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Abstract
Continuous monitoring of the well-being state of elderly people is about to become an urgent need in the early future due
to population aging. Aiming a unified notion of well-being, we find the Intrinsic Capacity concept in accordance with the
SMARTBEAR project goals. In this study, wemainly focus on the enabling infrastructure, mapping ourmodels to interoperable
repositories and to streaming/computing components that can foster monitoring. Our method is also innovative for explicitly
combining personalized and risk levels in generating the Intrinsic Capacity score. Leveraging on synthetic data, we represent
the outcome trajectories of some sample patients for 1-year continuous monitoring and discuss approaches to characterize
them based on the exhibited tendency and evaluate the results from the predictability point of view providing by the entropy
of time series concept. At the end, we discuss the possible data quality issues in health care studies using synthetic data.
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Introduction

Intrinsic capacity (IC), as a unit concept referring to the phys-
ical and mental health attribution that a person can draw
during her/his life, has been suggested by the World Health
Organization (WHO) in 2015 in the World report on ageing
and health [22]. WHO defines IC as the combination of the
individuals physical and mental abilities to do and to bewhat
is valuable to them. Therefore, according to this definition,
the functional ability is determined by the interactions a per-
son can establish with the environment. Although there are
numerous studies focusing on assessing different domains of
functioning at stages of life [9], less effort has been devoted
to aggregation of all the domains and report an overall score
of an elderly health status [6,7]. An essential element of the
IC concept is the holistic and regular monitoring of patient’s
capacities. This enables the early-stagediagnosis of declining
personal health abilities for the suitable plans of interventions
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that prohibit the decreasing trend and help in revitalizing the
vanishing capacity.

Today’s literature, however, does not clarify how IC score
has to be operationalised [10]. Different authors validated
the approach by comparing retrospective data and IC scores
using different factors and procedures [2]. This fragmen-
tation of the existing experimental results does not allow
to identify a standard, unified index. Part of the problem
is rooted in the lack of specifications of data acquisi-
tion procedures. Comprehensive and regular monitoring of
the biological state of a patient implies specific technical
requirements to be satisfied. Besides, the adoption of shared
standards can significantly impact the reproducibility of the
experimental results developed in the field. For these rea-
sons, we focused on specifying a methodology in terms of
the engineering requisites to operationalise IC score evalua-
tion.

The main guidance available for implementing IC eval-
uation is the Integrated Care for Older People, ICOPE
handbook published by the WHO [20,32]. According to
the ICOPE handbook, the IC score is a composition of
six generic domains; Vitality, Locomotor capacity, Visual
capacity, Hearing capacity, Psychological capacity and, Cog-
nitive capacity. It is noteworthy that, different anthologies are
resulting from confirmatory factor analysis in the existing lit-
erature [2] where the Hearing capacity and Visual capacity
could be compressed in one domain named Sensory capacity.
Hereafter, we will use the following names for the domains:

– Vitality is mostly an indication of general physical well-
being factors that in the case of reaching risky values,
subsequent damages are possible.

– Locomotion refers to the physical potential of individuals.
– Mood gives an evaluation of psychological capacity and
environmental interactions.

– Cognition mainly concerns the impairments and exam-
ining the proper recognition ad comprehension of facts.

– Sensory evaluates the status of visionary and hearing
capacity.

The ICOPE handbook specifies for each domain a set of
reliable clinical and non-clinical measurements suggested
and validated by clinicians. Nevertheless, these tests are con-
ceived to be performed in clinics, imposing inherent limits
to the frequency of data collection. To overcome these lim-
its appropriate technological solutionsmust be implemented.
Over recent years, there has been an increase in interest in
wearable monitoring systems. Smart devices such as smart-
phones, fitness bands, Bluetooth-enabled blood pressure
cuffs, smart scales, and pill bottles, enable the continuous
monitoring of patients’ activities state and can significantly
impact the quality of the data collection process in terms of
timeliness and coverage [4].

The SMART BEAR project [18? ] provides a comprehen-
sive substructure for long-term continuous examinations and
testing the well-being status of older people using wearable
devices, mobile apps, and follow-up assessments by trained
personnel and physicians. Furthermore, the power of big data
analytic engine is exploited for prediction and personalised
intervention purposes. Whilst in majority of IC studies, a
large volume of required data is collected by performing clin-
ical measurements and questionnaires, in the SMART BEAR
project, most of required data in the evaluation of IC could
be collected through smart devices and mobile applications,
remotely and continuously.

We then designed a methodology based on the standard-
ized data acquisition procedures specified in Fast Health
Care Interoperability Resources (FHIR) [21]. Differently
to other studies, our work focuses on engineering the data
acquisition procedure following standards that can foster the
interoperability of the collected experimental observations
[? ]. Adopting the composing domains and relevant sub-
domains of IC score resulted from current studies [2], in
Table 1, the data format and data collection’s frequencies
acquired by devices/questionnaires are described. Each sin-
gle measurement has a specific value in the IC score which
is not clearly presented in the ICOPE handbook and is the
matter of debates.

The complication in specifying a unique solution for cal-
culating the IC emerges due to two main reasons: first, the
non-universality of impressive factors in intrinsic capacity
among different geographical/cultural populations; second,
the effectiveness degree of composing factors in the IC score
of individuals. In other word, an unified applicable prescrip-
tion for calculating IC from carried out measurements does
not exist. This issue has drawn our attention toward Machine
Learning (ML) algorithms for addressing these complica-
tions in studying the IC score: (1) Leveraging ML and
statistical models to identifying the most important consti-
tuting factors of IC, (2) Training models for predicting the
variations of IC score and preventing the possible decreases
by proper interventions. However, continuous monitoring of
the IC for the preventive purposes not only demands analyt-
ical capabilities in finding the most effective parameters and
proposing an applicable solution but also it is urgent to be
considered from engineering point of view in supporting the
monitoring task.

