [b;b(az) - nilaZa(az) + ) (z,y)
= NanTto ) (@, y) + 307 () + 67 (0)) (0 + 0" (0))) + (b + 0" (0)) b))
+b(el) (b () + 57 (0§)]
(3.93)

where pgf) (y) = 'yg(c )( ) — d(z — y) and r(s)( ) = Ug(cs)(y) — sn.(y). The first line in (3.92)),
together with its hermitian conjugate, gives the main terms in (3.86]). To estimate W15 we first

use (2.29) and then apply Lemma with estimate (2.32) (for the term proportional to r(*) we
use (2.33) and for the term proportional to o(*) we use (2.29) and (2.33)). This way we obtain

(6, Wi126)| < Crnl™ (N + 1)M2¢||? (3.94)

To control W1, we use Lemma [3.2] and (2.29):

1
(6, W126)| < C / dady KV (U(z — y))n(z, y)| /0 ds [|d€]|]| (b (p{) + bl ()€

1
+ I+ 1) 2] [ dody Ve = )intep)] [ ds |0 + )7 2,0

< Crrt™ [Ny + DY + CRM 220712 (N + 1)V 2]y 2|
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Similarly, for W13 and for W14 we have
(6 Wia)| < CING +1)72¢] [ dedy Y (6o~ ) n(e. )

1
— S S * S 396
/0 ds | (N +1)712d (b(29) + b* (00))e] (3.96)
< Chnl YNy + D)V2E] + CRY2nt P 2 (A, 4+ 1) [V 2%

and

1
(€, W146)| < OV + 1)V / dady K0V (((z — y))|n(z,y)| /O ds||(Ny +1)7H2dale||

< Crnl YNy + 1)Y2€)2 + Ok 220712 (N + 1)V 2|V, %¢|
(3.97)

Next we consider Wy. By using (3.2]) and Lemma wee observe that
I+ )27 Bb,byePe < Cllaay (M + 1)M2€] + llllmy llas (N + 1]

+ (e, )Ny + DY2EN + [l llllay N+ DEN+ nll el TNV + 1)3/2£H},
(3.98)

Combining this with estimate (2.31]) we conclude that
|<€a W2€>|
1
<C [ dody v (Ua— ) [ ds [N+ 126 Phbe PN + 1) 20 ()
0

< Crnl ™|V + D)Y2€|2 + CrM2nl 20712 (N + 1)V 2y %)
(3.99)

With similar arguments to those used to prove (3.98)) (in particular, using the last two estimates
in Lemma [3.2)), we also obtain

IV, + 1)—1/267331)(77&(72))byengn = [[(NMy + 1)71/2/d2 77(2)(25, Z)eistzbyeSBgn (3.100)

< C[IIUIIII%IIII%SH + Il [y NS+ 1)1/2£||}

and
[Ny + 1) 2 Bb(n{?)b(ny,)e ¢l = (N + 1)_1/2/dzdt n(z, 2)n(y, t)e *Pb.be ¢

< Clnllimalllm, A + 1)M2¢]
(3.101)

leading to

(€, W), [(€, Wa€)| < Crnl =Y |(N + 1)Y2€]|2 + CrY2n 2072 (N + 1)1 2|V, %¢ )
(3.102)

Estimate (3.102), together with (3.94), (3.95), (3.96), (3.97) and (3.99) conclude the proof of
(3.87). O

3.7 Proof of Proposition [2.3
Proof of Prop. [2.3 From Propositions and we conclude that the

excitation Hamiltonian G, , can be written as

e BLuse? =Crp+Lug+K+Que+Vi+Eny
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where the operators K and Vy are defined as in (2.39)), the constant contribution (i.e. the term
not depending on operators) C,, ¢ is given by (2.41)), the linear terms are given by

Ly =n%? /dxdy KOV (U(z —y)) [b(72) + b*(0z) + hc.]

(3.103)
+nl/? / dady K0PV (U(x = y)n(y, 2) [b(v2) + b (02) + h.c.]
and the quadratic terms are
1 7% Lk
Qn,[ = _5 Z (<(Pp & ©r, (Al + A2)77>bpbr + hC)
p,TGAiJr
1 A*A*
+ 5 Z (nw7pq00bpbq + hC) (3104)
P,qEAT
1 XN
+ 5 Z (w,pqrs<80s ® Prs 77>bpbq + hC)

p,q,r,seAi‘,Jr
The error term &, ¢ satisfies
+En0 <K+ Vo) + Crnt™ (N, +1).

We first consider the linear terms in (3.103]). Decomposing 7 in the second line of (3.103))
with the aid of (2.25), we have

Lng=TL1+Lo+1Ls (3.105)
with
Ly =n%/? / dzdy £V (U(z — y) fo(2,y) [b(72) + b* (o) + h.c.]
Lo =n3/? / dady K0V (U(z — 1)) / dz(we(z, y) + we(z, 2)) [b(72) + b*(05) +hc.]  (3.106)
Lg = —n?/? / dxdy 02V (L(x — y)) / dz1dzo we(z1, 20) [b(7z) + b (04) + hec.]
By estimates and (2:32), it follows that for any ¢ € F="
(6, Ls&)| < Cn®/? /drdy ROV (U = y)[(E (D) + b*(02))€)] /d21d22 lwe(z1, 22)]
< Cm?’/zf’z/de(é, (b(yz) + b (7)) €)] /dy KOV Uz —y)) (3.107)
< Crn' 20 N2 lg].
For the term Lo we estimate
(€, La8)| < nB/Q/dwdyM?V(f(w - y))/dZIwe(z,w +we(@, 2)||(€, (b(vz) + b7 (02))€)]
<ut’ [ dalig, (o) + 5" @))€ [ dyweVitta ~y) [ dsfurtz.)
08 [ deda (e, € (ba) + 0 02)) [ dyrV (e~ )
Using [@.15), [@17) and @32), we get

n3/2
[(&, Lag)| < N dz|(€, (b(v) + 0% (02))€)]
n3/2
+ / dzd [we(z, 2)|[(€, (b(v2) +b*(02))€)] / dy V(U —y))  O108)

