Distributed Computing (2022) 35:439-454
https://doi.org/10.1007/s00446-022-00429-7

®

Check for
updates

PerformERL: a performance testing framework for erlang

1

Walter Cazzola'® - Francesco Cesarini? - Luca Tansini

Received: 3 March 2020 / Accepted: 24 May 2022 / Published online: T August 2022
© The Author(s) 2022

Abstract

The Erlang programming language is used to build concurrent, distributed, scalable and resilient systems. Every component of
these systems has to be thoroughly tested not only for correctness, but also for performance. Performance analysis tools in the
Erlang ecosystem, however, do not provide a sufficient level of automation and insight needed to be integrated in modern tool
chains. In this paper, we present Per formERL: an extendable performance testing framework that combines the repeatability
of load testing tools with the details on how the resources are internally used typical of the performance monitoring tools.
These features allow Per formERL to be integrated in the early stages of testing pipelines, providing users with a systematic
approach to identifying performance issues. This paper introduces the Per formERL framework, focusing on its features,
design and imposed monitoring overhead measured through both theoretical estimates and trial runs on systems in production.
The uniqueness of the features offered by Per formERL, together with its usability and contained overhead prove that the

framework can be a valuable resource in the development and maintenance of Erlang applications.

Keywords Erlang - Distributed systems - Performance testing - Load testing - Performance monitoring

1 Introduction

Erlang offers a set of features—such as share-nothing
lightweight processes and asynchronous communication
through message passing—making it the ideal program-
ming language for building massively concurrent systems
[10]. Applications running inside the Erlang virtual machine
(called the BEAM) use this concurrency model for distribu-
tion, resilience and scalability [11]. But with the advent of
new technologies—such as cloud computing, containeriza-
tion and orchestration—developers are not encouraged to be
resource savvy in order to satisfy their scalability require-
ments. This approach implies that performance issues and
bottlenecks often go undetected during the development pro-
cess, only to be identified when the system is in production.

DX Walter Cazzola
cazzola@di.unimi.it

Francesco Cesarini
francesco@erlang-solutions.com

Luca Tansini

luca.tansini @ studenti.unimi.it

Department of Computer Science, Universita degli Studi di
Milano, Milan, Italy

Erlang Solutions, London, United Kingdom

As discussed by Jiang and Hassan [21], fixing these issues
when in production becomes complicated and expensive.

Several language agnostic tools are available to measure
the throughput and latency of a system under test (SUT) by
simulating different loads and monitoring response times.
These tools—dubbed load testing tools—provide system us-
ability metrics and enable the repeatability of the trial runs.
But as they use an external observation point (black-box ap-
proach), they are not informative on how resources are used
inside the SUT. This testing approach can help detecting per-
formance degradation, but provides little information over
which component of the SUT is causing the degradation.
Performance monitoring tools, on the other hand, can gather
detailed metrics about the resources used by the SUT, such as
memory consumption, CPU usage and I/O operations. Unfor-
tunately, they do not provide an interface to generate load, as
they are meant for the inspection of live production systems
and are manually added at a later stage of the development.
This lack of support for writing automated and repeatable
performance tests means that performance monitoring tools
cannot easily be included as part of the testing pipeline in the
development stages.

This paper proposes Per formERL, a performance test-
ing framework for Erlang that combines the two approaches.
The performance testing terminology and the distinction be-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-022-00429-7&domain=pdf
http://orcid.org/0000-0002-4652-8113

440

W. Cazzola et al.

tween load testing and performance monitoring was first
outlined by Gheorghiu [14] and later refined by Jiang and
Hassan in their survey [21]. Per formERL enables program-
mers to write a systematically repeatable suite of tests that
stress test the SUT in the early stages of development and
keep track of the performance of every component—in terms
of resource utilization—as the codebase grows.

PerformERL builds on top of the Erlang BEAM, copes
with Erlang ecosystem and exploits the BEAM tracing in-
frastructure. Its main contribution is to define an architecture
and a methodology to enable the performance testing in
the Erlang ecosystem. To the best of our knowledge, Per -
formERL is the first framework in the Erlang ecosystem
that permits to programmatically exercise a SUT and gather
detailed metrics about the performance of the SUT, how
the resources are used by the SUT components and which
component and/or resource usage is responsible of the per-
formance degradation of the SUT. Such a contribution is
achieved through the design of a specific architecture (de-
tails in Sects. 2 and 3) and in some extensions to the tracing
infrastructure in order to improve its applicability and perfor-
mance (details in Sects. 3.4.1 and 3.4.2). Also the proposed
architecture is general enough to be implemented in different
ecosystems as explained in Sect. 3.6.

The rest of this paper is organized as follows. Section 2
provides an overview of the main concepts and terminology
of PerformERL. Section 3 describes the internal architec-
ture of the framework and how it can be realized in the JVM
ecosystem. Section 4 shows how Per formERL can be em-
ployed and extended with some examples. In Sect. 5, some
theoretical measurements and tests to study Per formERL
overhead and performance are presented and their results are
discussed. Sections 6 and 7 conclude the paper reviewing
with related work and presenting our conclusions.

2 Overview

PerformERL is a performance testing framework. Accord-
ing to Jiang and Hassan [21], it is neither a load testing nor a
performance monitoring tool, but a bit of both. It combines
the repeatability of load testing with the visibility offered
by a performance monitor. Per formERL should be used as
any other testing tool: by writing a test suite dedicated, this
time, to performance evaluation. The test files (sometimes
also referred to as load generator files) written by the users
implement callbacks (defined in the load generator behavior,
see Listing 1, details in Sect. 3.1), used by Per formERL
to (i) exercise a specific execution of the SUT in which the
performance measurements will be gathered, (ii) generate
the target function patterns, and (iii) set other configuration
parameters, such as size, name and duration of the test.