In this study, by focusing on this viewpoint, we next intro-
duce the composing component of a designed architecture
for monitoring and calculating the IC score in the SMART
BEAR project. The susequent section elaborates the proposed
analysis method we suggest for continuous study of obser-
vations and evaluation of IC trajectories followed by which
the mapping models of the observations and questionnaires
on FHIR are discussed. To implement the model for calculat-
ing IC score and testing the architecture, we have produced
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synthetic health data during the life cycles of the number
of patients. Then, leveraging the produced data, we demon-
strate the trajectories of intrinsic capacity obtained by our
proposed methodology applicable in SMART BEAR project
retrieved data. At last, we conclude this work and suggest
future relevant works.

Related work

A rich research strand is growing on the validation and
applicability of IC. The results confirm the validity of a uni-
fied concept of IC along with the five constituting domains
according to the WHO implementation guide [10]. Confir-
matory Factor Analysis allowed to verify the concordance
of IC with tests chosen to measure each of the five domains.
Different studies leveraged on the longitudinal data of elderly
participants fromdifferent cohorts such asEngland [2],China
[3,35], and Mexico [12].

Even though these studies convey high prior knowledge
from a medical perspective, we believe they suffer from pro-
viding explicit engineering solutions in monitoring the IC.
Regarding the constant changes of living status, monitoring
the process of healthy aging could play a crucial role in the
interpretable prediction of the future state of elderly peo-
ple. One of the prerequisites of the engineering solution for
the continuous monitoring and analysis of the IC is adopt-
ing a unified standard for health data exchanges. The HL7
Fast Healthcare Interoperability Resources (FHIR) models
are newly used by different research areas from normalizing
the pipeline of clinical data for standardizing unstructured
electronic health record (EHR) [13] to medical free-text
analysis [26] and semantic mapping from raw genomic
data [25]. The interoperability of FHIR data models makes
it promising in leveraging electronic health records(EHR)
for health score assessments. Providing the resources on
FHIR workflow, risk assessments are proposed as a special-
ized type of observation. Risk assessments may be based
on: (1) Basic demographic information from the Patient or
Group resources such as Various Observations including
vital signs, lab information, assessments, genetic informa-
tion, etc; (2) Family Member History; (3) Current, past and
proposed therapies Immunization, Procedure, CarePlan, etc.
Although using the FHIR data model, patient prognosis,
cardiac, genetic, and breast cancer risk assessment is well
established [14], it is not still widely adopted by clinicians
and smart health devices programmers.

Considering the capabilities of SMART BEAR infras-
tructure, alongside the provided possibility of exchanging
clinical data by FHIR, in this study we focus on designing a
workflow leveraging the SMART BEAR architecture compo-
nents in acquiring the representative health score of intrinsic
capacity in time.

Architecture

Theprimarygoal of theSMARTBEARproject is to develop an
integrated platform gathering numerous health-related data
flows, with further analysis of the day-by-day study of par-
ticipants’ activities.
Later on, the continuous data collection and processing aims
to provide evidence-based personalised interventions for
their healthy and independent living. Serving this goal, in
addition of having a system tailored to comply with project-
specific requirements, and in particular capable of digesting
data flows acquired by the interactions with external devices
and systems (e.g., significant number of smartphones, hos-
pital medical systems, smart IoTs), and processing in the
context of Big data analytics used for the evidence-based
decision making, its architecture ought to take into account
the current technological trends that impose not only the
well-known securem2m interoperability, the data quality and
reusability/dissemination, the protection of individuals infor-
mation and the provision ofmeans to exercise legally binging
GDPR rights, but also other aspects such as extensibility to
cover possible new supplementary specification in further
implementations, traceability of records of all exchanges, and
the notion of designing the logic separately of security but
rely on the provision of a security context [36].

Particularly, the data received from SMARTBEAR devices
and questionnaires are saved on HAPI FHIR or Non-FHIR
repositories. In coherence with the European GDPR, all
transactions are performed by a trustworthy component
handling data anonymization without losing identifiability,
thanks to multiple tokens associated with data entities. A
local repository cache allows toggling between views of
requests and data transfer, significantly improving the per-
formance of data processing tasks.
Addressing those multidimensional and, in some occasions,
conflicting design requirements, the SMART BEAR archi-
tecture is based on the most reasonable current industrial-
strength solutions, while secure interactions and privacy of
data were considered as high importance during the design
stage (adhering to the Privacy by Design principle1), sup-
portingm2m interoperability and the same time ensuring full
compliance with GDPR even for medical data been transmit-
ted by external systems of synergetic H2020projects. Figure
1 illustrates a simplified schematic view of the architecture
designed for the SMART BEAR project. In parallel of hav-
ing in place a well-established interoperability specification
(FHIR) to be able to exchange m2m medical data and meta-
data in between different healthcare applications (not limited
to those within the project’s technical scope [23] but also to
other synergies), the architecture tackles privacy which is

1 GDPR Privacy by Design: https://gdpr-info.eu/issues/privacy-by-
design/.
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Fig. 1 A high-level architecture schema of REMOVED-FOR-DOUBLE-BLIND-REVIEW project leveraged for the monitoring process of Intrinsic
Capacity. The collected data from smart devices and questionnaires are directed to the FHIR/NON-FHIR repositories after security component

considered a critical issue2, along with the capability of per-
formingdifferent types of analysis (e.g., descriptive statistics,
statistical testing, and inferencing, data mining, ML).