< Crn®2072 N3¢ |€)] < Crn 20 Y IV e €]
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In order to control L; in , we write it as
L, = n?’/QE_lc/dm [bs + b(py) + b*(0) + h.c.]
+ 0?20 / dz [b(7,) +b*(0,) + h.c.] { / dy 5BV Uz — ) fula,y) —c| (3109
=: L1 + Lo

for a constant ¢ € R. The expectation on £ € ]-'f" of Ly; in (3.109)) vanishes for any ¢, since
o,p € L3 (R?) x L2 (R?). We define

ho() = / dy K0V (0 — y))E fulz, y)

and we set ¢ = hy(0), where h(0) is the function h; evaluated at the center of the box. Let
d(z) denote the distance of = from the boundary of the box. We denote with S/, the set of all
r € Ay with d(x) < 4Ro/¢, where Ry is the diameter of the support of V. We call xs,, the
characteristic function of this set. We split Lqs as

Ly =n/207! /dl" [b(72) +b*(02) + hoc] [he(z) — he(0)] xs5, (@)

+n3/2p1 /dgc [b(’yw) +b"(0z) + h.c.} [he(x) — he(0)] XS./e (x) (3.110)
= Li21 + Li22
From it follows that sup,c,, he(z) < Ck, for a constant C' > 0; therefore
(€, Liza8)| < Crn®207 1 f¢]| /dw 1(6(7z) + 6% (02))Ell X5/ (%)
(3.111)

1/2
< Cun 2 gV + 126 ([ d s o))
< Cnn? 22PN + 1)1

where we used Cauchy-Schwarz, (2.32)) and (2.27). Using the same bounds, we obtain for Lqo;

(€, Liaa€)| < Cn® 27 M€ /dfv 16(72) + b7 (02) +hec]€llhe(x) — he(0)[xsg,, (@)

< Cn* €N + D)Y2€ [ he = he(0)|xsg, 12

(3.112)

Calling h(z) = fA[ dy kV(x —y)f(x,y), we have

[ delbate) =m0 = [ do| [ gVt - )it - 10
Sise Sise (3.113)
25*3/ dz |h(x) — 40 (0)]”
S

c
4

2

where S§ is the set of points in Ay whose coordinates are at a distance bigger than 4Ry from
the boundary. We write

h(z) — h(0) = /O V(i) o

and it remains to calculate Vh. We have

6'Llh(x) == \ dy Kayzv('r - y)f(a:,y) + N dy HV((Z‘ - y)amf('rv y)
= _/ dO'y ’%Vv(‘r - y)f(xay)l/z +/ dy KJV(&L’ - y)(am +0 1)]0(-'1773/)
Y] Ay
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The boundary contribution above vanishes for « € S§. Moreover, using (2.18)) and the fact that
V is bounded and compactly supported we obtain

Voh(z)| < Crt=3(d(z) +1) 7. (3.114)
Therefore
Blh(z) — h(0)| < Cn[/l dt (d(tz) + 1)’5/3\93@
0

To compute the integral, assume that 2 > max{|z()|, |2 |}. Than d(tz) = ¢/2 — t=®, and
hence

' —5/3 _ 3 1 B 1 3v/3 1
/O dt (d(tz) +1) 7 = o ((e/2+1 2@ (24 1)2/3> = 20l (d(a) + 17

where we used that |z|? < 3|2()|2. In particular,

Clh(z) = h(0)] < @l(x)cjl)m (3.115)
from which it easily follows that
/SC dz |63 (h(z) — h(0))|* < Ok (3.116)
We have therefore proved that
(€, Laon )| < Crn®2e32||(N + 1) ]l (3.117)

We examine now the quadratic contributions in (3.104), given by
n
Que =" /da:dy (A + Ay, y) + K2V Uz — ) (1 - we(z, )] [baby + bib;)
By equation and 1 — wy(z,y) = €3 fo(x,y), we have
'I’L£5 5 7%k
Qo = "0 [ dady fulwlbsb, + 35
For any £ € ]-"f" we estimate
(6@t} < Crunt® [ dy | (06 b,6)
n
< Crnl?||flla[| (N5 +1)1/2¢)1* < Crp Wy + 1)!2¢||?

where we used (2.12)) and the fact that f is normalized to 1 in Ay X Ay, so ||fe|lo = ¢73. This
concludes the proof of Prop. 2.3 O

4 Proof of Theorem and Corollary

We shall now use Proposition 2.3 and Lemma 3] in order to prove Theorem
Proof of Theorem[I.1 Using the bounds K = ZpeAf +p2a;ap > 72 ZpeA{ ) apap, = TN,
V; > 0 and setting 6 = 1/3, we have, from ([2.40)), ’ ’

2 C
gn,@ Z On,[ + (1 - 5)(IC + V@) - K‘C%(N-‘r + 1) Z Cn,@ + (7 - o

n
— = — — 4.1
3 K QE)IC Clﬂié ( )

Assuming xkn/¢ small enough we get

2
Gt > Cro+ - Nip = Ok% > Crp = Oy (4.2)
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Equation ([2.40) also implies (taking 6 = 1) the upper bound
Gt < Cr + 2K+ Vi) + Or (N + 1) (4.3)

From (4.3) (evaluated on the vacuum) and (4.2)) it follows that
n
1

Using equation (2.41)), the definition of n (in equation (2.22))) and the fact that it is orthogonal
to the condensate wave function @y we write

|€n7z - Cn7g| S Ck (44)

2

n
Chro = —4/ dxdy [nV(:p — )1 —w(z,y) > + |[Vew(z, y)|> + IVyw(m,y)ﬂ + Rne (4.5)
2€ AzXAg
where
2
R = =% [ dwdydz [un(es) + wile,2) - [ dbunten] e+ Auntey) (49

Recalling the definition 1 —w = £3 f, where f is the minimizer of (2.11]) in Proposition [2.1} we
conclude that

n2
14
The error R,, ¢ can be controlled by substituting equation ([2.21)) for (A, +A,)we(x,y) and using
estimates (2.14) for f, and (2.16)) for w,. This gives |R, | < Ckn?(~2. Equations (£.4) and
(4.7) imply (1.10).

