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Abstract

We consider a gas of bosonic particles confined in a box with Neumann boundary conditions.
We prove Bose-Einstein condensation in the Gross-Pitaevskii regime, with an optimal bound
on the condensate depletion. Our lower bound for the ground state energy in the box implies
(via Neumann bracketing) a lower bound for the ground state energy of the Bose gas in the
thermodynamic limit.
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1 Introduction and main results

We describe a system of N interacting bosonic particles in a box Λ = [−L/2, L/2]3 through the
Hamiltonian

HN = −
N∑
i=1

∆i + κ

N∑
i<j

V (xi − xj) (1.1)

acting on L2
s(Λ

N ). This is the space of symmetrized L2 functions, defined as

L2
s(Λ

N ) = {ψ ∈ L2(ΛN ) : ψ(xσ(1), . . . , xσ(N)) = ψ(x1, . . . , xN ) for every σ ∈ SN},

where SN is the set of all permutations of N objects. In (1.1), ∆i indicates the Laplacian with
Neumann boundary conditions acting on particle i. The interaction potential V is a multipli-
cation operator and we will assume it to be a nonnegative, spherically symmetric, compactly
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supported and bounded (κ is a coupling constant). We denote a the scattering length of the
interaction potential κV . The scattering length is defined through the zero-energy scattering
equation [

−∆ +
κ

2
V (x)

]
f0(x) = 0 (1.2)

with the boundary condition that f0(x)→ 1, as |x| → ∞. Here ∆ denotes the Laplacian on R3.
For |x| large enough (outside the support of V ), we have

f0(x) = 1− a

|x|
(1.3)

where a is the scattering length of κV . Equivalently, a can be obtained as

8πa =

∫
R3

κV (x)f0(x)dx. (1.4)

We are interested in static properties of the Bose gas. The ground state energy per particle
in the thermodynamic limit, i.e., the limit N, |Λ| → ∞ with ρ = N/|Λ| fixed, is given by

e(ρ) = lim
N,L→∞

E(N,L)

N
(1.5)

where E(N,L) is the ground state energy of HN , defined as

E(N,L) = inf
ψ∈L2

s(Λ
N ), ||ψ||=1

〈ψ,HNψ〉.

For dilute gases, i.e., when the density ρ is small, the ground state energy per particle in the
thermodynamic limit is described by the Lee-Huang-Yang formula [20, 21]

e(ρ) = lim
N,L→∞
ρ=N/|Λ|

E(N,L)

N
= 4πρa

[
1 +

128

15
√
π

(ρa3)1/2 + o((ρa3)1/2)

]
, (1.6)

proved in [32, 16, 4]. One of the main characteristics of (1.6) is the universality of the first two
orders, where only the scattering length appears and other details of the interaction potential
do not matter.

To compute thermodynamic quantities such as the ground state energy e(ρ), a standard
method (see for example [26]) consists in dividing the box Λ into M3 cells of size ` = L/M
and reducing the problem to the study of the localized system to each cell. The choice of
the boundary conditions on the cells is therefore very important, and while Dirichlet boundary
condition are suited to compute upper bounds, lower bounds require for example Neumann
boundary conditions. In particular, to compute a lower bound for e(ρ), we distribute the
N particles in the M3 cells (so that the k-th box has nk particles) and neglect interactions
between particles in different cells, exploiting the positivity of the interaction potential. The
lower bound is then obtained by adding the lower bounds in the different cells and minimize
over all the possible ways of distributing the particles in the cells, i.e.,

E(N,L) ≥ inf
{nk}:

∑
k nk=N

M3∑
k=1

E(nk, `). (1.7)

Here E(n, `) is the ground state energy of Hn (defined in (1.1), with N substituted by n), acting
on L2

s(Λ
3n
` ), where Λ` = [−`/2, `/2]3, with Neumann boundary conditions. Rescaling lengths,

the Hamiltonian (1.1) takes the form

Hn,` = −
n∑
i=1

∆i + κ

n∑
i<j

`2V
(
`(xi − xj)

)
(1.8)

and acts on L2
s(Λ

3n
1 ), with Λ1 = [−1/2, 1/2]3. Up to a factor `2, Hn and Hn,` are unitarily

equivalent, i.e. there exists a unitary1 U such that U∗Hn,` U = `2Hn. Denoting with en,` the
ground state energy of (1.8), we have clearly en,` = `2E(n, `).

1The unitary transformation U acts as

U : L2(Λn
` ) −→ L2(Λn

1 )

ϕ(x1, . . . , xn)→ (Uϕ)(x1, . . . , xn) = `3n/2ϕ(`x1, . . . , `xn)
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In the case n = ` = N , (1.8) describes the well known Gross-Pitaevskii regime. Here the
density is proportional to N−2, and hence the energy per particle is of the same order as the
spectral gap of the Laplacian. In particular, in this regime the large volume and large particles
number limit is simultaneous to the low density limit. The Gross-Pitaevskii regime has been
studied for the translation invariant Bose gas, where periodic boundary conditions are imposed
on Λ1, and for the trapped Bose gas, where particles move in R3 and are confined by an external
potential. In these cases, Bose-Einstein condensation has been proved [23, 24, 28] with optimal
rate [5, 7, 27, 11, 18]. In the translation invariant case, the ground state energy has been shown
in [6] to be

eN = 4π(N − 1)a + bΛa
2 − 1

2

∑
p∈Λ∗

1

[
p2 + 8πa−

√
|p|4 + 16πap2 − (8πa)2

2p2

]
+O(N−1/4), (1.9)

where bΛ = 2− limM→∞
∑
p∈Z3\{0}, |p|≤M

cos(|p|)
p2 is a boundary contribution. In addition in [6]

the excitation spectrum has been derived (these results have been also revisited in [19]). The
result has then later been generalized to the trapped Bose gas [29, 12].

In this paper we consider the Bose gas with Neumann boundary conditions in the Gross-
Pitaevskii regime. In Theorem 1.1 below we prove Bose-Einstein condensation with optimal
rate and we give a bound on the ground state energy for the system described by (1.8).

Theorem 1.1. Let V be positive, compactly supported, spherically symmetric and bounded, and
assume that κ is a fixed, small enough constant independent of all parameters and n`−1 ≤ 1.
Then, the ground state energy en,` of Hn,` defined in (1.8) is such that∣∣∣en,` − 4πa

n2

`

∣∣∣ ≤ C(n
`

+
n2

`2
ln(`)

)
(1.10)

for a constant C > 0 depending only on V.
Furthermore, let ψn ∈ L2

s(Λ
n
1 ) be a normalized wave function, with

〈ψn, Hn,`ψn〉 ≤ en,` + ζ

for some ζ > 0. Let γ
(1)
n = tr2,...,n|ψn〉〈ψn| be the one-particle reduced density associated with

ψn. Then there exists a constant C > 0 depending only on V such that

1− 〈ϕ0, γ
(1)
n ϕ0〉 ≤ C

( ζ
n

+
1

`

)
(1.11)

where ϕ0(x) = 1 for all x ∈ Λ1.

Remarks.

1. For n = ` = N we recover in (1.11) the condensate depletion rate N−1, as shown for
example in [7, Theorem 1.1] for periodic boundary conditions. However, the ground state
energy is different from the translation invariant case and for the trapped case, since here
we have ∣∣∣eN − 4πaN

∣∣∣ ≤ C(1 + ln(N)
)

(1.12)

The logarithmic behavior of the error bound is actually sharp and is specific to the Neu-
mann boundary conditions.

2. We need the requirement that κ is small to prove certain properties (see (2.18) below) of
the ground state of the two-body problem in a box with Neumann boundary conditions.

To prove Theorem (1.1), the main novelty of our analysis is the control of the Neumann
boundary conditions. To do so, we consider the energy functional for the two-body problem
(see (2.11) below) which naturally lives in a six-dimensional space, and we study the properties
of its minimizer. We use then the minimizer to describe two-body correlations arising from
interactions. In this part, we follow the ideas of [5]: after transforming the Hamiltonian (1.8)
with a unitary operator (taken from [22]) which maps L2

s(Λ
n
1 ) to Fock space and extracts the

contribution of the factorized part of wave functions, we act with a (generalized) Bogoliubov

3



transformation. We define its integral kernel η(x, y) as a function of the minimizer of the two-
body problem (projected outside the space spanned by the constant in L2(Λ1) × L2(Λ1)). In
comparison to the case with periodic boundary condition and the case where the system in R3 is
trapped by an external potential, the choice of Neumann boundary conditions makes the problem
considerably more involved from the technical point of view. In the former cases the kernel of
the Bogoliubov transformation η̃(x, y) can be chosen proportional to (1 − f0(x − y))ϕ2

0(x + y)
(before projecting it outside the space spanned by the constant in L2 × L2), where f0 has
been defined in (1.3) and ϕ0 represents the minimizer of the Gross-Pitaevskii functional. In
our case instead the integral kernel η(x, y) does not have such a simple structure; the center
of mass and relative coordinate do not decouple and ground state of the two-body problem is
not explicitly known. While the properties of (1.3) can be studied by reducing the problem to
a one-dimensional problem (depending only on a radial coordinate), here we need instead to
study a full six-dimensional problem on L2(Λ1) × L2(Λ1). Moreover the Neumann boundary
conditions set a non-translation invariant problem with no conserved momentum (this of course
rules out also the use of Fourier series and Fourier transforms).

As mentioned above, the Neumann boundary conditions allow us to deduce very easily a
lower bound for the leading order of ground state energy of the Bose gas in the thermodynamic
limit, for the system described by (1.1), for a small coupling constant κ > 0. This is the result
of Corollary 1.2.

Corollary 1.2. Let V satisfy the same assumptions as in Theorem 1.1 and κ be small enough.
Then there exists a constant C > 0 such that e(ρ) as defined in (1.5) satisfies

e(ρ) ≥ 4πaρ
(

1− C(ρa3)1/2 ln(1/ρ)
)

(1.13)

for ρ small enough.

Remarks.

1. The bound (1.13) is not optimal, as evident from (1.6). The optimal result has been proved
in [13, 16] with a different localization method which allows to avoid the explicit use of
boundary conditions, at the price of dealing with a modified kinetic energy.

2. To obtain Corollary 1.2 we take ` proportional to ρ−1/2. Larger lengths ` would allow for
a better precision in (1.13), as achieved in [16] mentioned above. However, this requires
a more precise study of (1.8), with larger n/`. In the translation invariant setting, on a
torus with length slightly larger than ρ−1/2, Bose-Einstein condensation has been shown
in [1, 15], while [9] also derives the excitation spectrum of (1.8).

Even though the lower bound (1.13) is not optimal, we believe that our method can be
extended to allow for larger n/` (which would yield the Lee-Huang-Yang formula in the ther-
modynamic limit) as well as to give the excitation spectrum in the cells, which would allow for
giving precise bounds for the free energy at low temperature. We plan to return to this question
in a subsequent work. Bounds for the free energy are up to now restricted to leading order
[30, 33].

The paper is organized as follows. In Section 2 we introduce the setting for the analysis of
(1.8), while the detailed estimates are done in Section 3. In Section 4 we prove Theorem 1.1
and Corollary 1.2. In Appendix A we study the two-body problem.

2 Excitation Hamiltonians

In this section we focus on the study of Hn,`, defined as in (1.8). The Hamiltonian Hn,` acts
on L2

s(Λ
n
1 ), which consists of square-integrable functions on Λn1 that are symmetric with respect

to permutation of the variables. It is convenient to enlarge the space and work on Fock space,
defined as

F =
⊕
m

L2
s(Λ

m
1 ).

4



We call vacuum the vector Ω = {1, 0, . . . } ∈ F . We define, for g ∈ L2(Λ1), the creation operator
a∗(g) and the annihilation operator a(g) as

(a∗(g)Ψ)(m)(x1, . . . , xm) =
1√
m

m∑
j=1

g(xj)Ψ
(m−1)(x1, . . . , xj−1, xj+1, . . . , xm)

(a(g)Ψ)(m)(x1, . . . , xm) =
√
m+ 1

∫
Λ

ḡ(x)Ψ(m+1)(x, x1, . . . , xm) dx

The creation operator a∗(g) is the adjoint of the annihilation operator a(g) and they satisfy the
canonical commutation relations: for g, h ∈ L2(Λ1),

[a(g), a∗(h)] = 〈g, h〉, [a(g), a(h)] = [a∗(g), a∗(h)] = 0

We introduce operator valued distributions ǎx, a
∗
x defined by

a(g) =

∫
ḡ(x) ax dx, a∗(g) =

∫
g(x) a∗x dx

for g ∈ L2(Λ1). It will be convenient to work in the basis of the eigenfunctions of the Laplacian on
the cube Λ1 with Neumann boundary conditions. We denote with {ϕp}, for p ∈ π{0, 1, 2, 3, . . . }3
such an orthonormal basis, which is given by ϕp(x) = 1 for p = 0 and, for p 6= 1,

ϕp(x) =
(
1/2
)3/2

cos(p(1)(x(1) + 1/2)) cos(p(2)(x(2) + 1/2)) cos(p(3)(x(3) + 1/2))

where we used the notation (x(1), x(2), x(3)) for the three dimensional vector x. We call Λ∗1 =
π{0, 1, 2, . . . }3 the dual space to Λ1. We introduce the space Λ∗1,+ = Λ∗1\{0}, where the zero
momentum is removed. We adopt the notation

â∗p = a∗(ϕp), and âp = a(ϕp). (2.1)

We call the number of particles operator on F the operator

N =
∑
p∈Λ∗

1

â∗pâp =

∫
a∗xax dx.

Creation and annihilation operators are bounded with respect to N ; it is easy to check that, for
all g ∈ L2(Λ1),

‖a(g)Ψ‖ ≤ ‖g‖‖N 1/2Ψ‖, ‖a∗(g)Ψ‖ ≤ ‖g‖‖(N + 1)1/2Ψ‖.

The Hamiltonian (1.8) lifted to Fock space takes the form

Hn,` =
∑
p∈Λ∗

1

p2â∗pâp +
1

2

∑
p,q,r,s∈Λ∗

1

V`,pqrsâ
∗
pâ
∗
q ârâs, (2.2)

with

V`,pqrs = 〈ϕp ⊗ ϕq, κ`2V (`·)ϕr ⊗ ϕs〉 =

∫
Λ1

dx

∫
Λ1

dy κ`2V (`(x− y))ϕp(x)ϕq(y)ϕr(x)ϕs(y).

(2.3)

The eigenfunction of the Laplacian ϕ0(x) = 1 corresponding to the lowest eigenvalue p2 = 0
represents the condensate wave function. It is convenient to separate the contribution of the
zero mode and consider a modified Fock space describing excitations. We define

F≤n+ =

n⊕
j=0

L2
+(Λ1)⊗sj , (2.4)

where L2
+(Λ1) is the orthogonal complement to the one dimensional space spanned by ϕ0 in

L2(Λ1). Additionally, in definition (2.4), we truncated the Fock space up to the sector with n
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particles. A vector Ψ = {ψ(0), ψ(1), . . . , ψ(n), 0, 0, . . . } ∈ F lies in F≤n+ , if ψ(m) is orthogonal to
ϕ0, in each of its coordinates, for all m = 1, . . . , n, i.e. if∫

ϕ̄0(x)ψ(m)(x, y1, . . . , ym−1)dx = 0

for all m = 1, . . . , n. On F≤n+ , we denote the number of particles operator with N+ = N|F≤n
+

.

We will use modified creation and annihilation operators

b(f) =

√
n−N+

n
a(f), and b∗(f) = a∗(f)

√
n−N+

n
.

If f ∈ L2
+(Λ1), b(f), b∗(f) map F≤n+ into itself. Moreover, for g ∈ L2(Λ1) and Q = 1−|ϕ0〉〈ϕ0|,

b(g) = b(Qg) on F≤n+ . Analogously as before, we define operator valued distributions bx, b
∗
x as

b(f) =

∫
f̄(x) bx dx, and b∗(f) =

∫
f(x)b∗x dx

satisfying modified canonical commutation relations

[bx, b
∗
y] =

(
1− N+

n

)
δ(x− y)− 1

n
a∗yax

[bx, by] = [b∗x, b
∗
y] = 0

(2.5)

and we define
b̂∗p = b∗(ϕp), and b̂p = b(ϕp). (2.6)

Every n-particle wave function ψn ∈ L2(Λn1 ) can be decomposed uniquely as

ψn =

n∑
m=0

α(m) ⊗s ϕ⊗(n−m)
0

where α(m) ∈ L2
+(Λ1)⊗sm for all m = 1, . . . , n. Following [22], we define a unitary operator

Un : L2
s(Λ

n
1 )→ F≤n+ such that

Unψn = {α(0), α(1), . . . , α(n)},

i.e., the unitary map Un removes the condensate contribution from ψn ∈ L2
s(Λ

n
1 ) and returns

the excitations over the condensate. As shown in [22], when we conjugate couples of creation
and annihilation operators with Un, we obtain, for p, q ∈ Λ∗1,+,

Un â
∗
0â0 U

∗
n = N −N+

Un â
∗
pâ0 U

∗
n = â∗p

√
N −N+

Un â
∗
0âp U

∗
n =

√
N −N+ âp

Un â
∗
pâq U

∗
n = â∗pâq

(2.7)

The operator N+ = N − a∗0a0 counts the number of excitations. Using the properties of Un, it
is easy to see that U∗nΩ = ϕ⊗N .

With the transformation Un we define the excitation Hamiltonian

Ln := UnHn,`U
∗
n : F≤n+ → F≤n+ (2.8)

As shown in [22], Ln consists of the sum

Ln,` = L(0)
n,` + L(1)

n,` + L(2)
n,` + L(3)

n,` + L(4)
n,`

(2.9)
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with

L(0)
n,` =

1

2
V`,0000(n−N+)(n−N+ − 1)

L(1)
n,` =

√
n
∑

p∈Λ∗
1,+

V`,000p(n−N+ − 1)b̂p + h.c.

