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Abstract 

Background: In a collaboration between animal and human health care professionals, we assessed the genetic char-
acteristics shared by non-aureus staphylococci (NAS) infecting humans and dairy ewes to investigate their relatedness 
in a region concentrating half of the total National sheep stock. We examined by PCR 125 ovine and 70 human NAS 
for biofilm production, pyrogenic toxins, adhesins, autolysins genes, and accessory gene regulator (agr) locus. The 
microtiter plate assay (MPA) was used for the phenotypic screening of biofilm production. Ovine NAS included S. epi-
dermidis, S. chromogenes, S. haemolyticus, S. simulans, S. caprae, S. warneri, S. saprophyticus, S. intermedius, and S. muscae. 
Human NAS included S. haemolyticus, S. epidermidis, S. hominis, S. lugdunensis, S. capitis, S. warneri, S. xylosus, S. pasteuri, 
and S. saprophyticus subsp. bovis.

Results: Phenotypically, 41 (32.8%) ovine and 24 (34.3%) human isolates were characterized as biofilm producers. 
Of the ovine isolates, 12 were classified as biofilm-producing while the remaining 29 as weak biofilm-producing. All 
24 human isolates were considered weak biofilm-producing. Few S. epidermidis isolates harbored the icaA/D genes 
coding for the polysaccharide intercellular adhesin (PIA), while the bhp, aap, and embp genes coding biofilm accumu-
lation proteins were present in both non-producing and biofilm-producing isolates. Fifty-nine sheep NAS (all S. epider-
midis, 1 S. chromogenes, and 1 S. haemolyticus) and 27 human NAS (all S. epidermidis and 1 S. warneri) were positive for 
the agr locus: agr-3se (57.8%) followed by agr-1se (36.8%) predominated in sheep, while agr-1se (65.4%), followed by 
agr-2se (34.6%) predominated in humans.

Concerning virulence genes, 40, 39.2, 47.2%, 52.8, 80 and 43.2% of the sheep isolates carried atlE, aae, sdrF, sdrG, eno 
and epbS respectively, against 37.1, 42.8, 32.8, 60, 100 and 100% of human isolates. Enterotoxins and tsst were not 
detected.

Conclusions: Considerable variation in biofilm formation ability was observed among NAS isolates from ovine and 
human samples. S. epidermidis was the best biofilm producer with the highest prevalence of adhesin-encoding genes.
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Background
Half of the total Italian dairy sheep stock is farmed in 
Sardinia, an island located in the Mediterranean Sea. 
Sardinia has approximately 3.5 million dairy sheep, with 
a human population of around 1.6 million inhabitants. 
Accordingly, a relevant part of the regional economy 
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relies on dairy sheep farming, and controlling intra-
mammary infections (IMI) is crucial.

Sheep mastitis prevalence is estimated to range from 
5 to 30%, and several reports indicate that non-aureus 
staphylococci (NAS) are the most prevalent microrgan-
isms causing subclinical disease in small ruminants [1–4]. 
Therefore, the exchange of colonizing and pathogenic 
microorganisms, with their antimicrobial-resistance and 
pathogenicity gene pools, can occur among sheep and 
farmers. NAS have recently gained attention as nosoco-
mial agents causing frequent infections in debilitated or 
compromised patients, mainly associated with catheters 
and other indwelling medical devices [5]. NAS, and in 
particular S. epidermidis, can produce a multicellular bio-
film that decreases the antibiotic concentration within 
the colony, promotes multiplication, and enhances the 
survival of invading bacteria [6]. Biofilm formation can 
be best assessed by the microtiter plate assay (MPA), as 
it produces a quantitative result by measuring the optical 
density of the stained biofilm [7, 8]. The main constituent 
of the NAS biofilm matrix is a linear 1,6-linked glycosa-
minoglycan, also known as polysaccharide intercellular 
adhesin (PIA), synthesized by proteins encoded by the 
intercellular adhesion (ica) operon. Among the ica genes, 
icaA and icaD have an essential role in biofilm production 
[9]. The coexistence of both icaA/D genes leads to the full 
phenotypic expression of the capsular polysaccharide [9]. 
However, PIA-independent biofilms involving accumula-
tion-associated protein (Aap), biofilm homologue protein 
(Bhp) and extracellular matrix-binding protein (Embp) 
have also been reported [10, 11].