Let now 1, € L2(A?) be a normalized wave function, with

<¢n; Hn,[¢n> § €En + C

O = 4ma (1 + 0(% 1n(€/a))) + Roy (4.7)

for some ¢ > 0 and e, , the ground state energy of H,. We define &, = e BU W, € }"f".
Therefore

<§na gn,€§n> = <'¢n7 Hn'(/}n> < €En,t +C
From (4.2) and (4.4) we have

2

G Nia) < C+ Ony (4.8)
Using , Lemma and we have
o * 2C _
n— <wnaa0a0¢n> = <wn, UnN+Un7/}n> < C<£naN+fn> < F(g + knd 1) (4'9)
which implies . O

Corollary [1.2] follows from Theorem

Proof of Corollary[1.2 Inequality (1.10)) implies that for n < <{ =: p (where c is a small enough
number) there exists a C' > 0 such that

2 2
E(n,0) > 4m["— —c2 _cdl

7 1B o1 n(t/a)). (4.10)

We need now a bound in the case n > p. Following [20], we observe that since V' is non-negative,
E(n+n',0) > E(n,{)+ E® (),

where we dropped the interactions between the n particles and the n’ particles. It follows that

E(n,0) > m E(p,0) > %E(p,f) (4.11)
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n

;} is the largest integer smaller than 2

where { rE We use the latter estimate for n > p. Calling

¢, the relative number of cells containing n particles, we have that
E(N,L) _4 2
% Zp%; inf { ; Cn (n2 —Cn— C’a% ln(é/a))
b (4.12)
+ = Z c,m(p —-C - C’a% ln(é/a))}
n>p
Defining A =1 — Ca%, we need therefore to minimize
1
2
Y ca(n®A=nC) + 5> can(pA - C) (4.13)
n<p n>p
with the constraints
ch =1, chn:pﬁg.
n>0 n>0
We define the variable
t= Z cpn < p€3;
n<p
we have therefore, by Cauchy-Schwarz,
2 1 2 1 3
> en(n*A—nC) + 3 > enn(pA—C) > PA—tC + 5 (7 =) (pA-C) (4.14)

n<p n>p

which we minimize for 1 <t < pf3. If p is large enough, for example p > 4pf3 (note that this
imposes that ¢2 > c(4xp)~1), we obtain that t = pf? and the minimum of (4.14)) is (p¢3)?A —
pl3C. This means that

E(N,L)

>4rap [1 - Caln(i/ @) _ p%] (4.15)

We set £ = (c/4)'/?(kp)~'/? and we obtain, for a new constant C' > 0,
B s amap[1 - Cloa®) 2 m(p/a) ~ COlpa®) ] (1.16)
O

A The two-body problem in the Neumann box

This Appendix is devoted to proving Propositions[2.1]and [2.2] We will use the following Lemma.

Lemma A.1. Let Q = [—£/2,0/2]% and let € be such that 0 < ef?> < 1. Fory € Q let G.(z,y)
be the solution of

(= Az +e)Ge(z,y) = §y(2) (A1)

on Q with Neumann boundary conditions. There exists a constant C > 0 (independent of € and

¢) such that

G.(z,y) < c(ﬁ + i) (A.2)
for every x,y € Q. Moreover, let G, be the unique solution of
(= As+2)Clw—y) = 5,() (A.3)
on RS decaying at infinity. Then there exists a constant C > 0 such that for 1 <i <6
0,00G=(,) — Do Gl — ) < C |3 =+ 7 ] (a.4)
— |z — y,| c1/2(6

where the y, are the (at most 3° —1) points obtained by reflecting y, y, with respect to the planes
generated by the sides of the box, whose distance from y is less than £ (each reflected point is
counted only once, and among the y, we don’t include y itself).
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Proof. The solution G, to (A.3) can be expressed as

Gu(a) = o= K2lVEl]) (A.5)

T8 o

where K, is the modified Bessel function of the third kind of order 2 (see [2]). From the
properties of Ky we deduce that for large £'/2|z|

. £3/4c—VElal

Ge(z) = TR (1 + O((\EM)_I)) (A.6)
while for small £'/2|z| there exists a constant C; > 0 such that
— + O(elz|7?) (A7)

We obtain the Green function G on Q with Neumann boundary conditions as follows. For
x,y €8,
Ge(w,y) = Ge(x —y) + Z Ge(z —yn) (A.8)
n€Z%\{0}

where the positions y,, are all possible reflections (each counted only once) of y and y, with
respect to the infinite planes obtained by extending the sides of the box 2 and their periodic
replicas over all R, This operation gives rise to a grid, and each six-dimensional cell contains
one and only one y,, (therefore the label n € Z°\{0} also identifies the cell where y,, belongs).
The positions y, can be thought as positions of image charges, whose contributions cancels the
normal derivative of G, on 9. Given a point y = (y(l), . ,y(G)) € (, the coordinates of its
image charges are, for j =1,...,6,

g = n0g 4 (=1 y ),

In order to estimate (A.8)), we deduce from (|A.6) and (A.7) that for any 0 < A < 1 there
exists a Cy > 0 such that
. O e~ MVelal
Ge(zx) < ———rn—
W= =

