
## Land cover change and fast soil degradation in the East African Rift Valley, Kenya.

Michele E. D'Amico (DISAA, University of Milan) Emanuele Sapino Enrico Quaglino (Timesis srl, Torino)

## **Study area**



Kimwarer basin / Elgeyo-Marakwet district, Eastern branch of the Rift valley, Kenya.







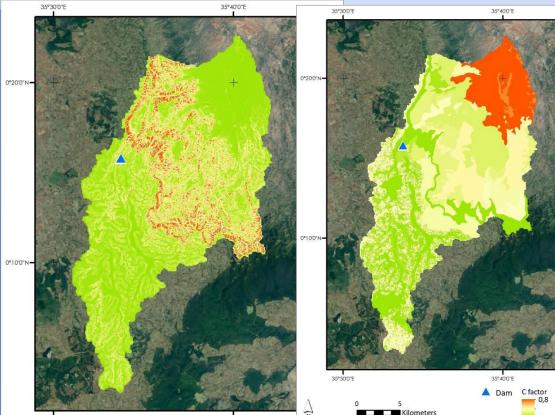
Ranforest and pastures on the high plateau Rainforest on the high escarpment Deforested steep slopes on the mid-escarpment Crops and deciduos acacias on the low escarpment Desertification on the Kerio Valley floor

The Kerio Valley floor includes floodplains and low-steepness alluvial fans; the potential Acacia savannah has been mostly substituted by corn crops, later abandoned because of extreme soil erosion, resulting in a semi-desert habitat



15 soil types, the most common are:

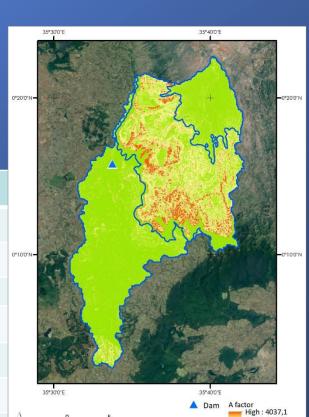
Ferralsols on the high plateau


Umbrisols under montane rainforest on the high escarpment

Phaeozems and Vertisols on recently deforested steep slopes on the mid-escarpment

• Kastanozems on the low escarpment

Eroded Vertisols and lateritic crusts with Leptosols on the Kerio Valley floor


## **RUSLE** factors



| 35°30'0"E       | 35°40'0"E                       | N Kild                                        | ometers                      | 01                                     |
|-----------------|---------------------------------|-----------------------------------------------|------------------------------|----------------------------------------|
| Equation number | Original location data          | Equation                                      |                              | Author                                 |
| 1               | Inland Kenya,<br><1250 m a.s.l. | R = 17.02 * (0.029 * (11.3                    | 6 * <i>P</i> – 701) – 26)    | Moore (1979)                           |
| 2               | Inland Kenya,<br>>1250 m a.s.l. | R = 17.02 * (0.029 * (3.96                    | * P + 3122) – 26)            | Moore (1979)                           |
| 3               | Ugandan Plateau                 | R = 17.02 * (0.029 * (16.5                    | 8 * <i>P</i> – 6963) – 26)   | Moore (1979)                           |
| 4               | East Africa                     | $R = 117.6 * 1.00105^{Pa}$<br>R = 0.5 * P     | (P < 2000mm)<br>(P > 2000mm) | Kassam et al<br>(1992)                 |
| <mark>5*</mark> | Africa                          | <mark>MFI=1/Ρ*Σpi</mark> ²<br>R=50.7*MFI-1405 |                              | <mark>Vrieling et al.</mark><br>(2010) |
| 6               | Africa                          | FI=pi²/P                                      |                              | Vrieling et al.<br>(2010)              |

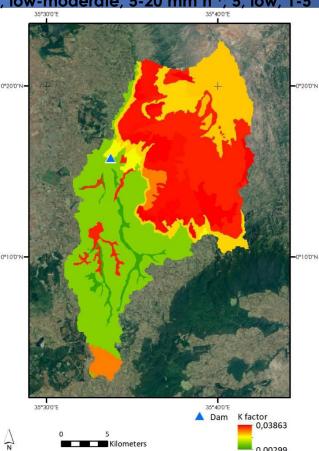
## $\mathbf{A} = \mathbf{R}^*\mathbf{K}^*\mathbf{L}\mathbf{S}^*\mathbf{C}^*\mathbf{P}$

- A = estimate of soil loss (t  $ha^{-1} y^{-1}$ );
- R = rainfall erosivity (MJ mm h<sup>-1</sup> ha<sup>-1</sup> y<sup>-1</sup>);
- K = soil erodibility (t ha h ha<sup>-1</sup> MJ<sup>-1</sup> mm<sup>-1</sup>), which depends on soil organic matter and texture;
- LS = topographic, Slope-Length factor (adimensional);
- C = soil cover factor (estimated, adimensional);
- P = soil protection/management factor



Kerio Valley soils almost completely eroded in the last decades (comparing with the study performed in 1996), their potential erodibility is intermediate; the crucial factor involved in the extreme soil loss are probably related with land cover. K =  $(0.00021 * M^{1.14} * (12 - OM) + 3.25 (STR - 2) + 2.5 (PER - 3)) / (7.59 * 100)$ where:

iere.