L(2)
n,` =

∑
p∈Λ∗

1,+

p2â∗pâp +
∑

p,q∈Λ∗
1,+

(V`,0p0q + V`,0pq0)â∗pâq(n−N+)

+
1

2

∑
p,q∈Λ∗

1,+

(nV`,pq00b̂
∗
pb̂
∗
q + h.c.)

L(3)
n,` =

∑
p,q,r∈Λ∗

1,+

(n1/2V`,0pqrâ
∗
pâq b̂r + h.c.)

L(4)
n,` =

1

2

∑
p,q,r,s∈Λ∗

1,+

V`,pqrsâ
∗
pâ
∗
q ârâs

(2.10)

Conjugation with the map Un does not extract from Hn,` all the leading order contributions
to the energy (by taking the vacuum expectation value); it extracts the contribution of the
condensate part of wave functions, but it does not extract the contribution due to correlations

(recall that 〈Ω,L(0)
n,`Ω〉 = 〈ϕ⊗N , Hn,`ϕ

⊗N 〉). In fact, the ground state wave function is far from
being factorized and correlations among particles play a crucial role. In order to describe the
correlation structure of the ground state wave function we need to transform Ln further.

To model correlations we use the solution of the two-body problem with potential V : this
describes the simplest scattering process. We find it more natural to work now on the rescaled
double box Λ` × Λ`, and impose Neumann boundary conditions (recall that Λ` = [−`/2, `/2]).
We look for the minimizer of the functional

F [g] =

∫
Λ`×Λ`

dxdy
[
κV (x− y)|g(x, y)|2 + |∇xg(x, y)|2 + |∇yg(x, y)|2

]
(2.11)

among functions g ∈ H1(Λ` × Λ`) with ‖g‖L2(Λ`×Λ`) = 1. In the next proposition we state the
properties of the minimizer we shall need.

Proposition 2.1. Let ` > 1 and Λ` = [−`/2, `/2]3 ⊂ R3. Let the functional F : H1(Λ`×Λ`)→
R be defined in (2.11). Then, in the subclass of functions such that

‖g‖22 =

∫
Λ`×Λ`

dxdy |g(x, y)|2 = 1,

there is a unique function f (up to a constant phase factor) that minimizes F . If a is the
scattering length of the potential V (defined in (1.4)), we have, for ` sufficiently large,

λ` := inf
g∈H1(Λ`×Λ`)

{
F [g] :

∫
Λ`×Λ`

dxdy |g(x, y)|2 = 1,

}
=

8πa

`3

(
1 +O

(a
`

ln(`/a)
))

(2.12)

Moreover, the following properties of the minimizer f hold.

i) We have ∫
Λ`×Λ`

dxdy
[
|∇xf(x, y)|2 + |∇yf(x, y)|2

]
≤ Cκ`−3 (2.13)

ii) There exists a constant C > 0 such that

|f(x, y)| ≤ C`−3 (2.14)

for every x, y ∈ Λ` .
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iii) There exists a constant C > 0 such that∫
Λ`×Λ`

dxdy
∣∣`−3 − f(x, y)

∣∣2 ≤ C2κ2`−2 (2.15)

and ∫
Λ`×Λ`

dxdy
∣∣`−3 − f(x, y)

∣∣ ≤ Cκ`2 (2.16)

iv) There exists a constant C > 0 such that

|1− `3f(x, y)| ≤ Cκ
(

1

|x− y|+ 1

)
(2.17)

v) For κ small enough, there exists a constant C > 0 such that

|∇x+yf(x, y)| ≤ Cκ`−3
(
d
(
x+y

2

)5/3
+ 1
)−1 (2.18)

where d(x) is the distance of x to the boundary of the box Λ`.

We postpone the proof of Prop. 2.1 to Appendix A. The minimizer of (2.11) satisfies the
eigenvalue equation [

− (∆x + ∆y) + κV (x− y)
]
f(x, y) = λ`f(x, y), (2.19)

for x, y ∈ Λ`. We define f`(x, y) = f(`x, `y); by scaling, f`(x, y) satisfies[
− (∆x + ∆y) + κ`2V (`(x− y))

]
f`(x, y) = `2λ`f`(x, y), (2.20)

for x, y ∈ Λ1. We set w` = 1− `3f`, which solves

(∆x + ∆y)w`(x, y) + κ`5V (`(x− y))f`(x, y) = `5λ`f`(x, y), (2.21)

for x, y ∈ Λ1. Using the function w`, we construct a Hilbert-Schmidt operator η : L2(Λ1) →
L2(Λ1). We set

η = (1− |ϕ0〉〈ϕ0|)k(1− |ϕ0〉〈ϕ0|) (2.22)

where k : L2(Λ1)→ L2(Λ1) is the Hilbert-Schmidt operator with integral kernel

k(x, y) = −nw`(x, y) (2.23)

It will be useful to decompose η = k + µ, with

µ = −|ϕ0〉〈ϕ0|k − k|ϕ0〉〈ϕ0|+ |ϕ0〉〈ϕ0|k|ϕ0〉〈ϕ0| (2.24)

Therefore, we can express the integral kernel of the operator η as

η(x, y) = k(x, y) + µ(x, y) (2.25)

with

µ(x, y) =n

∫
dz w`(z, y) + n

∫
dz w`(x, z)− n

∫
dz1dz2 w`(z1, z2)

Using (2.21) and (2.25) we have

(∆x + ∆y)η(x, y) = n`5(κV (`(x− y))− λ`)f`(x, y) + n

∫
dz∆xw`(x, z) + n

∫
dz∆yw`(z, y)

(2.26)

We collect in Proposition 2.2 below properties of the operators η, k and µ (we postpone the
proof of Proposition 2.2 to the end of Appendix A).
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Proposition 2.2. Let η be defined as in (2.22) and let κ be small enough and n/` ≤ 1. Then
the following estimates hold true.

i) We have ∫
Λ1×Λ1

dxdy
∣∣η(x, y)

∣∣2 = ‖η‖22 ≤ Cκ2n2`−2 (2.27)

and ∫
Λ1×Λ1

dxdy
[∣∣∇xη(x, y)

∣∣2 +
∣∣∇yη(x, y)

∣∣2] ≤ Cκn2`−1 (2.28)

for a constant C > 0. Moreover, for any x, y ∈ Λ1,

|η(x, y)| ≤ Cn (2.29)

and

|η(x, y)| ≤ Cκn
`

[
1

|x− y|+ `−1

]
(2.30)

for a constant C > 0.

ii) We indicate with ηx(y) the function η(y, x). For any x ∈ Λ1

‖ηx‖2 ≤ Cκn`−1 (2.31)

for a constant C > 0.

iii) Decomposing2 σ := sinh(η) = η + r and γ := cosh(η) = 1 + p, there exists a C > 0 such
that

‖σ‖2, ‖p‖2 ≤ C‖η‖2 (2.32)

Moreover

|r(x, y)| ≤ C‖η‖2‖ηx‖2‖ηy‖2, |p(x, y)| ≤ C‖ηx‖2‖ηy‖2 (2.33)

for every x, y ∈ Λ1. This implies that

‖rx‖2 ≤ C‖η‖22‖ηx‖2, ‖px‖ ≤ C‖η‖2‖ηx‖2 (2.34)

With η introduced above, we define the generalized Bogoliubov transformation

eB = exp

[
1

2

∫
Λ1×Λ1

dxdy η(x, y) b∗xb
∗
y − h.c.

]
(2.35)

Equivalently we can express it as

eB = exp
[1

2

∑
p,q∈Λ∗

1,+

(
ηpq b̂

∗
pb̂
∗
q − h.c.

)]
(2.36)

with
ηpq = 〈ϕp ⊗ ϕq, η〉 (2.37)

Note that eB : F≤n+ → F≤n+ is unitary. In Section 3.1 below we present some key properties of
eB . With the generalized Bogoliubov transformation eB we define a new excitation Hamiltonian
Gn,` : F≤n+ → F≤n+ as

Gn,` = e−BLn,`eB = e−BUnHn,`U
∗
ne
B (2.38)

Proposition 2.3 (which will be proved at the end of Section 3) presents our main estimates of
Gn,`.

2As we did for η, we are going to use the symbols σ, r and p to indicate both the operators and their integral
kernels.
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Proposition 2.3. Let V be positive, compactly supported, spherically symmetric and bounded.
Moreover, define

K =
∑

p∈Λ∗
1,+

p2â∗pâp and V` =
1

2

∑
p,q,r,s∈Λ∗

1,+

V`,pqrsâ
∗
pâ
∗
q ârâs. (2.39)

where we defined V`,pqrs in (2.3). For κ be small enough and n/` ≤ 1, we have

Gn,` = Cn,` +K + V` + En,` (2.40)

where Cn,` is given by

Cn,` =
n2

2

∫
dxdy κ`2V (`(x− y))− 1

2
〈η, (∆1 + ∆2)η〉

+ n
∑

p,q∈Λ∗
1,+

V`,pq00〈η, ϕp ⊗ ϕq〉+
1

2

∑
p,q,r,s∈Λ∗

1,+

V`,pqrs〈ϕs ⊗ ϕr, η〉〈η, ϕp ⊗ ϕq〉,
(2.41)

and the error En,` is such that for any δ > 0 there exists a constant C > 0 so that

±En,` ≤ δ(K + V`) + Cκ
n

`
(N+ + 1) (2.42)

3 Analysis of the excitation Hamiltonian

In this section we analyze the excitation Hamiltonian Gn,` defined in (2.38). We decompose it
as

Gn,` = G(0)
n,` + G(1)

n,` + G(2)
n,` + G(3)

n,` + G(4)
n,`

with
G(j)
n,` = e−BL(j)

n,`e
B

where L(j)
n,` was defined in (2.10), for j ∈ {0, 1, 2, 3, 4}. We examine Gn,` and identify its main

contributions. The goal of this section is to prove Proposition 2.3. While the analysis is simi-
lar to [5, Section 4], special care needs to be taken due to the Neumann boundary conditions.

In Subsections 3.2, 3.3, 3.4, 3.5, 3.6 we extract from G(0)
n,`, G

(1)
n,`, G

(2)
n,`, G

(3)
n,` and G(4)

n,` the main
contributions which will be expressions that are constant, linear and quadratic in creation and
annihilation operators, and we prove that cubic and quartic contributions are small. In Subsec-
tion 3.7 we bound the linear and quadratic contributions, obtaining Proposition 2.3. Throughout
the whole section we will use some properties of the generalized Bogoliubov transformation eB ,
which we review in Subsection 3.1.

3.1 Generalized Bogoliubov transformation

The generalized Bogoliubov transformation in the form (2.35) has been introduced in [10]; we
refer to [10, Section 3] for a detailed discussion about it; we mention below only the results that
are relevant in our analysis.

As proved in [31, 10], eB does not change substantially the number of excitations. This is
the content of the following Lemma.

Lemma 3.1. Let η ∈ L2(Λ1 × Λ1) be such that η(x, y) = η(y, x) and let B be defined as in

(2.35). Then, for every m1,m2 ∈ Z, there exists a constant C > 0 such that, on F≤n+ ,

e−B(N+ + 1)m1(n+ 1−N+)m2eB ≤ CeC‖η‖2(N+ + 1)m1(n+ 1−N+)m2

The action of eB on creation and annihilation operators can be expressed as follows. We
define

γx(y) = coshη(y, x) =
∑
n≥0

1

(2n)!
η2n(y, x) ,

σx(y) = sinhη(y, x) =
∑
n≥0

1

(2n+ 1)!
η2n+1(y, x) ,

(3.1)
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where ηm indicates the product in the sense of operators (the symbol η denotes the Hilbert-
Schmidt operator whose kernel is η(x, y)). Note that η0(y, x) has to be interpreted as a δ
distribution. With these definitions, we write

e−Bbxe
B = b(γx) + b∗(σx) + dx, e−Bb∗xe

B = b∗(γx) + b(σx) + d∗x (3.2)

for a remainder operator dx. Lemma 3.2 below states that dx is a bounded operators on F≤n+

and it is small on states with a small number of excitations; the main contributions in the right
hand sides of (3.2) correspond to those of the usual Bogoliubov transformation. Lemma 3.2 is
a generalization of [6, Lemma 2.3], and can be proved in the same way.

Lemma 3.2. Let η ∈ L2(Λ1×Λ1) be such that η(x, y) = η(y, x) and let j ∈ Z. Let the remainder
operator dx be defined as in (3.2). Then, if ‖η‖ is small enough, there exists a C > 0 such that

‖(N+ + 1)j/2dxξ‖ ≤ n−1C
[
‖ηx‖‖(N+ + 1)(j+3)/2ξ‖+ ‖η‖‖bx(N+ + 1)(j+2)/2ξ‖

]
(3.3)

‖(N+ + 1)j/2aydxξ‖ ≤ n−1C
[
‖ηx‖‖ηy‖‖(N+ + 1)(j+2)/2ξ‖+ |η(y, x)|‖(N+ + 1)(j+2)/2ξ‖

+ ‖ηy‖‖bx(N+ + 1)(j+1)/2ξ‖+ ‖ηx‖‖ay(N+ + 1)(j+3)/2ξ‖

+ ‖η‖‖ayax(N+ + 1)(j+2)/2ξ‖
]

(3.4)

‖(N+ + 1)j/2dxdyξ‖ ≤ n−2C
[
‖ηx‖‖ηy‖‖(N+ + 1)(j+6)/2ξ‖+ ‖η‖‖ηx‖‖ay(N+ + 1)(j+5)/2ξ‖

+ ‖η‖|η(y, x)|‖(N+ + 1)(j+4)/2ξ‖+ ‖η‖‖ηy‖‖ax(N+ + 1)(j+5)/2ξ‖

+ ‖η‖‖ayax(N+ + 1)(j+4)/2ξ‖
]

(3.5)

for all ξ ∈ F≤n+ . Moreover, for any g ∈ L2(Λ1 × Λ1) such that g(x, y) = g(y, x),

‖(N+ + 1)j/2
∫
dx g(x, y)dxξ‖ ≤ n−1C‖gy‖‖(N+ + 1)(j+3)/2ξ‖

‖(N+ + 1)j/2
∫
dx g(x, y)d∗xξ‖ ≤ n−1C‖gy‖‖(N+ + 1)(j+3)/2ξ‖

(3.6)

3.2 Analysis of G(0)n,`

Recall from (2.10) that

L(0)
n,` =

1

2

∫
dxdy κ`2V (`(x− y))(n−N+)(n−N+ − 1) (3.7)

We define the error operator E(0)
n,` through

G(0)
n,` =

n2

2

∫
dxdy κ`2V (`(x− y)) + E(0)

n,`
(3.8)

and we estimate it in the next proposition.

Proposition 3.3. Let E(0)
n,` be as defined in (3.8). Then, under the same assumptions as in

Proposition 2.3, there exists a C > 0 such that

±E(0)
n,` ≤ Cκn`

−1N+ (3.9)

as operator inequalities on F≤n+ .

Proof. Equation (3.8) implies that

E(0)
n,` =− e−B

(
n+ nN+ +N+/2−N 2

+/2
)
eB
∫
dxdy κ`2V (`(x− y)) (3.10)

The bounds in (3.9) follow from
∫
dxdy κ`3V (`(x−y)) ≤ κ

∫
dxV (x), Lemma 3.1 and (2.27).
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3.3 Analysis of G(1)n,`

On F≤n+ we can write (2.10) as

L(1)
n,` =

√
n(n−N+ − 1)

∫
dxdy κ`2V (`(x− y))bx + h.c. (3.11)

We define the error E(1)
n by

G(1)
n,` = e−BL(1)

n,`e
B = n3/2

∫
dxdy κ`2V (`(x− y))

[
b(γx) + b∗(σx) + h.c.

]
+ E(1)

n,` (3.12)

where γx and σx were defined in (3.1). We estimate E(1)
n,` in the next proposition.

Proposition 3.4. Let E(1)
n,` be defined as in (3.12). Then, under the same assumptions as

Proposition 2.3, there exists a C > 0 such that

±E(1)
n,` ≤ Cκn`

−1(N+ + 1) (3.13)

as operator inequalities on F≤n+ .

Proof. Comparing (3.11) and (3.12) we obtain

E(1)
n,` = −n1/2

∫
dxdy κ`2V (`(x− y))

[
e−B(N+ + 1)bxe

B + h.c.
]

+ n3/2

∫
dxdy κ`2V (`(x− y))

[
e−Bbxe

B −
(
b(γx) + b∗(σx)

)
+ h.c.

]
=: D1 + D2

(3.14)

We analyze D1 first. Using the identity (N+ + 1)1/2bx = bxN 1/2
+ , we write it as

D1 = −n1/2

∫
dxdy κ`2V (`(x− y))

[
e−B(N+ + 1)1/2bxN 1/2

+ eB + h.c.
]

(3.15)

For any ξ ∈ F≤n+ we have

|〈ξ,D1ξ〉| ≤ Cn1/2`−1

∫
dx |〈ξ, e−B(N+ + 1)1/2bxN 1/2

+ eBξ〉|
∫
dy κ`3V (`(x− y))

≤ Cκn1/2`−1‖(N+ + 1)1/2eBξ‖
∫
dx ‖bxN 1/2

+ eBξ‖

With Lemma 3.1 and Cauchy-Schwarz we obtain

|〈ξ,D1ξ〉| ≤ Cκn1/2`−1‖(N+ + 1)1/2ξ‖‖(N+ + 1)ξ‖ ≤ Cκn`−1‖(N+ + 1)1/2ξ‖2

We consider now D2. Using (3.2), we have

D2 = n3/2

∫
dxdy κ`2V (`(x− y))

[
dx + h.c.