Using the estimate above, for the charges that are such that |z — y,| > ¢ we bound the contri-
bution in the second term on the right-hand side of (A.8) as

>

n€eZS\{0}

(A.9)

e_)‘\/glx_ynl C)\

4 Sﬁz

n€ZS\{0}

e—)\\/E\nM

|z = yn In|*

We estimate the sum with an integral (this can be done since the summand is a continuous
decreasing function of n on RY\B;(0), where B;(0) is the ball or radius one centered in zero),

so that
e—A\/anM e—)\\/gné 1 e—|n|
P T R
n€ZoN{0} |n| RS\ B (0) |n (AVeD) RS\ B, (0) |n

and therefore

_A\/glw_yn‘
€ C (A.10)

D

- 00 <=2
_ 4 — 6
n€eZ6\{0} | = Yn] et

Only a finite number of y,, are such that |z —y,| < ¢, and for those we bound |z —y| < |z —y»|.

We thus obtain (A.2]).

We consider now azié’e(m), given by

673(1-)@5(3:) . 83/2 K3(\/5|a:|) (A11>

T TS |x|3
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(see [2, Chapter 3] for properties of the Bessel function of the third kind). For large £/2|z|,

5/4

A € —Velx
aw(i)Gs(x) = C:CZWG VElz| (A12)
For small £'/2|z|,
~ X
8x(i)GE(x) = C|3§‘|6 (A13)

The two equations above imply that for any 0 < A < 1 there exists a C > 0 such that

10,0 Ge(2)] < srsemwl. (A.14)

Similarly as above, we sum the contribution from charges such that |z — y,| > ¢, so that

- L vl < O
> 0,0G(x - yn)‘ <Oy Y R vy (A.15)
|z—yn|>¢ nezs\{0}
Therefore
- C C
|0, Ge (2, y) — Oy Ge(x — y)| < > lmz_y » PR + 1726 (A.16)
for a constant C' > 0. O

Proof of Proposition[2.1 Existence and uniqueness of minimizers can be proved by standard
methods. We start by proving . Let fo be the zero-energy scattering solution defined in
, and f(z1,22) = fo(z1 — x2) for x1, 2 € Ay. We write ¢p = fg and integrate by parts.
Calling Ay x Ay = Q and writing V for V,, with = (21, x2), we have

2 2\ 2 2 2 o
/Q(w RV )—/Qf Vgl +/an iV

where 7 is the unit outward normal vector, and we use the shorthand notation V(x) = V(z1—x2)
for simplicity. Note that 7 - Vf > 0 since fy is an increasing function. By assumption V' is
regular enough such that fo > ¢y > 0 (see [14, Lemma 5.1] for properties of the zero energy
scattering equation). Let us write 7 = dpq ff - V f, so that the second term is simply [ g>1. We
thus have

/(|vw|2+w|w|2) zcé/ |vg|2+/ng (A.17)
Q Q Q

Let us look for the lowest eigenvalue of the right-hand side, i.e., the largest A such that

03/|V9\2+/9272A/92
Q Q Q

Since f <1, this is also a lower bound to the eigenvalue we are looking for, i.e.,

/Q(‘V¢|2+RV|¢\2) Z)\/QQQ 2/\/91/}2

Clearly A < ¢75 [ 7. Using that f <1 we have

/T</{mﬁ-Vf:/QAf<2/AMR3 dzidzo(Afo)(zy — ) = Smal®

We may assume that g shares the symmetries of 2, in which case

/g27:12/g27'1
Q Q
(— /2 a3")

= 12/ dl’g/ d‘r%g(_g/sza $2)2f(_£/27$%7x2) 1 f(l)((—g/zfﬁl) - 1’2)
A (—¢/2,0/2)2 |(=€/2,27) — x2|
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where we write the vector z; as (x ; ) ) and denote the radial derivative of fy by f§. Using the

Schur complement formula, we have, w1th Q the projection orthogonal to the constant function
on €,

A> 0 /T — — (1, QIQ(—cA — 87al*)Q] ' Q ).
Since the spectral gap of —A equals (7/)? we can further bound
2 3 3 2 a3 2
Q-3a-srat )@ > 20 (-a+02) Q> L (-A., +02)Q

as long as c3(m? — 1)/2 > 8ra/l, which we assume henceforth. In particular,

Qa(-A —8mat Q] Q< QA + 00 Q= 2 [an 10 2p
Co (&) cH

with P = 1 — @ the projection onto the constant function. Observing that —2£2662P can be
dropped for an upper bound, we thus have

2122
Az [ S (e, + 1/

An analysis similar to Lemmashows that the integral kernel of [~A,, +£72]7L on [—£/2,£/2]3
is bounded above by ¢z — y1\_1, hence

(1, [=Aa, +1/62]7 ') < Cl/ dzidyidzs m(@1 w2 (91, 72)
A 21 — w1

Using that f < 1 as well as f}(z1) < a/|z1|?, we have, for fixed z,

/dmldy Ti(x1, 22)71 (Y1, T2)
A2 |z — y1]

14

2 1 1 1
< a(t/2 + 28" / datdyi
( (¢/2 42 )) ez et =yt (=42, 21) — @ [(—£/2,y7) — @
a? / 1 1 1
< — dzidyit
02+ a2 Jrs T et — | (L4 (@1)2)32 (1+ (y1)2)%/?

where £/2 + xgl) has been scaled out after extending the integral to R*. The final integral is
finite by the Hardy-Littlewood-Sobolev inequality. In order to obtain a better bound for xél)
close to —£/2, we use in addition that f} is bounded, and hence that f}(x) < cpa'/2/|2|3/? for

some ¢y > 0. Thus

/d:cldy (x1,x2)71(y1,w2)
A2

? |21 — w1
1 1 1
<ac(t/2+ x(l))Q/ dai-dyf-
’ 20 S T ot =y 1(—4/2,07) — @252 (€2, y1) — @o[??
1 1 1