The SMART BEAR architecture [based on [1,34]] com-
prises three main components: the smartphone application
and HomeHub components that reside with the participants,
and the main cloud component that is the backend sys-
tem coordinating and serving the other components. The
cloud supports several key functions such as data manage-
ment, analytics for enabling the generation of (verifiable and
explainable) MLmodels supporting decision making for dif-
ferent types of interventions and horizontally preserving the
security, supporting m2m interoperability, and maintaining a
pseudo-anonymized repository of study participants data. In
this context, the backend provides a dashboard to clinicians,
data analysts, and other end-users groups data visualisation
capabilities and the outcomes of analytics, while cloud com-
ponents (Repository, Big Data Engine, Decision Support
System, Security Component) communicate via REST ser-
vices for fast reliable performance, having the ability to grow
by reusing components that can be managed and updated
without affecting the operation of the system, evenwhile they
are running. Data protection is considered a critical issue,

2 ENISA: Privacy andData Protection byDesign—from policy to engi-
neering: https://www.enisa.europa.eu/publications/privacy-and-data-
protection-by-design.

especially when dealing with special categories of personal
data (Art 9, GDPR). A specific component (SecurityCompo-
nent) provides mechanisms that handle data minimisation,
authentication, and other security and privacy aspects by
performing pseudonymisation and IDs re-associations, sup-
ports RBAC authentication and authorisation of all RESTful
API endpoints to protect the transmission of any (sensitive
or not) data, and it also introduces services to cope with the
management of privacy-related requests to demonstrate com-
pliance with the GDPR. At run time, this component is also
responsible for monitoring, testing, and assessing all runtime
operations of the SMART BEAR platform. This component
will audit critical components and processes of the infrastruc-
ture while leveraging monitoring mechanisms developed in
the context of the project to provide an evidence-based, cer-
tifiable view of the security posture of the SMART BEAR
platform, along with accountability provisions for changes
that occur in said posture and the analysis of their cascad-
ing effects. Several built-in security assessments addressing
the Confidentiality–Integrity–Availability (CIA) principles
among custom metrics with respect to the platform’s com-
ponents that will be tailored will be utilized, leveraging an
evidence-based approach, to provide security and privacy
assurance assessments with certifiable results. Reference
[11] provides a more detailed presentation of the SMART
BEAR Architecture.

123

https://www.enisa.europa.eu/publications/privacy-and-data-protection-by-design
https://www.enisa.europa.eu/publications/privacy-and-data-protection-by-design


Complex & Intelligent Systems (2022) 8:3953–3971 3957

Fig. 2 The functional workflow of calculating and presenting the Intrinsic Capacity trajectories

Methodology

The proposed methodology is organized according to the
workflow in Fig. 2. Data processing is performed by a Big
Data Analytics (BDA) engine that can periodically update
the IC score. This way the recorded values are organized in
time series describing the IC trajectory of each patient. The
tendency of these trajectories is further analysed to study the
best practices for maintaining high levels of IC.
The present paper focuses on technical aspects and engi-
neering principles for monitoring IC using themeasurements
available in the SMART BEAR project. Due to the working
requirements of the project, we may come across some data
deficiencies in following the ICOPE handbook experiments.
However, we kept as much as possible the balance in the
number of measurements for all domains. On the other hand,
this provides us the possibility of validating the relevance of
the measurements available in SMART BEAR in relation to
the IC score.

In Table 1, considered measurements for each domain,
data types, the frequency of transmission to SMART BEAR
Cloud, the frequency of data reception from SMART BEAR
Big Data Analytic engine (BDA), and domains weights are
presented. Data storing frequencies on SMARTBEAR reposi-
tories takes place according to clinicians’ advice for different
measurements. The vital measurements with high possible
variations, such as Heart rate, are monitored more frequently
than those stable measurements such as bone density. More
specifically, the workflow presented in Fig. 2 consists of the
following task steps.

Data acquiring

The initial assessment contains the demographic and medi-
cal examination of all participants of SMART BEAR project.

Table 3 proposes the full list of the examination performed at
the initial assessment. The follow-up data collection is per-
formed using the SMART BEAR smart devices. In Table 1 the
frequencies of sending/receiving data to/from SMART BEAR
clouds are mentioned specifically for each measurement. A
uniform time scale for all measurements is necessary, there-
fore, in case a parameter ismeasuredmore frequently than the
uniform time unit, an averaging process should be applied.

Test timeliness

Due to several reasons, the data collection process could
fail. Disconnection from the network, a patient forgetting
to recharge smart devices, or many other situations can bring
to lose or get outdated data. The participants’ ignorance in
taking required tests at the specified time and the different
expiration timeof each test inmeasuring IC are also other rea-
sons that may lead to acquiring low-quality data. The impact
of losing a measure is however strongly dependent on the
parameter to be measured because different biological states
(physical or mental abilities) have different temporal dynam-
ics. In our method, we assign a Boolean value indicating
whether a recorded measurement is still valid or the IC cal-
culation took place using a value out of the range of temporal
validity. In the case of any type of untimely data point, the IC
data point will get tagged as “invalid” in the output results.
Test of timeliness is evaluated and stored with a timestamp
and patient’s id each time a measure is calculated.

Normalization

Considering the sub-domains of measurement and their dif-
ferentmeasurement units, the creation of an aggregated score
requires data to be normalized first. Using the z-score [24] the
normalization procedure can also be exploited to personal-
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Table 1 Table of available measurements in the SMART BEAR project and acquired data for studying the Intrinsic Capacity case

Domains Parameters stored
on HAPI FHIR
repository

Data type Frequency of
data transmission
to SMART BEAR
cloud

Frequency of
data reception
from SMART
BEAR cloud
(BDA)

Domain
mapping weight

Vitality Double

Systolic blood
pressure

Double/mmHG After each
usage-twice
daily or else
advised

After each
usage-twice
daily or else
advised

Diastolic blood
pressure

Double/mmHG After each
usage-twice
daily or else
advised

After each
usage-twice
daily or else
advised

Heart rate Integer/BPM After each
usage-twice
daily or else
advised

After each
usage-twice
daily or else
advised

Oxygen saturation %/BPM After each
usage-twice
daily or else
advised

After each
usage-twice
daily or else
advised

Sleep duration Object/h Per 3 days Per 3 days

Body weight
(through the
smart scale)

Double/kg Weekly Weekly

Body fat (through
the smart scale)

Double Weekly Weekly

Score on SNAQ
(as part of RGA)