@ Springer

®
user starts PerformERL
rebar3 performerl load_gen
2
O setup the test
/ environment \
PerformERLtest load_gen:test_setup
environment
3
O setup the run
environment ﬂ 2
N
-~
PerformERL run 4
. load_gen:setup_run -
environment w
4 M
inject and start °
the agents :
&
performerl:inject_agents s
performerl:start_agents 5
5
start workload
)
'§ load_gen:start_load =
s load_gen:get_load_duration =
5 5
& 6 &
o o
= stop workload =
5] L
=) =
Q <
3 2
§' load_gen:stop_load 15
e
\)
stop agents and
collect run results
performerl:stop_agents
8 .
O run impact
benchmark
performerl:
run_impact_benchmark
9
\\O teardown the J
run environment
load_gen: teardown_run
11
O teardown the
test environment
load_gen: test_teardown
®
merge and output
the test results

performerl_results_transformer:from_raw
performerl_html_test_results:generate
performerl_html_test_results:write_results

Fig.1 PerformERL test execution flow

The target function patterns—a set of MFAs!' —identify
the group of functions of the SUT that the user is inter-

1" An MFA is a tuple uniquely identifying an Erlang function through a
module, a name and an arity.

PerformERL: a performance testing framework...

441

ested in monitoring for a specific test case. These will be
used as a starting point for the performance analysis made
by PerformERL. By exploiting Erlang tracing infrastruc-
ture?, Per formERL gathers data about the target functions
themselves, most notably, the number of times they are called
and their execution time. Per formERL also discovers any
process in the SUT that makes use of the target functions and
gathers metrics on those processes, including memory usage
and reduction® count.

A PerformERL fest starts when the user invokes the
framework providing a load generator file. Since the goal of
the performance test is to provide insights into the scalability
of the SUT, every test is composed of multiple runs. Runs
are successive calls to the same load generation functions,
but with different values for the size parameter. The core task
of each run is to exercise the SUT by generating a computa-
tion load—called workload—for the monitored application
proportional to the given size parameter. Finally, when all
the test runs have been completed, Per formERL produces
its output as a collection of HTML files with charts and ta-
bles presenting the gathered results. Note that Per f ormERL
does not target any specific scalability dimension but it aims
to be flexible enough to allow the monitoring of any of them.
The meaning of the size parameter depends on what the users
would like to measure. For example, size can be the number
of requests if we are interested in how the response time of a
web server scales with the growth of the number of requests
or it can be the number of entries in a database when we are
interested in how the database size scales with the growth of
the number of its entries. Figure 1 summarizes the details of
a test execution flow in the Per formERL framework.

3 PerformErl under the hood

In this section, the different components of the framework
will be described. Fig. 2 shows the components of Per-
formERL and how they interact with the test file provided by
the user. In the following sections, white circled numbers—
such as (step @)—refer to steps of Fig. 1, whereas black
circled numbers—such as (comp. @)—refer to components
of Fig. 2.

3.1 The load generator behavior

The only file that users have to write in order to imple-
ment a test case is a load generator—i.e., a test file. The

2 The BEAM provides a powerful set of tools for the introspection of
events related to functions, processes and message passing that go by
the name of Erlang tracing infrastructure.

3 The reduction is a counter per process that is normally incremented
by one for each function call.

-module (performerl_load_generator) .
-type run_info() :: term().
-type test_info() :: term().
-type test_size() :: non_neg_integer ().
-type () =1
{ module()|'_', atom()|'_', non_neg_integer()|'_' }.
-callback get_test_name() =-> string().
-callback test_setup() =-> {ok, test_info()}.
-callback setup_run(Size::test_size()) ->
{run_started, [()1%}.

-callback start_load/(

TestNodes: : [()], Size::test_size()) ->

{load_started, run_info()} |
{already_started, pid()}.
-callback get_load_duration() =-> pos_integer ().
-callback get_test_sizes() =-> {atom(), [test_size()]}.
-callback stop_load(RunInfo::run_info()) ->
{load_stopped, run_info()} |
{error, not_started}.

-callback teardown_run (RunInfo::run_info()) -> run_ended.
-callback test_teardown (TestInfo::test_info()) -> ok.

-callback get_trace_patterns() -> [O71.

Listing 1: The load generator behavior

test files (comp. @) used by Per formERL must implement
the performerl load_generator behavior* shown
in Listing 1.

To have different setup and tear down functions per test
and per run enables the user to have more control over the
generation of the test environment. The test_setup func-
tion is only called once at the beginning of the test (step @).
It can be used to start external services that are not directly
involved in the performance test but are needed during the
load generation steps or to perform operations that only need
to be executed once during the test. In the run setup (step ®)
and tear down (step @), on the other hand, the user should
take care of the actions that have to be done before and after
each run, typically starting and stopping the SUT, so that ev-
ery run will begin with the SUT in the same fresh state. The
return value of the setup_run function must include the
identifiers of the nodes in which the SUT is running; these
nodes will be referred to as fest nodes (comp. ©).

The start_load function (step ®) contains the code
to stress the SUT to obtain its performance data. The
stop_load function (step ®) stops any long-running op-
eration initiated by its counterpart. The get_test_name
and get_trace_patterns functions are not explicitly
used in Fig. 1 because they provide configuration parame-
ters for a test, but do not affect the execution flow directly.
They return the custom test name and the MFA of the target
functions respectively.

4 Erlang behaviors—as object oriented interfaces—define a set of call-
back functions that should be exported by any module implementing
such behaviors. Failing to implement any of these callbacks generates
a compiler warning.

