Lack of association between feline AB blood groups and retroviral status: A multicenter, multi-country study

Journal:	Journal of Feline Medicine and Surgery
Manuscript ID	JFMS-21-0167.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	15-Mar-2022
Complete List of Authors:	Spada, Eva; University of Milan, Department of Veterinary Medicine Jung, Hyein; Washington State University College of Veterinary Medicine, Veterinary Clinical Sciences Proverbio, Daniela; University of Milan Faculty of Veterinary Medicine Perego, Roberta; Università degli Studi di Milano, Dipartimento di Scienze Cliniche Veterinarie Baggiani, Luciana; Università degli Studi di Milano, Dipartimento di Scienze Cliniche Veterinarie Ciuti, Silvia; University of Milan, Department of Veterinary Medicine Sharp, Claire; Murdoch University, School of Veterinary and Life Sciences Nash, Katherine; VETMED, Westman, Mark; The University of Sydney, Veterinary Microbiology Lait, Philippa; Langford Vets, Molecular Diagnostic Unit, Diagnostic Laboratories Davidow, Elizabeth; Washington State University College of Veterinary Medicine, Veterinary Clinical Sciences
Keywords:	AB blood type, retrovirus, feline leukemia, FIV
Abstract:	Objectives: The relationship between blood group antigens and disease has been studied in humans. Blood types have been associated with both decreased and increased rates of various infections. In addition, blood group expression has been shown to vary with some cancers and gastrointestinal diseases. The objective of this study was to explore whether there is a relationship between blood type and retroviral infections in cats. Methods: Case records from a veterinary research laboratory, veterinary teaching hospitals, and veterinary blood banks were retrospectively searched for cats where both blood type and retroviral status [feline leukemia (FeLV), feline immunodeficiency virus (FIV), or both] were listed (part one). In addition, a sample of 33 cats with confirmed FIV infection were genotyped to determine blood groups (part two). Results: In part one, a total of 709 cats were identified, 119 of which were positive for retroviral infection. Among all cases, 621 were type A (87.6%), 68 were type B (9.6%), and 20 were type AB (2.8%). There was no relationship between overall retroviral status (positive/negative) and blood type (p=0.43), FeLV status and blood type (p=0.86), nor between FIV status and blood type (p=0.94). There was no difference in the distribution of blood types between cats who were typed prior to a possible blood donors versus sick cats who were typed prior to a possible transfusion (p=0.13). In part two, of the 33 FIV infected cats, all blood group genotypes, were identified, though this test did not discriminate type A from type AB. Conclusions and relevance: There was no relationship identified between feline retroviral status and blood type in this study. The relationship

between blood type and other disease states requires further study in veterinary patients.

1	Lack of association between feline AB blood groups and retroviral
2	status: A multicenter, multi-country study
3	Eva Spada ¹ , Hyein Jung ² , Daniela Proverbio ^{1*} , Roberta Perego ¹ , Luciana Baggiani ¹ , Silvia
4	Ciuti ¹ , Claire R. Sharp ³ , Katherine J. Nash ⁴ , Mark Westman ⁵ , Philippa J.P. Lait ⁶ , Elizabeth
5	B. Davidow ^{2*}
6	¹ Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary
7	Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
8	² Veterinary Clinical Sciences, Washington State University, Pullman, WA, USA
9	³ School of Veterinary Medicine, Murdoch University, Perth, Australia
10	⁴ School of Veterinary Science, The University of Queensland, Gatton 4343, Queensland,
11	Australia
12	⁵ Sydney School of Veterinary Science, The University of Sydney, New South Wales,
13	Australia
14	⁶ Molecular Diagnostic Unit, Diagnostic Laboratories, Langford Vets, Langford, Bristol BS40
15	5HZ, UK

- 16 * Correspondence: Elizabeth Davidow <u>elizabeth.davidow@wsu.edu</u>; Daniela Proverbio
- 17 <u>daniela.proverbio@unimi.it</u>
- 18
- 19 **Keywords:** AB blood type system; retrovirus; feline leukemia; FIV
- 20 Running title: AB Blood Type system and Retroviral Status

Peerpeyie

23 Abstract

24 **Objectives:** The relationship between blood group antigens and disease has been studied 25 in humans. Blood types have been associated with both decreased and increased rates of 26 various infections. In addition, blood group expression has been shown to vary with some 27 cancers and gastrointestinal diseases. The objective of this study was to explore whether 28 there is a relationship between blood type and retroviral infections in cats. 29 Methods: Case records from a veterinary research laboratory, veterinary teaching hospitals, and veterinary blood banks were retrospectively searched for cats where both 30 31 blood type and retroviral status [feline leukemia (FeLV), feline immunodeficiency virus 32 (FIV), or both] were listed (part one). In addition, a sample of 33 cats with confirmed FIV 33 infection were genotyped to determine blood groups (part two). Results: In part one, a total of 709 cats were identified, 119 of which were positive for 34

- retroviral infection. Among all cases, 621 were type A (87.6%), 68 were type B (9.6%), and
- 36 20 were type AB (2.8%). There was no relationship between overall retroviral status

el.ez

- 37 (positive/negative) and blood type (p=0.43), FeLV status and blood type (p=0.86), nor
- 38 between FIV status and blood type (p=0.94). There was no difference in the distribution
- 39 of blood types between cats who were healthy and typed as possible blood donors versus
- 40 sick cats who were typed prior to a possible transfusion (p=0.13). In part two, of the 33
- 41 FIV infected cats, all blood group genotypes, were identified, though this test did not
- 42 discriminate type A from type AB.
- 43 **Conclusions and relevance:** There was no relationship identified between feline retroviral
- 44 status and blood type in this study. The relationship between blood type and other
- 45 disease states requires further study in veterinary patients.
- 46