Questionnaire 6-month (entry to
the study, 6th
month, 12th
month)

6-month (entry to
the study, 6th
month, 12th
month)

Sarcopenia
(SARC-F)

Questionnaire 6-month (entry to
the study, 6th
month, 12th
month)

6-month (entry to
the study, 6th
month, 12th
month)

FRAIL (as part of
RGA)

Questionnaire 6-month (entry to
the study, 6th
month, 12th
month)

6-month (entry to
the study, 6th
month, 12th
month)

Short MNA Questionnaire 6-month (entry to
the study, 6th
month, 12th
month)

6-month (entry to
the study, 6th
month, 12th
month)

Diet adherence
(supported with
biological data)

Questionnaire Monthly Monthly

Locomotion Double

Steps Integer Daily Saily

Distance walked Meter/double Daily Daily
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Table 1 continued

Domains Parameters stored
on HAPI FHIR
repository

Data type Frequency of
data transmission
to SMART BEAR
cloud

Frequency of
data reception
from SMART
BEAR cloud
(BDA)

Domain
mapping weight

Skeletal muscle
(through the
smart scale)

Object Monthly Monthly

Cognition Double

Cognitive screen
(as part of the
RGA)

Questionnaire 6-month (entry to
the study, 6th
month, 12th
month)

6-month (entry to
the study, 6th
month, 12th
month)

Score on Montreal
Cognitive Assess-
ment

Object 6-month (entry to
the study, 6th
month, 12th
month)

6-month (entry to
the study, 6th
month, 12th
month)

Sensory Double

Side of hearing
loss (no HL, uni-
lateral/bilateral)

Object 6-month (entry to
the study, 6th
month, 12th
month)

6-month (entry to
the study, 6th
month, 12th
month)

Degree of Hear-
ing loss (no HL,
mild, moderate,
severe, profound)

Object 6-month (entry to
the study, 6th
month, 12th
month)

6-month (entry to
the study, 6th
month, 12th
month)

GHABP score
(patients with
HL)

Questionnaire 6-month (entry to
the study, 6th
month, 12th
month)

6-month (entry to
the study, 6th
month, 12th
month)

Ability to read Object Weekly Weekly

Mood Double

Personal Health
Questionnaire
Depression Scale
(PHQ-9)

Object Biweekly Biweekly

HAM-A Questionnaire Biweekly Biweekly

Score on Geri-
atric Depression
Scale

Questionnaire Monthly Monthly

IC-SCORE Double [0,6] Every 6 month

The domains and in-domain parameters are explicitly demonstrated

Table 2 Evaluating the
stationary status of two of
synthetic data sets produced by
Synthea

Dataset ADF statistic p values ADF KPSS statistic p value KPSS

Steps − 1.53307 0.517094 1.773765 0.01

HR − 6.47185 0 0.300817 0.1
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ize the evaluation of the IC score. Indeed, the expected value
and the standard deviation (STD) parameters of a z-score
function can be defined from the distribution of individual’s
retrospective data. In alternative, these values can be taken
from a reference population or a protocol selected by the clin-
icians. The z-score is computed as follows and stored with
timestamp (t) for each measurement i ∈ N with value xi ,
where N is the total number of measurements:

zi (t) = z_score(xi (t))

= xi (t) − expected_value({xi (0), xi (1), . . . , xi (t − 1)})
ST D({xi (0), xi (1), . . . , xi (t − 1)}) .

(1)

Performance score

In our proposal, the performance score is an asymmetric
mapping of the z-score on the IC score. In assessing the per-
formance score, two key parameters are exploited: the risk
value and the expected value. With risk value, we refer to a
global and constant risk level identified by the clinicians for
each domain of measurement (for example see the [15]). If
a measured value is greater or less than this value, depend-
ing on the domain, the patient’s health is at risk and proper
interventions must take place.With the expected value, as we
also use it for calculating the personalized z-score, it could
be an average of all records or the most probable value of
that specific measurement for the patient out of their retro-
spective data. A high-performance score is achieved if the
z-score is far better than the expected value, while in the case
that z-score is close to the Risk value, the minimum perfor-
mance score is obtained. The performance score is computed
using the function S and z-score (zi ) ofmeasurement i , stored
with a timestamp and patient id each time a measurement is
received.

Performance score(zi ) = S(zi ,Risk value(i)) (2)

Parameters in sub-domain aggregation score

An approach in aggregating the sub-domain elements into
domains and thereafter, mapping domains into the IC is the
weighted aggregation. This way, the effectiveness of each
sub-domains measurements in domain performance score,
are indicated by their weights, wi , and the aggregation hap-
pens using weighted arithmetic functions where D is the
number of domains.

G j = g j (Performance score(zi ), wi ) i ∈ N j , j ∈ D (3)

Aggregating domains

The IC value could be simply an average of all domains’
performance scores or a geometric pooling of them with dif-
ferent weights, Wi , applied to different domains scores, as
illustrated in Eq. (4). Weights can account for the contri-
bution the different dimensions have on the final IC score.
The analytical strategies to be used for measuring a change
in health status are debated [31] and the geriatric scholar’s
community did not identify recommendations for differenti-
ating the contribution of each dimension. Equally averaging
the contribution of the dimension seems in this context the
less biased intervention.

IC = f (G j ,Wj ) j ∈ D. (4)

The assessed IC score using the patients’ retrospec-
tive data could provide useful data for leveraging Machine
Learning algorithms to predict the population-specific mea-
surements weights.
Someof the required analytical parameters such asRisk value
and domain weights are population-dependent. On the other
hand, the expected value and tolerance value are extracted
frompersonal records; therefore the z-score and performance
score are personalized values assigned to each studied indi-
vidual.

Studying trajectories

Studying the trajectories of the IC score of a patient is ourfinal
goal. Predictability of incidents that may lead to irreversible
damages is from high prioritized goals in continuous moni-
toring. Care management can substantiate decision making
and planning by the trends patient trajectories let emerge.
The correct interpretation of trends requires appropriate ana-
lytical methods.