Generally, NAS can produce several virulence factors 
that contribute collectively to colonization and invasion 
of host cells and tissues, as well as evasion of immune 
responses [12]. Virulence factors include the autolysins 
AtlE and Aae [13, 14], and microbial surface components 
recognizing adhesive matrix molecules (MSCRAMMs) 
that mediate initial adhesion to different surfaces and 
promote colonization and serum protein binding [15]. 
The best known S. epidermidis MSCRAMMs are the 
fibrinogen-binding protein SdrG [16], and the collagen/
keratin-binding protein SdrF [17, 18].

Furthermore, the production of various toxins can also 
contribute to NAS virulence [19], including staphylococ-
cal enterotoxins (SEs) and toxic shock syndrome toxin 1 
(TSST-1) [20]. Five serological types of SEs are typically 
known (SEA to SEE), but new types of SEs (SEG to SE1V) 
have also been identified and characterized [21, 22]. The 
quorum-sensing system (QS) agr, i.e. accessory gene reg-
ulator [23, 24] regulates biofilm formation, intercellular 
communication, and numerous virulence factors includ-
ing toxins and autolysins. Three distinct genetic groups 
(types 1, 2, and 3) based on the agr locus polymorphism 

have been described in S. epidermidis [25], but data on 
the genetic polymorphisms of the agr locus in different 
species of NAS were not available in the scientific litera-
ture at the beginning of this investigation.

In this study, we compared the molecular characteris-
tics of NAS isolated from the milk of sheep with mastitis 
and human clinical specimens with the following aims: 
1) assess the biofilm production characteristics by phe-
notypic and genotypic methods, 2) carry out genotypic 
screening for a set of MSCRAMMs, autolysins, entero-
toxins and tsst-1 genes and 3) investigate the agr locus 
and its genetic polymorphism.

Results
Ovine NAS
We analyzed a total of 125 isolates, including S. epider-
midis (n = 57), S. chromogenes (n = 29), S. haemolyticus 
(n = 17), S. simulans (n = 8), S. caprae (n = 6), S. warneri 
(n = 5), S. saprophyticus (n = 1), S. intermedius (n = 1) and 
S. muscae (n = 1). Table  1 reports the isolates included 
in the study, while Supplementary Table S1 reports the 
primers used for PCR amplifications.

Table  2 summarizes the biofilm formation results. 
Out of 125 isolates examined, 41 (32.8%) were classified 
as biofilm producers; of these 29 (23.2%) were classified 
as weak biofilm-producers (WBP) while 12 (9.6%) as 
biofilm-producers (BP). Only one isolate harbored both 
icaA and icaD genes while two had only the icaA gene. 
On the other hand, 37 (29.6%), 22 (17.6%) and 63 (50.4%) 
isolates harbored the bhp, aap and embp genes, respec-
tively (Table  2). For autolysin genes, 50 (40%) isolates 
were PCR positive for altE while 49 (39.2%) were positive 
for aae. Concerning adhesion factors (MSCRAMMs), 
59 (47.2%), 66 (52.8%), 100 (80%) and 54 (43.2%) iso-
lates harbored sdrF, sdrG, eno and epbS, respectively. All 
isolates were negative for clfA (Table  3). Regarding the 
agr type, 21 (16.8%) isolates belonged to agr-1 while 33 
(26.4%) to agr-3. None of the isolates belonged to type 
2 (Table 4). No amplification was obtained for the toxin 
genes analyzed.

S. epidermidis
S. epidermidis was the most represented ovine NAS. 
Out of 57 isolates, 17 (30%) were classified as WBP and 
11 (19%) as BP; only one non-BP harbored both icaA/D 
genes. On the other hand, 54 (94.7%), 30 (52.6%) and 20 
(16%) isolates harbored embp, bhp and aap, respectively. 
Concerning autolysin genes, 48 (84.2%) were PCR-posi-
tive for atlE and 46 (80.7%) for aae. MSCRAMM genes 
were found in high percentages: 98% for eno, 91% for 
epbS, 87.7% for sdfG and 78.9% for sdrF. No amplifica-
tion was obtained for clfA/B, fnbA/B, bbp, cna and fib 
(Table 3). All S. epidermidis isolates were positive for the 
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agr locus: 33 (57.8%) belonged to agr-3se while 21 (36.8%) 
to agr-1se (Table 4). Three isolates were non-typeable.