@ Springer

442

W. Cazzola et al.

test file

implementing the loads the test file performerl
performerl_load_gen compile:file module
behaviour code:load_binary
-} =
=
3 @
S0 <1
o 3 @
I~ v @ 9 a3 =
o o < g ~e 3
Q0 Q z; 3 o~ I
o o o Q -
[@« ® [0}
Qe a 5 — El]
© 0O = = =1
23 |8g¢° o z
[(=%
58 |9 o N
LN 9] ’ PerformERL agents ‘
) w «a
5 ™
[
=3 j=
o
tracer agent (TA)

sends module
g I loaded updates

processes discoverer
agent (PDA)
O polls for
active processes
O O metrics collector
agent (MCA)
test nodes _ J

O O injected into the test nodes

’ system under test (SUT) ‘

\

Fig.2 PerformERL components interaction

The remaining test components are predefined in Per-
formERL and do not need to be customized by the user. In
Sect. 4.2 we will discuss how Per formERL functionality
can be extended.

3.2 The performERL module

The performerl module (comp. @) provides the entry
point for every test execution. It contains a main function that
loads the test file, sets up the global test environment common
to all runs, and then starts a run for each user-specified size
(step @). Once all the runs have been completed, it takes care
of tearing down the common environment and generates the
output (steps @ and @).

The execution of a single run can be summarized in the
following steps, also displayed in Fig. 1, where 1oad_gen
is the name of the test file provided by the user. First, the
load_gen:setup_run callback is executed (step ®),
which deploys the SUT on a set of Erlang nodes® (comp. ©)
whose identifiers are returned. The Erlang nodes are then

5A Erlang node, node for short, is an instance of the BEAM. Several
processes run on each node. Each process can communicate both with
processes running on the same node and with processes running on
other nodes even over the Internet.

@ Springer

instrumented by injecting the modules needed for the perfor-
mance monitoring (step @). The injected modules implement
the tracer agent (TA), processes discoverer agent (PDA)
and metrics collector agent (MCA) (comp. @): there will
be an instance of each agent on every Erlang node. Once the
agents are started, the function load_gen:start_load
is called (step ®). Per formERL will wait for the load gen-
eration timeout to expire. The timeout is set by the function
load_gen:get_load_duration, and its value must
be large enough to enable the SUT to react to the generated
load. Finally, data from the PDA and MCA will be gathered
(step @) and the run will be effectively ended. The only re-
maining step before cleaning up and stopping the test nodes
is to execute the impact benchmark (step ®), and to use its
results to refine the performance data.

3.3 The tracer agent

TA is the first agent started on the nodes running the SUT.
The first purpose of this agent is to use call time tracing
to measure the number of calls and the execution time of
the target MFA patterns. Call time tracing, enabled by the
trace flag call_time, is a feature of the Erlang tracing
infrastructure that, for every traced MFA, records on a per
process basis how many times the function was called and
how much time was spent executing the function. Users can
refer to this data with the function erlang: trace_info.
Call time tracing does not require any message passing, as
it only updates some counters maintained by the BEAM.
The other purpose of TA is to interact with the Erlang tracing
infrastructure and to track any process—apart from the Per -
formERL agents—that use the tracing primitives during the
tests. By doing this, Per formERL is aware of the context
in which the tests are executed and it can work, to a certain
extent, even if the tracing infrastructure is already in use by
the SUT. This is required to keep overheads under control,
as the BEAM only allows one tracer agent per process.

In PerformERL, since it is unknown who will call the
monitored functions, every process in the SUT has to be
traced. This could be accomplished by the erlang: trace
function, but to tolerate the need of a SUT to use the trac-
ing infrastructure, PerformERL has to employ a more
sophisticated approach: the Erlang meta-tracing facility.
Meta-tracing is applied to an MFA pattern, and it traces
the calls made by any process to the functions selected by
such MFA pattern, without explicitly tracing the caller. To
be bound to the MFAs enables a finer tracing mechanism
that allows more tracer agents per process, making Per-
formERL tolerant to the presence of other tracers. Note that,
a SUT using the tracing facility can be observed by Per-
formERL thanks to the adoption of the meta-tracer. But, a
SUT that uses the meta-tracing facility can not be observed
because one meta-tracer can be associated to one process.

PerformERL: a performance testing framework...

443

Fortunately, this limitation has a negligible impact on the
applicability of Per formERL because the meta-tracing fa-
cility is less frequently used than the standard tracing one.

The TA is started before the 1oad_gen:start_load
function is called, and sets itself as the tracer for all
the other processes in the VM. The MFA patterns to
trace are those specified by the user with the function
load_gen:get_trace_patterns. Then TA setsitself
as the meta-tracer for the tracing built-in functions® in order
to detect if the SUT is making use of the tracing infrastructure
and react accordingly. TA also sets itself as the meta-tracer
forthe erlang: load_module function, which is respon-
sible for loading a module into the BEAM. This permits to
monitor the calls to the functions described by the MFA pat-
terns in dynamically loaded modules. These would otherwise
be missed because the call time tracing feature is applied to
the MFA patterns when TA is started. If this happens be-
fore the workload triggering the dynamic module loading,
the dynamically loaded module containing the specific MFA
would not be traced. In other words, TA can detect when a
module containing some user-defined MFA patterns is being
dynamically loaded and promptly activate call time tracing
for those.

3.4 The processes discoverer agent

PDA tracks those processes that—at any point in their
lifetime—use the monitored MFA patterns. PDA is started
after TA and depends on it for the detection of newly loaded
modules. PDA also uses the tracing infrastructure and it
is where the most sophisticated tracing techniques are em-
ployed to quickly discover the processes with a low overhead.
The approach is simple: PDA is notified about a process
presence with a tracing message, stores its PID and starts
monitoring it as soon as it calls a function matching a user-
defined MFA pattern. Then PDA immediately stops tracing
the process to reduce the overhead on the SUT—details in
Sect. 3.4.1. Notice that, because of the meta-tracing, the set
of traced MFA patterns is limited to user-defined ones, but
the space of traced processes is the whole BEAM runtime.