48 Introduction

49	In humans, blood group antigens were originally identified as important for
50	transfusion compatibility. These structures are now known to serve many purposes and
51	can vary in expression and geographic distribution secondary to selection pressure from
52	endemic diseases. Blood group antigens can act as receptors for pathogens.(1) Studies
53	have shown that people with different ABO blood types have different susceptibility to
54	certain diseases.(2–4) For example, blood group O provides a selective advantage against
55	severe malaria but may predispose to more severe signs with cholera. (2) Associations
56	between viral disease risk or severity of symptoms with blood type have been found with
57	West Nile virus, (5) hepatitis B virus, (6) and norovirus infections. (7) There is also evidence
58	suggesting that blood group antigens and red blood cells could play a role in the
59	susceptibility or protection against human immunodeficiency virus (HIV) infection and
60	also in susceptibility to SARS-CoV-2.(8,9) These selective pressures may be linked to the
61	geographic distribution of different blood types.(2)

62	Blood type association with increased susceptibility to certain infections may also
63	increase the risk of related cancers such as an increased risk of gastric cancer related to
64	Helicobacter pylori in individuals with type A blood.(10)
65	Blood group antigen expression can also change with disease. These phenomena
66	have been recognized with both neoplasia and gastrointestinal disorders in people.(11–
67	16) In hematopoietic diseases, such as acute myeloid leukemia, loss or weakening of
68	antigen expression can be seen. This change may be due to disruptions of the enzymes
69	that are involved in production of ABO antigens. In some case reports, ABO expression
70	returning to normal is a sign that the leukemia is in remission.(15)
71	While there is growing evidence that blood groups affect host susceptibility to
72	some infections in humans, little is known about blood group associated infectious
73	disease risk in animals. To the authors' knowledge, there is a single experimental study in
74	rabbits, in which histo-blood group antigens (HBGAs) were found to act as attachment
75	factors for rabbit hemorrhagic disease virus infection (RHDV) in a virus strain-dependent
76	manner, with some HBGAs facilitating infection. The results of this study suggest that

polymorphism of expression of HBGAs might contribute to genetic resistance to

78 RHDV.(17)

79	The major blood group system in cats is the AB system which consists of 3 blood
80	types: A, B, and AB. Blood type is determined by 3 alleles with A dominant over the rare
81	AB, which is thought to be dominant over B.(18) Most clinical blood typing methods are
82	phenotypic and rely on blood group antigen detection.(19) Genome wide association
83	studies have identified mutations in the cytidine monophospho-N-acetylneuraminic acid
84	hydroxylase (CMAH) gene that are believed to result in disrupted enzyme activity
85	preventing conversion of N-acetylneuraminic acid (NeuAc) to N-glycolyl-neuraminic acid
86	hydroxylase (NeuGC) on the red blood cell surface.(18,20) Cats with blood type A have
87	predominantly NeuGc while blood type B have NeuAc and those with the rare type AB
88	have both NeuGc and NeuAc expression on their red blood cells.(18) Several different
89	mutations in CMAH have been identified and some show selective expression in pure
90	breeds.(20) The discovery of these CMAH polymorphisms associated with different blood
91	types in cats has allowed the development of sequencing-based blood genotyping tests.
92	However, genotyping schemes are restricted to include known polymorphisms, so do not
93	yet form a replacement for phenotypic typing in transfusion settings. (19) Additionally,

some of the erythrocyte antigens that determine blood type can also be expressed on
other cell types. The blood group A antigen is expressed on lymphocytes of blood type A
cats, but the B antigen does not appear to be expressed on the lymphocytes of type B
cats.(21)

98	Mistyping and difficulty typing have been reported in cats.(19,22–25) In one study,
99	discordant results between phenotypic typing methods were seen specifically in cats with
100	feline leukemia virus (FeLV) infection.(23) In another study, a severely anemic kitten
101	showed agglutination that initially indicated an AB blood type but on repeat typing when
102	the kitten was healthy, it was found to be blood type A.(22) In addition, in one study of
103	feline blood types in a referral population, type AB was seen more frequently in cats with
104	infectious disease, neoplasia, and RBC destruction.(26) In a study comparing phenotypic
105	and genotypic blood typing, there was 96% agreement (107 of 112 cats) but 5 discordant
106	results, all involving type B phenotype suggesting there are additional unknown
107	polymorphisms in CMAH linked to blood type B. (19)

108 FeLV and feline immunodeficiency virus (FIV) are retroviral agents that cause a 109 variety of systemic clinical signs in infected cats with anemia being a common feature of

110	both.(27,28) The blood mistyping seen in some FeLV infected cats could suggest that FeLV
111	utilizes feline AB blood type antigen in pathogenesis or that the virus changes blood
112	group expression. (23) In addition, as the A red cell antigen is also present on the
113	lymphocytes of blood type A cats and FIV and FeLV have feline lymphocytes as their
114	target cells for pathogenicity, these viruses might interact with blood group lymphocyte
115	antigens as receptors. (29,30) Given these suspicions and reports showing a relationship
116	between blood types and disease in human medicine, the objective of this study was to
117	explore whether there is a relationship between blood type and retroviral infections in
118	cats.

- 119 Given the differential expression of blood group A on lymphocytes, we
- 120 hypothesized that there would be a higher incidence of type A and AB in retroviral
- 121 positive cats. In addition, we also suspected that we might see more AB expression in cats
- 122 presenting for critical care than in healthy cats.
- 123 Materials and methods
- 124 2.1 Study design

126	multicenter study of cats with phenotypic blood type analysis and retroviral testing, and
127	(ii) prospective blood group genotyping of a group of FIV infected cats.
128	Part One:
129	2.2 Study population
130	Study data was retrospectively collected from five veterinary facilities: one
131	research laboratory in Italy, one veterinary teaching hospital (VTH) and one veterinary
132	blood bank in the United States, and two VTHs with associated blood banks in Australia.
133	Retrospective review periods correlated to the length of time each facility had electronic
134	medical records available. Cats were included if they had both blood typing and retroviral
135	testing for FeLV and FIV. All standard biosecurity measures and institutional safety
136	procedures were followed when the authors originally collected and analyzed the feline
137	blood samples. Additional ethics approval was obtained at The University of Queensland
138	to retrospectively review case data (ANRFA 2022/AE000121).