S. chromogenes, S. haemolyticus, and minor ovine NAS
S. chromogenes (n = 29) and S. haemolyticus (n = 17) were 
the most prevalent species in ovine milk samples after S. 
epidermidis. Table 2 shows that only 1 S. chromogenes was 
classified as BP while 7 (87.5%) S. simulans and 3 (50%) S. 
caprae were classified as WBP. The details are reported in 
Table 2.

Human NAS
The distribution of biofilm, autolysins, and MSCRAMMs 
genes in the 70 human NAS, including S. haemolyticus, 
S. epidermidis, S. lugdunensis, S. hominis, S. capitis, S. 
warneri, S. xylosus, S. pasteuri and S. saprophyticus subsp. 
bovis is shown in Tables 2 and 3.

S. haemolyticus
Out of 28 S. haemolyticus isolates examined by MPA, 
only 1 (3.6%) was classified as WBP. None of the S. 
haemolyticus isolates harbored icaA/D, bhp and embp. 
On the contrary, the WBP (from blood) and other 3 non-
BP (from nasal swab, blood, and glans swab) isolates pos-
sessed the aap gene. No amplification was observed for 
atlE, aae, sdrF/G, clfA/B, fnbA/B, bbp, cna, fib, epbS, agr 
locus (Table  3), and toxin genes. However, all isolates 
harbored the eno gene.

S. epidermidis
Among the 26 S. epidermidis isolates, 9 (34.6%) were clas-
sified as WBP; 4 of them (2 from catheter and 2 from 
blood) harbored both icaA and icaD whereas the remain-
ing 5 isolates were icaA/D negative. The other 5 icaA/D 
positive isolates, classified as non-BP, were also positive 
for the other biofilm genes analyzed. Out of 17 non-BP 

Table 1 Distribution of ovine and human NAS isolates according to the specimen origin

a Isolate abbreviations: S. hae, S. haemolyticus; S. epi, S. epidermidis; S. chr, S. chromogenes; S. sim, S. simulans; S. lug, S. lugdunensis; S. hom, S. hominis; S. cpr, S. caprae; S. S. 
cap, S. capitis; S. war, S. warneri; S. xyl, S. xylosus; S. pas, S. pasteuri; S.int, S. intermedius; S. sap, S. saprophyticus subsp. Bovis; S. mus, S. muscae
b Specimen abbreviations: C.V.C central venous catheter, F.V.C femoral venous catheter, B.L.fluid bronchoalveolar lavage fluid, N.P aspirate, nasopharyngeal aspirate