]
(3.16)

By (3.3) (with j = −1) and Cauchy-Schwarz, we conclude that

|〈ξ,D2ξ〉| ≤ n3/2`−1

∫
dx |〈(N+ + 1)1/2ξ, (N+ + 1)−1/2dxξ〉|

∫
dy κ`3V (`(x− y))

≤ Cκn1/2`−1‖(N+ + 1)1/2ξ‖
∫
dx
[
‖ηx‖‖(N+ + 1)ξ‖+ ‖η‖‖bx(N+ + 1)1/2ξ‖

]
≤ Cκn1/2`−1‖η‖‖(N+ + 1)1/2ξ‖‖(N+ + 1)ξ‖

(3.17)

This concludes the proof of estimate (3.13) if we use bound (2.27) for the norm of η.
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3.4 Analysis of G(2)n,`

Recall, from (2.10) and (2.39), that

L(2)
n,` = K + L(2,V )

n,`

with

L(2,V )
n,` =

∑
p,q∈Λ∗

1,+

(V`,0p0q + V`,0pq0)â∗pâq(n−N+) +
1

2

∑
p,q∈Λ∗

1,+

(nV`,pq00b̂
∗
pb̂
∗
q + h.c.) (3.18)

We consider now

G(2)
n,` = e−BL(2)

n,`e
B = e−BKeB + e−BL(2,V )

n,` eB (3.19)

To prove Proposition 3.6 and Proposition 3.7 below, we will use the bounds contained in the
following lemma, taken from [8, Lemma 3.6].

Lemma 3.5. Let V ∈ L1(R3), V ≥ 0. Let j1, j2 ∈ L2(Λ1 × Λ1). Consider the operators

A1 =

∫
dxdy κ`3V (`(x− y))a](j1,x)a](j2,y)

A2 =

∫
dxdy κ`3V (`(x− y))a](j1,x)ay

(3.20)

where a] indicates either a or a∗. Then, for every ξ ∈ F≤n+ , we have

|〈ξ, A1ξ〉| ≤ κ‖V ‖1‖j1‖2‖j2‖2‖(N + 1)1/2ξ‖2

|〈ξ, A2ξ〉| ≤ κ‖V ‖1‖j1‖2‖(N + 1)1/2ξ‖2
(3.21)

Proof. By Cauchy-Schwarz, we have

|〈ξ, A1ξ〉| =
∫
dxdy κ`3V (`(x− y))‖a](j1,x)ξ‖‖a](j2,y)ξ‖

≤
∫
dxdy κ`3V (`(x− y))‖j1,x‖‖j2,y‖‖(N+ + 1)1/2ξ‖2

≤ ‖(N+ + 1)1/2ξ‖2
[∫

dxdy κ`3V (`(x− y))‖j1,x‖2
]1/2 [∫

dxdy κ`3V (`(x− y))‖j2,y‖2
]1/2

≤ κ ‖V ‖1‖j1‖2‖j2‖2‖(N + 1)1/2ξ‖2.
(3.22)

Similarly we obtain the second estimate in (3.21).

3.4.1 Analysis of e−BKeB

We define the error operator E(2,K)
n,` through

e−BKeB = K − 1

2
〈η, (∆1 + ∆2)η〉 − 1

2

∑
p,r∈Λ∗

1,+

〈ϕp ⊗ ϕr,
(
∆1 + ∆2

)
η〉b̂∗pb̂∗r

− 1

2

∑
p,r∈Λ∗

1,+

〈
(
∆1 + ∆2

)
η, ϕp ⊗ ϕr〉b̂pb̂r + E(2,K)

n,` .

(3.23)

We estimate it in the following proposition.

Proposition 3.6. Let E(2,K)
n,` be defined as in (3.23). Then, under the same assumptions as

Proposition 2.3, for every δ > 0 there exists a C > 0 such that

±E(2,K)
n,` ≤ δV` + Cκn`−1(N+ + 1) (3.24)

as operator inequalities on F≤N+ .
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Proof. We write

e−BKeB =K +

∫ 1

0

ds e−sB [K, B]esB (3.25)

With definition (2.36) we have

[K, B] =
1

2

∑
p,q,r∈Λ∗

1,+

r2〈ϕp ⊗ ϕq, η〉[â∗r âr, b̂∗pb̂∗q ]−
1

2

∑
p,q,r∈Λ∗

1,+

r2〈η, ϕp ⊗ ϕq〉[â∗r âr, b̂pb̂q] (3.26)

We use now

[â∗r âr, b̂
∗
pb̂
∗
q ] = b̂∗p[â

∗
r âr, b

∗
q ] + [â∗r âr, b̂

∗
p]b̂
∗
q = δrq b̂

∗
pb̂
∗
r + δrpb̂

∗
r b̂
∗
q

to obtain

[K, B] = −1

2

∑
p,r∈Λ∗

1,+

〈ϕp ⊗ ϕr,
(
∆1 + ∆2

)
η〉b̂∗pb̂∗r + h.c.

= −1

2

∫
dxdy

[(
∆y + ∆y

)
η(x, y)

]
bxby + h.c.

(3.27)

With relations (3.2), we decompose∫ 1

0

ds e−sB [K, B]esB = −1

2

∫ 1

0

ds

∫
dxdy

[
(∆x + ∆y)η(x, y)

]
e−sBbye

sBe−sBbxe
sB + h.c.

=
(

E1 + E2 + E3

)
+ h.c.

with

E1 = −1

2

∫ 1

0

ds

∫
dxdy

[
(∆x + ∆y)η(x, y)

](
b(γ(s)

y ) + b∗(σ(s)
y )
)(
b(γ(s)

x ) + b∗(σ(s)
x )
)

E2 = −1

2

∫ 1

0

ds

∫
dxdy

[
(∆x + ∆y)η(x, y)]

(
b(γ(s)

y ) + b∗(σ(s)
y )
)
d(s)
x

− 1

2

∫
dxdy

[
(∆x + ∆y)η(x, y)]d(s)

y

(
b(γ(s)

x ) + b∗(σ(s)
x )
)

E3 = −1

2

∫ 1

0

ds

∫
dxdy

[
(∆x + ∆y)η(x, y)]d(s)

y d(s)
x

(3.28)

where γ
(s)
x = cosh(sηx), σ

(s)
x = sinh(sηx) (recall the notation ηx(y) = η(y, x)) and d

(s)
y is defined

as in (3.2) with η in B, γ and σ substituted by sη. We expand E1 as

E1 = −1

2

∫ 1

0

ds

∫
dxdy

[
(∆x + ∆y)η(x, y)]

(
b(γ(s)

y )b(γ(s)
x ) + b∗(σ(s)

y )b(γ(s)
x )

+ b(γ(s)
y )b∗(σ(s)

x ) + b∗(σ(s)
y ))b∗(σ(s)

x )
)

= E11 + E12 + E13 + E14

Writing γ(s) = 1 + p(s) we express E11 as

E11 = −1

2

∫ 1

0

ds

∫
dxdy

[
(∆x + ∆y)η(x, y)]bybx + Ẽ11 (3.29)

with

Ẽ11 = −1

2

∫ 1

0

ds

∫
dxdy

[
(∆x + ∆y)η(x, y)]

(
byb(p

(s)
x ) + b(p(s)

y )bx + b(p(s)
y )b(p(s)

x )
)

The first term in (3.29) contributes to (3.23); with equation (2.26) we write Ẽ11 as

Ẽ11 =
n

2

∫ 1

0

ds

∫
dxdy

[
`5λ` − κ`5V (`(x− y))

]
f`(x, y)

(
byb(p

(s)
x ) + b(p(s)

y )bx + b(p(s)
y )b(p(s)

x )
)
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(Here we also used that the last two terms in (2.26) are zero when projected onto the orthogonal
subspace to ϕ0.) To estimate Ẽ11 we bound f` using (2.14) and Cauchy-Schwarz; for the term
proportional to λ` we use (2.12), Cauchy-Schwarz and (2.32), while for the term proportional
to V we use Lemma 3.5 and (2.32). This leads to

|〈ξ, Ẽ11ξ〉| ≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 (3.30)

Similarly we estimate E12 and E14, with the result that

|〈ξ, Ẽ12ξ〉|, |〈ξ, Ẽ14ξ〉| ≤ Cκn`−1‖(N+ + 1)1/2ξ‖2. (3.31)

We consider now E13. Here we cannot use Lemma 3.5 directly (since the L2 norm of γ(s) is not
finite); in fact, this is not an error term and we will extract from it an important contribution to

(3.23). We write b(γ
(s)
y )b∗(σ

(s)
x ) = byb

∗(σ
(s)
x ) + b(p

(s)
y )b∗(σ

(s)
x ) and we put the product byb

∗(σ
(s)
x )

in normal order. Splitting σ(s) = η(s) + r(s) we arrive at

E13 = −1

2

∫ 1

0

ds

∫
dxdy

[
(∆x + ∆y)η(x, y)

]
b(γ(s)

y )b∗(σ(s)
x )

= −1

2

∫ 1

0

ds s

∫
dxdy

[
(∆x + ∆y)η(x, y)

]
η(y, x) + Ẽ13

(3.32)

with

Ẽ13 = −1

2

∫ 1

0

ds

∫
dxdy

[
(∆x + ∆y)η(x, y)

](
r(s)(y, x)

+ b∗(σ(s)
x )by − n−1a∗(σ(s)

x )ay − n−1σ(s)(y, x)N+ + b(p(s)
y )b∗(σ(s)

x )
)
.

The first contribution in (3.32) appears in (3.23) (the integration over s gives an additional
factor 1/2, but we still need to add its hermitian conjugate, which is equal to the term itself),
while Ẽ13 is now an error term. As we did for Ẽ11, in Ẽ13 we plug in equation (2.26) and we
use estimates (2.14) and (2.12). For the term proportional to r(s)(y, x) we use (2.33), Cauchy-
Schwarz and (2.27), while for the term proportional to σ(s)(y, x) = sη(y, x) + r(s)(y, x) we use
additionally (2.29). For all the other contributions in Ẽ13 we use Lemma 3.5, (2.32) and (2.27).
This way we obtain

|〈ξ, Ẽ13ξ〉| ≤ Cκn`−1‖(N+ + 1)1/2‖2. (3.33)

We consider now E2, which we split in E2 = E21 + E22 with

E21 = −1

2

∫ 1

0

ds

∫
dxdy

[
(∆x + ∆y)η(x, y)

](
b(γ(s)

y ) + b∗(σ(s)
y )
)
d(s)
x

E22 = −1

2

∫ 1

0

ds

∫
dxdy

[
(∆x + ∆y)η(x, y)

]
d(s)
y

(
b(γ(s)

x ) + b∗(σ(s)
x )
) (3.34)

We focus on E21 first. As before, using equation (2.26) and observing that only the first term
contributes on the orthogonal subspace to ϕ0, we get

E21 =
n

2

∫ 1

0

ds

∫
dxdy

[
`5λ` − κ`5V (`(x− y))

]
f`(x, y)

(
b(γ(s)

y ) + b∗(σ(s)
y )
)
d(s)
x

We write it as

E21 =
n

2

∫ 1

0

ds

∫
dxdy

[
`5λ` − κ`5V (`(x− y))

]
f`(x, y)byd

(s)
x

+
n

2

∫ 1

0

ds

∫
dxdy

[
`5λ` − κ`5V (`(x− y))

]
f`(x, y)

(
b(p(s)

y ) + b∗(σ(s)
y )
)
d(s)
x

= E211 + E212

To estimate E212 we use (3.3) (with j = 0 and the factors s bounded by 1, together with the
bound N 2

+ ≤ n2) and Proposition 2.2 to obtain

|〈ξ,E212ξ〉| ≤ Cn
∫
dxdy

∣∣∣`5λ`f`(x, y)− κ`5V (`(x− y))f`(x, y)
∣∣∣

×
∫ 1

0

ds‖
(
b∗(p(s)

y ) + b(σ(s)
y )
)
ξ‖
[
‖ηx‖‖(N+ + 1)1/2ξ‖+ ‖η‖‖bxξ‖

]
.
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With the aid of the Cauchy-Schwarz inequality and estimates (2.14) and (2.12) we obtain

|〈ξ,E212ξ〉| ≤ Cn
[∫

dxdy
∣∣∣`−1 − κ`2V (`(x− y))

∣∣∣ ∫ 1

0

ds
(
‖p(s)
y ‖2 + ‖σ(s)

y ‖2
)
‖(N+ + 1)1/2ξ‖2

]1/2

×
[∫

dxdy
∣∣∣`−1 − κ`2V (`(x− y))

∣∣∣( ‖ηx‖2‖(N+ + 1)1/2ξ‖2 + ‖η‖2‖bxξ‖2
)]1/2

.

Using estimates (2.34) and (2.27) to bound the norm of p, σ and η we get

|〈ξ,E212ξ〉| ≤ Cκn`−1‖(N+ + 1)1/2ξ‖2.

To estimate E211 we use the second bound in Lemma 3.2

|〈ξ,E211ξ〉| ≤
n

2
‖(N+ + 1)1/2ξ‖

∫ 1

0

ds

∫
dxdy

∣∣∣`5λ`f`(x, y) + κ`5V (`(x− y))f`(x, y)
∣∣∣

‖(N+ + 1)−1/2byd
(s)
x ξ‖

≤ C‖(N+ + 1)1/2ξ‖
∫
dxdy

∣∣∣`5λ`f`(x, y)− κ`5V (`(x− y))f`(x, y)
∣∣∣[

‖ηx‖‖ηy‖‖(N+ + 1)1/2ξ‖+ |η(y, x)|‖(N+ + 1)1/2ξ‖

+ ‖ηy‖‖bxξ‖+ ‖ηx‖‖ay(N+ + 1)ξ‖+ ‖η‖‖ayax(N+ + 1)1/2ξ‖
]

≤ Cn`−1‖(N+ + 1)1/2ξ‖2

+ C‖(N+ + 1)1/2ξ‖
[ ∫

dxdy κ`2V (`(x− y))‖ayax(N+ + 1)1/2ξ‖2
]1/2

.

In the last step we used (2.14), Cauchy-Schwarz (similarly as above) and additionally (2.29) for
the term containing |η(x, y)|. With (2.27) we conclude that

|〈ξ,E211ξ〉| ≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 + Cκ1/2n1/2`−1/2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖.

Therefore

|〈ξ,E21ξ〉| ≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 + Cκ1/2n1/2`−1/2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖ (3.35)

The second term in (3.34) can be estimated as follows

|〈ξ,E22ξ〉| ≤
1

2
‖(N+ + 1)1/2ξ‖

∫ 1

0

ds

∫
dxdy |(∆x + ∆y)η(x, y)|

× ‖(N+ + 1)−1/2d(s)
y

(
b(γ(s)

x ) + b∗(σ(s)
x )
)
ξ‖

≤ Cn−1

∫ 1

0

ds

∫
dxdy |(∆x + ∆y)η(x, y)|‖(N+ + 1)1/2ξ‖

×
[
‖ηy‖‖

(
b(γ(s)

x ) + b∗(σ(s)
x )
)
(N+ + 1)ξ‖+ ‖η‖‖by

(
b(γ(s)

x ) + b∗(σ(s)
x )
)
(N+ + 1)1/2ξ‖

]
(3.36)

Substituting (2.26) for (∆x + ∆y)η(x, y) and arguing as before we obtain

|〈ξ,E22ξ〉| ≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 + Cκ1/2n1/2`−1/2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖ (3.37)

Finally we examine E3 in (3.28); with the third estimate in Lemma 3.2 we have

|〈ξ,E3ξ〉| ≤ C‖(N+ + 1)1/2ξ‖
∫ 1

0

ds

∫
dxdy |(∆x + ∆y)η(x, y)|‖(N+ + 1)−1/2d(s)

y d(s)
x ξ‖

≤ Cn−1‖(N+ + 1)1/2ξ‖
∫
dxdy |(∆x + ∆y)η(x, y)|

[
‖ηx‖‖ηy‖‖(N + 1)3/2ξ‖

+ ‖ηx‖‖by(N + 1)ξ‖+ |η(y, x)|‖(N + 1)1/2ξ‖+ ‖ηy‖‖ax(N+ + 1)ξ‖+ ‖ayax(N + 1)1/2ξ‖
]

(3.38)
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leading to

|〈ξ,E3ξ〉| ≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 + Cκ1/2n1/2`−1/2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖ (3.39)

The estimates (3.30), (3.31), (3.33), (3.35), (3.37) and (3.39) prove (3.24).

3.4.2 Analysis of e−BL(2,V )
n,` eB

With L(2,V )
n,` introduced in (3.18), we define the error operator E(2,V )

n,` through

e−BL(2,V )
n,` eB = n

∑
p,q∈Λ∗

1,+

V`,pq00〈η, ϕp ⊗ ϕq〉+
1

2

∑
p,q∈Λ∗

1,+

(nV`,pq00b̂
∗
pb̂
∗
q + h.c.) + E(2,V )

n,` (3.40)

Proposition 3.7 provides an estimate for E(2,V )
n,` .

Proposition 3.7. Let E(2,V )
n,` be defined as in (3.40). Then, under the same assumptions as

Proposition 2.3, for every δ > 0 there exists a C > 0 such that

± E(2,V )
n,` ≤ δV` + Cκn`−1(N+ + 1) (3.41)

as operator inequalities on F≤N+ .

Proof of Proposition 3.7. We split e−BL(2,V )
n,` eB as

e−BL(2,V )
n,` eB = F1 + F2 + F3

with

F1 =
∑

p,q∈Λ∗
1,+

V`,0p0q e
−B â∗pâq(n−N+)eB

F2 =
∑

p,q∈Λ∗
1,+

V`,0pq0 e
−B â∗pâq(n−N+)eB

F3 =
1

2

∑
p,q∈Λ∗

1,+

(nV`,pq00 e
−B b̂∗pb̂

∗
qe
B + h.c.)