This study was conducted in two parts which involved: (i) a retrospective

- 139 Electronic medical records and cat blood donor's records of the Veterinary
- 140 Transfusion Research Laboratory (REVLab) at the University of Milan, were available from

141	January 2005 to December 2021. Washington State University Veterinary Teaching
142	Hospital (WSU) electronic medical record system was available from December 2010 to
143	December 2021. The Washington State University Blood Bank cat donor database was
144	available from January 2008 to January 2022. Murdoch University's database was
145	available from December 2014 to February 2022 and University of Queensland's database
146	was available from March 2017 to February 2022.
147	2.3 Data collection and methodology
148	Data collected included, when available, age, sex, breed (as reported by the owner
149	and attending veterinarian), blood type, blood type methodology, retroviral testing
150	results, hematocrit (Hct), reason for testing, and diagnosis. Cats with a Hct value less than
151	or equal to 26% were considered to be anemic.(31)
152	Retroviral testing was performed via commercially available point-of-care (PoC)
153	test kits detecting antibody to FIV target antigens p15,p24 or gp40 and detecting FeLV
154	p27 antigen (SNAP FIV/FeLV Combo Test, IDEXX Laboratories Italia Srl, Milan, Italy (FIV
155	p15/p24/gp40); Anigen Rapid FIV Ab/FeLV Ag, BioNote, Gyeonggi-do, Korea (FIV gp40);

156	and SNAP FIV/FeLV Combo Test, IDEXX Laboratories, Westbrook, Maine, USA (FIV
157	p15/p24)).
158	Phenotypic blood typing was done by one of five methods (Table 1). A commercial
159	in clinic card agglutination (CARD (RapidVet-H, DMS Laboratories) and
160	immunochromatographic technique (STRIP, Feline Lab and Quick test, A+B, Alvedia,
161	Limonest, France) were performed according to manufacturer's instructions and as
162	described.(32,33) A laboratory tube agglutination technique (TUBE) using Triticum
163	vulgaris (24), slide agglutination technique (SLIDE) using Triticum vulgaris, and a gel typing
164	kit (GEL, ID Gel-Test Micro Typing System, Diamed AG, 1785 Cressier sur Morat,
165	Switzerland- this test is no longer commercially available) were additional methods. At
166	REVLab, all type B and AB results were confirmed by back-typing technique as
167	described.(32)

168 Part two

169 **2.4 Study population**

170	To further investigate the interaction between retroviral status and blood type,
171	DNA banked from 33 FIV infected cats acquired as part of a previous study was used for
172	genetic blood typing.(34) These were healthy client-owned cats with outdoor access that
173	were recruited from five Australian states/territories to evaluate the effectiveness of a
174	commercially available FIV vaccine (Fel-O-Vax FIV, Boehringer Ingelheim, Fort Dodge, IA,
175	USA) in the field. Animal ethics approval for the study was obtained from University of
176	Sydney (N00/1-2012/3/5920 and 2017/1129).
177	2.5 Retroviral testing and blood genotyping
178	Blood was collected from conscious cats using jugular or cephalic venipuncture,
179	immediately aliquoted into EDTA tubes and stored at 4°C. Cats were confirmed to have
180	FIV infection through positivity on two different FIV commercially available antibody PoC
181	kits as well as a positive FIV PCR result (FIV RealPCR, IDEXX Laboratories East Brisbane,
182	Queensland, Australia). Cats were concurrently screened for progressive FeLV infection
183	since both PoC kits also detected FeLV p27 antigen (Anigen Rapid FIV/FeLV and Witness
184	FeLV/FIV, Zoetis Animal Health, Lyon, France). Additional FeLV testing was performed
185	including proviral PCR testing and neutralizing antibody testing, for confirmation and to

187	Genomic DNA extraction was performed within 24 hours of blood collection using
188	a commercially available kit (QIAamp DNA Mini Kit; Qiagen, Valencia, CA, USA), as per the
189	manufacturer's instructions, at the University of Sydney, Sydney, NSW, Australia. The
190	concentration and quality of extracted DNA was measured using a spectrophotometer
191	(Nanodrop 1000; Thermo Fisher Scientific, Waltham, MA, USA). DNA was stored at −80°C
192	until transferred to Langford Vets, Diagnostic laboratories for testing.(34) Blood group
193	genotyping was carried out by running a PCR to amplify a fragment of the CMAH gene
194	incorporating two single nucleotide polymorphisms (SNPs) associated with B blood
195	type.(19) The PCR comprised 10 μ L 2 x GoTaq Master Mix (Promega), 0.8 μ L 5 μ M each
196	forward and reverse primers (19), 5.2 μ L water and 4 μ L gDNA. Amplification was
197	performed in a Bio-Rad T10096 well block cycler (Bio-Rad Labs. Ltd.) for 2 minutes at 95°C
198	followed by 37 cycles of 95°C for 15 seconds and 58°C for 30 seconds. Biotinylated PCR
199	products were immobilized on streptavidin coated Sepharose beads (GE Healthcare UK
200	Ltd.), purified and annealed with the sequencing primer (0.5 μ M final concentration) as
201	described in the PyroMark Gold Q96 reagents kit instruction manual (Qiagen Inc.).
202	Pyrosequencing was performed in a PyroMark Q96 (Qiagen Inc.) automated 96-well
203	pyrosequencer according to the manufacturer's instructions with a nucleotide