Among the various methods used for studying nonlinear
dynamics, entropy is one of the prominent and applicable
approaches on broad types of time series even with limited
and short length and has been used to measure the complex-
ity of time series. Entropy, in terms of information concept,
was defined to quantify the expectability of an event vec-
tor while in time series analysis, assesses the uncertainty
and unpredictability of the evolution of dynamical systems.
Evaluation of time series in terms of entropy not only mea-
sures the complexity and predictability but also helps in the
detection of dynamic changes and incidences [37]. A stable
and predictable series allow increasing our confidence in the
ability of a patient in maintaining good IC standards.
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Table 3 Initial assessment: the table contains the measured parameters at the start of study

Parameter Data type 0* 6 12
Demographics

All participants Date of birth Date format �
Age Years (number) �
Biological gender Male/female �
Source of referral Text (advertisement, GP, etc.) �
Ethnicity Greek, Romanian, etc. �
Education level Primary, secondary, post-graduate �
Living situation Alone, couple, own/home care, etc. �
GP’s—Study partner’s credentials Name, email �
Medical history

All participants Diabetes or pre-diabetes Yes/no � � �
Hearing loss Yes/no � � �
Falls over the last 12 months Number � �
Balance disorder clinical tasks Yes/no � � �
Falls Efficacy Scale International
(FES-I)

Question-answer, total score � � �

CVD history Yes/no � � �
Cognitive issues Yes/no � � �
Weight loss Yes/no � � �
Depression or Anxiety disorder Yes/no � � �
Other medical history Text or ICD10 or other similar sys-

tem (conditions, accidents, surgery)
� � �

Current medication use Name and dose � � �
MOCA questionnaire** Question-answer, total score � � �
Dexterity scale** Question-answer, total score �
Drinking Units/day � � �
Smoking Packs of cigarettes per month � � �
Diet supplement use Name and dose � � �
Rapid Geriatric Assessment Question-answer, total score � � �
IADL Question-answer, total score � � �
Pittsburgh Sleep Quality Index
(PSQI)

Question-answer, total score � � �

Epworth Sleepiness Scale (ESS) Question-answer, total score � � �
Euro Quality of Life (EQ-5D) Question-answer, total score � � �
The System Usability Scale (SUS) Question-answer, total score �
Technology Acceptance (TAM) Question-answer, total score �
Mobile Device Proficiency Ques-
tionnaire

Question-answer, total score � � �

Physical examination

MNA Score � � �
All participants Body height cm �

Waist circumference cm �
Hip circumference cm �
Body weight kg �
Salt intake Categorical �
Body Mass Index (BMI) kg/cm2 �
Heart rate after subject has been
lying down for 3–5 min

b/min �
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Table 3 continued

Parameter Data type 0* 6 12
Demographics

Standing blood pressure sys-
tolic/diastolic)

mmHg/mmHg �

HL participants Supine blood pressure sys-
tolic/diastolic)

mmHg/mmHg �

Duration 150′ �
Hearing loss �
Family history of hearing loss Yes/no �
Noise exposure history Yes/no �
Noise exposure history dB and years (number) � � �
Otoscopy Appearance of external and middle

ear (text normal/abnormal)

Tympanometry Peak pressure (daPa), Middle ear
volume (cm3), Compliance (cm3)

Pure tone audiometry dBs per frequency (air conduction
250, 500, 1000, 2000, 3000, 4000,
6000, 8000Hz and bone conduction
500, 1000, 2000, 4000 Hz)

� � �

Balance disorders participants Glasgow Hearing Aid Benefit Pro-
file (GHABP)

Question-answer, total score � � �

Duration 60’ � � �
Balance disorders/falls � � �
MiniBEST- test Question-answer, total score

Functional Gait Assessment Question-answer, total score

Rapid Assessment of Physical
Activity

Question-answer, total score � � �

The Activities-specific Balance
Confidence Scale

Question-answer, total score �

CVDs participants Duration 120′ � � �
CVDs � � �
Number of non-scheduled visits due
to volume overload in subjects with
heart failure

Number � � �

Number of Visits to the ER due to
HTN peak

� � �

Diet Special dietary profile (text) � � �
SYSTOLIC BP mmHg � � �
DIASTOLIC BP mmHg � � �
HR b/min � � �
ECG Text (doctor’s comment) or the

actual graph if possible
� � �

Sleep disorder Yes/no

HB A1C LEVEL mmol/mol or %

LDL CHOLESTEROL LEVEL mg/dl � � �
HDL CHOLESTEROL LEVEL mg/dl � � �
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Table 3 continued

Parameter Data type 0* 6 12
Demographics

Depression participants HEARTSCORE % � � �
Duration 30′ � � �
Mental Disorders

Beck Depression Inventory (BDI) Question-answer, total score

Geriatric Depression Scale (GDS) Question-answer, total score � � �
Hamilton Rating Scale for Depres-
sion (HAM-D)

Question-answer, total score � � �

State-Trait Anxiety Inventory
(STAI)

Question-answer, total score � � �

Duration 30′

Cognitive disorders � � �
Frail participants Yesavage Geriatric Depression

Scale (GDS)
Question-answer, total score

Duration 5′

Frailty

Edmonton Frailty Scale (EFS) Question-answer, total score

Duration 10′

The measurements are divided according to health status of participants. The follow up tests time are indicated by the number of months after
joining the participants to the study (at month 0, 6 and 12)

Mapping on fast healthcare interoperability
resources (FHIR)

Bringing medical/clinical records into service requires sig-
nificant efforts in unifying the concepts and terms adopted, to
make the data understandable and usable by other clinicians
and scientists. A proposed solution is leveraging the unique
LOINC [16] and SNOMED-CT [? ] codes in defining obser-
vations, encounters, and biological considerations. The data
measured and collected with SMART BEAR devices, mobile
applications, and questionnaires will be stored in an HAPI
FHIR repositories using LOINC and SNOMED-CT codes.
Regarding the integration of questionnaires on HAPI FHIR
repository, a generic model is defined in [17]. According to
thismodel a questionnaire template FHIR requires resources,
where

– URL shall have a value;
– name shall have a value;
– title shall have a value;
– version might have a value;
– Recursively for each entry in item:

– linkID shall have a value;
– type shall have a code;

and a questionnaire fill in FHIR responses requires
resources, where

– questionnaire has a value;
– subject shall have a value;
– Recursively for each entry in item:

– linkID shall have a value;
– answer optionally has a value.