(3.42)

It is convenient to rewrite

F1 = κn

∫
dxdy `2V (`(x− y)) e−B

(
b∗yby −

1

n
a∗yay

)
eB

The expectation of F1 on any ξ ∈ F≤n+ can be estimated as

|〈ξ,F1ξ〉| ≤ κn
∫
dy |〈ξ, e−B

(
b∗yby − n−1a∗yay

)
eBξ〉|

∫
dx `2V (`(x− y)) ≤ Cκn`−1〈ξ,N+ξ〉

(3.43)

where we used Lemma 3.1. Similarly we have

|〈ξ,F2ξ〉| ≤ κn
∫
dxdy `2V (`(x− y)) |〈ξ, e−B

(
b∗ybx −

1

n
a∗yax

)
eBξ〉| ≤ Cκn`−1〈ξ,N+ξ〉 (3.44)

We focus now on on the last contribution in (3.42).

F3 =
κn

2

∫
dxdy `2V (`(x− y))

(
e−Bbxbye

B + h.c.
)

(3.45)
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Using equations (3.2), we get

F3 =
κn

2

∫
dxdy `2V (`(x− y))

[
(b(γx) + b∗(σx) + dx)(b(γy) + b∗(σy) + dy) + h.c.

]
=
κn

2

∫
dxdy `2V (`(x− y))

[
(b(γx) + b∗(σx))(b(γy) + b∗(σy)) + h.c.

]
+
κn

2

∫
dxdy `2V (`(x− y))

[
(b(γx) + b∗(σx))dy + dx(b(γy) + b∗(σy)) + h.c.

]
+
κn

2

∫
dxdy `2V (`(x− y))

[
dxdy + h.c.

]
= F31 + F32 + F33

(3.46)

We start analyzing F31. After normal ordering, a simple calculation (similar to the one done in
(3.32)) gives

F31 = κn

∫
dxdy `2V (`(x− y))η(x, y) +

κn

2

∫
dxdy `2V (`(x− y))

[
bxby + h.c.

]
+ E31 (3.47)

with

E31 =
κn

2

∫
dxdy `2V (`(x− y))

[
r(x, y)− η(x, y)n−1N+

+ b∗(ry)bx + b∗(ηy)bx + n−1a∗(ηy)ax + b(px)b∗(ηy) + b(px)b∗(ry)

+ b(px)by + b(γx)b(py) + b∗(σx)b(γy) + b∗(σx)b∗(σy) + h.c.
] (3.48)

where again we used the notation γx = δx + px and σx = ηx + rx. Lemma 3.5 and Proposition
2.2 show that E31 satisfies

|〈ξ, E31〉ξ| ≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 (3.49)

Next we consider F32. Again splitting γ = 1 + p and σ = η + r, we write

F32 =: F321 + F322 + F323 + h.c. (3.50)

with

F321 =
κn

2

∫
dxdy `2V (`(x− y))bxdy

F322 =
κn

2

∫
dxdy `2V (`(x− y))dxby

F323 =
κn

2

∫
dxdy `2V (`(x− y))

[
(b(px) + b∗(σx))dy + dx(b(py) + b∗(σy))

] (3.51)

To bound F321, we use (3.4) and Proposition 2.2:

|〈ξ,F321〉ξ| ≤ Cκ‖(N+ + 1)1/2ξ‖
∫
dxdy `2V (`(x− y))

[
‖ηx‖‖ηy‖‖(N+ + 1)1/2ξ‖

+ |η(y, x)|‖(N + 1)1/2ξ‖+ ‖ηy‖‖bxξ‖+ ‖ηx‖‖ay(N+ + 1)ξ‖
]

+ Cκn1/2‖η‖2‖(N+ + 1)1/2ξ‖
∫
dxdy `2V (`(x− y))‖aybxξ‖

≤ Cκn`−1‖η‖2‖(N+ + 1)1/2ξ‖2 + Cκ1/2n1/2`−1/2‖η‖2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖

(3.52)

The estimate for F322 follows from (3.3):

|〈ξ,F322ξ〉| ≤ κn‖(N+ + 1)1/2ξ‖
∫
dxdy `2V (`(x− y))‖(N+ + 1)−1/2dxbyξ‖

≤ Cκn‖(N+ + 1)1/2ξ‖
∫
dxdy `2V (`(x− y))‖ηx‖‖byξ‖

+ Cκn1/2‖η‖‖(N+ + 1)1/2ξ‖
∫
dxdy `2V (`(x− y))‖bxbyξ‖

≤ Cκn`−1‖η‖2‖(N+ + 1)1/2ξ‖2 + Cκ1/2n1/2`1/2‖η‖2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖

(3.53)
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and similarly the estimate for F323:

|〈ξ,F323ξ〉| =
κn

2

∫
dxdy `2V (`(x− y))

[
(b(px) + b∗(σx))dy + dx(b(py) + b∗(σy))

]
≤ κn

∫
dxdy `2V (`(x− y))‖(b∗(px) + b(σx))ξ‖‖dyξ‖

+ κn ‖(N+ + 1)1/2ξ‖
∫
dxdy `2V (`(x− y))‖(N+ + 1)−1/2dx(b(py) + b∗(σy))ξ‖

≤ Cκn1/2‖(N+ + 1)1/2ξ‖
∫
dxdy `2V (`(x− y))

(
‖px‖2 + ‖σx‖2

)
×
[
‖ηy‖‖(N+ + 1)1/2ξ‖+ ‖η‖‖byξ‖

]
+ Cκ ‖(N+ + 1)1/2ξ‖

∫
dxdy `2V (`(x− y))

[
‖ηx‖‖(N+ + 1)(b(py) + b∗(σy))ξ‖

+ ‖η‖‖bx(N+ + 1)1/2(b(py) + b∗(σy))ξ‖
]

(3.54)

We normal order the last term and use estimates (2.27), (2.29) and (2.33) to get

|〈ξ,F323ξ〉| ≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 (3.55)

Finally we consider the last contribution in (3.46). With estimate (3.5) and Proposition 2.2
we conclude that

|〈ξ,F33ξ〉| ≤ Cκn`−1‖η‖2‖(N+ + 1)1/2ξ‖2

+ Cκn1/2`−1/2‖η‖2‖(N+ + 1)1/2ξ‖
[ ∫

dxdy `2V (`(x− y))‖ayaxξ‖2
]1/2

≤ Cκn`−1‖η‖2‖(N+ + 1)1/2ξ‖2 + Cκ1/2n1/2`−1/2‖η‖2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖

(3.56)

Estimates (3.43), (3.44), (3.49), (3.52), (3.53), (3.55) and (3.56) prove (3.41).

3.5 Analysis of G(3)n,`

As defined in (2.10),

L(3)
n,` =

∑
p,q,r∈Λ∗

1,+

(n1/2V`,qr0pb̂
∗
r â
∗
q âp + h.c.)

= n1/2

∫
dxdy κ`2V (`(x− y))

[
b∗xa
∗
yax + h.c.

]
We define E(3)

n,` through

G(3)
n,` = e−BL(3)

n,`e
B = n1/2

∫
dxdy κ`2V (`(x− y))η(y, x)

[
b(γx) + b∗(σx) + h.c.

]
+ E(3)

n,` . (3.57)

Proposition 3.8. Let E(3)
n,` be defined as in (3.57). Then, under the same assumptions as

Proposition 2.3, for any δ > 0 there exists a constant C > 0 such that

±E(3)
n,` ≤ δV` + Cκn`−1(N+ + 1) (3.58)

as operator inequalities on F≤n+ .

To prove Proposition 3.8, we need the following lemma, taken from [8, Lemma 3.8].

Lemma 3.9. Let V ∈ L1(R3), V ≥ 0. Let j1, j2 ∈ L2(Λ1 × Λ1) with

Mi := max

{
sup
x

∫
dy|ji(x, y)|2, sup

y

∫
dx|ji(x, y)|2

}
<∞
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for i = 1, 2. Then we have∫
dxdy κ`3V (`(x− y))‖a](j1,x)a](j2,y)ξ‖2 ≤ Cκmin(M1‖j2‖22,M2‖j1‖22)‖(N+ + 1)ξ‖2∫
dxdy κ`3V (`(x− y))‖a](j1,x)ayξ‖2 ≤ CκM1‖(N+ + 1)ξ‖2

for all ξ ∈ F (with a] we indicate either a or a∗).

Proof. The first inequality simply follows from Cauchy-Schwarz∫
dxdy κ`3V (`(x− y))‖a](j1,x)a](j2,y)ξ‖2 ≤

∫
dxdy κ`3V (`(x− y))‖j1,x‖22‖j2,y‖22‖(N+ + 1)ψ‖2

≤ Cκmin(M1‖j2‖22,M2‖j1‖22)‖(N+ + 1)ψ‖2

The second inequality can be obtained similarly.

Proof of Proposition 3.8. We compute

e−Ba∗yaxe
B = a∗yax +

∫ 1

0

ds e−sB [a∗yax, B]esB = a∗yax +

∫ 1

0

ds e−sB
(
b(ηy)bx + b∗(ηx)b∗y

)
esB

(3.59)

We have therefore

G(3)
n,` = n1/2

∫
dxdy κ`2V (`(x− y))

[
e−Bb∗xe

Ba∗yax + h.c.
]

+ n1/2

∫
dxdy κ`2V (`(x− y))

[
e−Bb∗xe

B

∫ 1

0

ds e−sBb∗(ηx)b∗ye
sB + h.c.

]
+ n1/2

∫
dxdy κ`2V (`(x− y))

[
e−Bb∗xe

B

∫ 1

0

ds e−sBb(ηy)bxe
sB + h.c.

]
=: G1 + G2 + G3 + h.c.

(3.60)

We start analyzing G1. Using (3.2) and

b(σx)a∗yax =

∫
dz σ(x, z)bza

∗
yax = a∗yaxb(σx) + σ(x, y)bx (3.61)

we write it as (adopting always the notation σ = η + r)

G1 = n1/2

∫
dxdy κ`2V (`(x− y))

(
b∗(γx) + b(σx) + d∗x

)
a∗yax

= n1/2

∫
dxdy κ`2V (`(x− y))η(x, y)bx + G11 + G12 + G13 + G14

(3.62)

with

G11 = n1/2

∫
dxdy κ`2V (`(x− y))r(x, y)bx

G12 = n1/2

∫
dxdy κ`2V (`(x− y))b∗(γx)a∗yax

G13 = n1/2

∫
dxdy κ`2V (`(x− y))a∗yaxb(σx)

G14 = n1/2

∫
dxdy κ`2V (`(x− y))d∗xa

∗
yax

(3.63)

With (2.33) and Cauchy-Schwarz we see that for any normalized ξ ∈ F≤n+

|〈ξ,G11ξ〉| ≤ Cn1/2‖η‖
∫
dxdy κ`2V (`(x− y))‖ηx‖‖ηy‖‖bxξ‖

≤ Cn1/2‖η‖
[∫

dxdy κ`2V (`(x− y))‖bxξ‖2
]1/2 [∫

dxdy κ`2V (`(x− y))‖ηx‖2‖ηy‖2
]1/2

.

(3.64)
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In the last factor we use (2.31) and we arrive at

|〈ξ,G11ξ〉| ≤ Cκn1/2`−1‖(N+ + 1)1/2ξ‖2. (3.65)

To bound G12 we split γ = 1 + p and use estimate (2.34) and (2.31), so that

|〈ξ,G12ξ〉| ≤ n1/2

∫
dxdy κ`2V (`(x− y))‖aybxξ‖‖axξ‖

+ n1/2

∫
dxdy κ`2V (`(x− y))‖N−1/2

+ ayb(px)ξ‖‖N 1/2
+ axξ‖

≤ Cn1/2κ1/2`−1/2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖+ Cκn`−1‖(N+ + 1)1/2ξ‖2.

(3.66)

In the last step we used the Cauchy-Schwarz inequality and note that the first term is propor-
tional to V`, as defined in (2.39). Similarly

|〈ξ,G13ξ〉| ≤ n1/2

∫
dxdy κ`2V (`(x− y))‖N−1/2

+ axb(σx)ξ‖‖N 1/2
+ ayξ‖

≤ Cκn`−1‖(N+ + 1)1/2ξ‖2
(3.67)

In order to bound G14, we use (3.4) to estimate

|〈ξ,G14ξ〉| ≤ n1/2

∫
dxdy κ`2V (`(x− y))‖N−1/4

+ aydxξ‖‖N 1/4
+ axξ‖

≤ n1/2κ1/2`−1/2‖(N+ + 1)3/4ξ‖
[∫

dxdy κ`2V (`(x− y))‖dx(N+ + 1)1/4ξ‖1/2
]1/2

≤ Cn1/2κ1/2`−1/2‖(N+ + 1)3/4ξ‖

×
[∫

dxdy κ`2V (`(x− y))
(
‖ηx‖‖(N+ + 1)3/4ξ‖+ ‖η‖‖bx(N+ + 1)1/4ξ‖

)]1/2

≤ Cn1/2κ`−1‖(N+ + 1)3/4ξ‖2

(3.68)

Next we consider G2. With (3.2), we have

G2 =n1/2

∫
dxdy κ`2V (`(x− y))

(
b∗(γx) + b(σx) + d∗x

) ∫ 1

0

ds e−sBb∗yb
∗(ηx)esB (3.69)

and we split G2 = G21 + G22 + G23, where

G21 =n1/2

∫
dxdy κ`2V (`(x− y))b(σx)

∫ 1

0

ds e−sBb∗yb
∗(ηx)esB

G22 =n1/2

∫
dxdy κ`2V (`(x− y))b∗(γx)

∫ 1

0

ds e−sBb∗yb
∗(ηx)esB

G23 =n1/2

∫
dxdy κ`2V (`(x− y))d∗x

∫ 1

0

ds e−sBb∗yb
∗(ηx)esB

(3.70)

In G21 we expand further

G21 =n1/2

∫
dxdy κ`2V (`(x− y))b(σx)

∫ 1

0

ds
(
b∗y + b∗(p(s)

y ) + b(σ(s)
y ) + (d(s)

y )∗
)
e−sBb∗(ηx)esB

(3.71)

where we denote again σ(s) = sinh(sη), p(s) = cosh(sη)− 1 and (d
(s)
y )∗ is defined as d∗y in (3.2)

with η in B, γ and σ substituted with sη. We commute by to the left using (2.5), so that

b(σx)b∗y =

∫
dw σ(w, x)bwb

∗
y =

∫
dw σ(w, x)

(
b∗ybw + δ(y − w)(1−N+/n)− n−1a∗yaw

)
= σ(y, x)(1−N+/n) + b∗yb(σx)− n−1a∗ya(σx)

(3.72)

21



Hence

G21 =n1/2

∫
dxdy κ`2V (`(x− y))σ(y, x)

∫ 1

0

ds e−sBb∗(ηx)esB

+ n1/2

∫
dxdy κ`2V (`(x− y))

×
(
− σ(y, x)N+/n+ b∗yb(σx)− n−1a∗ya(σx)

) ∫ 1

0

ds e−sBb∗(ηx)esB

+ n1/2

∫
dxdy κ`2V (`(x− y))b(σx)

×
∫ 1

0

ds
(
b∗(p(s)

y ) + b(σ(s)
y ) + (d(s)

y )∗
)
e−sBb∗(ηx)esB

=: G211 + G212 + G213

(3.73)

We use that ∫ 1

0

ds

∫
dz η(z, x) coshsη(w, z) = sinhη(x,w)

and ∫ 1

0

ds

∫
dz η(z, x) sinhsη(w, z) = (coshη −1)(x,w),

resulting in

G211 =n1/2

∫
dxdy κ`2V (`(x− y))σ(y, x)

∫
dz η(z, x)

∫ 1

0

ds
(
b∗(γ(s)

z ) + b(σ(s)
z )
)

+ n1/2

∫
dxdy κ`2V (`(x− y))σ(y, x)

∫
dz η(z, x)

∫ 1

0

ds(d(s)
z )∗

=n1/2

∫
dxdy κ`2V (`(x− y))σ(y, x)

(
b∗(σx) + b(px)

)
+ n1/2

∫
dxdy κ`2V (`(x− y))σ(y, x)

∫
dz η(z, x)

∫ 1

0

ds(d(s)
z )∗

= : G2111 + G2112

(3.74)

In G2111 we split σ = η + r and write

G2111 =n1/2

∫
dxdy κ`2V (`(x− y))η(y, x)

(
b∗(σx) + b(px)

)
+ E1 (3.75)

The first contribution plus its hermitian conjugate adds up to the first term in the second line
of (3.62) plus its hermitian conjugate to give the first contribution in (3.57), while

|〈ξ, E1ξ〉| ≤ n1/2

∫
dxdy κ`2V (`(x− y))|r(y, x)|‖

(
b∗(σx) + b(px)

)
ξ‖

≤ Cκn1/2`−1‖(N+ + 1)1/2ξ‖‖ξ‖
(3.76)

where we used (2.33) and (2.31). We estimate G2112 using estimate (2.29), (2.33) and (2.31) to
bound σ(y, x), and then estimates (3.3) and (2.31)

|〈ξ,G2112ξ〉| ≤ Cn3/2‖(N+ + 1)1/2ξ‖

×
∫
dxdy κ`2V (`(x− y))

∫
dz |η(z, x)|‖(N+ + 1)−1/2dzξ‖

≤ Cn3/2‖(N+ + 1)1/2ξ‖
(∫

dxdy κ`2V (`(x− y))

∫
dz |η(z, x)|2

)1/2

×
(∫

dxdy κ`2V (`(x− y))

∫
dz ‖(N+ + 1)−1/2dzξ‖2

)1/2

≤ Cκn1/2`−1‖(N+ + 1)1/2ξ‖‖(N+ + 1)ξ‖

(3.77)
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Next we analyze G212 in (3.73). Using (2.29), (2.33) and (2.31) to bound σ(y, x), as well as
ηx, Lemma 3.1 and Lemma 3.9, we estimate

|〈ξ,G212ξ〉| ≤ n1/2

∫
dxdy κ`2V (`(x− y))