3.4.1 Match Specifications

The Erlang tracing primitive erlang: trace_pattern
accepts as its second parameter an argument called match
specification. Match specifications can be used to control
and customize the tracing infrastructure. They are Erlang
terms describing a low level program used to match pat-
terns, execute logical operations and call a limited set of
commands. Match specifications are compiled into interme-

6 The built-in functions to access the Erlang tracing infrastructure are:
erlang: trace and erlang: trace_pattern.

diate code interpreted by the BEAM more efficiently than
the corresponding function call.

Per formERL uses match specifications to limit the set of
processes sending a message to the PDA to those who have
not been discovered yet; this is equivalent to disabling the
tracing facility for the other processes, reducing overheads.
The list of known active processes is encoded as a balanced
binary search tree sorted on the PIDs, translated into a match
specification with short-circuited boolean operators. The list
of active processes is kept updated by removing those that
terminate their execution. The match specification is rebuilt
whenever the list is updated. The cost of executing the match
specification against the PID of a target function caller is log-
arithmic in the number of processes, because of the balancing
of the binary tree structure.

3.4.2 The Custom Meta-Tracer

Meta-tracing is a powerful feature of the BEAM, but it
is less customizable compared to regular tracing. With the
regular tracing, the user can specify a number of flags to al-
ter the format of the generated trace messages. These flags
are unavailable when using meta-tracing. In particular, the
arity flag—if available—would ease PDA implementa-
tion because it forces the trace message to contain the arity
of the called function rather than the full list of its arguments.
Since sending a message implies the copying of its data, send-
ing trace messages containing only the number of arguments
instead of the arguments themselves would significantly de-
crease the overhead of the meta-tracing.

Even though meta-tracing cannot be customized, it is pos-
sible to provide a tracer module when setting a meta-tracer.
The tracing infrastructure allows the user to provide a custom
module’, composed of an Erlang stub and a NIF® imple-
mentation, to replace part of the back-end of the tracing
infrastructure. It is therefore possible to code a custom tracer
that implements the ar ity flag and further reduces the over-
head. Slaski and Turek [30] demonstrated the efficiency and
potential of custom tracer modules.

3.5 The metrics collector agent

MCA is responsible for polling PDA for active processes
and gathering metrics—e.g., memory usage and reductions
count—about them. The metrics are collected by default ev-
ery 5 seconds, but this interval can be customized.

7 http://erlang.org/doc/man/er]_tracer.html—Erlang tracer behavior.

8 A NIF (Native Implemented Function) is a function written in C in-
stead of Erlang. They appear as Erlang functions to the caller, since they
can be found in an host Erlang module, but their code is compiled into
a dynamically loadable shared object that has to be loaded at runtime
by the host module.

@ Springer

http://erlang.org/doc/man/erl_tracer.html

444

W. Cazzola et al.

The metrics collected by the MCA are sanitized to re-
move the tracing overhead from the call time data at the end
of each run. The sanitation consists of removing the (aver-
age) overhead introduced by Per formERL tracing from the
execution time of the monitored functions. Per formERL
injects the impact benchmark module into the SUT when the
run ends, when both the call time data and the number of dis-
covered processes are available. This module measures the
average overhead of tracing—due to both the call time and the
processes discovery—on the monitored function calls. The
impact benchmark executes the monitored function 4,000
times without any tracing enabled. Choosing 4,000 iterations
ensures that the process will not exceed its time slot’ and
there will be no overhead due to context switching. The im-
pact benchmark then spawns a number of processes equal to
the highest number of active processes recorded during the
run and activates both the call time tracing and the processes
discovery meta-tracing with a match specification contain-
ing their PIDs. Each spawned process will execute the target
function 4,000 times. The benchmark module concludes by
taking the average execution time over all processes, sub-
tracting the reference measurement to determine the impact
of the tracing. Once the impact measurement is completed,
the average latency multiplied by the number of calls is sub-
tracted from the call time tracing data of each monitored
function.

3.6 PerformERL in different ecosystems

PerformERL’s approach is designed for performance test-
ing of Erlang’s processes but it can be applied to any ecosys-
tem supporting the actor model [2]. The actor model adopts
a finer concurrency unit (the actors) than processes/threads
whose implementation usually can not rely on the operating
system mechanisms but requires an ad hoc virtual machine
as the BEAM with its scheduling algorithms and commu-
nications mechanisms. Erlang natively supports the actor
model—Erlang’s processes are de facto actors—but there
are several implementations for other ecosystems. The as-
sumption on the concurrency model is not so stringent. It
just simplifies Per formERL’s transposition.

Akka [17,18] is certainly the most relevant implementa-
tion of the actor model outside the Erlang ecosystem. Akka
was born as part of the Scala standard library to then become
the reference framework for all the languages supported by
the JVM but also Javascript [32]. Akka is heavily inspired by
Erlang and implements many of the fundamental actor model
primitives offered by the BEAM, such as supervision trees

9 Erlang run-time system adopts a preemptive scheduler. Each process
receives a time slice measured by a reduction count before being pre-
empted, where a reduction is a function call. Since OTP20 the number
of allowed reductions is 4,000.

@ Springer

and thread dispatchers (corresponding to Erlang schedulers).
Moreover, Akka threads are not mapped to JVM threads,
they are lightweight abstractions whose performances can
be monitored by a dedicated framework such as Per form-
ERL.

The test orchestration functionality of Per formERL can
easily be reproduced in Akka since it provides all the nec-
essary building blocks, such as nodes distribution, message
passing, remote code injection and remote procedure calls.
The only fundamental component that Akka and the JVM do
not offer out-of-the-box is an equivalent of the Erlang trac-
ing infrastructure, which Per formERL’s approach heavily
relies on. PerformERL’s approach requires an interface
to gather metrics for the {actor, method} pair and
also to perform dynamic discovery of actors calling spe-
cific methods, without manually altering the source code of
said methods. Ciotczyk et al. [12] describe Akka’s limita-
tions wrt. message exchange tracing. Tracing support comes
from third-party libraries/frameworks. Kamon'? provides
metric gathering functionality for Akka actors, but lacks
the possibility to send a message to an equivalent of the
PDA. As demonstrated by the Akka tracing tool [12] and
AkkaProf [28], the “last missing mile” can be realized via
code instrumentation—either aspect-based [23,26] or based
on bytecode instrumentation [8,13]. These techniques permit
to weave/inject the tracing code to the tested methods (equiv-
alent to Per formERL target MFAs), and to gather and pass
information about the monitored method calls to the equiva-
lent of the PDA to perform dynamic actor discovery.