Ovine NASa

 Source S. epi S. chr S. hae S. sim S. cpr S. war S. sap S. int S. mus

 Milk 57 29 17 8 6 5 1 1 1

Human NASa

 Source S. hae S. epi S. lug S. hom S. cap S. war S. xyl S. pas S. sap

 Nasal swab 6 5 – – – – – – –

 Blood 4 6 – 1 – – – – –

 Skin swab 2 3 – – 2 – 1 – –

 Pus 1 3 – – – – – 1 –

 Peritoneal fluid 2 – 2 – – – – – –

 Seminal fluid 4 – – – – – – – –

 Injury – 3 1 – – – – – –

 Ear swab 2 – – – – 1 – – –

 Oral swab 1 1 – – – – – – 1

 Urine 2 – – 1 – – – – –

 C.V.Cb – 2 – – – – – – –

 Ulcer swab – 1 – – – – – – –

 F.V.C.b – 1 – – – – – – –

 Peritoneal swab 1 – – – – – – – –

 Vaginal swab – – 1 – – – – – –

 Glans swab 1 – – – – – – – –

 Pleural fluid – – – 1 – – – – –

 Fluid drainage – – – – – 1 – – –

 B.L.  fluidb 1 – – – – – – – –

 N.P.  aspirateb – – – – 1 – – – –

 Bile 1 – – – – – – – –

 Biopsy – 1 – – – – – – –

 Prosthesis – – – 1 – – – – –

 Total 28 26 4 4 3 2 1 1 1
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and icaA/D negative isolates, 3 (2 from pus and 1 from 
oral swab) harbored aap and embp while 1 (from skin 
swab) harbored all bhp, aap, and embp genes. Overall, 
16 (61.5%), 25 (96.1%) and 23 (88.5%) isolates carried 
the bhp, aap and embp, respectively (Table  2). Data on 
the prevalence of autolysins and MSCRAMM genes by 
PCR are shown in Table  3. Concerning autolysin genes, 
all isolates were PCR positive for aae and almost all 
(25/26 = 96.1%) were positive for altE. Regarding adhe-
sion factors, all S. epidermidis isolates were positive for 
sdrG, eno, and epbS, while 21/26 (80.8%) for sdrF. In 
four of them (2 from pus, 1 from biopsy and 1 from skin 
swab), a PCR product smaller than the expected size was 
observed. Sequence analysis of these amplicons showed 
the absence of an 84 bp fragment. In contrast, no ampli-
fication was observed for clfA/B, fnbA/B, bbp, cna, and 
fib. Determination of the agr type was performed in all 

S. epidermidis isolates: 17 (65.4%) belonged to agr-1se 
whilst 9 (34.6%) to agr-2se (Table 4). Among the 17 agr-
1se isolates, only 3 (1 from femoral venous catheter, 1 
from nasal swab and 1 from pus) carried simultaneously 
icaA/D, bhp, aap, embp, atlE, aae, sdrF sdrG, eno, and 
epbS, associated with biofilm formation. Of these, 1 was 
WBP and two non-BP. Among the 9 agr-2se isolates, only 
1 (from blood) possessed these genes and it was a WBP 
isolate. Regarding the pyrogenic toxin genes, amplifica-
tion was not observed in the S. epidermidis isolates or the 
remaining staphylococci.

Minor human NAS
Out of the 4 S. lugdunensis isolates examined, 3 (2 from 
peritoneal fluid and 1 from vaginal swab) were consid-
ered as WBP. However, they harbored only sdrG and eno.

Table 2 Phenotypic characterisation of biofilm production by MPA and genotypic detection by PCR of ica, bhp, aap and embp genes 
from 125 ovine and 70 human NAS isolates

Isolate abbreviations: S. hae, S. haemolyticus; S. epi, S. epidermidis; S. chr, S. chromogenes; S. sim, S. simulans; S. lug, S. lugdunensis; S. hom, S. hominis; S. cpr, S. caprae; S. S. 
cap, S. capitis; S. war, S. warneri; S. xyl, S. xylosus; S. pas, S. pasteuri; S.int, S. intermedius;S. sap, S. saprophyticus subsp. bovis; S. mus, S. muscae
a WBP weak biofilm-producing isolate
b BP biofilm-producing isolate

OVINE Isolates (n) Biofilm production (MPA) Biofilm genes

PIA Proteinaceous factors

WBPa BPb icaA icaD icaA/D bhp aap embp

n % n % n % n % n % n % n % n %

S. epi (57) 17 30 11 19 1 1.7 1 1.7 1 1.7 30 52.6 20 16 54 94.7

S. chr (29) 0 0 1 3.4 0 0 0 0 0 0 4 13.8 0 0 8 27.5

S. hae (17) 0 0 0 0 0 0 0 0 0 0 0 0 2 11.7 1 5.8

S. sim (8) 7 87.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S. cpr (6) 3 50 0 0 1 16.6 0 0 0 0 1 16.6 0 0 0 0

S. war (5) 0 0 0 0 0 0 0 0 0 0 2 40 0 0 0 0

S. sap (1) 1 100 0 0 1 100 0 0 0 0 0 0 0 0 0 0

S. int (1) 1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S. mus (1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total (125) 29 23.2 12 9.6 3 2.4 1 0.8 1 0.8 37 29.6 22 17.6 63 50.4