× ‖
(
− σ(y, x)N+/n+ b(σx)∗by − n−1a∗(σx)ay

)
ξ‖
∫ 1

0

ds ‖b∗(ηx)esBξ‖

≤ κn1/2`−1‖(N+ + 1)ξ‖‖(N+ + 1)1/2ξ‖
(3.78)

Similar arguments lead to the estimate for the last term in (3.73):

|〈ξ,G213ξ〉| ≤ n1/2

∫
dxdy κ`2V (`(x− y))

×
∫ 1

0

ds ‖
(
b(p(s)

y ) + b∗(σ(s)
y ) + d(s)

y

)
b∗(σx)ξ‖‖b∗(ηx)esBξ‖

≤ κn1/2`−1‖(N+ + 1)ξ‖‖(N+ + 1)1/2ξ‖

(3.79)

We consider G22 in (3.70) next. We expand it as

G22 =n1/2

∫
dxdy κ`2V (`(x− y))b∗(γx)

∫ 1

0

ds
(
b∗(γ(s)

y ) + b(σ(s)
y ) + (d(s)

y )∗
)
e−sBb∗(ηx)esB

(3.80)

and estimate it as

|〈ξ,G22ξ〉| ≤ n1/2

∫
dxdy κ`2V (`(x− y))

×
∫ 1

0

ds ‖
(
by + b(p(s)

y ) + b∗(σ(s)
y ) + (d(s)

y )
)(
bx + b(px)

)
ξ‖‖b∗(ηx)esBξ‖

≤n1/2

∫
dxdy κ`2V (`(x− y))

∫ 1

0

ds ‖b∗(ηx)esBξ‖
[
‖bybxξ‖

+ ‖byb(px)ξ‖+ ‖
(
b(p(s)

y ) + b∗(σ(s)
y ) + d(s)

y

)(
bx + b(px)

)
ξ‖
]

≤ Cκ1/2n1/2`−1/2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖+ Cκn1/2`−1‖(N+ + 1)1/2ξ‖‖(N+ + 1)ξ‖

(3.81)

where we used Lemma 3.1, Lemma 3.9 and Lemma 3.2. In order to bound the last contribution
in (3.70), we estimate, similarly as we did for G22,

|〈ξ,G23ξ〉| ≤ n1/2

∫
dxdy κ`2V (`(x− y))

∫ 1

0

ds ‖
(
b(γ(s)

y ) + b∗(σ(s)
y ) + (d(s)

y )
)
dxξ‖‖b∗(ηx)esBξ‖

≤ Cκ1/2n1/2`−1/2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖+ Cκn1/2`−1‖(N+ + 1)1/2ξ‖‖(N+ + 1)ξ‖

(3.82)

We analyze finally the last contribution in (3.60), given by

G3 = n1/2

∫
dxdy κ`2V (`(x− y))e−Bb∗xe

B

×
∫ 1

0

ds
(
b((ηγ(s))y) + b∗((ησ(s))y)

)(
b(γ(s)

x ) + b∗(σ(s)
x ) + d(s)

x

)
+ n1/2

∫
dxdy κ`2V (`(x− y))e−Bb∗xe

B

×
∫ 1

0

ds

∫
dz η(z, y)d(s)

z

(
b(γ(s)

x ) + b∗(σ(s)
x ) + d(s)

x

)
=: G31 + G32

(3.83)
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With Lemma 3.1, Lemma 3.9 and Lemma 3.2 and the bounds (2.31) and (2.32) we get

|〈ξ,G31ξ〉| ≤ n1/2

∫
dxdy κ`2V (`(x− y))‖bxeBξ‖

×
∫ 1

0

ds ‖
(
b((ηγ(s))y) + b∗((ησ(s))y)

)(
b(γ(s)

x ) + b∗(σ(s)
x ) + d(s)

x

)
ξ‖

≤ Cκn1/2`−1‖(N+ + 1)1/2ξ‖‖(N+ + 1)ξ‖;
(3.84)

and

|〈ξ,G32ξ〉| ≤ n1/2

∫
dxdy κ`2V (`(x− y))‖bxeBξ‖

×
∫ 1

0

ds

∫
dz |η(z, y)|‖d(s)

z

(
b(γ(s)

x ) + b∗(σ(s)
x ) + d(s)

x

)
ξ‖

≤ Cκn1/2`−1‖(N+ + 1)1/2ξ‖‖(N+ + 1)ξ‖

(3.85)

Putting together (3.65), (3.66), (3.67), (3.68), (3.76), (3.77), (3.78), (3.79), (3.81), (3.82), (3.84)
and (3.85) we arrive at (3.58).

3.6 Analysis of G(4)n,`

Recall the definition of L(4)
n,` in (2.10). We define the error E(4)

n by

G(4)
n,` = e−BL(4)

n,`e
B = V` +

1

2

∑
p,q,r,s∈Λ∗

1,+

V`,pqrs〈ϕs ⊗ ϕr, η〉〈η, ϕp ⊗ ϕq〉

+
1

2

∑
p,q,r,s∈Λ∗

1,+

(
V`,pqrs〈ϕs ⊗ ϕr, η〉b̂∗pb̂∗q + h.c.

)
+ E(4)

n

(3.86)

It can be estimated as in the Proposition below.

Proposition 3.10. Let E(4)
n be defined as in (3.86). Then, under the same assumptions as

Proposition 2.3 for every δ > 0 there exists a C > 0 such that

± E(4)
n,` ≤ δV` + Cκn`−1(N+ + 1) (3.87)

as operator inequalities on F≤N+ .

Proof. The proof of (3.87) follows closely [10, Section 5.6] and [5, Section 4.5]. We write

e−BL(4)
n eB =

1

2

∫
dxdy κ`2V (`(x− y))e−Ba∗xa

∗
yaxaye

B

= V` +
1

2

∫
dxdy κ`2V (`(x− y))

∫ 1

0

ds e−sB [a∗xa
∗
yaxay, B]esB

= V` +
1

2

∫
dxdy κ`2V (`(x− y))

∫ 1

0

ds e−sBb∗xb
∗
y

(
axa
∗(ηy) + a∗(ηx)ay + h.c.

)
esB

(3.88)

We expand e−sB
(
axa
∗(ηy) + a∗(ηx)ay

)
esB further and get

e−BL(4)
n eB − V` = (W1 + W2 + W3 + W4) + h.c. (3.89)
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with

W1 =
1

2

∫
dxdy κ`2V (`(x− y))η(x, y)

∫ 1

0

ds e−sBb∗xb
∗
ye
sB

W2 =

∫
dxdy κ`2V (`(x− y))

∫ 1

0

ds e−sBb∗xb
∗
ye
sBa∗(ηx)ay

W3 =

∫
dxdy κ`2V (`(x− y))

∫ 1

0

ds e−sBb∗xb
∗
ye
sB

∫ s

0

dt e−tBb(η2
x)bye

tB

W4 =

∫
dxdy κ`2V (`(x− y))

∫ 1

0

ds e−sBb∗xb
∗
ye
sB

∫ s

0

dt e−tBb∗(ηy)b∗(ηx)etB

(3.90)

The term W1 results from normal ordering of axa
∗(ηy); in W3 the notation η2

x(w) stands for∫
dz η(w, z)η(z, x). We start with analyzing W1. With the relations (3.2) we further expand it

as

W1 =
1

2

∫
dxdy κ`2V (`(x− y))η(x, y)

∫ 1

0

ds
(
b∗(γ(s)

x ) + b(σ(s)
x )
)(
b∗(γ(s)

y ) + b(σ(s)
y )
)

+
1

2

∫
dxdy κ`2V (`(x− y))η(x, y)

∫ 1

0

ds
(
d(s)
x

)∗(
b∗(γ(s)

y ) + b(σ(s)
y )
)

+
1

2

∫
dxdy κ`2V (`(x− y))η(x, y)

∫ 1

0

ds
(
b∗(γ(s)

x ) + b(σ(s)
x )
)(
d(s)
y

)∗
+

1

2

∫
dxdy κ`2V (`(x− y))η(x, y)

∫ 1

0

ds
(
d(s)
x

)∗(
d(s)
y

)∗
=: W11 + W12 + W13 + W14,

(3.91)

where, for x, y ∈ Λ1, γ
(s)
x (y), σ

(s)
x (y) and d

(s)
x are defined as in (3.1) and (3.2) respectively,

with η substituted by sη. Multiplying out the product in W11 and normal ordering the term

b(σ
(s)
x )b∗(γ

(s)
y ) leads to

W11 =
1

2

∫
dxdy κ`2V (`(x− y))η(x, y)ds

(
b∗xb
∗
y +

1

2
η(x, y)

)
+ W112

(3.92)

with

W112 =
1

2

∫
dxdy κ`2V (`(x− y))η(x, y)

∫ 1

0

ds
[
b∗yb(σx)− n−1a∗ya(σx) + r(s)(x, y)

−N+n
−1σ(s)(x, y) + b∗xb

∗(p(s)
y ) + b∗(p(s)

x )
(
b∗y + b∗(p(s)

y )
)

+
(
b∗x + b∗(p(s)

x )
)
b(σ(s)

y )

+ b(σ(s)
x )
(
b∗(p(s)

y ) + b∗(σ(s)
y )
)]

(3.93)

where p
(s)
x (y) = γ

(s)
x (y) − δ(x − y) and r

(s)
x (y) = σ

(s)
x (y) − sηx(y). The first line in (3.92),

together with its hermitian conjugate, gives the main terms in (3.86). To estimate W112 we first
use (2.29) and then apply Lemma 3.5 with estimate (2.32) (for the term proportional to r(s) we
use (2.33) and for the term proportional to σ(s) we use (2.29) and (2.33)). This way we obtain

|〈ξ,W112ξ〉| ≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 (3.94)

To control W12 we use Lemma 3.2 and (2.29):

|〈ξ,W12ξ〉| ≤ C
∫
dxdy κ`2V (`(x− y))|η(x, y)|

∫ 1

0

ds ‖d(s)
x ξ‖‖

(
b∗(p(s)

y ) + b(σ(s)
y )
)
ξ‖

+ C‖(N+ + 1)1/2ξ‖
∫
dxdy κ`2V (`(x− y))|η(x, y)|

∫ 1

0

ds ‖(N+ + 1)−1/2byd
(s)
x ξ‖

≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 + Cκ1/2n1/2`−1/2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖

(3.95)
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Similarly, for W13 and for W14 we have

|〈ξ,W13ξ〉| ≤ C‖(N+ + 1)1/2ξ‖
∫
dxdy κ`2V (`(x− y))|η(x, y)|∫ 1

0

ds ‖(N+ + 1)−1/2d(s)
y

(
b(γ(s)

x ) + b∗(σ(s)
x )
)
ξ‖

≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 + Cκ1/2n1/2`−1/2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖

(3.96)

and

|〈ξ,W14ξ〉| ≤ C‖(N+ + 1)1/2ξ‖
∫
dxdy κ`2V (`(x− y))|η(x, y)|

∫ 1

0

ds ‖(N+ + 1)−1/2d(s)
y d(s)

x ξ‖

≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 + Cκ1/2n1/2`−1/2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖

(3.97)

Next we consider W2. By using (3.2) and Lemma 3.2, wee observe that

‖(N+ + 1)1/2e−sBbxbye
sBξ‖ ≤ C

[
‖axay(N+ + 1)1/2ξ‖+ ‖η‖‖ηy‖‖ax(N+ + 1)ξ‖

+ |η(x, y)|‖(N+ + 1)1/2ξ‖+ ‖η‖‖ηx‖‖ay(N+ + 1)ξ‖+ ‖η‖‖ηx‖‖ηy‖‖(N+ + 1)3/2ξ‖
]
,

(3.98)

Combining this with estimate (2.31) we conclude that

|〈ξ,W2ξ〉|

≤ C
∫
dxdy κ`2V (`(x− y))

∫ 1

0

ds ‖(N+ + 1)1/2e−sBbxbye
sBξ‖‖(N+ + 1)−1/2a∗(ηx)ayξ‖

≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 + Cκ1/2n1/2`−1/2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖

(3.99)

With similar arguments to those used to prove (3.98) (in particular, using the last two estimates
in Lemma 3.2), we also obtain

‖(N+ + 1)−1/2e−sBb(η(2)
x )bye

sBξ‖ = ‖(N+ + 1)−1/2

∫
dz η(2)(x, z)e−sBbzbye

sBξ‖

≤ C
[
‖η‖‖ηx‖‖ayξ‖+ ‖η‖‖ηx‖‖ηy‖‖(N+ + 1)1/2ξ‖

] (3.100)

and

‖(N+ + 1)−1/2e−sBb(η(2)
x )b(ηy)esBξ‖ = ‖(N+ + 1)−1/2

∫
dzdt η(x, z)η(y, t)e−sBbzbte

sBξ‖

≤ C‖η‖‖ηx‖‖ηy‖‖(N+ + 1)1/2ξ‖
(3.101)

leading to

|〈ξ,W3ξ〉|, |〈ξ,W4ξ〉| ≤ Cκn`−1‖(N+ + 1)1/2ξ‖2 + Cκ1/2n1/2`−1/2‖(N+ + 1)1/2ξ‖‖V1/2
` ξ‖.

(3.102)

Estimate (3.102), together with (3.94), (3.95), (3.96), (3.97) and (3.99) conclude the proof of
(3.87).

3.7 Proof of Proposition 2.3

Proof of Prop. 2.3. From Propositions 3.3, 3.4, 3.6, 3.7, 3.8 and 3.10 we conclude that the
excitation Hamiltonian Gn,` can be written as

e−BLn,`eB = Cn,` + Ln,` +K +Qn,` + V` + En,`
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where the operators K and V` are defined as in (2.39), the constant contribution (i.e. the term
not depending on operators) Cn,` is given by (2.41), the linear terms are given by

Ln,` = n3/2

∫
dxdy κ`2V (`(x− y))

[
b(γx) + b∗(σx) + h.c.

]
+ n1/2

∫
dxdy κ`2V (`(x− y))η(y, x)

[
b(γx) + b∗(σx) + h.c.

] (3.103)

and the quadratic terms are

Qn,` = −1

2

∑
p,r∈Λ∗

1,+

(
〈ϕp ⊗ ϕr,

(
∆1 + ∆2

)
η〉b̂∗pb̂∗r + h.c.

)
+

1

2

∑
p,q∈Λ∗

1,+

(
nV`,pq00b̂

∗
pb̂
∗
q + h.c.

)
+

1

2

∑
p,q,r,s∈Λ∗

1,+

(
V`,pqrs〈ϕs ⊗ ϕr, η〉b̂∗pb̂∗q + h.c.

) (3.104)

The error term En,` satisfies

±En,` ≤ δ(K + V`) + Cκn`−1(N+ + 1).

We first consider the linear terms in (3.103). Decomposing η in the second line of (3.103)
with the aid of (2.25), we have

Ln,` = L1 + L2 + L3 (3.105)

with

L1 = n3/2

∫
dxdy κ`2V (`(x− y))`3f`(x, y)

[
b(γx) + b∗(σx) + h.c.

]
L2 = n3/2

∫
dxdy κ`2V (`(x− y))

∫
dz
(
w`(z, y) + w`(x, z)

)[
b(γx) + b∗(σx) + h.c.

]
L3 = −n3/2

∫
dxdy κ`2V (`(x− y))

∫
dz1dz2 w`(z1, z2)

[
b(γx) + b∗(σx) + h.c.

] (3.106)

By estimates (2.16) and (2.32), it follows that for any ξ ∈ F≤n+

|〈ξ,L3ξ〉| ≤ Cn3/2

∫
dxdy κ`2V (`(x− y))|〈ξ,

(
b(γx) + b∗(σx)

)
ξ〉|
∫
dz1dz2 |w`(z1, z2)|

≤ Cκn3/2`−2

∫
dx|〈ξ,

(
b(γx) + b∗(σx)

)
ξ〉|
∫
dy κ`3V (`(x− y))

≤ Cκn1/2`−1‖N 1/2
+ ξ‖‖ξ‖.

(3.107)

For the term L2 we estimate

|〈ξ,L2ξ〉| ≤ n3/2

∫
dxdy κ`2V (`(x− y))

∫
dz |w`(z, y) + w`(x, z)||〈ξ,

(
b(γx) + b∗(σx)

)
ξ〉|

≤ n3/2

∫
dx|〈ξ,

(
b(γx) + b∗(σx)

)
ξ〉|
∫
dy κ`2V (`(x− y))

∫
dz |w`(z, y)|

+ n3/2

∫
dzdx |w`(x, z)||〈ξ,

(
b(γx) + b∗(σx)

)
ξ〉|
∫
dy κ`2V (`(x− y))

Using (2.15), (2.17) and (2.32), we get

|〈ξ,L2ξ〉| ≤ κ
n3/2

`2

∫
dx|〈ξ,

(
b(γx) + b∗(σx)

)
ξ〉|

+
n3/2

`

∫
dzdx |w`(x, z)||〈ξ,

(
b(γx) + b∗(σx)

)
ξ〉|
∫
dy κ`3V (`(x− y))

≤ Cκn3/2`−2‖N 1/2
+ ξ‖‖ξ‖ ≤ Cκn1/2`−1‖N 1/2

+ ξ‖‖ξ‖

(3.108)
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In order to control L1 in (3.106), we write it as

L1 = n3/2`−1c

∫
dx
[
bx + b(px) + b∗(σx) + h.c.

]
+ n3/2`−1

∫
dx
[
b(γx) + b∗(σx) + h.c.