SacZ/ detdyi
pe T et =yt (L4 (21)2)54 (1 + (pih)?)5/

where the integral is again finite by the Hardy-Littlewood-Sobolev inequality.
Altogether, we have thus shown that

1 1
/ d.’lﬁldyl (1‘1,1‘2)7'1(:1/1,332) S C‘Cl2 min { }
Q

lz1 — y1l 0/2+28) @

Integrating this over z2 yields

/
/ de/ dmldy (@1, 22)71 (41, 22) < Ca%0?In -
Ae lz1 — y1l a
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and thus ,
A> 076 / — C ln -
a

To complete the lower bound on A, we need a lower bound on [ 7. We have

Jr=g [ v =g [ar= [(viFemv?) s - /dxl/F (V2 + 1V 2)

(A.18)
Using that Af? = 2(|Vf|2 + &V f2) < Cmin{a=2,a?/|x1 — x2]*}, the error term is bounded by

Ca? dzq min{(ﬁ/Q—i—xi)_l,l/a}:CctQKang
Ay
We thus conclude that p
A > 8ral® — Ca%1n .
and from (A.17)
[ 0voR+avior) = o [1g2 =2 [ o (A.19)
Q Q Q

since fo < 1. In particular, Ay > A, and this concludes the lower bound. The upper bound
follows by taking the trial function ¢ = f corresponding to ¢ = 1 and using again
together with

I£13 > ¢ — Cat®,

where the latter follows from ([1.3)). This completes the proof of (2.12)).
The estimate (2.13) in point i) clearly follows from (2.12)). We proceed with point 7). The
minimizer satisfies the eigenvalue equation on €2 with Neumann boundary conditions

[ = A + V(@) f(@) = Mef (@), (A.20)
with \¢ = 87al™3(1 + O(al~'In(¢/a))). As before x = (z1,22) € Ay x Ay = Q and A, =
A, +A,,. Abusing notation we wrote V' (x) = V(z1 —x2). It is useful to introduce a parameter
0 < e < ¢72 and write (A.20) as

(—Ar+e)f(z) = (Me+e—rV(2))f(2). (A.21)
We can express the solution to (A.21)) as
@)= [ dyGlos) (v = = vV (1) 1)

with G.(z,y) defined in (A.I). Lemma and the positivity of the minimizer f, of G.(z,y)
and of the potential V' imply that

fl@) <O\ +e) /dy 1) Aﬁs /d fly (A.22)

|z — yl4

The last term can be bounded as

/Q dy 1) < | ll2llxallz = £2

We split the first integral in (A.22)) as

fy) f(y) fy)
d = d d A.
/g YTz — gt /mw ym—y|4+/m36<m) YTz — gt (A.23)

for 0 < § </ and Bs(z) = {y € R®: |x — y| < J}. We have

[ <o) (A.24)
Bs(x) | ‘
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and

1/2
f(y) / 1 C
dy <\f dy ——— == A.25
/Q\B,;(z) |z —y[* 712 RS\ Bs(z) |z —y[® o ( )
Hence
) 11
1l < COC+2) [ oo + 5 + 752 - (A.26)

We set ¢ = £72 and 62 = (2C(\¢ + 5))_1, so that || f||ec < C"¢73, proving (2.14).
In order to prove in point #ii), we decompose f as f = ¢+ g, with ng = 0 and
¢ =% [ f. We shall show that
lgllz < Cre? (A.27)

for a constant C' > 0. Since
If =173 < 2| f = cll5 + 2llc — 1/6(|5 = 2[|gll5 + 2|¢°c — 1|

and, since
If—cllp =1—c*° > 1 —cl??,

we have

If = 1/€13 < 4]lg113
Hence ([2.15)) follows from (A.27). To prove (A.27) we write equation (A.21) as

(= Ay +)gle) = (e — RV (@) f(2) + 2g(a) (A.28)
for some 0 < £ < £72. We have
- / dy G (z,9) (\e — 5V (1)) () + ¢ / dy G (z, 1)g () (A.29)
Q Q

By Lemma [A:T] and the Hardy-Littlewood-Sobolev and Holder inequalities we have

e [ ave-.nswl], <o [ av (-

<Ol flleys + C

=T 15)f(y)H

Ck
B Hf”l = 63

y' 2 (A.30)

To bound the contribution proportional to V' in (A.29)), we use (2.14]) and estimate

1 1 C 1 C
/Qdy(m‘f‘ﬁ)v(y)f(y)ﬁ Fg/gdymv( )+£T/dyV(y)

Using the notation y = (y1,y2) € A¢ X Ay, we observe that

V(yr — y2)
/ dy1dyo 5 )
ArxAg [z = 912 + |22 — 2]

< / Ly V() / in ! (A.31)

|21 — y1? + |22 — Y1 + y2/? ]

—of gy Y C dyV(y)

g w1 —x2 —y2| T |w1 — 22| Jps

where we have used Newton’s theorem in the last step. The L? norm of the last expression is
thus bounded by ([ V)¢?, and we conclude that

| [ vt v, < SV, (A.32)

We are left with the last contribution in (A.29)). Since g is orthogonal to the constant function,
we can use the spectral gap (7/f)? of the Laplacian to obtain the bound

e|Gegll2 < 5*“9”2 (A.33)
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(A.30 3 and ) and with the ch01ce e = ("2 (so that 5 s < 1) we therefore arrive
provmg e estlmate l 16|) follows by Cauchy—Schwarz
Next we examine pomt ). Again, we decompose f as f = ¢+ g, with ng =0and ca
positive constant. We observe that