HUMAN Isolates (n) Biofilm production (MPA) Biofilm genes

PIA Proteinaceous factors

WBPa BPb icaA icaD icaA/D bhp aap embp

n % n % n % n % n % n % n % n %

S. hae (28) 1 3.6 0 0 0 0 0 0 0 0 0 0 4 14.3 0 0

S. epi (26) 9 34.6 0 0 10 38.5 10 38.5 10 38.5 16 61.5 25 96.1 23 88.5

S. lug (4) 3 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S. hom (4) 4 100 0 0 0 0 0 0 0 0 0 0 4 100 0 0

S. cap (3) 3 100 0 0 3 100 0 0 0 0 0 0 0 0 0 0

S. war (2) 2 100 0 0 0 0 0 0 0 0 0 0 1 50 1 50

S. xyl (1) 1 100 0 0 1 100 0 0 0 0 0 0 0 0 0 0

S. pas (1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S. sap (1) 1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total (70) 24 34.3 0 0 14 20 10 14.3 10 14.3 16 22.8 34 48.6 24 34.3
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All 4 S. hominis isolates were phenotypically WBP but 
were PCR-positivity only for aap, sdrG, and eno. All 
3 WBP S. capitis isolates were PCR-positive for icaA, 
sdrG, and eno. Tables 3 and 4 report the PCR results for 
S. warneri, S. xylosus, S. pasteuri, and S. saprophyticus 
subsp. bovis. Of note, one WPB S. warneri isolate (from 
fluid drainage) was negative for icaA/D and bhp genes 
but was positive for the aap, embp, atlE, aae, sdrG/F, 
clfA, eno and agr genes. However, we were not able to 
type the agr locus.

Discussion
We established a collaboration between animal and 
human health care professionals aimed at understand-
ing if non-aureus staphylococci (NAS) responsible for 
human diseases share genetic similarities with those cir-
culating in sheep, in consideration of the high number of 
dairy sheep farmed in the island and of the prominent 
role of these bacteria as mastitis agents.

A total of 195 NAS isolates, 125 from ovine mastitis 
and 70 from human clinical specimens, were analyzed 
for biofilm production and presence of autolysins, 

pyrogenic toxins, and MSCRAMM genes. We also 
typed agr alleles by PCR because the quorum sens-
ing system regulates many virulence determinants 
involved in staphylococcal infections, including autol-
ysins, adhesins, and toxins [19]. In sheep, the pri-
mary NAS detected were S. epidermidis followed by 
S. chromogenes and S. haemolyticus. At the same time, 
in humans we found primarily S. haemolyticus and S. 
epidermidis, followed by S. lugdunensis, S. hominis, S. 
capitis, S. warneri, S. xylosus, S. pasteuri, and S. sapro-
phyticus subsp. bovis. S. haemolyticus has been associ-
ated with septicemia in neonates and skin infections; S. 
epidermidis is the main pathogen isolated in catheter-
associated bloodstream infections (BSI); S. lugdunensis 
can cause acute endocarditis; S. hominis and S. capitis 
may induce BSI in neonates; S. warneri is associated 
with device-related bone and joint infections, while S. 
pasteuri, S. xylosus and S. saprophyticus subsp. bovis 
are not associated with a particular clinical infection, 
and their appearance as nosocomial pathogens could 
be related to previous contact with animals, mainly pig, 
cattle, sheep, and goats [26]; S. epidermidis represents 

Table 4 Results of testing 125 ovine and 70 human NAS isolates for agr locus by PCR

Isolate abbreviations: S. hae, S. haemolyticus; S. epi, S. epidermidis; S. chr, S. chromogenes; S. sim, S. simulans; S. lug, S. lugdunensis; S. hom, S. hominis; S. cpr, S. caprae; S. S. 
cap, S. capitis; S. war, S. warneri; S. xyl, S. xylosus; S. pas, S. pasteuri; S.int, S. intermedius;S. sap, S. saprophyticus subsp. bovis; S. mus, S. muscae