] [∫
dy κ`3V (`(x− y))`3f`(x, y)− c

]
=: L11 + L12

(3.109)

for a constant c ∈ R. The expectation on ξ ∈ F≤n+ of L11 in (3.109) vanishes for any c, since
σ, p ∈ L2

+(R3)× L2
+(R3). We define

h`(x) =

∫
dy κ`3V (`(x− y))`3f`(x, y)

and we set c = h`(0), where h`(0) is the function h` evaluated at the center of the box. Let
d(x) denote the distance of x from the boundary of the box. We denote with S4/` the set of all
x ∈ Λ1 with d(x) < 4R0/`, where R0 is the diameter of the support of V . We call χS4/`

the
characteristic function of this set. We split L12 as

L12 = n3/2`−1

∫
dx
[
b(γx) + b∗(σx) + h.c.

]
[h`(x)− h`(0)]χSc

4/`
(x)

+ n3/2`−1

∫
dx
[
b(γx) + b∗(σx) + h.c.

]
[h`(x)− h`(0)]χS4/`

(x)

= L121 + L122

(3.110)

From (2.14) it follows that supx∈Λ1
h`(x) ≤ Cκ, for a constant C > 0; therefore

|〈ξ,L122ξ〉| ≤ Cκn3/2`−1‖ξ‖
∫
dx ‖(b(γx) + b∗(σx))ξ‖χS4/`

(x)

≤ Cκn3/2`−1‖ξ‖‖(N+ + 1)1/2ξ‖
(∫

dxχS4/`
(x)

)1/2

≤ Cκn3/2`−3/2‖ξ‖‖(N+ + 1)1/2ξ‖

(3.111)

where we used Cauchy-Schwarz, (2.32) and (2.27). Using the same bounds, we obtain for L121

|〈ξ,L121ξ〉| ≤ Cn3/2`−1‖ξ‖
∫
dx ‖

[
b(γx) + b∗(σx) + h.c.

]
ξ‖|h`(x)− h`(0)|χSc

4/`
(x)

≤ Cn3/2`−1‖ξ‖‖(N+ + 1)1/2ξ‖‖|h` − h`(0)|χSc
4/`
‖2

(3.112)

Calling h(x) =
∫

Λ`
dy κV (x− y)f(x, y), we have∫

Sc
4/`

dx |h`(x)− h`(0)|2 =

∫
Sc
4/`

dx

∣∣∣∣∫ dy κ`3V (`(x− y))`3f`(x, y)− h`(0)

∣∣∣∣2
= `−3

∫
Sc4

dx
∣∣`3h(x)− `3h(0)

∣∣2 (3.113)

where Sc4 is the set of points in Λ` whose coordinates are at a distance bigger than 4R0 from
the boundary. We write

h(x)− h(0) =

∫ 1

0

dt∇h(tx)x

and it remains to calculate ∇h. We have

∂xih(x) = −
∫

Λ`

dy κ∂yiV (x− y)f(x, y) +

∫
Λ`

dy κV ((x− y)∂xif(x, y)

= −
∫
∂Λ`

dσy κV (x− y)f(x, y)νi +

∫
Λ`

dy κV (x− y)(∂xi + ∂yi)f(x, y)
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The boundary contribution above vanishes for x ∈ Sc4. Moreover, using (2.18) and the fact that
V is bounded and compactly supported we obtain

|∇xh(x)| ≤ Cκ`−3
(
d
(
x
)

+ 1
)−5/3

. (3.114)

Therefore

`3|h(x)− h(0)| ≤ Cκ
[ ∫ 1

0

dt
(
d
(
tx
)

+ 1
)−5/3|x|

]
To compute the integral, assume that x(3) ≥ max{|x(1)|, |x(2)|}. Than d(tx) = `/2− tx(3), and
hence∫ 1

0

dt
(
d
(
tx
)

+ 1
)−5/3

=
3

2x(3)

(
1(

`/2 + 1− x(3)
)2/3 − 1

(`/2 + 1)
2/3

)
≤ 3
√

3

2|x|
1

(d(x) + 1)
2/3

where we used that |x|2 ≤ 3 |x(3)|2. In particular,

`3|h(x)− h(0)| ≤ Cκ

(d(x) + 1)
2/3 (3.115)

from which it easily follows that∫
Sc4

dx
∣∣`3(h(x)− h(0)

)∣∣2 ≤ Cκ2`2 (3.116)

We have therefore proved that

|〈ξ,L121ξ〉| ≤ Cκn3/2`−3/2‖(N+ + 1)1/2ξ‖‖ξ‖. (3.117)

We examine now the quadratic contributions in (3.104), given by

Qn,` =
n

2

∫
dxdy

[
(∆x + ∆y)w`(x, y) + κ`2V (`(x− y))

(
1− w`(x, y)

)]
[bxby + b∗xb

∗
y]

By equation (2.21) and 1− w`(x, y) = `3f`(x, y), we have

Qn,` =
n`5

2
λ`

∫
dxdy f`(x, y)[bxby + b∗xb

∗
y]

For any ξ ∈ F≤n+ we estimate

|〈ξ,Qn,`ξ〉| ≤ Cκn`2
∫
dy |〈b∗(f`(·, y))ξ, byξ〉|

≤ Cκn`2‖f`‖2‖(N+ + 1)1/2ξ‖2 ≤ Cκn
`
‖(N+ + 1)1/2ξ‖2

where we used (2.12) and the fact that f is normalized to 1 in Λ` × Λ`, so ‖f`‖2 = `−3. This
concludes the proof of Prop. 2.3.

4 Proof of Theorem 1.1 and Corollary 1.2

We shall now use Proposition 2.3 and Lemma 3.1 in order to prove Theorem 1.1.

Proof of Theorem 1.1. Using the bounds K =
∑
p∈Λ∗

1,+
p2a∗pap ≥ π2

∑
p∈Λ∗

1,+
a∗pap = π2N+,

V` ≥ 0 and setting δ = 1/3, we have, from (2.40),

Gn,` ≥ Cn,` + (1− δ)(K + V`)− κC
n

`
(N+ + 1) ≥ Cn,` +

(2

3
− κ C

π2

n

`

)
K − Cκn

`
(4.1)

Assuming κn/` small enough we get

Gn,` ≥ Cn,` +
π2

2
N+ − Cκ

n

`
≥ Cn,` − Cκ

n

`
(4.2)
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Equation (2.40) also implies (taking δ = 1) the upper bound

Gn,` ≤ Cn,` + 2(K + V`) + Cκ
n

`
(N+ + 1) (4.3)

From (4.3) (evaluated on the vacuum) and (4.2) it follows that

|en,` − Cn,`| ≤ Cκ
n

`
(4.4)

Using equation (2.41), the definition of η (in equation (2.22)) and the fact that it is orthogonal
to the condensate wave function ϕ0 we write

Cn,` =
n2

2`4

∫
Λ`×Λ`

dxdy
[
κV (x− y)|1− w(x, y)|2 + |∇xw(x, y)|2 + |∇yw(x, y)|2

]
+Rn,` (4.5)

where

Rn,` = −n
2

2

∫
dxdydz

[
w`(z, y) + w`(x, z)−

∫
dtw`(z, t)

]
(∆x + ∆y)w`(x, y) (4.6)

Recalling the definition 1− w = `3f , where f is the minimizer of (2.11) in Proposition 2.1, we
conclude that

Cn,` = 4πa
n2

`

(
1 +O

(a
`

ln(`/a)
))

+Rn,` (4.7)

The error Rn,` can be controlled by substituting equation (2.21) for (∆x+∆y)w`(x, y) and using
estimates (2.14) for f` and (2.16) for w`. This gives |Rn,`| ≤ Cκn2`−2. Equations (4.4) and
(4.7) imply (1.10).

Let now ψn ∈ L2
s(Λ

n
1 ) be a normalized wave function, with

〈ψn, Hn,`ψn〉 ≤ en,` + ζ

for some ζ > 0 and en,` the ground state energy of Hn. We define ξn = e−BUnψn ∈ F≤n+ .
Therefore

〈ξn,Gn,`ξn〉 = 〈ψn, Hnψn〉 ≤ en,` + ζ

From (4.2) and (4.4) we have

π2

2
〈ξn,N+ξn〉 ≤ ζ + Cκ

n

`
(4.8)

Using (2.7), Lemma 3.1 and (2.27) we have

n− 〈ψn, â∗0â0ψn〉 = 〈ψn, U∗nN+Unψn〉 ≤ C〈ξn,N+ξn〉 ≤
2C

π2
(ζ + κn`−1) (4.9)

which implies (1.11).

Corollary 1.2 follows from Theorem 1.1.

Proof of Corollary 1.2. Inequality (1.10) implies that for n < c
κ` =: p (where c is a small enough

number) there exists a C > 0 such that

E(n, `) ≥ 4πa
[n2

`3
− C n

`3
− Can

2

`4
ln(`/a)

]
. (4.10)

We need now a bound in the case n ≥ p. Following [26], we observe that since V is non-negative,

E(n+ n′, `) ≥ E(n, `) + E(n′, `),

where we dropped the interactions between the n particles and the n′ particles. It follows that

E(n, `) ≥
[
n

p

]
E(p, `) ≥ n

2p
E(p, `) (4.11)
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where
[
n
p

]
is the largest integer smaller than n

p . We use the latter estimate for n ≥ p. Calling

cn the relative number of cells containing n particles, we have that

E(N,L)

N
≥4πa

ρ`6
inf
{∑
n<p

cn

(
n2 − Cn− Can

2

`
ln(`/a)

)
+

1

2

∑
n≥p

cnn
(
p− C − Cap

`
ln(`/a)

)} (4.12)

Defining A = 1− Ca ln(`/a)
` , we need therefore to minimize∑

n<p

cn
(
n2A− nC

)
+

1

2

∑
n≥p

cnn
(
pA− C

)
(4.13)

with the constraints ∑
n≥0

cn = 1,
∑
n≥0

cnn = ρ`3.

We define the variable
t =

∑
n<p

cnn ≤ ρ`3;

we have therefore, by Cauchy-Schwarz,∑
n<p

cn
(
n2A− nC

)
+

1

2

∑
n≥p

cnn
(
pA− C

)
≥ t2A− tC +

1

2
(ρ`3 − t)(pA− C) (4.14)

which we minimize for 1 ≤ t ≤ ρ`3. If p is large enough, for example p ≥ 4ρ`3 (note that this
imposes that `2 ≥ c(4κρ)−1), we obtain that t = ρ`3 and the minimum of (4.14) is (ρ`3)2A −
ρ`3C. This means that

E(N,L)

N
≥4πaρ

[
1− Ca ln(`/a)

`
− C

ρ`3

]
(4.15)

We set ` = (c/4)1/2(κρ)−1/2 and we obtain, for a new constant C > 0,

E(N,L)

N
≥4πaρ

[
1− C(ρa3)1/2 ln(ρ/a)− C(ρa3)1/2

]
(4.16)

A The two-body problem in the Neumann box

This Appendix is devoted to proving Propositions 2.1 and 2.2. We will use the following Lemma.

Lemma A.1. Let Ω = [−`/2, `/2]6 and let ε be such that 0 < ε`2 ≤ 1. For y ∈ Ω let Gε(x, y)
be the solution of (

−∆x + ε
)
Gε(x, y) = δy(x) (A.1)

on Ω with Neumann boundary conditions. There exists a constant C > 0 (independent of ε and
`) such that

Gε(x, y) ≤ C
( 1

|x− y|4
+

1

`6ε

)
(A.2)

for every x, y ∈ Ω. Moreover, let G̃ε be the unique solution of(
−∆x + ε

)
G̃ε(x− y) = δy(x) (A.3)

on R6 decaying at infinity. Then there exists a constant C > 0 such that for 1 ≤ i ≤ 6

|∂x(i)Gε(x, y)− ∂x(i)G̃ε(x− y)| ≤ C

[∑
n

1

|x− yn|5
+

1

ε1/2`6

]
(A.4)

where the yn are the (at most 36−1) points obtained by reflecting y, yn with respect to the planes
generated by the sides of the box, whose distance from y is less than ` (each reflected point is
counted only once, and among the yn we don’t include y itself).
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Proof. The solution G̃ε to (A.3) can be expressed as

G̃ε(x) =
ε

23π3

K2(
√
ε|x|)

|x|2
(A.5)

where K2 is the modified Bessel function of the third kind of order 2 (see [2]). From the
properties of K2 we deduce that for large ε1/2|x|

G̃ε(x) =
ε3/4e−

√
ε|x|

|x|2+1/2

(
1 +O((

√
ε|x|)−1)

)
(A.6)

while for small ε1/2|x| there exists a constant C1 > 0 such that

G̃ε(x) =
C1

|x|4
+O(ε|x|−2) (A.7)

We obtain the Green function Gε on Ω with Neumann boundary conditions as follows. For
x, y ∈ Ω,

Gε(x, y) = G̃ε(x− y) +
∑

n∈Z6\{0}

G̃ε(x− yn) (A.8)

where the positions yn are all possible reflections (each counted only once) of y and yn with
respect to the infinite planes obtained by extending the sides of the box Ω and their periodic
replicas over all R6. This operation gives rise to a grid, and each six-dimensional cell contains
one and only one yn (therefore the label n ∈ Z6\{0} also identifies the cell where yn belongs).
The positions yn can be thought as positions of image charges, whose contributions cancels the
normal derivative of Gε on ∂Ω. Given a point y = (y(1), . . . , y(6)) ∈ Ω, the coordinates of its
image charges are, for j = 1, . . . , 6,

y(j)
n = n(j)`+ (−1)n

(j)

y(j).

In order to estimate (A.8), we deduce from (A.6) and (A.7) that for any 0 < λ < 1 there
exists a Cλ > 0 such that

G̃ε(x) ≤ Cλe
−λ
√
ε|x|

|x|4
. (A.9)

Using the estimate above, for the charges that are such that |x− yn| ≥ ` we bound the contri-
bution in the second term on the right-hand side of (A.8) as∣∣∣∣∣∣

∑
n∈Z6\{0}

e−λ
√
ε|x−yn|

|x− yn|4

∣∣∣∣∣∣ ≤ Cλ
`4

∑
n∈Z6\{0}

e−λ
√
ε|n|`

|n|4

We estimate the sum with an integral (this can be done since the summand is a continuous
decreasing function of n on R6\B1(0), where B1(0) is the ball or radius one centered in zero),
so that ∑

n∈Z6\{0}

e−λ
√
ε|n|`

|n|4
≤
∫
R6\B1(0)

dn
e−λ
√
εn`

|n|4
=

1

(λ
√
ε`)2

∫
R6\B1(0)

dn
e−|n|

|n|4

and therefore ∣∣∣∣∣∣
∑

n∈Z6\{0}

e−λ
√
ε|x−yn|

|x− yn|4

∣∣∣∣∣∣ ≤ Cλ
ε`6

(A.10)

Only a finite number of yn are such that |x− yn| < `, and for those we bound |x− y| ≤ |x− yn|.
We thus obtain (A.2).

We consider now ∂xiG̃ε(x), given by

∂x(i)G̃ε(x) = −xi
ε3/2

23π3

K3(
√
ε|x|)

|x|3
(A.11)
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(see [2, Chapter 3] for properties of the Bessel function of the third kind). For large ε1/2|x|,

∂x(i)G̃ε(x) ' Cxi
ε5/4

|x|3+1/2
e−
√
ε|x| (A.12)

For small ε1/2|x|,

∂x(i)G̃ε(x) ' C xi
|x|6 (A.13)

The two equations above imply that for any 0 < λ < 1 there exists a Cλ > 0 such that

|∂x(i)G̃ε(x)| ≤ Cλ
|x|5

e−λ
√
ε|x|. (A.14)

Similarly as above, we sum the contribution from charges such that |x− yn| > `, so that∣∣∣ ∑
|x−yn|>`

∂x(i)G̃ε(x− yn)
∣∣∣ ≤ Cλ ∑

n∈Z6\{0}

1

|x− yn|5
e−λ
√
ε|x−yn| ≤ Cλ

ε1/2`6 (A.15)

Therefore

|∂x(i)Gε(x, y)− ∂x(i)G̃ε(x− y)| ≤
∑

n 6=0, |x−yn|<`

C

|x− yn|5
+

C

ε1/2`6 (A.16)

for a constant C > 0.

Proof of Proposition 2.1. Existence and uniqueness of minimizers can be proved by standard
methods. We start by proving (2.12). Let f0 be the zero-energy scattering solution defined in
(1.2), and f(x1, x2) = f0(x1 − x2) for x1, x2 ∈ Λ`. We write ψ = fg and integrate by parts.
Calling Λ` × Λ` = Ω and writing ∇ for ∇x, with x = (x1, x2), we have∫

Ω

(
|∇ψ|2 + κV |ψ|2

)
=

∫
Ω

f2|∇g|2 +

∫
∂Ω

g2fn̂ · ∇f

where n̂ is the unit outward normal vector, and we use the shorthand notation V (x) = V (x1−x2)
for simplicity. Note that n̂ · ∇f > 0 since f0 is an increasing function. By assumption V is
regular enough such that f0 ≥ c0 > 0 (see [14, Lemma 5.1] for properties of the zero energy
scattering equation). Let us write τ = δ∂Ωfn̂ · ∇f , so that the second term is simply

∫
g2τ . We

thus have ∫
Ω

(
|∇ψ|2 + κV |ψ|2

)
≥ c20

∫
Ω

|∇g|2 +

∫
Ω

g2τ (A.17)

Let us look for the lowest eigenvalue of the right-hand side, i.e., the largest λ such that

c20

∫
Ω

|∇g|2 +

∫
Ω

g2τ ≥ λ
∫

Ω

g2

Since f ≤ 1, this is also a lower bound to the eigenvalue we are looking for, i.e.,∫
Ω

(
|∇ψ|2 + κV |ψ|2

)
≥ λ

∫
Ω

g2 ≥ λ
∫

Ω

ψ2

Clearly λ ≤ `−6
∫
τ . Using that f ≤ 1 we have∫

τ ≤
∫
∂Ω

n̂ · ∇f =

∫
Ω

∆f ≤ 2

∫
Λ`×R3

dx1dx2(∆f0)(x1 − x2) = 8πa`3

We may assume that g shares the symmetries of Ω, in which case∫
Ω

g2τ = 12

∫
Ω

g2τ1

= 12

∫
Λ`

dx2

∫
[−`/2,`/2]2

dx⊥1 g(−`/2, x⊥1 , x2)2f(−`/2, x⊥1 , x2)

(
− `/2− x(1)

2

)
|(−`/2, x⊥1 )− x2|

f ′0((−`/2, x⊥1 )− x2)
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where we write the vector xj as (x
(1)
j , x⊥j ), and denote the radial derivative of f0 by f ′0. Using the

Schur complement formula, we have, with Q the projection orthogonal to the constant function
on Ω,

λ ≥ `−6

∫
τ − 122

`6
〈τ1, Q[Q(−c20∆− 8πa`−3)Q]−1Qτ1〉.