Using this model, the questionnaires are also mapped on
the FHIR data model.

Generating synthetic data using Synthea

Leveraging synthetic data for studying and simulating the
medical historyof a populationwithout facing the anonymiza-
tion challenges that scientists constantly come across, is
highly advised in studying health care data. In detail, these
synthetic data will be generated to test the main functionali-
ties of an understudying system.

In SMART BEAR project we adopt Synthea, a synthetic
patient generator that can model the medical history of
patients [33]. In Synthea, clinical care maps and statistics are
used to construct models of disease progression and treat-
ment in a Generic Module Framework, that encodes these
models in a Synthea module as state transition machines. In
other terms, modules describe a progression of states and the
transitions between them.On each Synthea generation times-
tamp, the generic framework processes state once a time to
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trigger conditions, encounters, medications, and other clini-
cal events.

It is possible to activate different modules simultaneously,
which compute state transitions (if any) for every person at
every timestamp in the synthetic world. Each state transition
in a module can trigger other events such as condition onset,
encounters with physicians, observations, prescriptions and
so on

The synthetic patient population is generated using a set
of probabilities to get a mixture of conditions corresponding
to the relevant scenarios. The probabilities are adjustable, so
that, if needed, specific sets of synthetic data can be gen-
erated to test each scenario. Ranges for each measure are
specific for each patient’s condition; values within the ranges
are randomly generated by Synthea at each observation time,
according to its standard behaviour.

One of Synthea’ strong points is that it can export patients’
data in several formats for different needs, namely:

1. FHIRversions 4.0.1 (R4), 3.0.1 (STU3) and1.0.2 (DSTU2).
2. C-CDA: uses the MDHT CDA Tools library along with

templates from the health-data-standards Ruby gem to
export patients in Consolidated Clinical Document Archi-
tecture (C-CDA) format. C-CDA is an XML-based stan-
dard defined by HL7, that uses templates from a standard
library to represent clinical concepts.

3. Text: This format does not adhere to any standards but is
clear and easy for a person to read and understand.

4. CSV: Unlike other formats which export a single record
per patient, this format generates 9 total files, and adds
lines to each based on the clinical events for each patient.
These files are intended to be analogous to database
tables, with the patient UUID being a foreign key.
Files include: patients.csv, encounters.csv, allergies.csv,
medications.csv, conditions.csv, careplans.csv, observa-
tions.csv, procedures.csv, and immunizations.csv.

In our simulation, the parameters in Table 1 are consid-
ered as observations or encounters. These observations take
place according to the defined time scale in SMART BEAR
for each parameter. The observations’ results for each patient
and timestamp of carried out measurements and all demo-
graphic characters are saved in FHIR format. Since Synthea
does not include the questionnaires in the generic modules,
we adapt artificial SNOMED-CT/LOINC codes and assume
them as observations (see Table 4 in the appendix). We have
assigned to each patient random questionnaires’ scores in the
valid specific ranges. To continue, following the workflow in
Fig. 2, the IC trajectories are calculated and demonstrated in
the end-user interface that could be a clinician or a caregiver
monitors.

The basic Synthea process generates values randomly
within the predefined ranges. In some cases, this might yield

Fig. 3 An example of inconsistency of produced data by Synthea:while
at time = 4 the number of steps increased, the distanced walk diagram
seems decreasing

unrealistic data for two reasons: first, frequently repeated
measures of the same variable for the same individual cannot
randomly oscillate in the whole range considered, even when
the patient’s condition is taken into account. For instance,
each weekly measure of the body muscle mass cannot dif-
fer from the previous one by more than a certain percentage.
Moreover, in a real dataset, some values should be correlated,
for instance, the walked distance and the number of steps. In
Fig. 3 an example of the problem can be found: the lines rep-
resent daily measured walked distance in meters and number
of steps for an individual, computed with the simplifiedmod-
ule, it can be seen that no correlation is found between the
data.

The module that will be used to generate synthetic data
for SMART BEAR takes into account the above points:

– For values that cannot freely oscillate in the whole range,
once the first value (randomly taken from the admissible
range) is recorded, the other values are obtained applying
random increments from a smaller range to the first value.

– Correlated measures are derived using simple functions
from a measure chosen as fundamental, when the corre-
lation does not require specific assumptions or dedicated
models, as in the case of walked distance and number of
steps. In the other cases, measures are considered as not
correlated.

Figure 6 of the appendix, demonstrates an example of
executedmodule for the locomotion domain. Although using
synthetic data could be very progressive and informative in
scientific studies, the validity of produced data, as it could be
noticed from the above discussion, is a matter of debate. To
continue, we focus on the evaluation of data sets from two

123



Complex & Intelligent Systems (2022) 8:3953–3971 3965

Fig. 4 The schematic views of performance scores function in terms of
z-score. The first diagram refers to the cases with a risk value smaller
than the expected value (the red curve) and the risk value larger than
the expected value (the green curve). The risk values are indicated by
dashed lines. In the second diagram, the related Performance score to
observation with two risk levels is plotted (the purple diagram)

important points of view: Entropy and stationary status of
time series.