204	dispensation order of GCTAGTCGATCTG. Pyrosequencing data were evaluated using
205	PyroMark Q96 v2.5.10 software (Qiagen Inc.).
206	2.6 Statistical analysis
207	The data was analyzed using standard descriptive statistics and reported as mean
208	± standard deviation (SD) or median and range, based on their distribution. Univariate
209	analysis of categorical data using the Fisher's exact test or $\chi 2$ analysis was performed to
210	determine possible associations between blood type and retroviral status, anemia, and
211	clinical status (healthy versus sick cats). Univariate analysis of categorical data using the
212	Fisher's exact test or $\chi 2$ analysis was also performed to determine possible associations
213	between sex, blood type, and retroviral status. Associations were described using a
214	probability (p) value < 0.05 as statistically significant. Data was analyzed using an open-
215	source statistical software program (RStudio).
216	Results Part One:
217	3.1 Population
218	Baseline descriptive data from the included cats is listed in Table 1. A total of 709
219	cases met inclusion criteria, with 476 (67.1%) from REVLab, 132 (18.6%) from Murdoch

220	University, 82 (11.6%) from WSU and the WSU Blood Bank, and 19 (2.7%) from the
221	University of Queensland. The study population included 141 female intact, 157 female
222	spayed, 137 male intact, 254 male castrated, and 19 cats of unknown gender and
223	neutering status due to incomplete information in the record. Most cats (609, 85.9%)
224	were non-pedigree or mixed breed varieties. There were 15 other cat breeds represented
225	with Maine Coon (n=25) and Ragdoll (n=17) cats the most common. The median age of
226	enrolled cats was 3 years with a range of one month to 18.4 years.
227	Blood typing and retroviral testing were performed for various purposes: part of
228	an epidemiological study in 247 (34.8%), blood donor screening in 210 (29.6%), prior to
229	possible blood transfusion in clinically anemic cats in 175 (24.7%), blood type before
230	mating to prevent feline isoerythrolysis in 33 (4.7%), pre-operative diagnostics prior to a
231	surgical procedure in 42 (5.9%), and for unknown reasons in two cats (0.3%) (Table 2).
232	The STRIP blood typing test was used in 320 cats (45.1%), TUBE was used in 310
233	(43.7%), CARD was used in 48 cats (6.8%), and SLIDE was used in 17 (2.5%). The GEL test
234	was used in 14 (1.9%) and used in an additional 15 cats to confirm CARD results.

235	Among the 709 cases, 621 (87.6%) cats were type A, 68 (9.6%) were type B, and 20
236	(2.8%) were type AB (Table 1). Of cats from REVLab, 437 (91.8%) were type A, 24 (5.0%)
237	were type B, and 15 (3.2%) were AB. Of cats from WSU, 69 (84.2%) were type A, 10
238	(12.1%) were type B, and three (3.7%) were type AB. Of cats from Australia (Western
239	Australia and Queensland), 115 (76.2%) were type A, 34 (22.5%) were type B, and two
240	(1.3%) were AB. This difference in blood type distribution between countries, with a
241	higher incidence of type B cats in the western USA than in Italy, and an even higher
242	incidence in Australia, was highly statistically significant ($p < 0.001$).
243	Blood types for each breed are listed in Table 1. Similar to previous reports, type
244	AB was only identified in Ragdolls and non-pedigree cats.(18) In contrast to previous
245	reports that Siamese cats are only blood type A,(36) two Siamese and one Siamese mix
246	were found to be blood type B. The collected breed information was reported by the
247	owner and was not verified by genetic tests.
248	Overall, 119 cats were retroviral positive (Table 2). Of those, 47 were FeLV
249	positive, 58 were FIV positive, and 14 were positive for both FeLV and FIV. Of the
250	retroviral positive cats, 36 were clinically ill cats and 22 were healthy and identified during
251	pre-operative or donor screening. The other 61 were typed during an epidemiological
	17

252 s	study and their	health status wa	s not recorded.	Blood type i	relationship to retrovira	I
-------	-----------------	------------------	-----------------	--------------	---------------------------	---

- 253 illness could not be explored due to the small number of cats and geographic variability
- with more clinically ill cats recruited from Australia and more healthy cats from Italy.
- 255 There was no relationship between overall retroviral status and blood type (p=0.43).
- 256 There was also no relationship specifically between FeLV status and blood type (p=0.86),
- 257 between FIV status and blood type (p=0.94) nor between FeLV/FIV co infected status and
- 258 blood type (p=0.59) (Table 3). Male cats were significantly more likely to be FIV positive
- than female cats (p<0.001). There was no sex predisposition to FeLV positivity.

260 3.2 Clinical Status

261 In 624 cats in which a Hct was measured, 208 were anemic (33.3%). Hematocrit

ranged from 3.9% to 58% with a median of 30.2%. There was no relationship between

- 263 blood type and the presence of anemia (p=0.11).
- Clinically ill cats who were typed prior to a possible transfusion had a variety of
 diseases. Underlying primary disease processes included retroviral disease (20), neoplasia
 (19), immune mediated disease (17), *Mycoplasma haemofelis* infection (10), kidney
 disease (10), traumatic blood loss (9), related to sepsis (8), leukemia (7) coagulopathy (5),

268	gastrointestinal blood loss (4), Feline Infectious Peritonitis (3), other infectious disease
269	(3), unknown disease (27) and one each of bone marrow toxicity, hepatic lipidosis, and
270	diabetic ketoacidosis. The underlying disease was undiagnosed in 27 cats. There was no
271	difference in the distribution of blood types between cats who were healthy and typed as
272	possible donors versus cats who were clinically anemic and typed prior to possible
273	transfusion (p=0.13). When this question was examined specifically for Australian cats
274	(100 clinical cases, 50 donors), there was also no difference in the distribution of blood
275	types (p=1). All the cats infected with <i>Mycoplasma haemofelis</i> were from Australia. Of
276	these 10 cats, 8 (80%) were blood type A and two were type B (20%).
277	Part Two:
278	3.3 Population
279	Thirty-three confirmed FIV infected cats were included. One cat in this group was

also FeLV positive. There were 9 female spayed, 1 male intact, and 23 male neutered cats.