Since the spectral gap of −∆ equals (π/`)2 we can further bound

Q(−c20∆− 8πa`−3)Q ≥ c20
2
Q
(
−∆ + `−2

)
Q ≥ c20

2
Q
(
−∆x1 + `−2

)
Q

as long as c20(π2 − 1)/2 ≥ 8πa/`, which we assume henceforth. In particular,

Q
[
Q(−c20∆− 8πa`−3)Q

]−1
Q ≤ 2

c20
Q
[
−∆x1 + `−2

]−1
Q =

2

c20

[
−∆x1 + `−2

]−1 − 2`2

c20
P

with P = 1 − Q the projection onto the constant function. Observing that −2`2c−2
0 P can be

dropped for an upper bound, we thus have

λ ≥ `−6

∫
τ − 2 · 122

c20`
6
〈τ1, [−∆x1 + 1/`2]−1τ1〉

An analysis similar to Lemma A.1 shows that the integral kernel of [−∆x1+`−2]−1 on [−`/2, `/2]3

is bounded above by c1|x1 − y1|−1, hence

〈τ1, [−∆x1
+ 1/`2]−1τ1〉 ≤ c1

∫
Λ3
`

dx1dy1dx2
τ1(x1, x2)τ1(y1, x2)

|x1 − y1|

Using that f ≤ 1 as well as f ′0(x1) ≤ a/|x1|2, we have, for fixed x2,∫
Λ2
`

dx1dy1
τ1(x1, x2)τ1(y1, x2)

|x1 − y1|

≤
(
a
(
`/2 + x

(1)
2

))2
∫

[−`/2,`/2]4
dx⊥1 dy

⊥
1

1

|x⊥1 − y⊥1 |
1

|(−`/2, x⊥1 )− x2|3
1

|(−`/2, y⊥1 )− x2|3

≤ a2

`/2 + x
(1)
2

∫
R4

dx⊥1 dy
⊥
1

1

|x⊥1 − y⊥1 |
1

(1 + (x⊥1 )2)3/2

1

(1 + (y⊥1 )2)3/2

where `/2 + x
(1)
2 has been scaled out after extending the integral to R4. The final integral is

finite by the Hardy-Littlewood-Sobolev inequality. In order to obtain a better bound for x
(1)
2

close to −`/2, we use in addition that f ′0 is bounded, and hence that f ′0(x) ≤ c2a
1/2/|x|3/2 for

some c2 > 0. Thus∫
Λ2
`

dx1dy1
τ1(x1, x2)τ1(y1, x2)

|x1 − y1|

≤ a c22(`/2 + x
(1)
2 )2

∫
[−`/2,`/2]4

dx⊥1 dy
⊥
1

1

|x⊥1 − y⊥1 |
1

|(−`/2, x⊥1 )− x2|5/2
1

|(−`/2, y⊥1 )− x2|5/2

≤ a c22

∫
R4

dx⊥1 dy
⊥
1

1

|x⊥1 − y⊥1 |
1

(1 + (x⊥1 )2)5/4

1

(1 + (y⊥1 )2)5/4

where the integral is again finite by the Hardy-Littlewood-Sobolev inequality.
Altogether, we have thus shown that∫

Ω

dx1dy1
τ1(x1, x2)τ1(y1, x2)

|x1 − y1|
≤ Ca2 min

{
1

`/2 + x
(1)
2

,
1

a

}

Integrating this over x2 yields∫
Λ`

dx2

∫
Ω

dx1dy1
τ1(x1, x2)τ1(y1, x2)

|x1 − y1|
≤ Ca2`2 ln

`

a
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and thus

λ ≥ `−6

∫
τ − C a2

`4
ln
`

a

To complete the lower bound on λ, we need a lower bound on
∫
τ . We have∫

τ =
1

2

∫
∂Ω

n̂ · ∇f2 =
1

2

∫
Ω

∆f2 =

∫
Ω

(|∇f |2 + κV f2) = 8πa`3 −
∫

Λ`

dx1

∫
Λc`

(|∇f |2 + κV f2)

(A.18)
Using that ∆f2 = 2(|∇f |2 + κV f2) ≤ C min{a−2, a2/|x1 − x2|4}, the error term is bounded by

Ca2

∫
Λ`

dx1 min{(`/2 + x1
1)−1, 1/a} = Ca2`2 ln

`

a

We thus conclude that

λ ≥ 8πa`3 − Ca2`2 ln
`

a

and from (A.17) ∫
Ω

(
|∇ψ|2 + κV |ψ|2

)
≥ λ

∫
Ω

|g|2 ≥ λ
∫

Ω

|ψ|2 (A.19)

since f0 ≤ 1. In particular, λ` ≥ λ, and this concludes the lower bound. The upper bound
follows by taking the trial function ψ = f corresponding to g = 1 and using again (A.18)
together with

‖f‖22 ≥ `6 − Ca`5,

where the latter follows from (1.3). This completes the proof of (2.12).
The estimate (2.13) in point i) clearly follows from (2.12). We proceed with point ii). The

minimizer satisfies the eigenvalue equation on Ω with Neumann boundary conditions[
−∆x + κV (x)

]
f(x) = λ`f(x), (A.20)

with λ` = 8πa`−3
(
1 + O(a`−1 ln(`/a))

)
. As before x = (x1, x2) ∈ Λ` × Λ` = Ω and ∆x =

∆x1
+∆x2

. Abusing notation we wrote V (x) = V (x1−x2). It is useful to introduce a parameter
0 < ε ≤ `−2 and write (A.20) as(

−∆x + ε
)
f(x) =

(
λ` + ε− κV (x)

)
f(x). (A.21)

We can express the solution to (A.21) as

f(x) =

∫
Ω

dy Gε(x, y)
(
λ` + ε− κV (y)

)
f(y)

with Gε(x, y) defined in (A.1). Lemma A.1 and the positivity of the minimizer f , of Gε(x, y)
and of the potential V imply that

f(x) ≤ C(λ` + ε)

∫
Ω

dy
f(y)

|x− y|4
+
C(λ` + ε)

`6ε

∫
Ω

dy f(y) (A.22)

The last term can be bounded as∫
Ω

dy f(y) ≤ ‖f‖2‖χΩ‖2 = `3

We split the first integral in (A.22) as∫
Ω

dy
f(y)

|x− y|4
=

∫
Ω∩Bδ(x)

dy
f(y)

|x− y|4
+

∫
Ω\Bδ(x)

dy
f(y)

|x− y|4
(A.23)

for 0 < δ ≤ ` and Bδ(x) = {y ∈ R6 : |x− y| ≤ δ}. We have∫
Bδ(x)

dy
f(y)

|x− y|4
≤ Cδ2‖f‖∞ (A.24)
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and ∫
Ω\Bδ(x)

dy
f(y)

|x− y|4
≤ ‖f‖2

(∫
R6\Bδ(x)

dy
1

|x− y|8

)1/2

=
C

δ
(A.25)

Hence

‖f‖∞ ≤ C(λ` + ε)
[
δ2‖f‖∞ +

1

δ
+

1

`3ε

]
. (A.26)

We set ε = `−2 and δ2 =
(
2C(λ` + ε)

)−1
, so that ‖f‖∞ ≤ C ′`−3, proving (2.14).

In order to prove (2.15) in point iii), we decompose f as f = c + g, with
∫

Ω
g = 0 and

c = `−6
∫
f . We shall show that

‖g‖2 ≤ Cκ`−1 (A.27)

for a constant C > 0. Since

‖f − 1/`3‖22 ≤ 2‖f − c‖22 + 2‖c− 1/`3‖22 = 2‖g‖22 + 2|`3c− 1|2

and, since
‖f − c‖22 = 1− c2`6 ≥ |1− c`3|2,

we have
‖f − 1/`3‖22 ≤ 4‖g‖22

Hence (2.15) follows from (A.27). To prove (A.27) we write equation (A.21) as(
−∆x + ε

)
g(x) =

(
λ` − κV (x)

)
f(x) + εg(x) (A.28)

for some 0 < ε ≤ `−2. We have

g(x) =

∫
Ω

dy Gε(x, y)
(
λ` − κV (y)

)
f(y) + ε

∫
Ω

dy Gε(x, y)g(y) (A.29)

By Lemma A.1 and the Hardy-Littlewood-Sobolev and Hölder inequalities we have∥∥∥λ` ∫
Ω

dy Gε( · , y)f(y)
∥∥∥

2
≤ Cλ`

∥∥∥∫
Ω

dy
( 1

| · −y|4
+

1

`6ε

)
f(y)

∥∥∥
2

≤ Cλ`‖f‖6/5 + C
λ`
`3ε
‖f‖1 ≤

Cκ

`3ε

(A.30)

To bound the contribution proportional to V in (A.29), we use (2.14) and estimate∫
Ω

dy
( 1

|x− y|4
+

1

`6ε

)
V (y)f(y) ≤ C

`3

∫
Ω

dy
1

|x− y|4
V (y) +

C

`9ε

∫
Ω

dy V (y)

Using the notation y = (y1, y2) ∈ Λ` × Λ`, we observe that∫
Λ`×Λ`

dy1dy2
V (y1 − y2)[

|x1 − y1|2 + |x2 − y2|2
]2

≤
∫
R3

dy2 V (y2)

∫
R3

dy1
1[

|x1 − y1|2 + |x2 − y1 + y2|2
]2

= C

∫
R3

dy2
V (y2)

|x1 − x2 − y2|
≤ C

|x1 − x2|

∫
R3

dy V (y)

(A.31)

where we have used Newton’s theorem in the last step. The L2 norm of the last expression is
thus bounded by (

∫
V )`2, and we conclude that∥∥∥∫

Ω

dy Gε( · , y)V (y)f(y)
∥∥∥

2
≤ C

ε`3
‖V ‖1 (A.32)

We are left with the last contribution in (A.29). Since g is orthogonal to the constant function,
we can use the spectral gap (π/`)2 of the Laplacian to obtain the bound

ε‖Gεg‖2 ≤ ε
`2

π2
‖g‖2 (A.33)
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By (A.30), (A.32) and (A.33) and with the choice ε = `−2 (so that ε `
2

π2 < 1) we therefore arrive
at (A.27), proving (2.15). The estimate (2.16) follows by Cauchy-Schwarz.

Next we examine point iv). Again, we decompose f as f = c + g, with
∫

Ω
g = 0 and c a

positive constant. We observe that

|1− `3f(x1, x2)| ≤ |1− `3c|+ `3|g(x1, x2)| ≤ ‖g‖2 + `3|g(x1, x2)|

Hence, if we show that

sup
x∈Ω

(|x1 − x2|+ 1)|g(x1, x2)| ≤ Cκ`−3, (A.34)

the bound (2.17) follows. To show (A.34), we multiply (A.29) by |x1 − x2|+ 1 to obtain

(|x1 − x2|+ 1)g(x1, x2)

=

∫
Λ`×Λ`

dy1dy2 (|x1 − x2|+ 1)Gε(x1, x2, y1, y2)
(
λ` − κV (y1 − y2)

)
f(y1, y2)

+ ε

∫
Λ`×Λ`

dy1dy2 (|x1 − x2|+ 1)Gε(x1, x2, y1, y2)g(y1, y2)

(A.35)

We use Lemma A.1 to estimate Gε and (2.14) as well as (2.12) to get

λ`

∫
Λ`×Λ`

dy1dy2 (|x1 − x2|+ 1)Gε(x1, x2, y1, y2)f(y1, y2)

≤ C

`6

∫
Λ`×Λ`

dy1dy2 (|x1 − x2|+ 1)

[
1[

|x1 − y1|2 + |x2 − y2|2
]2 +

1

`6ε

]
≤ Cκ`−3 + Cκε−1`−5.

Moreover, with (A.31) and (2.14), we have∫
Λ`×Λ`

dy1dy2 (|x1 − x2|+ 1)Gε(x1, x2, y1, y2)κV (y1 − y2)f(y1, y2)

≤ Cκ

`3

∫
R3

dy2 (|x1 − x2|+ 1)
V (y2)

|x1 − x2 − y2|
+
Cκ

ε`5

∫
R3

V (y2)dy2

By Newton’s theorem we see that∫
R3

dy2 (|x1 − x2|+ 1)
κV (y2)

|x1 − x2 − y2|

≤ C
∫
R3

dy2 κV (y2) +
1

|x1 − x2|

∫
|y2|≤|x1−x2|

dy2 κV (y2) +

∫
|y2|>|x1−x2|

dy2
κV (y2)

|y2|
≤ Cκ,

(A.36)

where we used that
∫
dxV (x)|x|−1 is finite. We conclude that∫

Λ`×Λ`

dy1dy2 (|x1 − x2|+ 1)Gε(x1, x2, y1, y2)κV (y1 − y2)f(y1, y2) ≤ Cκ(`−3 + ε−1`−5)

We are left with the last contribution in (A.35). We write, using (2.16),

ε

∫
Λ`×Λ`

dy1dy2 (|x1 − x2|+ 1)Gε(x1, x2, y1, y2)g(y1, y2)

≤ Cε
∫

Λ`×Λ`

dy1dy2 (|x1 − x2|+ 1)

[
1

|x− y|4
+

1

ε`6

]
g(y1, y2)

≤ Cε
∫

Λ`×Λ`

dy1dy2
(|x1 − x2|+ 1)

|x− y|4
g(y1, y2) +

Cκ

`3

(A.37)

37



We bound the first term above as follows

Cε

∫
Λ`×Λ`

dy
(|x1 − x2|+ 1)

|x− y|4
(|y1 − y2|+ 1)g(y)

(|y1 − y2|+ 1)

≤ Cε
[

sup
y∈Λ`×Λ`

(|y1 − y2|+ 1)g(y)
] ∫

Λ`×Λ`

dy
|x1 − x2|+ 1

|y1 − y2|+ 1

1

|x− y|4

(A.38)

Similarly as we did in (A.31) we estimate

∫
Λ`×Λ`

dy
1

|y1 − y2|+ 1

1

|x− y|4

≤
∫

[−`,`]3
dy2

1

|y2|+ 1

∫
R3

dy1
1[

|x1 − y1|2 + |x2 − y1 + y2|2
]2

≤
∫
|y2|≤

√
3`

dy2
1

|y2|
1

|x1 − x2 − y2|
≤ C `2

|x1 − x2|+ `

(A.39)

where we again applied Newton’s theorem in the last step. Thus∫
Λ`×Λ`

dy
|x1 − x2|+ 1

|y1 − y2|+ 1

1

|x− y|4
≤ C`2 (A.40)

In conclusion, we have

(|x1 − x2|+ 1)|g(x1, x2)| ≤Cκ
ε`5

∫
R3

dy V (y) +
Cκ

`3
+ Cε`2

[
sup

y∈Λ`×Λ`

(|y1 − y2|+ 1)|g(y)|
]

therefore, by setting ε = (2C`2)−1, we obtain (A.34).
Finally we investigate point v). As above, we decompose f = c + g with c = `−6

∫
f . We

shall prove that [
d(x1+x2

2 )5/3 + 1
]
|∇x1+x2

g(x)| ≤ Cκ`−3 (A.41)

where d(x) is the distance of x from the boundary of the box Λ`. By (A.29), we have

∇x1+x2
g(x) = −

∫
Ω

dy∇y1+y2G̃ε(x− y)
(
λ` − V (y)

)
f(y)− ε

∫
Ω

dy∇y1+y2G̃ε(x− y)g(y)

+

∫
Ω

dy∇x1+x2

[
Gε(x, y)− G̃ε(x− y)

](
λ` − κV (y)

)
f(y)

+ ε

∫
Ω

dy∇x1+x2

[
Gε(x, y)− G̃ε(x− y)

]
g(y)

(A.42)

We integrate by parts in the first line, and obtain

∇x1+x2g(x) =

∫
Ω

dy G̃ε(x− y)
(
λ` − κV (y)

)
∇y1+y2f(y) + ε

∫
Ω

dy G̃ε(x− y)∇y1+y2g(y)

+

∫
∂Ω

dσy n̂ G̃ε(x− y)
(
λ` − κV (y)

)
f(y) + ε

∫
∂Ω

dσy n̂ G̃ε(x− y)g(y)

+

∫
Ω

dy∇x1+x2

[
Gε(x, y)− G̃ε(x− y)

](
λ` − κV (y)

)
f(y)

+ ε

∫
Ω

dy∇x1+x2

[
Gε(x, y)− G̃ε(x− y)

]
g(y) =

6∑
j=1

Dj(x)

(A.43)

where dσy is the surface element of the boundary of the box ∂Ω and n̂ is the unit vector pointing
outwards. We start by considering D2. Using (A.9), we can bound, for every x ∈ Ω,

|
[
d(x1+x2

2 )5/3 + 1
]
D2(x)|

≤ Cε
[
d(x1+x2

2 )5/3 + 1
] ∫

Ω

dy

∣∣[d(y1 + y2)5/3 + 1
]
∇y1+y2g(y)

∣∣
|x− y|4

[
d(y1+y2

2 )5/3 + 1
]