OVINE Isolates (n) agr locus
agr 200 bp Type 1 Type 2 Type 3

n % n % n % n %

S. epi (57) 57 100 21 36.8 0 0 33 57.8

S. chr (29) 1 3.4 0 0 0 0 0 0

S. hae (17) 1 5.8 0 0 0 0 0 0

S. sim (8) 0 0 0 0 0 0 0 0

S. cpr (6) 0 0 0 0 0 0 0 0

S. war (5) 0 0 0 0 0 0 0 0

S. sap (1) 0 0 0 0 0 0 0 0

S. int (1) 0 0 0 0 0 0 0 0

S. mus (1) 0 0 0 0 0 0 0 0

Total (125) 59 47.2 21 16.8 0 0 33 26.4

HUMAN Isolates (n) agr locus
agr 200 bp Type 1 Type 2 Type 3

n % n % n % n %

S. hae (28) 0 0 0 0 0 0 0 0

S. epi (26) 26 100 17 65.4 9 34.6 0 0

S. lug (4) 0 0 0 0 0 0 0 0

S. hom (4) 0 0 0 0 0 0 0 0

S. cap (3) 0 0 0 0 0 0 0 0

S. war (2) 1 50 0 0 0 0 0 0

S. xyl (1) 0 0 0 0 0 0 0 0

S. pas (1) 0 0 0 0 0 0 0 0

S. sap (1) 0 0 0 0 0 0 0 0

Total (70) 27 38.6 17 24.3 9 12.8 0 0
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the most frequently isolated species from ovine masti-
tis and human clinical specimens [1, 26, 27].

Overall, 65 NAS were able to form biofilm in  vitro; 
however, the percentage of biofilm producers in sheep 
isolates was slightly lower than in human isolates. More-
over, we found a correlation between biofilm production 
and ica operon presence only in 5 S. epidermidis isolates, 
4 human and 1 ovine. Some authors proposed to use this 
correlation as a pathogenesis marker to distinguish inva-
sive from commensal isolates [28, 29]. However, we and 
others [11, 30, 31] demonstrated that PCR positivity for 
icaA/icaD genes can also be found in non-biofilm pro-
ducers. Since the correlation between biofilm production 
and positivity for ica, bhp, aap, and embp genes is not 
clearly defined, we suggest considering all isolates that 
possess such genes as potentially invasive. In this work, 
only one S. epidermidis with these characteristics was iso-
lated from ovine mastitis while the other 4 derived from 
catheters and blood. Noteworthy, a high positivity for the 
genes encoding the bifunctional adhesins/autolysins AtlE 
and Aae was found in both animal and human S. epider-
midis isolates [3, 5]. In addition to bacteriolytic activity, 
AtlE and Aae act as adhesins by binding noncovalently 
to vitronectin and by causing the release of extracellu-
lar DNA (eDNA), a critical adherence/aggregation fac-
tor in biofilm formation [32]. The presence, of atlE and 
aae in S. epidermidis was accompanied by a high prev-
alence of embp, sdrG, sdrF, eno and epbS, all genes that 
mediate adherence to substrates containing fibronectin, 
fibrinogen, collagen, laminin and elastin, respectively [4, 
33–35]. The ability of S. epidermidis to bind these sub-
strates might represent a relevant mechanism by which 
it can adhere to and colonize different host sites. The 
eno gene was the only gene found in all NAS analyzed, 
except for S. simulans. In human NAS, the prevalence 
is 100%. Therefore, the ability of NAS to bind laminin, a 
major component of basal membrane of the vasculature, 
might play a possible role in to tissue invasion and blood 
dissemination.

The agr locus is a regulatory system that responds to 
host and environmental stimuli and controls the pro-
duction of many virulence factors [24]. In S. epider-
midis, three distinct agr groups have been recognized 
[25]. Li et  al. [36] have linked the genetic polymor-
phism of the agr locus to pathogenicity; group-1se was 
associated with pathogenicity, while healthy people 
mainly carried group-2se. In our human S. epidermidis 
isolates, agr-1se was predominant (n = 17), followed by 
agr-2se (n = 9). It is interesting to notice that almost all 
isolates possessing ica genes belonged to agr-1se. This 
may suggest a correlation of these virulence genes with 
a specific agr locus. However, other 8 icaA−/D− isolates 