- The mean age was 7.7 years with a range from 3.4 to 16.1 years. There were 30 non-
- pedigree cats, 1 Bengal, 1 British Shorthair, and 1 Himalayan. Of the 33 cats, 22 cats were
- blood type A or AB, carrying *b*, 7 cats were type A or AB and not carrying *b*, and 4 cats

284	were type B (homozygous for b). The one FeLV positive/FIV positive (presumably
285	progressively FeLV-infected) cat in this group was homozygous for <i>b</i> .
286	Discussion
287	While there is growing evidence that blood groups affect host susceptibility to
288	certain infections in humans, there are only a few veterinary studies that have
289	investigated the possible relationship between blood groups and disease prevalence.
290	There are two previous veterinary studies in dogs that examine this question. One study
291	suggested that Cocker Spaniels with blood group antigen DEA 7 were at decreased risk for
292	immune mediated hemolytic anemia, with an odds ratio of 0.1 (95% CI, 0 to 0.9).(37)
293	Possible mechanisms discussed included changes in red cell membrane structure or
294	expression of a unique autoantigen.(37) In another study, no significant relationship
295	between DEA 1 blood type and the presence of Babesia spp. antigen was found. However,
296	the small sample size of Babesia spp. antigen-positive dogs in that study could have
297	cofounded the association with DEA 1 blood type. (38) In the only feline study (available
298	only as an abstract), blood genotype AA, Ab or bb was determined in 263 cats from UK
299	that had previously tested positive (n=131) or negative (n=132) for Mycoplasma

301	turicensis' infection by quantitative PCR. The prevalence of each individual haemoplasma
302	species, single versus dual haemoplasma species infection, and haemoplasma PCR copy
303	number, were compared between blood genotypes and no significant differences were
304	found.(39)
305	In the current study, cats were tested for blood type and retroviral status for
306	different reasons and by different methods. Some cats were healthy and the retrovirus
307	was identified during screening, while in other cases, cats were unwell and FIV/FeLV
308	tested for possible retroviral-associated disease. In people with some types of leukemia,
309	blood type antigen expression can vary with disease severity so it is possible that a
310	relationship could exist specifically with blood type and retroviral related neoplasia but
311	not with infection alone. It is also possible that retroviral status may have altered blood
312	type expression, leading to discrepancies between phenotypic blood type test results and
313	genotypic blood type. We did not have enough healthy retroviral positive cats nor cats
314	with FeLV related leukemias or lymphomas to fully investigate this possibility nor could
315	we perform matched blood type phenotyping and genotyping on all cats. Further
316	research is needed to investigate these factors.(15) Alternatively, blood type could be

haemofelis, 'Candidatus Mycoplasma haemominutum', and 'Candidatus Mycoplasma

300

317	related to retroviral infection but in the current study some retroviral infections may have
318	been undetected by only testing for FeLV antigen and anti-FIV antibodies (part one). Our
319	group of FIV infected cats confirmed with FIV PCR testing (part 2) makes this hypothesis
320	less likely for this retrovirus. However, studies have shown that PCR provirus testing can
321	identify regressive FeLV infections that are missed with antigen testing alone.(27,40) We
322	do not have information on the prevalence of FeLV regressive cats that are only FeLV
323	proviral PCR-positive and p27 antigen-negative. Therefore, it would be interesting to
324	evaluate blood type and retroviral status in a larger study specifically using FeLV PCR
325	testing, in addition to FeLV antigen detection, and looking at clinical manifestations of
326	retroviral disease.
327	In this study, blood typing methods changed over time and were different
328	between locations. Blood type B and AB classified phenotypically were back-typed for
329	confirmation in many cats. While there were no clear notes of blood typing difficulties,
330	this is hard to fully assess in a retrospective record review. Unlike previous studies where
331	discordant results were noted <mark>,(19,23–25)</mark> the majority of cats in the current study were
332	only typed by a single methodology. In future studies, a common methodology of blood

333	typing with back typing confirmation for all B and AB cats should be used with clear notes
334	of any discordant results.(19,23)
335	Human studies have revealed that some of the geographic differences in blood
336	type distributions around the world may occur in part due to different geographic disease
337	distributions. The incidence of B blood type in cats is variable based on geography, with
338	high numbers of B cats found in Australia.(41) The distribution of blood types in our study
339	agreed with previously reported geographic differences in blood type distribution, with a
340	higher incidence of type B cats in Washington state than in northern Italy and an even
341	higher incidence in Australia.(41,42) It would be interesting in future studies to assess for
342	correlations between blood type and susceptibility to infectious agents that vary
343	geographically. While the study of blood type distribution and hemotrophic mycoplasmas
344	in cats from the United Kingdom did not reveal a relationship, further study looking at
345	Bartonella hensalae and Cytauxzoon felis should be considered. It is possible that
346	decreased susceptibility to these or other putative agents is conferred by the presence of
347	one or more A alleles, thereby counterbalancing selection against this allele.(41)
348	Our study did not reveal any significant correlations between feline blood type
349	and retroviral infection. Our original hypothesis was that feline retroviruses could interact
	23

350	with type A lymphocyte antigens as receptors.(29,30) Studies investigating HIV have
351	demonstrated that the pathogenesis of retroviral infections is multi-factorial and the role
352	of blood group antigens is likely complex. Further genetic sequencing and examination of
353	blood group polymorphisms is likely needed for further understanding.(9) While the main
354	target for both HIV and FIV are T lymphocytes, HIV uses a different primary receptor
355	(CD4) and at least seven co-receptors to the receptor and co-receptor used by FIV to gain
356	entry to cells (CD134 and CXCR4, respectively).(43) It has been suggested that
357	polymorphic blood group antigens expressed on the surfaces of other cells including red
358	blood cells and platelets may also be utilized as attachment receptors by HIV.(9) We were
359	unable to confirm a possible similar mechanism with blood group antigens in cats for FIV
360	attachment after evaluating a group of cats with confirmed FIV infection. This finding
361	suggests that FIV is only able to gain entry into cells via CD134 and CXCR4, which are not
362	expressed on red blood cells and instead only expressed on lymphocytes, macrophages,
363	dendritic cells, microglia and astrocytes.(44,45), although further work is needed to
364	confirm this.