4 PerformERL in action

PerformERL is available as a rebar3 plugin and it is also
compliant to the escript interface.

4.1 A usage example: Wombat Plugins

Wombat [33] is a performance monitoring framework for
the BEAM. It works by injecting a number of agents into the
monitored nodes to support its functionality. In this section,
we will show how Per formERL can be used to measure the
impact of the Womba t agents and their infrastructure on the
managed nodes.

Listing 2 shows a portion of the Per formERL load gen-
erator file to exercise the Wombat agents by spawning a
large number of processes in the monitored node. Per-
formERL monitors the processes and the function calls of
Wombat when it is monitoring another SUT whose num-
ber of processes grows accordingly to the specification in
the load generator file. As explained in Sect. 3.1, this load

10 https://kamon.io/docs/latest/instrumentation/akka/

https://kamon.io/docs/latest/instrumentation/akka/

PerformERL: a performance testing framework...

445

-module (processes_load_gen) .
-behaviour (performerl_load_generator) .

test_setup() ->
ok = wombat_lib:ensure_wombat_started(),
{ok, [1}.

get_test_sizes() ->

{number_of_processes,
[65536,131072,262144,524288,104857611}.

setup_run(Size) =->
Node = 'processes@127.0.0.1',
StartCmd = "erl -detached -name "++
(Node) ++
kie "++
(erlang:get_cookie()) ++
' +P "4+ (Size),

[] = os:emd(StartCmd) ,

ok = performerl_lib:inject_mod (?MODULE, Node),
{run_started, [Node] }.

start_load([Node], Size) ->
{node_added, WoNodeId} =
wombat_1lib:add_node_to_wombat (Node,
(erlang:get_cookie())),
Pids = rpc:call (Node, ?MODULE, spawn_processes, [Size]),
{load_started, [{node_info, {Node, WoNodeId}},
{pids, Pids}1}.

spawn_processes (Size) =->
Num = (Size * 95) div 100,
Pids = [(fun() -> receive stop -> ok end end)
|| _ <- lists:seq(l, Num)].

Listing 2: Per formERL test file for testing Womba t plugins

generator file implements the 1oad_generator behavior
to be used with Per formERL. The test_setup function
checks that Wombat is up and running. The setup_run
function spawns a node with a system limit for the number of
processes set to the run size parameter. It injects the test mod-
ule itself into the monitored node to enable the methods of
the test file to be called on the test node, as it happens for the
spawn_processes function. The start_load func-
tion adds the test node to Wombat and remotely calls—via
the Erlang rpm module—its spawn_processes func-
tion. It will start a number of idle processes equal to the 95%
of the processes system limit. The choice of 95% permits
to have a meaningful load, close to the saturation threshold,
and still to be sure not to reach it provoking the test crashing.
The maximum number of processes can be retrieved by the
call erlang:system_info (process_limit). The
stop_load and teardown_run functions (not shown
in Listing 2) send a stop message to the spawned processes
and take care of removing the test node from Wombat and
shutting it down, respectively.

After all test runs have been completed, the user will find
the output of the framework in a folder named
performerl_results with a sub-folder for the test
execution containing a front_page.html file with a
summary result data for the test and more detailed files for
each detected function and each discovered process. Figure 3

Test Info
Test Name Process Bomb
Test Date 2020-02-08 16:50:38
Test Node processes@127.0.0.1
Test Sizes 65536 131072 262144 524288 1048576
Number of Functions Detected 316 316 316 316 316
Number of Processes
Discovarad 76 76 76 76 76
Function Total Call Time
top4 time consuming functions for each test run
6M
plugin_builtin_metrics:collect_metrics;
%)
©
C 4M
o
v)
]
wv
o
S
QO 2M
= plugin_alarm:collect_procs_info:4
< u s plugin_alarm:-init.1-fun-0-:0
65536 131072 262144 524288 1048576

number_of_processes

-@- plugin_alarm:-init.1-fun-0-:0
-8 plugin_builtin_metrics:collect_metrics:1

=~ plugin_alarm:collect_procs_info:4
plugin_code_tracer:search:1

Fig.3 Results summary extract for the test in Listing 2

shows an excerpt of the summary page for the testload in List-
ing 2 . The table shows that Per formERL detects the same
number of processes and functions for each run. This is cor-
rect because Wombat does not change. The graph, instead,
shows that the number of processes that Wombat moni-
tors affect the call time of Wombat’s functions (information
monitored by Per formERL). Then, we can conclude that
the function draining more resources (execution time) when
the number of processes monitored by Wombat grows
is plugin_builtin_metrics:collect_metrics
whereas all the other Womba t’s functions have an execution
time consumption independent of the number of processes
or with a negligible growth. Therefore any attempt of opti-
mizing the execution time of Wombat should affect such a
function (that is part of the Wombat framework).

4.2 How to extend PerformERL

PerformERL has been designed to be extendable. In this
section, we will show how to create custom agents and collect
custom metrics that will cooperate with the default Per-
formERL components.

4.2.1 Collecting Custom Metrics
The first proposed extension consists of adding a new metric

to those collected by the MCA. The function
performerl_mca:collect_metrics combines the

@ Springer

446

W. Cazzola et al.

-module (performerl_custom_agent) .

-callback get_config(TestNode: : 0,
LoadModule: :module (),
TestSize::test_size()) =-> map().