were present in the group-1se. The feature shared by all 
17 isolates belonging to this group was the PCR positiv-
ity for the atlE, aae, sdrG, eno and epbS genes. On the 
other hand, among the 9 isolates grouped in the agr-
2se, 1 (from blood) was icaA+/D+, while the remain-
ing ones were ica-negative. The common denominator 
of these 9 isolates was the PCR positivity for aap, aae, 
sdrG, embp, eno, and epbS. These findings suggest that 
the relationship between agr groups and S. epidermidis 
pathogenicity will require further investigation. As 
observed in our previous study [30], agr-3se (n = 33) 
was predominant among ovine S. epidermidis isolates 
followed by agr-1se (n = 21). These results may suggest 
a possible transmission of S. epidermidis isolates from 
the milkers to the ewes.

Unlike S. chromogenes, S. haemolyticus, S. warneri 
and S. muscae from ovine mastitis and S. pasteuri 
from human specimens, the other NAS were classified 
as WBP by the microplate adhesion technique but did 
not harbor icaA/D. According to Fredheim et  al. [37], 
S. haemolyticus mainly produces a PIA-independent 
biofilm. However, we detected only the aap (2/17) and 
embp (1/17) genes in the present study by PCR. Only 4 
human S. haemolyticus isolates possessed the aap gene 
coding a protein that mediates biofilm formation in 
strains lacking the ica genes [16]. Our data suggest that 
ica and bhp genes do not contribute significantly to S. 
haemolyticus biofilms’ protein components.

In S. aureus and in many other bacteria, toxins are 
critical contributors to aggressive virulence, even 
though S. epidermidis is not generally accepted as an 
enterotoxin producer [38, 39]. Based on our findings, 
the primary enterotoxin genes (sea, seb, sec, sed and see) 
and the tsst-1 gene were absent in all ovine and human 
NAS analyzed. On the contrary, Pedroso et al. [16] and 
Da Cunha et  al. [40] detected high percentages of sea 
and sec genes in coagulase-negative staphylococci from 
hospitals of Brazil; also, Giormezis et  al. [39] found a 
higher number of isolates positive for tsst among NAS 
from hospitals in Greece.

Conclusion
In conclusion, we detected intercellular adhesion genes 
(icaAB) and other genes related to biofilm formation 
only in S. epidermidis, although we found icaA in ovine 
S. caprae and S. saprophyticus, and in human S. capi-
tis and S. xylosus. The remaining isolates carried few 
virulence determinants. The ability to form biofilm 
observed in NAS isolates, especially S. epidermidis, 
might constitute a significant virulence factor facilitat-
ing colonization, infection, diffusion, and resistance.
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Methods
Isolate collection
Ovine isolates: A total of 125 NAS were isolated from 
sheep milk samples that routinely arrive at the Istituto 
Zooprofilattico Sperimentale della Sardegna. Milk 
samples, collected from farms with mastitis problems 
in different provinces of Sardinia (Italy), were analyzed 
over 9 months (April-December 2017) (Table  1). The 
geographic distribution of these isolates is reported 
in Supplementary Fig. S1. Isolates were identified as: 
S. epidermidis (n = 57), S. chromogenes (n = 29), S. 
haemolyticus (n = 17), S. simulans (n = 8), S. caprae 
(n = 6), S. warneri (n = 5), S. saprophyticus (n = 1), S. 
intermedius (n = 1), and S. muscae (n = 1), by means of 
PCR-RFLP [27].

Human isolates: During the same period, 70 NAS iso-
lates were collected from different clinical specimens at 
the microbiology laboratories of three major Sardinia 
hospitals. Isolates were anonymized without patient 
identifiers. Isolates and their origin are summarized in 
Table  1; 90% of the human NAS were recovered from 
hospitalized patients in intensive care unit, hematology, 
and orthopedics. The 70 isolates were identified by PCR-
RFLP as S. haemolyticus (n = 28), S. epidermidis (n = 26), 
S. lugdunensis (n = 4), S. hominis (n = 4), S. capitis (n = 3), 
S. warneri (n = 2), S. xylosus (n = 1), S. pasteuri (n = 1), 
and S. saprophyticus subsp. bovis (n = 1) [27].