365 Conclusions

366 This is the first study to assess the association between feline blood types and
--

- 367 retroviral status. We found no statistically significant association, although larger studies
- 368 are needed to confirm these results. There is a paucity of studies in veterinary medicine
- that investigate the possible association between blood type and disease prevalence.
- 370 Further studies in this area will help our understanding of disease mechanisms and
- improve our ability to diagnose and treat these diseases in clinical patients.

372 Footnotes

373 RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA

perez.

- 374 URL <u>http://www.rstudio.com/</u>.
- 375 Acknowledgements
- 376 None

377 Conflict of Interest

- 378 The authors declared no potential conflicts of interest with respect to the research,
- authorship, and/or publication of this article.

381 Funding

- 382 This study was supported, in part, by Piano di Sostegno alla Ricerca 2020, Linea 2,
- 383 University of Milan, Italy.
- Funding for part two of this study was supported financially by the Australian Companion
- Animal Health Foundation (006/2013, 015/2017), and Boehringer Ingelheim Animal
- 386 Health, Australia. IDEXX Laboratories, Zoetis Animal Health and BioNote donated FIV kits
- 387 for some of the animals tested. Mark Westman was supported by an Australian
- Postgraduate Award (APA), the Neil and Allie Lesue Scholarship, and the Herbert Johnson
- 389 Travel Grant Scholarship.

390 Ethical Approval and Informed Consent

- 391 The work described in this manuscript involved the use of non-experimental (owned or
- unowned) animals. Established internationally recognised high standards ('best practice')
- 393 of veterinary clinical care for the individual patient were always followed and/or this work
- involved the use of cadavers. Ethical approval from a committee was therefore not
- 395 specifically required for publication in JFMS. Although not required, where ethical
- approval was still obtained, it is stated in the manuscript.

- 397 Informed consent (verbal or written) was obtained from the owner or legal custodian of
- 398 all animal(s) described in this work (experimental or non-experimental animals, including
- 399 cadavers) for all procedure(s) undertaken (prospective or retrospective studies). No
- 400 animals or people are identifiable within this publication, and therefore additional
- 401 informed consent for publication was not required.
- 402 **Data**
- 403 The raw data and the dataset generated for this study are available upon request to the

e perez

404 corresponding authors.

405	Refer	rences
406	1.	Cooling L. Blood Groups in Infection and Host Susceptibility. Clin Microbiol Infect.
407		2015;28(3):801–70.
408	2.	Anstee DJ. The relationship between blood groups and disease. Blood.
409		2010;115(23):4635–43.
410	3.	Chakrani Z, Robinson K, Taye B. Association Between ABO Blood Groups and
411		Helicobacter pylori Infection: A Meta-Analysis. Sci Rep. 2018 Dec 1;8(17604).
412	4.	Kumar P, Kuhlmann, FM, Chakraborty, S, et al. Enterotoxigenic Escherichia coli–
413		blood group A interactions intensify diarrheal severity. J Clin Invest. 2018 Aug
414		1;128(8):3298–311.
415	5.	Kaidarova Z, Bravo MD, Kamel HT, et al. Blood group A and D negativity are
416		associated with symptomatic West Nile virus infection. Transfusion. 2016;
417		56(7):1699–706.
418	6.	Jing W, Zhao S, Liu J, Liu M. ABO blood groups and hepatitis B virus infection: A
419		systematic review and meta-analysis. BMJ Open. 2020 Feb 2;10(1).

420	7.	Liao Y, Xue L, Gao J, Wu A, Kou X. ABO blood group-associated susceptibility to
421		norovirus infection: A systematic review and meta-analysis. Infect Genet Evol 2020
422		Jul;81:104245.
423	8.	Franchini M, Cruciani M, Mengoli C, et al. ABO blood group and COVID-19: an
424		updated systematic literature review and meta-analysis. Blood Transfus.
425		2021;19(4):317.
426	9.	Davison GM, Hendrickse HL, Matsha TE. Do Blood Group Antigens and the Red Cell
427		Membrane Influence Human Immunodeficiency Virus Infection?Cells 2020;
428		9(4):845.
429	10.	Wang Z, Liu L, Ji J, Zhang J, Yan M, Zhang J, et al. Abo blood group system and
430		gastric cancer: A case-control study and meta-analysis. Int J Mol Sci.
431		2012;13(10):13308–21.
432	11.	Mannessier L, Rouger P, Johnson CL, Mueller KA, Marsh WL. Acquired Loss of Red-
433		Cell Wj Antigen in a Patient with Hodkin's Disease. Vox Sang. 1986;50:240–4.
434	12.	Murata K, Egami H, Shibata Y, Sakamoto K, Misumi A, Ogawa M. Expression of

435		Blood Group-Related Antigens, ABH, Lewis (a), Lewis (b), Lewis (x), Lewis (y), CA19-
436		9, and CSLEX1 in Early Cancer, Intestinal Metaplasia, and Uninvolved Mucosa of the
437		Stomach. Am J Clin Pathol. 1992;98(1):67–75.
438	13.	Matthes T, Tullen E, Poole J, Banks J, Nagy M, Stelling MJ, et al. Acquired and
439		transient RBC CD55 deficiency (Inab phenotype) and anti-IFC. Transfusion.
440		2002;42(11):1448–57.
441	14.	Yazer MH, Judd WJ, Davenport RD, Dake LR, Lomas-Francis C, Hue-Roye K, et al.
442		Case report and literature review: Transient Inab phenotype and an agglutinating
443		anti-IFC in a patient with a gastrointestinal problem. Transfusion. 2006;46(9):1537–
444		42.
445	15.	Nambiar RK, Narayanan G, Prakash NP, Vijayalakshmi K. Blood Group Change in
446		Acute Myeloid Leukemia. Baylor Univ Med Cent Proc 2017;30(1):74–5.
447	16.	Matsushita S, Imamura T, Mizuta T, Hanada M. Acquired B antigen and
448		polyagglutination in a patient with gastric cancer. Jpn J Surg 1983;13(6):540–2.
449	17.	Nyström K, Le Gall-Reculé G, Grassi P, et al. Histo-blood group antigens act as