1= 02 f(x1,22)] <1 = | + Clg(a1,22)| < |lgll2 + €lg(x1, 22)

Hence, if we show that

sup (|21 — @2 + 1)|g(x1, 22)| < Crl™3, (A.34)
z€eQ

the bound (2.17) follows. To show (A.34)), we multiply (A.29) by |21 — 2| + 1 to obtain
(lzr — w2l + Dg(a1, 22)

= / dyrdys (|21 — 2| + 1)Ge(1, 22, y1,y2) (Mo — KV (Y1 — y2)) f (1, y2) A
AexAg (A.35)
e [ dndye (o — ol + DGl 20,2900, 2)
A[XA[
We use Lemma to estimate G, and (2.14) as well as (2.12)) to get

)\z/ dyidys (|x1 — 22| + 1)Ge (21, T2, Y1, y2) f (Y1, y2)
Apx Ay

C
<% dyrdys (|z1 — 22| + 1)
A[XA@

1 L1 ]
s+
(1 — 1] + 22 — ya|?] toe
< Crl3 + Cre 1075,

Moreover, with (A.31) and (2.14)), we have

/ dy1dys (|z1 — 2| + 1)Ge(x1, 22, Y1, Y2) KV (y1 — y2) f (Y1, y2)
AzXA[

Ck V(y2) Ck /
<t g - )2 PRy,
S R e e IS
By Newton’s theorem we see that
&V
/ dys (|21 — zo + 1)&
R3 |21 — T2 — Yo
kV
<C | dyakV(y2) + ——— dys £V (y2) + / dys (v2)
R3 |z1 — T2 ly2|<|z1—2] ly2|>]z1—z2] |92

< Ck,
(A.36)

where we used that [ dz V(z)|z|~! is finite. We conclude that
/A " dyrdys (|21 — 2| + 1)Ge(x1, 22,51, 92) RV (Y1 — y2) f(y1,92) < Ok(€72 +e7177)
ex Mg
We are left with the last contribution in . We write, using ,
6/ dyrdys (|z1 — 22| + 1)Ge (21, 22, y1,y2)9 (Y1, Y2)
AexAg

+ g5 | ot m) (A31)

1
< CE/ dyldyg (|JC1 — $2| + 1) |:4
AgXAe |‘,I" - y|

(J&g — a2 + 1) Ck
< 05/ dy1dys —g(yla y2) + —
AgxAg |z —y[* e
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We bound the first term above as follows
— 1 — 1
CE/ dy (|71 — 22| + 1) (lyr — yo| + Dg(y)
Apgx Ay

|z —y[* (lyr =yl + 1)

|£C1 — LC2| +1 1
<Ce[ s (u-wal+ 09w [ ay
YyEN XAy Ae XAy Iyl _y2| +1 |$—y|4

(A.38)

Similarly as we did in (A.31)) we estimate

/ d 1 1
Y
Ay v — 2|+ 1]z —yl*

- g ! A.39
e el U e oy — g2 4 ez — g+ y2|2}2 (4.39)

1 1 02
S/ dys — <
wel<v3e  |ye2| [T — 22 — yo |21 — @o| + £

where we again applied Newton’s theorem in the last step. Thus

— 1 1
/ gy [T e+ _<or (A.40)
AzXAg |y1_y2|+1 |$—y|

In conclusion, we have

Ck Ck
O [ ayv+ G o] s -l + )]
5( R3 g yeAzXAe
therefore, by setting e = (2C¢?)~1, we obtain (A.34).

Finally we investigate point v). As above, we decompose f = ¢+ g with ¢ = £7° [ f. We
shall prove that

(|z1 = 22| + D)[g(21, 22)| <

[d(2522)%% +1] |V, 4, 9()| < Cril ™ (A.41)
where d(z) is the distance of x from the boundary of the box A,. By (A.29), we have

Vi 4a,9(x) = — /Q Ay Vy, 15.Ge(x =) (A = V() fly) — ¢ /Q Ay Vy, 1+4,Ge(x — y)g(y)
t | AV [Gela) = Gula = )] (v = V) F0)

+e /Q dy Ve, 1, [Gg(a:, y) — Ge(a — y)}g(y)

(A.42)
We integrate by parts in the first line, and obtain
Varinst(®) = [ drGela =) = V@) Vs 0) ¢ [ diGele=1)Vyn1000)
+ | doy Gz —y) (A — KV (9)) f(y) +¢ oy A Ge(x —y)g(y)
(A.43)

o0
+ [ Ay Vi [Geon) = Gl = )] (0 = V() £(0)
Q

t [ Vi Geloy) = Gulo =)o) = YDy

where do, is the surface element of the boundary of the box 92 and 7 is the unit vector pointing
outwards. We start by considering Ds. Using (A.9)), we can bound, for every = € Q,

|[d(2522)/3 + 1] Dy ()|
|[d(yr +y2)°® + 1]V, 14,9()|
2=y [d(BE )5/ + 1] (A.44)
d(#5%2)>? +1
(B 11]

gcs[d(%)")/i”ﬂ]/dy
Q

< Cesup |[d(242)5 + 1)V, 19(0)] [
yeQ Q2 |z —
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In the following we shall show that