Statements of owner consent or patient consent 
were not required in this case since personal or sensi-
tive data never accompanied samples. All Isolates were 
anonymized regarding the originating animal, flock, or 
patient, and were processed for phenotypic and molecu-
lar analyses without any original information linked to 
them.

Phenotyping evaluation of biofilm production 
by the microtiter plate assay (MPA)
All 195 isolates were tested using the MPA technique, 
described by Vasileiou et al. [8] with some modifications. 
Briefly, a colony of each isolate was inoculated into a tube 
containing 1 mL Tryptone Soy Broth (TSB, Oxoid, Bas-
ingstoke, UK) for 16 h at 37 °C. Overnight culture was 
diluted 1:40 with TSB containing 0.25% glucose, and 
200 μL per well were seeded in a sterile 96-well flat-bot-
tomed microplate (Thermo Fisher, Rodano, IT) at 37 °C 
for 24 h. After three washes in PBS pH 7.4, the microplate 
was dried at 45 °C for 20 min, and wells were then stained 
with 1% crystal violet for 15 min at room temperature. 
After three washes with distilled water and subsequent 
drying at 45 °C for 20 min, 200 μL of 33% acetic acid 
were added to each well. Biofilm growth was measured 
at 630 nm in a microplate spectrophotometer (Multiskan 

GO, Thermo Fisher). Uninoculated wells containing TBS 
with glucose served as blanks. In each microplate, S. epi-
dermidis ATCC 35984 and S. epidermidis ATCC 12228 
were included as the positive and negative controls, 
respectively. Each isolate and both controls were tested 
in triplicate, and the assay was repeated two times at dif-
ferent dates. Isolates were classified into three categories 
based upon the median OD of isolates and positive and 
negative controls: biofilm-producing (OD isolate ≥ OD 
of the positive control), weak biofilm-producing (OD 
negative control < OD isolate < OD positive control) and 
non biofilm-producing (OD isolate ≤ negative control).

Detection of biofilm, autolysins, MSCRAMMs 
and pyrogenic toxins genes
Genomic DNA was extracted from all 195 NAS isolates 
and Reference Strains (RS) according to Onni et  al. 
[41]. Single-tube PCRs were performed for detecting 
genes related to biofilm production (icaA/D, bhp, aap, 
embp) [30, 31, 42, 43], autolysins (atlE and aae) [44, 
45], MSCRAMMs (encoding clumping factor-clfA/B, 
fibronectin-binding protein-fnbA/B, encoding bone 
sialoprotein-binding protein-bbp, collagen-binding 
protein-cna, fibrinogen-binding protein-fib, laminin-
binding protein-eno, elastin-binding protein-ebpS, 
and serine-aspartate repeat protein-sdrF/G)  [19, 30, 
46–49] and pyrogenic toxins (sea, seb, sec, sed, see 
and tsst-1) [50–52]. Primer sets are reported in Sup-
plementary Table S1. PCR tests were carried out in a 
GeneAmp9700 DNA thermal cycler (Applied Biosys-
tems, now Thermo Fisher Scientific, Waltham, MA, 
USA). The following RS were used as positive controls: 
S. epidermidis ATCC 35984 (icaA/D, bhp, aap, embp, 
atlE, aae, sdrF, sdrG), S. aureus ATCC 25923 (clfA/B, 
bbp, epbs), S. aureus ATCC 33591 (fnbA/B, cna, fib, 
eno), S. aureus ATCC 13565 (sea), S. aureus ATCC 
14458 (seb), S. aureus ATCC19095 (sec), S. aureus 
ATCC 23235 (sed), S. aureus ATCC 27664 (see) and S. 
aureus ATCC 33586 (tsst-1).

Typing of agr alleles
A 200 bp conserved region of the agr operon was ampli-
fied as described previously [19]. For isolate typing, we 
targeted agr-1se to agr-3se sequences [53]. As controls, we 
used S. epidermidis ATCC 35984 (agr-1se), S. epidermidis 
isolate 1037 (agr-2se) and S. epidermidis isolate 43,027 
(agr-3se). Supplementary Table S1 reports primer sets 
and related references.
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