 $M = (silt \% + very fine sand \%) \times (100 - clay\%);$ 

OM = organic C% \* 1.72, percent organic matter;

STR = structure code based on shape and dimension of aggregates in the topsoil: (1) very fine, <1 mm; (2) fine granular or blocky, 1-2 mm; (3) medium granular or blocky, 2-5 mm and coarse granular, 5-10 mm; (4) very coarse granular, columnar, coarse blocky or platy, or massive, >10 mm);

PER = the profile permeability class: 1 – high, >130 mm h<sup>-1</sup>; 2 high-moderate, 60-130 mm h<sup>-1</sup>; 3, moderate, 20-60 mm h<sup>-1</sup>; 4, low-moderate, 5-20 mm h<sup>-1</sup>; 5, low, 1-5 mm h<sup>-1</sup>; very low, <1 mm h<sup>-1</sup>.

| Soil classification                      | M factor | clay  | Organic<br>matter % | K factor<br>(MJ <sup>-1</sup> m<br>m <sup>-1</sup> ) |
|------------------------------------------|----------|-------|---------------------|------------------------------------------------------|
| Skeletic Leptic Cambisol                 | 3661.7   | 16.6  | 3.6                 | 0.0386                                               |
| Arenic Skeletic Fluvisol                 | 4628     | 11.0  | 1.37                | 0.0434                                               |
| Haplic Ferralsol                         | 1893.78  | 48.43 | 10.22               | 0.0111                                               |
| Haplic Lixisol / Acrisol                 | 2676.13  | 43.00 | 3.75                | 0.0298                                               |
| Mollic Gleysol                           | 5667.48  | 9.00  | 17.56               | 0.0030                                               |
| Calcic Skeletic Kastanozem (colluvic)    | 3037.42  | 36.5  | 4.46                | 0.0337                                               |
| Skeletic Leptosol*                       | 3280.64  | 26.87 | 3.42                | 0.0359                                               |
| Rhodic Leptic Skeletic Luvisol (cutanic) | 2459.57  | 42.00 | 6.91                | 0.0201                                               |
| Leptic Nudiargic Rhodic Luvisol (ferric) | 2825.06  | 42.00 | 4.69                | 0.0245                                               |
| Vertic Skeletic Phaeozem (colluvic)      | 4452.96  | 25    | 5.69                | 0.0371                                               |
| Skeletic Cambic Phaeozem                 | 3729.54  | 26.75 | 3.24                | 0.0376                                               |
| Haplic Plinthosol (Leptic)               | 2490.72  | 39.5  | 3.68                | 0.0325                                               |
| Haplic Regosol                           | 2953.72  | 22    | 2.34                | 0.0369                                               |
| Cambic Umbrisol                          | 3340.80  | 36.00 | 7.16                | 0.0238                                               |
| Calcic Vertisol                          | 1327.04  | 56.00 | 0.91                | 0.0253                                               |



Land-use change in the Kerio Valley floc happened during the '80s, when local people moved from pastoralism to agriculture; original Acacia savannah was disrupted by ploughing to permit cropping. Soil maps performed during that period describe soils as Ferralsols, with rooting depth limitations by lateritic crusts below 1-2 m. At present, the lateritic crust outcrops over large surfaces, and 2-5 m deep, 10-20 m large gullies cover >50% of the surface. The cultivations are thus being abandoned. The soil loss might be estimated conservatively ~100 t/ha/y; this is an extremely high value considering the almost flat surface. The average soil los calculated by an adapted RUSLE method is 51 t/ha/y; there is an important underestimation by the model.





On the slopes of the escarpment, deforestation happened mostly after 2010, as visible from aerial photos. Umbrisols with thick A horizons are dominant under natural vegetation, but are not observed in deforested areas, evidencing a fast loss of the 30-50 cm A horizon (>320 t/ha/y). Deeper, less resistant horizons are exposed, and rills, gullies and mudflows develop after most rainstorms, with variations depending on soil type. The RUSLE model predicts average losses ~350 t/ha/y, with much higher values on the steep slopes.

The rainfall erosivity-R factor is high in tropical areas, and a preservation of a vegetation cover is necessary to impede a complete soil loss in just a few years. It is also extremely important to preserve the surface, organic-matter rich soil horizons, influencing soil erodibility-K factor