-callback process_results(TestNode: :),

Results::term()) -> ProcessedResults::term().
-callback start(Config::map()) =->

{ok, Pid::pid()} | ignore | {error, Error::term()}.
-callback get_results_and_stop() =-> {ok, Results::term()}.

Listing 3: The Erlang behavior for custom agents

metrics collected across runs: each metric is a tuple
{metric_name, MetricValue}. To support a new
metric we have to add how it is calculated and its result to
the list of the collected metrics. As an example, let us track
the message queue length of the discovered processes. This
is done by adding

QLen = erlang:process_info(Pid,

message_qgueue_len)

tothe performerl_mca:collect_metrics function
QLen contains the result as {message_queue_len,
Value} and it is returned together with the other collected
metrics. Similarly, theper formerl_html_front_page
module—that would present the collected metrics to the
user—will be accommodated to present the new metric as
well.

To add a new metric to MCA can be realized by a callback
whereas to accommodate the way it will be displayed has to
be done by editing the functions in charge of the visualization
because of the well-known problems about the automatic
organization of data visualization. In spite of this, it should
be evident that the effort required to add a custom metric is
limited.

4.2.2 Adding a Custom Agent

Adding a custom agent is another extension which can be ap-
plied to Per formERL. The framework provides a specific
behavior,performerl_custom_agents,allowing cus-
tom agents to be started. The agents are Erlang modules
implementing the four callbacks defined by the behavior
(Listing 3) .

The functions get_config and process_results
are called locally by the Per formERL module to pass the
parameters of the start function to the agent and process-
ing the results after each run ends. The functions start and
get_results_and_stop are called remotely in the test
nodes via RPC from the performerl module and simply
start and stop the custom agent retrieving the results.

@ Springer

The custom agents modules are provided to Perform-
ERL as a comma separated list of paths with the com-
mand line argument --custom_agents. Per formERL,
through the function compile_custom_agents, parses
the comma separated list of module paths and compiles
the agents with the binary option. This will not pro-
duce the .beam file, but a binary which is loaded in
the local node and injected in the test nodes using the
inject_custom_agents function. The start function
of each custom agent loads the configuration parameters—
taken from a combination of the test node name, the test file
and the size of the current run—and remotely starts the agent
in all test nodes with the appropriate configuration. The cus-
tom agents are started after the standard ones, allowing users
to rely on the functionality and services offered by the stan-
dard Per formERL agents in their custom ones. For the same
reason, they are stopped before the standard agents running
on the same node.

As a proof-of-concept, we implement a custom agent
that checks the health of the SUT during the performance
tests by periodically monitoring some invariant properties.
The custom invariant_checker_agent implementa-
tion is shown in Listing 4 . The agent implements both the
performerl_custom_agent and the gen_server
behaviors. The generic server functionality is used to im-
plement the agents starting and stopping functions, as well
as the periodic invariant checks. In the get_config func-
tion, the parameters for the agent—i.e., the list of invariants
to check and the interval between two consecutive checks—
are taken from the load generator test file that implements an
additional function (get_invariants) to be used with
this custom agent. The process_results function is
where the data produced by the agent during the run will
be analyzed. In the example, the data are processed by the
process_resultsO0 function (not shown for brevity) and
then the results of the invariants checks are printed to the
console. Processed data are finally returned to the caller—
the performerl module, that will include them in the
run results. The test load file has to define and specify (via
the get_invariants function) the invariants that Per-
formERL has to check. Listing 5 shows how a different set
of invariants can be specified for each node involved in a
test. The first function clause defines an invariant about the
maximum size for the tables in the database of the first node
and provides a threshold value proportional to the size of the
current run. The second clause defines the invariants for the
second node, in which a web server is executed: the first one
is to check that the web server is online at all times, and the
second one checks the length of the request queue against a
threshold value. The last invariant is common to all nodes and
sets a threshold value of 1GB for the entire node memory.

At the moment, there is no interface in Per formERL to
automatically generate HTML files from the data produced

PerformERL: a performance testing framework...

447

-module (invariant_checker_agent) .
-behaviour (gen_server) .
-behaviour (performerl_custom_agent) .

start (Config) =->
InitState = #state{
check_interval = maps: (check_interval, Config),
invariants = maps: (invariants, Config)

e
gen_server:start ({local, ?MODULE}, ?MODULE, InitState, [1) .

get_results_and_stop() =->
{ok, ResHist} =
gen_server:call (?MODULE, get_results, infinity),
gen_server:stop (?MODULE) ,
{ok, lists:reverse(ResHist)}.

get_config(TestNode, LoadModule, TestSize) =>
#{ check_interval =>
(LoadModule:get_load_duration()/100),
invariants =>
LoadModule:get_invariants (TestNode, TestSize)}.

process_results (TestNode, ResHist) ->
{TotalChecks, InvResList} = process_results0(ResHist),
io:format ("Invariants wer test p times on "
"test node: n", [TotalChecks, TestNode])
lists:foreach (
fun ({InvName,V}) =->
io:format (" -1 p was violat
"Tp ", [InvName, V])

end, InvResList).

init (InitState=#state{check_interval = Interval}) =>
erlang: (Interval,self(),check_invariants),
{ok, InitState}.

handle call(get_results,_From, State) =>
{reply, {ok, State#state.history}, State}.

handle_info (check_invariants, State#state{history=Hist) ->
Res = check_invariants(State#state.invariants),
erlang: (State#state.check_interval,
self (), check_invariants),
{noreply, State#state{history=[Res|Hist]}};

check_invariants(InvList) =->
lists:map (
fun ({Name, MFA, Op, Defvalue}) =>
{Name, check_invariant (MFA, Op, DefValue)}
end, InvList).

check_invariant ({M,F,Args}, Op, Defvalue) =->
Value = erlang: (M, F,Args),
case test(Value, Op, DefvValue) of
true =-> ok;
false -> {violated, Value}

end.
test (A, '==', B) => A == B;
test (A, '=<', B) =-> A =< B;
test (A, '>=', B) => A >= B.