Entropy of time series

Entropy is one of the illustrative indicator of a time series
quantifying the uncertainty of events in the dynamical sys-
tem. Ponce-Flores et al in [28] showed that there is a
direct relationship between the complexity of time series and
unpredictability. For a time series with length N , entropy
determines how well the state space is reconstructed by
m dimensional vector spaces and quantifies this similar-
ity. In 1991, Pincus proposed the Approximate entropy [27]
as a modified version of Kolmogorov–Sinai entropy, which
showed robustness and stability in studying the real-world
noisy and medium-length data series such as physiological,
mechanical, and physical data. Despite the valuable result of
approximate entropy, its strong dependence on input param-
eters and low-quality performance on short-length data set,
lead to propose a refined metric named Sample entropy by
scientists [29].

Spectral and Permutation entropy algorithms are other
well-established criteria in data series analysis. Whilst Spec-
tral entropy sums the irregularities by summing the normal-
ized signal spectral power, Permutation entropy assesses the
diversity of ordinal space vectors by indexing the elements in
ascending order and finds the permutation pattern. Because

the permutation entropy makes only use of the order of the
values, it is robust under non-linear distortion of the signal
and is also computationally efficient [37].

Stationary/non-stationary time series

Stationary time series has a specific Probability Density
Function (PDF) which leads to specific mean, variance, and
covariance while time passes. Examination of a time series
in terms of being stationary (at some systems being near sta-
tionary state could suffice) or non-stationary, brings about an
insight of regularities of the dynamic evolution of the under-
studied system.

Most common implementations leverage the Unit Root
tests for evaluating the stationary status on a given time
series; namely Augmented Dickey–Fuller (ADF) test [8]
and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [19].
The most commonly used is the ADF test, where the null
hypothesis is the time series possesses a unit root and is non-
stationary. So, if the p value in ADF test is less than the
significance level (0.05), the null hypothesis is rejected. The
KPSS test, on the other hand, is used to test for trend station-
arity. The null hypothesis and the p value interpretation are
just the opposite of ADF test.

Experimental analysis

In this section, by applying our proposed monitoring method
on four synthetic patients along a period of 1 year, the corre-
sponding IC scores are calculated and demonstrated in Fig.
5.

Due to different dedicated frequencies of data collec-
tion from different observations, discussed in the Sect. Data
acquiring and demonstrated in Table 1, unifying the length
of observations timestamps for the continuous monitoring of
IC score is an urgent need. Considering the maximum obser-
vation length of observations data set which is related to the
Heart Rate, two times a day, we have repeated the last

value of observation i for the (Maximum length of observations
length of observation i list ) the

number of subsequent time steps. This way, we get the same
length of data sets for all the observations. For each obser-
vation i , the z-scores are calculated for each time step using
the relevant Expected and Tolerance values, defined based on
references in the literature. In the first approach, we consider
the median of the normal advised range as generic constant
values referring to the Expected value. The adopted Toler-
ance value is ±10% of the assigned expected value to each
observation.According to ourmethod, the performance score
is a nonlinear mapping of z-score to the interval [1, 6]. For
this transformation, we suggest a generalized logistic func-
tion as a function of z-score, Risk, and Expected values. Risk
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Fig. 5 The calculated Intrinsic Capacity score for four sample of patients using generated synthetic data. Each patient’s IC trajectories, the monthly
average and linear trend of 1-year monitoring are plotted in each panel

values, similarly to Expected values, are extracted from the
literature. The rationale behind this selection is the chang-
ing behavior of natural dynamics; while very small and very
large values do not get high marginal gain and variation is
negligible, a fast phase transition happens at a value between
the allowed maximum and minimum values Fig. 4a.

Regarding the observations in Table 1, some of the param-
eters have one and some others have two risk levels, for
instance, theTotal cholesterol value higher than 240
mg/dl is risky, while the Body Mass Index values are
risky if lower than 18 kg

cm2 and higher than 25 kg
cm2 . For

addressing this issue we suggest two different functions,
illustrated in Fig. 4. Furthermore, there is another com-
plication in the definition of performance score for those
observations with one of the low borderline or high border-
line. According to ourmodel, for those observationswith low
borderline, such as Rapid Geriatric Assessment
Score that for a normal applicant, the gain score is higher
than 27, the Expected value should be larger than the

low borderline. On the contrary, for those measurements
such as Beck Depression Inventory Score, the
Expected value should be smaller than the high borderline.
Therefore we propose the increasing (decreasing) S-shape
trends for the cases in which the risk value is larger (smaller)
than the expected value. This way, the performance score at
risk value gets the minimum value. For those observations
with two risk levels, lower and upper values, we consider
a Gaussian function which reaches the maximum for the z-
score equals to z-score of an Expected value, to calculate the
performance score according to Fig. 4b. Following the eval-
uation of performance scores for all parameters obtained for
each patient, we aggregate them to get an IC score at each
time step. This aggregation function in the simplest form
could be performed by averaging over all the measurements
performance scores with equal weights. In a comprehensive
study in future works, this function will be expanded and
studied considering the relevant effective weights of each in-
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Table 4 The table contains
adopted SNOMED_CT/LOINC
codes for observations used in
generating the synthetic health
data

Observation Codes

SNOMED-CT First visit 185349003

Follow up visit 185349003

Weekly virtual encounter 185349003

1st Daily virtual encounter 185349003

2nd Daily virtual encounter 185349003

Diabetes 73211009

Pre-diabetes 714628002

Hearing problems 61947007

Cognitive problems 698691002

Familiarity hearing problems 439750006

Anxiety 36646009

Depression 2704003

Influenza 719590007

Age 445518008

Gender 365873007

Ethnicity 365456003

Education 365458002

Life situation 365508006

Number of falls 161898004

Weight loss 107647005

Female gender 703118005

Male gender 703117000

Weight loss 89362005

Noise exposition history 6300007

Environment temperature 422629000

HA usage time 6012004

LOINC Smoker 72166-2

Height 8302-2

Weight 29463-7

Mass index 39156-5

Heart rate 68999-2

Heart rate average 55425-3

Heart rate maximum 55426-1

Diastolic blood pressure—standing 8454-1

Diastolic blood pressure—supine 8455-8

Systolic blood pressure—supine 8461-6

Systolic blood pressure—standing 8460-8

Walked distance 41953-1

Oxygen saturation 2708-6

Body temperature 8310-5

Steps 55423-8

Body fat 41982-0

Sleep duration 93832-4

Light sleep duration 93830-8

Deep sleep duration 93831-6

Muscle mass 73964-9
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Fig. 6 An example of intrinsic capacity locomotion domain module for generating synthetic data with Synthea

domain measurement and the weight of domains in the final
IC score.