450		attachment factors of rabbit hemorrhagic disease virus infection in a virus strain-
451		dependent manner. PLoS Pathog. 2011 Aug;7(8):e1002188.
452	18.	Bighignoli B, Niini T, Grahn RA, Pedersen NC, Millon L V., Polli M, et al. Cytidine
453		monophospho-N-acetylneuraminic acid hydroxylase (CMAH) mutations associated
454		with the domestic cat AB blood group. BMC Genet. 2007;8:27.
455	19.	Tasker S, Barker EN, Day MJ, Helps CR. Feline blood genotyping versus
456		phenotyping, and detection of non-AB blood type incompatibilities in UK cats. J
457		Small Anim Pract. 2014;55(4):185–9.
458	20.	Kehl A, Mueller E, Giger U. CMAH genotyping survey for blood types A, B and C (AB)
459		in purpose-bred cats. Anim Genet. 2019 Jun 1;50(3):303–6.
460	21.	Symons R, Bell K. The occurence of the feline A blood group antigen on
461		lymphocytes. Anim Blood Groups Biochem Genet. 1985;16:77–84.
462	22.	Niggemeier A, Haberstroh FH, Nelson VE, Giger U. An Accidental Transfusion of a
463		Type A Kitten with Type B Blood Cuases a Transient Switch from Blood Type A to B.
464		J Vet Intern Med. 2000;14:214–6.

465	23.	Seth M, Jackson K V., Giger U. Comparison of five blood-typing methods for the
466		feline AB blood group system. Am J Vet Res. 2011;72(2):203–9.
467	24.	Spada E, Perego R, Baggiani L, Proverbio D. Comparison of Conventional Tube and
468		Gel-Based Agglutination Tests for AB System Blood Typing in Cat. Front Vet Sci.
469		2020;7:312.
470	25.	Uno Y, Yaguchi M, Kobayashi T, et al. Phenotypic and Genetic Characterization for
471		Incompatible Cross-Match Cases in the Feline AB Blood Group System. Front Vet
472		Sci. 2021;8: 720445.
473	26.	Forcada Y, Guitian J, Gibson G. Frequencies of feline blood types at a referral
474		hospital in the south east of England. J Small Anim Pract. 2007;48(10):570–3.
475	27.	Little S, Levy J, Hartmann K, et al. 2020 AAFP Feline Retrovirus Testing and
476		Management Guidelines. J Fel Med Surg.;22:5–30.
477	28.	Spada E, Perego R, Sgamma EA, Proverbio D. Survival time and effect of selected
478		predictor variables on survival in owned pet cats seropositive for feline
479		immunodeficiency and leukemia virus attending a referral clinic in northern Italy.

- 480 Prev Vet Med. 2018;150:38–46.
- 481 29. Miyazawa T. Infections of feline leukemia virus and feline immunodeficiency virus.
- 482 Front Biosci. 2002;7:504–518.
- 483 30. Willett BJ, Hosie MJ. The virus-receptor interaction in the replication of feline

484 immunodeficiency virus (FIV). Curr Opin Virol. 2013;3(6):670–5.

- 485 31. Weiss D, Tvedten H. Erythrocyte disorders. In: Willard M, Tvedten H, editors. Small
- 486 Animal Clinical Diagnosis by Laboratory Methods. 5th ed. St Louis, MO, USA:
- 487 Elsevier Sanders; 2012. p. 38–62.
- 488 32. Stieger K, Palos H, Giger U. Comparison of various blood-typing methods for the
- feline AB blood group system. Am J Vet Res. 2005;66(8):1393–9.
- 490 33. Spada E, Proverbio D, Baggiani L, et al. Evaluation of an immunochromatographic
- 491 test for feline AB system blood typing. J Vet Emerg Crit Care 2016;26(1):137–41.
- 492 34. Westman ME, Malik R, Hall E, et al. The protective rate of the feline
- 493 immunodeficiency virus vaccine: An Australian field study. Vaccine.
- 494 2016;34(39):4752–8.

495	35.	Westman M, Norris J, Malik R, et al. The diagnosis of feline leukaemia virus (FeLV)
496		infection in owned and group-housed rescue cats in Australia. Viruses.
497		2019;11(6):503.
498	36.	Giger U, Bucheler J, Patterson DF. Frequency and inheritance of a and b blood
499		types in feline breeds of the United States. J Hered. 1991;82(1):15–20.
500	37.	Miller SA, Hohenhaus AE, Hale AS. Case-control study of blood type, breed, sex,
501		and bacteremia in dogs with immune-mediated hemolytic anemia. J Am Vet Med
502		Assoc. 2004;224(2):232–5.
503	38.	Dhliwayo S, Makonese T, Whittall B, et al. A study on the prevalence of dog
504		erythrocyte antigen 1.1 and detection of canine Babesia by polymerase chain
505		reaction from apparently healthy dogs in a selected rural community in Zimbabwe.
506		J So Africa Vet Assoc. 2016;87(1):a1409.
507	39.	Spencer S, Helps R, Gandolfi B, Tasker S. Lack of an association between blood
508		genotype and haemoplasma infection in UK cats. In: BSAVA Congress Proceedings.
509		2016. p. 514.