Listing 4: Custom invariant_checker_agent

by the custom agents, so the users will need to manually
modify the performerl_html_front_page in order
to present it—similarly to what has been done for displaying
the custom metrics in Sect. 4.2.1. Future developments of
PerformERL will include an overhaul of the code generat-
ing the output HTML files to adopt a more modular approach
and to offer a behavior with set of callbacks to support seam-
less extensions to the data visualization.

get_invariants('db_node@127.0.0.1', RunSize) =>
[{db_tables_check,
{dm_module, get_tables_size, [max]},
'=<', 32%*RunSize},
get_memory_invariant()];
get_invariants ('web_server_node@l27.0.0.1', RunSize) =>
[{web_server_online_check,
{web_server, get_info, [statusl},
'==', 'up_and_running'},
{web_server_queue_check,
{web_server, get_info, [request_queue_length]},
'=<', 100*RunSize},
get_memory_invariant()].

get_memory_invariant () ->
{memory_check,
{erlang, , [totall},
‘=<', 1024%*1024*1024}.

Listing 5: Examples of get_invariants functions

5 Evaluation

In this section, Per formERL overhead and performance are
analyzed. All the presented tests were carried out on a 64-bit
laptop equipped with an 8-core Intel i7@2.50GHz CPU and
8GB of RAM running Erlang/OTP version 20.3 on Linux.
Any considered SUT has to run on the BEAM and can be
composed of multiple types of nodes distributed across mul-
tiple machines.

5.1 Memory footprint of the agents

Running out of memory is one of the few ways in which
an instance of the BEAM can be crashed. It is fundamental
that the memory footprint of injected agents is minimal. In
our evaluation, we calculate the upper bound of the Per-
formERL memory consumption. All reported calculations
are based on the official Erlang efficiency guide'', where
the reference architecture is 64-bit and every memory word
requires 8 bytes.

The TA does not keep any relevant data structures other
than a list of processes using the Erlang tracing infrastructure
alongside Per formERL. Every entry of this list contains a
tuple of the form

1 word 5 words 4 words

{ TracerPid, TargetMFA= { M, F, A }, MonRef }

12 words = 10 words + 2 words for the tuple

TA consumes 12 memory words for each traced MFA
pattern plus 1 word for the pointer to the list and 1 word
for each entry in the list. In total, TA consumes 13n + 1
words of memory where 7 is the number of different traced
MFA patterns. We can conclude that TA will never consume
excessive amounts of memory, as it would require the SUT

11 http://erlang.org/doc/efficiency_guide/advanced.html.

@ Springer

http://erlang.org/doc/efficiency_guide/advanced.html

448

W. Cazzola et al.

to trace about 10,000 different MFA patterns to consume a
single MB of memory.

The PDA keeps two data structures: a map mapping PIDs
to the names of the discovered processes and a gb_sets
containing the PIDs of the active processes. The number of
discovered processes is the upper bound for the active pro-
cesses during the execution of a PerformERL test. The
map

8 words (worst case)

Tword 1 word

—A— —A—
map={{Pid0, (Name, | {

8 words
X

{M, F AT}, -0}

9 words

consumes 11 words per entry in the worst case. Its in-
ternal structure is implemented as a hash array mapped trie
(HAMT) [6] when larger than 32 entries. According to the
efficiency guide, a HAMT consumes 7 - f memory words
plus the cost of all entries where n is the number of entries
and f is a sparsity factor that can vary between 1.6 and 1.8
due to the probabilistic nature of the HAMT. Considering the
worst case scenario, we have a total memory consumption of
1.8n + 9n = 10.8n words where » is the number of entries.

The gb_sets entries are the PIDs of the active processes
which only take 1 memory word each. The data structure
is based on general balanced trees [3] and is represented
in Erlang by a tuple with two elements: the number of en-
tries and a tree structure with nodes of the form {vValue,
LeftChild, RightChild} where the empty child is
represented by the nil. The entire structure consumes 2
words for the outer tuple, 1 word for the number of entries,
3 words for the internal nodes with two children, 4 for those
with only one child, and 5 words for the leaves. Since the
gb_sets is a complete binary tree, if n is the number of
entries there will be:

— L(n + 1)/2] leaves (5 words each)
— |n/2] internal nodes (3 words each)

Note that at most one internal node has only one child (when
n is even) by definition of complete binary tree. Summing it
all up, the cost for the gb_sets of n active processes is:

34+5%x|(n+1)/2] +3 % |n/2] +n mod 2

which is roughly 4n memory words.

The MCA holds in memory a list with the history of the
collected metrics, so it naturally grows with time. Assuming,
without loss of generality, that only the default memory and
reduction metrics are collected, every entry of the list will be
of the form

@ Springer

Tracing Overhead
comparison of the overhead of different tracing methods

2.5

1.5
(3) tree_MS_already_discovered

1 -—o— o (1) staqdard metg-tracing o

0.5 M
0 (2) call_time

1024 2048 4096 8192 16384 32768 65536 131072
number of processes

microseconds

Fig. 4 Average overhead on a function call introduced by the trac-
ing mechanisms. Four configurations for the tracing mechanism are
considered: (1) meta-tracing only enabled (2) call time tracing, (3)
meta-tracing with tree match specification and (4) meta-tracing with
tree match specification and calling processes discovering. The x-axis
(in logarithmic scale) reports number of processes spawned and the
y-axis the average overhead over 4,000 calls to a dummy function

11 words = 8 words + 1 word for the list + 2 words for its entries

Tword 1 word 4 words 4 words
PN —_— s A~
{TS, [{Pid0, [{mem, MemO}, { ,Reds0}1}, -1}

14 words = 11 words + 1 word + 2 words for the tuple

(11 + 1 + 2 for the tuple + 1 for the entry)n +
1 for TS + 2 for the tuple + 1 for the list

Such alistroughly consumes: 151744 words where n is the
number of active processes. To collect more metrics would
only add the cost for their values representation. Assuming
a standard 5 seconds interval between metrics collections,
which gives 12 collections per minute, and 10,000 active
processes, this structure will grow by approximately 1.8MB
every minute.