≤ Cε sup
y∈Ω

∣∣[d(y1+y2
2 )5/3 + 1

]
∇y1+y2g(y)

∣∣ ∫
Ω

dy
d(x1+x2

2 )5/3 + 1

|x− y|4
[
d(y1+y2

2 )5/3 + 1
]

(A.44)
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In the following we shall show that∫
Ω

dy
1

|x− y|4
[
d(y1+y2

2 )5/3 + 1
] ≤ C`2

d(x1+x2

2 )5/3 + 1

Since

1

d(x1+x2

2 )5/3 + 1
≤

3∑
i=1

2∑
j=1

1

2−5/3|x(i)
1 + x

(i)
2 − (−1)j`|5/3 + 1

≤ 6

d(x1+x2

2 )5/3 + 1
(A.45)

it is sufficient to prove that∫
Ω

dy
1

|x− y|4
[
|y(1)

1 + y
(1)
2 − `|5/3 + 1

] ≤ C`2

|x(1)
1 + x

(1)
2 − `|5/3 + 1

(A.46)

For this purpose, we shall write

|x1 − y1|2 + |x2 − y2|2 =
1

2

∣∣(x1 + x2)− (y1 + y2)
∣∣2 +

1

2

∣∣(x1 − x2)− (y1 − y2)
∣∣2; (A.47)

with the change of variable y1 + y2 = b, y1 − y2 = a we have∫
Ω

dy
|x(1)

1 + x
(1)
2 − `|5/3 + 1

|x− y|4
[
|y(1)

1 + y
(1)
2 − `|5/3 + 1

]
=

1

2

∫
[−`,`]3

db

∫
ω(b)

da
|x(1)

1 + x
(1)
2 − `|5/3 + 1[∣∣(x1 + x2)− b

∣∣2 +
∣∣(x1 − x2)− a

∣∣2]2[|b(1) − `|5/3 + 1
] (A.48)

where ω(b) = [|b(1)| − `, `− |b(1)|]× [|b(2)| − `, `− |b(2)|]× [|b(3)| − `, `− |b(3)|]. Let us introduce
the notation a = (a(1), a⊥) and b = (b(1), b⊥). To bound (A.48) we bound the numerator with
2(2`)5/3 (assuming 2` ≥ 1) and extend the integration domain of the variable a⊥ to [−`, `]2;
dropping the term involving a(1) in the denominator, we can integrate over a(1) to obtain the
bound∫

[−`,`]3
db

∫
ω(b)

da
|x(1)

1 + x
(1)
2 − `|5/3 + 1[∣∣(x1 + x2)− b

∣∣2 +
∣∣(x1 − x2)− a

∣∣2]2[|b(1) − `|5/3 + 1
]

≤ 2(2`)5/3

∫
[−`,`]

db(1) 1

|b(1) − `|2/3

∫
[−`,`]4

db⊥da⊥
1[∣∣(x1 + x2)− b

∣∣2 +
∣∣(x⊥1 − x⊥2 )− a⊥

∣∣2]2
We estimate∫

[−`,`]4
db⊥da⊥

1[∣∣(x1 + x2)− b
∣∣2 +

∣∣(x⊥1 − x⊥2 )− a⊥
∣∣2]2 ≤ C

∫ 3`

|(x(1)
1 +x

(1)
2 )−b(1)|

dz
1

z

= C ln

(
3`

|(x(1)
1 + x

(1)
2 )− b(1)|

)

and∫
[−`,`]

db(1) 1

|b(1) − `|2/3
ln

(
3`

|(x(1)
1 + x

(1)
2 )− b(1)|

)
≤ (2`)1/3 sup

0<s<1

∫ 1

0

dt t−2/3 ln
3/2

t− s
≤ C`1/3

This proves (A.46). We have thus shown that

|
[
d(x1+x2

2 )5/3 + 1
]
D2(x)| ≤ Cε`2 sup

y∈Ω

∣∣[d(y1+y2
2 )5/3 + 1

]
∇y1+y2g(y)

∣∣
(A.49)

We proceed with D1, which we write as D1 = D11 + D12, with

D11(x) = λ`

∫
Ω

dy G̃ε(x− y)∇y1+y2f(y) (A.50)
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and

D12(x) = −
∫

Ω

dy G̃ε(x− y)κV (y)∇y1+y2f(y) (A.51)

Using the same method as above we estimate

|
[
d(x1+x2

2 )5/3 + 1
]
D11(x)| ≤ Cλ``2 sup

y∈Ω
|
[
d(y1+y2

2 )5/3 + 1
]
∇y1+y2g(y)|. (A.52)

For D12 we have

|
[
d(x1+x2

2 )5/3 + 1
]
D12(x)|

≤ sup
y∈Ω
|
[
d(y1+y2

2 )5/3 + 1
]
∇y1+y2g(y)|

∫
Ω

dy
κV (y)

[
d(x1+x2

2 )5/3 + 1
]

|x− y|4
[
d(y1+y2

2 )5/3 + 1
] (A.53)

Because of (A.45) it again suffices to bound the last integral with d(z) replaced by |z(1)− `| for
both z = x1 + x2 and z = y1 + y2. With the same change of variables as in (A.48) we have∫

Ω

dy
κV (y)

|x− y|4
[(
y

(1)
1 + y

(1)
2

)5/3
+ 1
]

≤ 1

2

∫
R3

da

∫
R3

db
κV (a)[∣∣(x1 + x2)− b

∣∣2 +
∣∣(x1 − x2)− a

∣∣2]2[|b(1) − `|5/3 + 1
] (A.54)

where we extended integration domain to R6. Integrating first in the variable b⊥ we have∫
R3

da

∫
R3

db
κV (a)[∣∣(x1 + x2)− b

∣∣2 +
∣∣(x1 − x2)− a

∣∣2]2[|b(1) − `|5/3 + 1
]

= C

∫
R
db(1) 1

|b(1) − `|5/3 + 1

∫
R3

da
κV (a)∣∣(x(1)

1 + x
(1)
2

)
− b(1)

∣∣2 +
∣∣(x1 − x2)− a

∣∣2
(A.55)

Using that V is bounded and of compact support, one readily checks that∫
R3

da
V (a)

X + |Y − a|2
≤ C

X + |Y |2 + 1
(A.56)

for all X ≥ 0 and Y ∈ R3. Hence we find that∫
Ω

dy
κV (y)

|x− y|4
[
|y(1)

1 + y
(1)
2 − `|5/3 + 1

] ≤ Cκ∫
R
db(1) 1

|b(1) − `|5/3 + 1

1

|(x(1)
1 + x

(1)
2 )− b(1)|2 + 1

≤ Cκ[
|x(1)

1 + x
(1)
2 − `|5/3 + 1

]
(A.57)

which is the desired bound, allowing us to conclude that

|
[
d(x1+x2

2 )5/3 + 1
]
D12(x)| ≤ Cκ sup

y∈Ω
|
[
d(y1+y2

2 )5/3 + 1
]
∇y1+y2g(y)|. (A.58)

In order to bound D5 we split it into

D51(x) = λ`

∫
Ω

dy∇x1+x2

[
Gε(x, y)− G̃ε(x− y)

]
f(y) (A.59)

and

D52(x) = −
∫

Ω

dy∇x1+x2

[
Gε(x, y)− G̃ε(x− y)

]
κV (y)f(y) (A.60)

We easily bound

|
[
d(x1+x2

2 )5/3 + 1
]
D51(x)|

≤ λ`
[
d(x1+x2

2 )5/3 + 1
] ∫

Ω

dy
[∑

n

1

|x− yn|5
+

1

ε1/2`6

]
f(y)

≤ Cκ(`−3−1/3 + `−4−1/3ε−1/2)

(A.61)
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where we used (A.4), (2.12) and (2.14) and we estimated d(x1+x2

2 ) ≤ `/2. For D52, we use again
(A.4) and (2.14) to estimate

|
[
d(x1+x2

2 )5/3 + 1
]
D52(x)| ≤

C
[
d(x1+x2

2 )5/3 + 1
]

`3

∫
Ω

dy
[∑

n

1

|x− yn|5
+

1

ε1/2`6

]
κV (y).

(A.62)

For the second contribution we have[
d(x1+x2

2 )5/3 + 1
]

ε1/2`9

∫
Ω

dy κV (y) ≤ Cκ

ε1/2`4+1/3
(A.63)

For the first contribution in (A.62), among the image charges yn we start considering the one
that has all coordinates equal to those of y except the first one. We rename it as ỹ, and we have

ỹ
(1)
1 = −`− y(1)

1 . We write∫
Ω

dy
1

|x− ỹ|5
V (y) =

∫
Ω

dy1dy2
V (y1 − y2)

(|x1 − ỹ1|2 + |x2 − ỹ2|2)5/2

=

∫
[−3`/2,−`/2]×[−`/2,`/2]5

dỹ1dỹ2
V (ỹ

(1)
1 + ỹ

(1)
2 + `, ỹ⊥1 − ỹ⊥2 )

(|x1 − ỹ1|2 + |x2 − ỹ2|2)5/2

(A.64)

The denominator can be expressed as in (A.47); with the change of variables ỹ1+ỹ2 = b, ỹ1−ỹ2 =
a, we have (extending the integration domain to R6)∫

Ω

dy
1

|x− ỹ|5
V (y) ≤ 1√

2

∫
R3

db(1)da⊥ V (b(1) + `, a⊥)

×
∫
R3

da(1)db⊥
1(∣∣x1 + x2 − b

∣∣2 +
∣∣x1 − x2 − a

∣∣2)5/2
= C

∫
R3

db(1)da⊥
V (b(1) + `, a⊥)(

x
(1)
1 + x

(1)
2 − b(1)

)2
+
(
x⊥1 − x⊥2 − a⊥

)2
(A.65)

Using now again (A.56), we arrive at

1

`3

∣∣∣∣∫
Ω

dy
1

|x− ỹ|5
κV (y)

∣∣∣∣ ≤ C

`3
κ

|x(1)
1 + x

(1)
2 − `|2 + 1

≤ C

`3
κ

d(x1 + x2)2 + 1
(A.66)

The contribution from the other image charges can be estimated similarly, and we omit the
details. We conclude that

|
[
d(x1+x2

2 )5/3 + 1
]
D52(x)| ≤ Cκ

ε1/2`4+1/3
+
Cκ

`3
(A.67)

Next we investigate D6. With (A.4) and (A.34) we have

|D6(x)| =
∣∣∣ε∫

Ω

dy∇x1+x2

[
Gε(x, y)− G̃ε(x− y)

]
g(y)

∣∣∣
≤ Cε1/2

`6

∫
Ω

dy |g(y)|+ εκ

`3

∑
n

∫
Ω

dy
1

|x− yn|5
1

|y1 − y2|+ 1

(A.68)

To bound the first term we can also use (A.34), which gives
∫
|g| ≤ Cκ`2. To estimate the second

term in (A.68) we start, as above, by considering the image charge ỹ such that ỹ
(1)
1 = −`− y(1)

1 ,

ỹ
(i)
1 = y

(i)
1 for i = 2, 3 and ỹ

(j)
2 = y

(j)
2 for j = 1, 2, 3. We perform again the change of variables

ỹ1 + ỹ2 = b, ỹ1 − ỹ2 = a and extend the integration domains so that∫
Ω

dy
1

|x− ỹ|5
1

|y1 − y2|+ 1

≤ 1√
2

∫
[−`,`]2

da⊥
∫
R4

db(1)db⊥da(1)

× 1[∣∣x1 + x2 − b
∣∣2 +

∣∣x1 − x2 − a
∣∣2]5/2 1[

|b(1) + `|2 + |a⊥|2
]1/2

+ 1

≤ C
∫

[−`,`]2
da⊥

1

|a⊥|+ 1

1∣∣x⊥1 − x⊥2 − a⊥∣∣
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where we dropped the term |b(1) + `|2 in the last step in order to be able to explicitly integrate
over b(1). It is easy to see that the remaining integral is bounded by ln `, uniformly in x⊥1 − x⊥2 .
The same estimate can be applied to the other imaged charges, with the result that

|D6(x)| ≤ Cκε1/2`−4 + Cκε`−3 ln(`)

In particular,

|
[
d(x1+x2

2 )5/3 + 1
]
D6(x)| ≤ Cκε1/2`−7/3 + Cκε`−4/3 ln(`) (A.69)

We are left with considering D3 and D4. With the aid of (A.9) and (A.34) we can bound

|D4(x)| =
∣∣∣ε∫

∂Ω

dσy n̂ G̃ε(x− y)g(y)
∣∣∣ ≤ Cεκ

`3

∫
∂Ω

dσy
1

|x− y|4
1

|y1 − y2|+ 1
(A.70)

It clearly suffices to consider the contribution to the boundary integral coming from y
(1)
1 = −`/2.

With the change of variables y⊥1 + y⊥2 = b⊥, y⊥1 − y⊥2 = a⊥ we have, similarly as above,∫
∂Ω

dσy
1

|x− y|4
1

|y1 − y2|+ 1

≤
∫
R
dy

(1)
2

∫
[−`,`]2

da⊥
1[

|y(1)
2 + `/2|2 +

∣∣a⊥∣∣2]1/2 + 1

×
∫
R2

db⊥
1[∣∣x⊥1 + x⊥2 − b⊥

∣∣2 +
∣∣x⊥1 − x⊥2 − a⊥∣∣2 + 2

∣∣x(1)
1 + `/2

∣∣2 + 2
∣∣x(1)

2 − y
(1)
2

∣∣2]2
≤ C

∫
[−`,`]2

da⊥
1∣∣a⊥∣∣+ 1

1∣∣x⊥1 − x⊥2 − a⊥∣∣ ≤ C ln `

and thus

|
[
d(x1+x2

2 )5/3 + 1
]
D4(x)| ≤ Cκε`−4/3 ln(`) (A.71)

In D3 we estimate the contribution proportional to λ` as

λ`

∫
∂Ω

dσy G̃ε(x− y)f(y) ≤ Cλ`
`3

∫
∂Ω

dσy
1

|x− y|4
≤ Cκ

`5
,

where we used (2.14) and (2.12). For the contribution proportional to V , we use again (2.14)
to bound it as ∫

∂Ω

dσy G̃ε(x− y)κV (y)f(y) ≤ C

`3

∫
∂Ω

dσy
κV (y)

|x− y|4

To estimate the first term on the right-hand side, we perform the same change of variables as
in D4. Extending the domain of integration to R5 and doing the integration over b⊥ we have∫

∂Ω, y
(1)
1 =−`/2

dσy
V (y)

|x− y|4
≤ C

∫
R3

dy
(1)
2 da⊥

V (y
(1)
2 + `/2, a⊥)∣∣x⊥1 − x⊥2 − a⊥∣∣2 +
∣∣x(1)

1 + x
(1)
2 + `/2− y(1)

2

∣∣2
≤ C 1

|x(1)
1 + x

(1)
2 − `|2 + 1

where we used again (A.56) in the last step. Hence

|
[
d(x1+x2

2 )5/3 + 1
]
D3(x)| ≤ Cκ`−3 (A.72)

By combining (A.43), (A.49), (A.52), (A.58), (A.61), (A.67), (A.69), (A.71) and (A.72) we
have thus shown that[

d(x1+x2

2 )5/3 + 1
]
|∇x1+x2

g(x)| ≤ Cκ
(
`−3 + ε`−4/3 ln(`)

)
+ C

(
ε`2 + λ``

2 + κ
)

sup
y∈Ω

∣∣[d(y1+y2
2 )5/3 + 1

]
∇y1+y2g(y)

∣∣.
We choose ε = c`−2 with small enough c so that the factor C(ε`2 + λ``

2 + κ) is smaller than
one for large ` and small κ, concluding the proof of (2.18).

42



Proof of Proposition 2.2. From (2.13) it follows that∫
Λ1×Λ1

dxdy
[
|∇xw`(x, y)|2 + |∇yw`(x, y)|2

]
≤ Cκ

`
, (A.73)

estimate (2.14) implies

|w`(x, y)| ≤ C (A.74)

and from (2.15) it follows that ∫
Λ1×Λ1

dxdy
∣∣w`(x, y)

∣∣2 ≤ Cκ2

`2
, (A.75)

while (2.16) shows that ∫
Λ1×Λ1

dxdy |w`(x, y)| ≤ Cκ

`
. (A.76)

By equation (2.24) and bounds (A.75), (A.73) we find∫
Λ1×Λ1

dxdy
∣∣µ(x, y)

∣∣2 ≤ Cκn2

`2∫
Λ1×Λ1

dxdy
[∣∣∇xµ(x, y)

∣∣2 +
∣∣∇yµ(x, y)

∣∣2] ≤ Cκn2

`

which imply (2.27) and (2.28). By (2.14) we have

|η(x, y)| ≤ n|w`(x, y)|+ |µ(x, y)| ≤ Cn (A.77)

which proves (2.29). Estimate (2.30) follows from (2.17). Point ii) follows from (2.30).
We consider now point iii). From the definition of r, we find

r(x, y) =

∞∑
n=1

1

(2n+ 1)!
η2n+1(x, y)

=

∞∑
n=1

1

(2n+ 1)!

∫
dzdw η(x, z) η2n−1(z, w) η(w, y);

(A.78)

using (2.27), which implies ‖η‖2 ≤ C, we arrive at

|r(x, y)| ≤
∞∑
n=1

1

(2n+ 1)!

[∫
dwdz|η(x, z)|2|η(w, y)|2

]1/2 [∫
dwdz |η2n−1(z, w)|2

]1/2

≤
∞∑
n=1

1

(2n+ 1)!
‖η‖2n−1

2 ‖η(x, ·)‖2‖η(·, y)‖2 ≤ C‖η‖2‖η(x, ·)‖2‖η(·, y)‖2

(A.79)

for every x, y ∈ Λ1. The bound for p can be proven analogously. This proves (2.33) and
consequently (2.34) and (2.32).
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