510	40.	Marenzoni ML, Lauzi S, Miglio A, et al. Comparison of three blood transfusion
511		guidelines applied to 31 feline donors to minimise the risk of transfusion-
512		transmissible infections. J Feline Med Surg. 2018;20(8):663–73.
513	41.	Malik R, Griffin DL, White JD, et al. The prevalence of feline A/B blood types in the
514		Sydney region. Aust Vet J. 2005;83(1–2):38–44.
515	42.	Spada E, Perego R, Baggiani L, et al. Prevalence of Blood Types and Alloantibodies
516		of the AB Blood Group System in Non-Pedigree Cats from Northern (Lombardy) and
517		Southern (Sicily) Italy. Animals.2020;10:7.
518	43.	Hosie MJ, Pajek D, Samman A, Willett BJ. Feline Immunodeficiency Virus (FIV)
519		Neutralization: A Review. Viruses 2011;3(10):1870.
520	44.	Hartmann K. Feline immunodeficiency virus infection: an overview. Vet J
521		1998;155(2):123.
522	45.	Hosie MJ, Addie D, Belák S, et al. Feline immunodeficiency. ABCD guidelines on
523		prevention and management. J Feline Med Surg. 2009;11(7):575.

525 **Tables**

- 526 Table 1. Blood type listed by attributes (sex, reproductive status, breed, Hct, retroviral
- 527 status, blood typing method, and reason for typing) in a population of 709 cats tested for
- 528 association between blood type and retrovirus status. DSH=Domestic Shorthair,
- 529 DMH=Domestic Medium Hair, DLH=Domestic Longhair, FeLV = Feline Leukemia Virus, FIV
- 530 = Feline Immunodeficiency Virus.

		Blood type			
Variable	Level		В	AB	
		n=621	n=68	n=20	
Country	Italy	437	24	15	
Country N=709	United States	69	10	3	
N=709	Australia	115	34	2	
Sex	Male	332	50	10	
n =690	Female	270	18	10	
Reproductive status	Intact	253	21	5	
n = 690	Neutered	349	47	15	
	Non-pedigree	516	60	17	
	Abyssinian	2	0	0	
	Bengal	2	0	0	
Breeds	Birman	4	0	0	
n = 709	British shorthair	6	0	0	
11 - 705	Burmese	4	0	0	
	Burmilla	1	0	0	
	Chartreux	3	0	0	
	Chartreux Mix	1	0	0	
	Chincilla	1	0	0	

	Chincilla Mix	1	0	0
	Exotic Shorthair	2	0	0
	Himalayan	0	1	0
	Maine Coon	25	0	0
	Manx	2	0	0
	Norwegian Forest cat	5	0	0
	Persian	3	0	0
	Ragdoll	17	2	2
	Ragdoll Mix	1	0	0
	Russian Blue	3	1	0
	Scottish Fold	1	1	0
	Selkirk Rex	1	0	0
	Siberian Forest Cat	4	0	0
	Siamese	5	2	0
	Siamese Mix	1	1	0
	Siberian Forest cat	4	0	0
	Sphinx	6	0	0
	Thai Mix	1	0	0
	Tonkinese	2	0	0
	Turkish Van	1	0	0
Hct (%)	Median	30.3	28.1	30.6
n = 624	Range (min-max)	3.9-58	4-49.6	15-42.5
Anemia	Present (Hct ≤26%)	173	29	6
n = 624	Absent (Hct > 26%)	368	35	13
Retrovirus infection status	Negative	512	60	18
n = 709	Positive	109	8	2
Retrovirus	FeLV+	43	3	1
n = 119	FIV+	52	5	1
	FIV+FeLV	14	0	0
	CARD	44	3	1
Blood typing test	GEL	13	0	1
n= 709	SLIDE	13	4	0
	STRIP	268	42	10

	TUBE	283	19	8
531				

to per period

533 Table 2. Reason for testing blood type and retroviral status for each group in a population

of 709 cats tested for association between blood type and retrovirus status

Reason for testing	Number	A Blood type	B Blood type	AB Blood	Retrovirus positive	FELV positive	FIV positive	FELV/FIV positive
U				type	•	•	•	
All Cases	709	621	68	20	119	47	58	14
		(87.6%)	(9.6%)	(2.8%)	(16.8%)	(6.6%)	(8.2%)	(2.0%)
Epidemiologic	247	228	13	6	61	25	30	6
Study		(92.3%)	(5.3%)	(2.4%)	(24.7%)	(10.1%)	(12.1%)	(2.4%)
Donor	210	183	20	7	9	1	6	2
		(87.2%)	(9.5%)	(3.3%)	(4.3%)	(0.5%)	(2.9%)	(0.9%)
Prior to Blood	175	141	29	5	36	16	14	6
Transfusion		(80.6%)	(16.6%)	(2.8%)	(20%)	(8.9%)	(7.8%)	(3.3%)
Mating	33	31	1	1	0	0	0	0
		(93.9%)	(3.0%)	(3.0%)				
Pre-operative	42	36	5	1	13	5	8	0
		(85.7%)	(11.9%)	(2.4%)	(32.5%)	(12.5%)	(20%)	
Unknown	2	2 (100%)	0	0	0	0	0	0

- 538 Table 3. Statistical evaluation of potential association between retroviral status and blood
- 539 type in a population of 709 cats

Retroviral Status	All Blood Types	P value	A Blood Type	P value	B Blood Type	P value	AB Blood Type	P value
Any Positive	119	0.43	109	0.17	8	0.31	2	0.55
All Negative	590	0.43	512	0.17	60	0.51	18	0.55
FeLV Positive versus all retrovirus negative	47	0.86	43	0.49	3	0.61	1	1
FIV Positive versus all retrovirus negative	68	0.94	52	0.68	5	1	1	1
FeLV/FIV both positive versus all retrovirus negative	14	0.59	14	0.23	0	0.38	0	1

540