1 Cr?
dy 4 Y1+Y2\5/3 < 143 \5/3
| — y*[d(B52)5/8 +1] T d(B522)55 + 1

Since

3
1 1 6
— < , , < A.45

it is sufficient to prove that

/d 1 < ce (A.46)
=yt lot” + 98 =092 +1] 7 ) g — e/ |

For this purpose, we shall write

1 2 1 2
|x1—y1|2+|x2—y2\2=§|(m1 +x2) — (11 +92)| +§|(x1—x2)—(y1—y2)| ; (A.47)

with the change of variable y; + y2 = b, y1 — y2 = a we have

/dy el ) — P34 1
o " o =yl +us” - 0P 1 1]
5/3
:1/ db/ da \a: +:L‘ — PP +1
2 [—e,0]3 w(b) H(ZL’l +ZL’2) 7b| +| T — T2 7CL| :I [|b(1) 76‘5/34*1]

where w(b) = [[pM| = £,0 — [pMD]] x [|b3)| —£,£ — [b()]] x [|b(3)| — 0,0 —b®|]. Let us introduce
the notation a = (), a*) and b = (b1, bl) To bound ( we bound the numerator with
2(20)5/3 (assuming 2¢ > 1) and extend the integration domaln of the variable a* to [/, ¢]?;

dropping the term involving a(*) in the denominator, we can integrate over a(!) to obtain the
bound

/ db/ da 71" + 2 — (4 1
[—2,0]3 w(b) H(:}'Jl +IL’2) 7b| + | 1 — T2 —a| ] [|b D) 7£|5/3+1]
1 1
< 2(20)°/3 / [ — / dbtda*
(20 [—6,0] D) — £12/3 f_y g4 [|(21 + 22) — b|2 + |(zf —z3) — aL|2]2

We estimate

(A.48)

1 3 1
/ db*da* 5 5 < C/ dz -
[-e.qt (|1 +@2) =0 + [(21 - 23) —a*[] @ +afD)-b] 2

=Cn{ ;5 3£>
(21 + )_b(l)|
and

1 1 ! 2
/ W o v | 3(1) < (20" sup / dtt=*In % <o’
[~€. b —¢| (7 +xy’) — b 0<s<1.Jo t—s

This proves (A.46)). We have thus shown that

|[d(2522)/% +1] Dy ()| < Cel? sup | [d(1522)5 +1] V44,9 (y)] (A.49)
We proceed with Dy, which we write as Dy = Dy1 + D19, with

Dy (2) = A /Q Ay Go(x — 9)Vyr 10 F () (A.50)
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and
Dia(z) = — / dy Gz — )RV (1) Vyraya f ) (A51)

Using the same method as above we estimate

[d(2522)77° 4 1]D1s (@)] < CAt2 sup |[d(252)77° + 1], 00 (A.52)
)

For D15 we have

|[d(2522)° + 1] Dya ()|
V(y) [d(m—gim)w?a + 1} (A.53)
_ y|4 [d(m;yz)s/:z + 1]

K
< sup | [d(B52)5/3 4 1]V, 4 10(0)] / dy
yeN Q |1'

Because of (A.45) it again suffices to bound the last integral with d(z) replaced by |z(") —¢| for
both z = 1 + x2 and z = y; + y2. With the same change of variables as in (A.48)) we have

KV (y)

dy -
/Q e =y (" + u8D)* +1]

(A.54)

v

< f/ da [ db . LAON—
2Jes Jrs o [|(z1 4 @2) = b+ (21— 22) —a] ] [|pV) — €]5/3 + 1]
where we extended integration domain to RS. Integrating first in the variable b we have

/ da / db . i)
R Jre [|(x1+a2) — b+ (21— 32) —al ] [|bM) — £5/3 +1]
1 KV (a)
zc/db(l) / da

R b0 — £5/3 +1 Jga |(x§1)+a:§1)) —b(l)’2+|(x1—x2)—a‘2

Using that V' is bounded and of compact support, one readily checks that

V(a) C
d < A.
/Rg XTI —af S X1 |[YP+1 (A.56)

for all X >0 and Y € R3. Hence we find that

(A.55)

£V (y) / 1 1 1
dy <Ck [ dbV ,
/n o — y|4[Jy +y$ — 05/ 41 R PO LPP T 42y — 2 41
< Ck
R e

(A.57)
which is the desired bound, allowing us to conclude that
|[d(2522)° + 1] Dra(w)] < Crsup| [d(2522)5% +1] V14,9 (y)]. (A.58)
In order to bound D5 we split it into
Dsa(@) = A | dy Vi [Gulir) = Gl = )] (o) (A.59)
and
Dia(e) = = [ dyVirssa [Gules) = Gl — )|V ) 0) (A.60)
We easily bound
|[d(2522)% + 1] Dsy ()|
< A [d(2422)5/8 4 1] /Qdy [Zﬂ: . 71yn|5 + 51/1266]f(y) (A.61)

< Cﬁ(ﬂ’?”l/?’ +€7471/3€71/2)
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where we used (A.4)), (2.12) and (2.14)) and we estimated d(%5%2) < ¢/2. For Ds;, we use again

(A.4) and (2.14]) to estimate

|[d(2522)%/% 4+ 1] Dsa (w)] <

Cld(222)5/3 1] 1 1
E f | e + W)

(A.62)

For the second contribution we have
I:d(xl-gxz )5/3 + 1]
21/249

Ck
/Qdy KV (y) < SYCTZESYES (A.63)

For the first contribution in (A.62), among the image charges y,, we start considering the one
that has all coordinates equal to those of y except the first one. We rename it as g, and we have
(1 —— y . We write
Vi(yr — y2)
(ler = + |2 — 2[?)%/
- V(g (1)+y2 + 4,91 —93)
dy1dyz > o
(|1 = 12 + 22 — §2[2)%/

The denominator can be expressed as in ([A.47)); with the change of variables g1 +¢2 = b, §1—92 =
a, we have (extending the integration domain to R®)

1 1
dy ——V(y) < — [ dbWdat V(D +¢,a*
LV w <55 [ ( )

dy ———V(y) = [ dd
A (y) |, Wrdy:

(A.64)

/[34/2,@/2]x[e/2,z/2]5

1
x [ da™Mdb*
R (|961 +$2—b|2+ |x1 —xz—a|2)5/2 (A.65)
V(W + ¢, at
—c | aWdat S ( 2+ ,at) 2
R3 (ml +xy — b(l)) + (xli — ozt — aJ_)
Using now again (A.56]), we arrive at