The calculated IC score of four different patients using
synthetic medical records is shown in Fig. 5. Table 2 demon-
strates a comparison of statistics of two generated synthetic
data sets used in the calculation of IC, the Number of
Steps that an individual walks during the monitoring

period, and the recorded Heart Rate, within the same
period of time. The aim is verifying if the series is stationary
or not stationary. A stationary series is an indicator of less
risk while a non-stationary state implies less predictability.
We have evaluated the statics of ADF and KPSS test for the
whole data sets of Number of Steps and Hear Rate.
As mentioned in Sect. Stationary/non-stationary time series,
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Table 4 continued Observation Codes

Total cholesterol 2093-3

HDL cholesterol 2085-9

LDL cholesterol 2089-1

Hemoglobin A1c/Hemoglobin total in Blood 4548-4

MOCA score 74468-0

Health Utilities Index Score 74468-0

Godin Leisure-Time Ex Score 74468-0

Rapid Geriatric Assessment Score 74468-0

IADL Score 74468-0

Social Functioning Scale Score 74468-0

Pittsburgh Sleep Quality Index 74468-0

Epworth Sleepiness Scale Score 74468-0

Euro Quality of Life Score 74468-0

Beck Depression Inventory Score 74468-0

GDS15 Geriatric Depression Scale Score 74468-0

Hamilton Rating Sc for Depression Score 74468-0

State–Trait Anxiety Inventory Score 74468-0

Mini Mental State Score 74468-0

Clock Drawing Test Score 74468-0

Verbal Fluency Test Score 74468-0

Everyday Cognition Score 74468-0

Never smoked LA18978-9

Current every day smoker LA18976-3

Former smoker LA15920-4

ADF and KPSS test stationarity using different null hypothe-
sis. Unlike KPSS test, the null hypothesis in ADF test is that
the series is non-stationary. From the first category of evalua-
tions, illustrated inTable 2, bothADFandKPSS tests, respec-
tively with a p value greater and smaller than 0.05, indicating
that the steps data set is non-stationary while the Heart Rate
data, with p value smaller and greater than 0.05, is stationary.
Since the monitoring period lasts 1 year, for evaluating the
quality of synthetic data, we deseasonalized data and store
them in four separated data frames, steps1 to steps4 and HR1
to HR4 data sets. By building the smaller blocks of data, we
witness the smaller values of entropy by applying all selected
algorithms, for both seasonal and total data set for Heart
Rate in comparison to the Number of Steps for the
same monitoring time period. This shows more regularities
in the produced heart rate data than the number of steps time
series. This can be verified, implementing theADFandKPSS
stationary tests reveal the stationary characteristic of seasonal
blocks of steps data set in contrary to the annual data set; the
p_values < 0.05 for the ADF and p_values > 0.05 for KPSS
tests prove the stationarity. We consider this measure a rele-
vant indicator of the behavior a patient exhibit, because we
remove the fluctuations related to the seasonal effects.

Moreover, considering the obtained trajectories (Fig. 5),
we have calculated the entropy using commonmethods, such
as Permutation, Spectral, Approximate, and Sample which
all report the highest entropy for patient_2. We propose
to use the entropy of trajectories as an additional element to
be considered in evaluating the risk using IC scores.

Conclusion

In this paper, we have focused on the engineering aspect of
implementing the continuous monitoring of IC using wear-
able devices and available measurements in SMART BEAR
project, as the backbone of further explorations and improve-
ments in the prediction and prevention of decreasing intrinsic
capacity.Wehave followed the process of calculating IC from
the data acquisition to the representation of IC trajectories by
introducing the architectural components in SMART BEAR
project. We have illustrated our methodology in calculating
IC scores out of the number of various measurements pro-
duced by a synthetic data generator. Furthermore, we have
evaluated the statics of ADF and KPSS test for two synthetic
observations data sets, number of steps, and heart rate in
Table 2. Both ADF and KPSS tests indicate that the steps
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series synthetic data set is a non-stationary time series while
the heart rate data is a stationary timeseries.

Concerning the different stationary states for two sets
of generated data, it should be noted that leveraging the
synthetic data set demands precautions validity tests before
further statistical analysis, otherwise the outcome will not
converge to a real case scenario’s result. We have also pro-
posed Entropy as an indicator of unpredictability and sudden
changes in a studied dynamic. Calculating the Permutation,
Spectral, Approximate, and Sample entropy, all consistently
results in a higher value for the IC scores of patient_2.
From this observationwe could find out even though the aver-
age linear trend of IC score of patient_2 within a year of
monitoring more or less stays stable, this patient has expe-
rienced many variations in his/her intrinsic capacity which
indicates the risk assessment should be revised and proper
intervention is needed to be taken place. In other words, the
more is the entropy of IC trajectories, the less trust full pre-
dictions may have resulted.
Furthermore, considering the IC trends, muchmore informa-
tion, such as the number of months that the patient suffers
from low IC, seasonal dependency, and holistic trends of
well-being state could be retrieved. Better validation of the
trend can be obtained by calculating the p values of seasonal
time series and witnessing that contrary to the total data set,
we get stationary data sets once we break them into seasonal
pieces. This may be a promising solution for getting a reli-
able approximation of IC within specific time periods, for
instance, every 3 months, while the proof of this solution
and finding the proper time period demands more effort.
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