1 1 C K C .
= dy ———=kV < v
3 /Q Y |x—g|5’€ (y)’ - 63 | (1 )_’_1‘2 EIZ +1 63 d(l’l +1‘2)2+1 (A66)

The contribution from the other image charges can be estimated similarly, and we omit the
details. We conclude that

Ck Ck
|[d(2522)%/% 4 1] Dsy ()| <

cl/2¢4+1/3 + 3 (A-67)

Next we investigate Dg. With (A.4) and (A.34]) we have

Do) = [¢ [ dy Ve, [Gg<x,y> ~Cula - y)}g(y)\

051/2/ /
< d
A yloly E?’ Z Ix—ynl5 |y1—y2|+1

To bound the first term we can also use (A.34]), which gives [ |g| < Ck¢?. To estimate the second
term in || we start, as above, by considering the image charge y such that y(l ——y; )

~(l =y @) for i = 2,3 and y(J) = y(J) for j = 1,2,3. We perform again the change of Varlables
y1 + ¥ = b, y1 — Y2 = a and extend the integration domains so that

/d 1 1
Yy -
o |lz—=39P°ly1 —y2| +1

< L / dat | ab®Mdbtda™
V2 - R4
1 1

[|lz1 + 22 — b|2 + |o1 — 22 — a|2]5/2 (16D + 22 + |a*|?]
L1 1
SC/[_MP da lat|+1 |a:f-—xj-—al‘
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where we dropped the term |b(1) + £|? in the last step in order to be able to explicitly integrate

over b1 Tt is easy to see that the remaining integral is bounded by In ¢, uniformly in i — x5

The same estimate can be applied to the other imaged charges, with the result that
D ()] < Cre’207* + Cret=3In(¢)
In particular,
|[d(2522)5/3 4+ 1] Dg(a)| < Cre/2¢77/% 4 Cret=4/31n(0) (A.69)
We are left with considering D3 and Dy. With the aid of (A.9) and (A.34)) we can bound

~ Cek 1 1
Dy(z)| = |e do, N Ge(x — §—/ do A.70
‘ 4( )‘ ’ /Q y ( y)g(y>‘ /3 00 y|x7y‘4 |y17y2|+1 ( )

It clearly suffices to consider the contrlbutlon to the boundary integral coming from y =—0/2.
With the change of variables yi- + y3 = b, yi- — y5- = a we have, similarly as above,

/ 1 1
T =y g —pel + 1

1
dy / dat
/ lys + €722 + ot [*]/2 +1

1
1
X /R? db 1L 2 I m (1) —
ot +ad = bt + [of —of —at |+ 200 + /2] + 2ol - ofV?]
1 1
< L 3
<C g2 da o[+ 1|2t —2f —at] = Cln/t
and thus
|[d(2522)%/3 £ 11D, (2)| < Crel=*/3In(0) .

In D3 we estimate the contribution proportional to A\, as

) A 1 C’Fa
_ < T — o4
M | doyGele—y)f(0) SCF | doyp— 5 <5

where we used (2.14) and (2.12)). For the contribution proportlonal to V, we use again (2.14)
to bound it as

&V (y)
Yo —yl*

doy Golo V) f) < 35 |

To estimate the first term on the right-hand side, we perform the same change of variables as
in D,. Extending the domain of integration to R® and doing the integration over b we have

4 V(g +0/2,at
/ o, YO < [ afa 08+ tj2.0") .
09, yV=—t/2 |z -yl R3 ot — 23 — aL’ + |33 + x2 +4/2 —y, |

o0

1
ot + 2 — f2 +1
where we used again (A.56]) in the last step. Hence
|[d(2E22)5/% + 1]Dy(x)| < Cre™ (A.72)

By combining (A.43), (A.49), (A.52), (A.58), (A.61), (A.67), (A.69), (A.71) and (A.72) we
have thus shown that

[A(2522)7% 41|V, g )] < O (07 4 2t~/ 1n(0))

+C (el + Xel? + &) sup | [d(2522)5/3 + 1]V, 4, 9(y)|.
yeN

We choose € = ¢/~2 with small enough ¢ so that the factor C(ef? + \pf? + k) is smaller than
one for large ¢ and small s, concluding the proof of (2.18]). O
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Proof of Proposition[2.4 From (2.13)) it follows that

Ck
[ dody (9wl + 19t )P] < (A.73)
A1 ><A1
estimate (2.14) implies
lwe(z,y)| < C (A.74)
and from ([2.15)) it follows that
2 Ck?
Ay xXAq
while (2.16)) shows that
C
/ dwdy |we(z,y)| < 7” (A.76)
A1 ><A1

By equation (2.24]) and bounds (A.75)), (A.73) we find

2 n?
/ dudy |p(z,y)|” < Criz
A1 XAl

2
/ dady [|qu(fc7y)!2 + IVyu(%y)!?] < Cm%
Ay xXAq

which imply (2.27) and (2.28). By (2.14]) we have

In(z,y)| < nlwe(z,y)| + [u(z,y)| < Cn (A.T7)

which proves (2.29)). Estimate ( - ) follows from . Point i) follows from ([2.30].

We consider now point #z). From the definition of r, we find

2n+1
Z_: 2n+1 (z,y)
=l (A.78)
2n—1 .
=3 Gy [ e e o

using (2.27), which implies ||n]lz < C, we arrive at

1/2

1/2
2n—1 2
2n+1 [/dwdzmmn Inw, )| } wadzm (2, w)|

<D G
" (A.79)
Z Gn i) Anll3 = I, l2linG )lle < Clallzlntz, 20t )l

for every z,y € A;. The bound for p can be proven analogously. This proves (2.33) and

consequently (2.34]) and (2.32)). O
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