The memory consumption of all the agents put together is
roughly:

13p + 14.8d + (4 4+ 15d)c ~ O(p + dc)
memory words, where

— p is the number of MFA patterns traced by the SUT

— d is the number of processes discovered (also used as an
upper bound for the active processes)

— ¢ is how many times the metrics are collected in a run
(which depends on the duration and the metrics collection
frequency).

It can be seen that the memory consumed by Per formERL
agents is linear (O(p + dc¢)) and depends on dimensions that
the users can predict and control.

PerformERL: a performance testing framework...

449

5.2 Overhead on monitored functions

In this section, we will explore the overhead Perform-
ERL’s agents add to the monitored functions. As explained
in Sect. 3, the tracing of the MFA is the main culprit, if
not unique, of the overhead introduced by Per formERL.
Therefore, our experiment will focus on the average over-
head Per formERL adds on the execution time of a dummy
function called a fixed number of times (1,024 in our ex-
periment) in an environment with an increasing number of
processes (the size parameter) and with different tracing con-
figurations activated. The idle processes—i.e., those that are
not calling the dummy function—do not impact the call time
directly but the resources used by the tracing infrastructure.
It could seem counter-intuitive that we keep the number of
the calls fixed when the total number of processes grows but
this would permit to monitor how the tracing facility impacts
the call time. The considered tracing configurations are:

1. meta-tracing enabled without any match specifications
which always causes the caller to send a message. Per-
formERL does not use this configuration, but it provides
a reference to compare with the other techniques;

2. call time tracing, which does not require any message
exchanging but only updates some counters inside the
BEAM. This is used by the TA.

3. meta-tracing with the tree match specification described
in Sect. 3.4.1 and the calling processes identifiers al-
ready present in the tree. This case represents the already
discovered processes calling a function and requires no
message exchanging;

4. meta-tracing with the tree match specification and calling
processes identifiers not present in the tree, so a trace mes-
sage will be sent. This case represents the processes not
yet discovered calling a monitored function. Messages
are sent via the custom meta-tracer module described in
Sect. 3.4.2.

For each tracing configuration and for each value of size,
size processes are spawned enabling the tracing facility for
a dummy function: the processes are assigned an ID from 0
to size-1. The spawned processes whose ID is a multiple of
size/1,024 (i.e.,ID =0 mod (size/1, 024)) are selected to call
the dummy function 4,000 times, > measuring the execution
time with the timer: tc function. The average execution
time for a single call to the dummy function is computed
when all the selected processes have executed the bench-
mark. The overhead is determined by subtracting a reference
value obtained executing the same benchmark without any

12 The choice of 4,000 grants that the number of reductions will not trig-
ger the scheduling algorithm avoiding the overhead due to the context
switching.

Custom Arity Test
comparison of the overhead of standard vs custom meta-tracing
1k

standard

=
o
o

microseconds
"
o

custom

i

[

0.1

D I N o> \,}% ’f’b %\’L\/Qq/b\wob‘% bqu %’L ,,)‘bb‘

N
L) \b
arguments length

Fig. 5 Comparing the average overhead due to the standard meta-
tracing and with the ari ty extension. The x-axis (in logarithmic scale)
reports the number of integers passed to the calls. The y-axis reports
the average overhead (in microseconds) over 100,000 calls to a dummy
function

tracing mechanism enabled. Figure 4 shows the results of the
experiment using a logarithmic scale on the x-axis. It demon-
strates that the increasing number of processes only affects
the tracing techniques (3) and (4). It can also be seen that
the growth is logarithmic, which confirms the theory behind
the tree match specification presented in Sect. 3.4.1. The call
time tracing configuration (2) also shows a slight overhead
increase for larger numbers of processes. This is likely due
to the performance of the data structures internally used by
the BEAM to store the counters. The results show that the
techniques employed for the process discovery cause an over-
head that is between 1.5 and 2 times higher than a plain usage
of meta-tracing but they allow Per formERL to prevent al-
ready discovered processes from sending trace messages and
avoid flooding the PDA. The higher overhead is due to the
execution time of the match specification and in the last con-
figuration (4) also to the custom meta-tracer module being
activated to send a custom message.

A second experiment has been done to show the im-
portance of the custom meta-tracer module introduced in
Sect. 3.4.2. This experiment compares the average overhead
imposed by meta-tracing using the standard back-end (that
sends a trace message containing the full list of arguments)
with meta-tracing using Per formERL custom meta-tracer
module implementing the arity flag. It measures the av-
erage execution time of a traced dummy function called
100,000 times for each configuration. Configurations dif-
fer for a parameter called argument size that determines the
length of the list of integers passed to the dummy function.
Since sending a message requires to copy the data to be sent,
passing large parameters to a monitored function causes an
increase in the tracing overhead.

Figure 5 presents the results of the tests. For small ar-
guments, the custom meta-tracer causes a slightly higher

@ Springer

450

W. Cazzola et al.

overhead compared to the standard back-end because it needs
to access a dynamically loaded shared library in addition to
the BEAM tracing infrastructure. It can be seen that the over-
head starts to diverge for arguments larger than a list of 64
integers: up to 100 times for a list of 16,384 integers which is
not an unlikely size of arguments for an Erlang function call.
In fact, the custom meta-tracer module acts as failsafe for the
standard back-end when a process calls a monitored function
with a very large argument. In this scenario, two undesirable
things can occur: the process slows down due to the copying
of the arguments and the PDA runs out of memory if too
many of these messages are sent to it.

5.3 PerformERL in the real world

To show that the overhead introduced by PerformERL
monitoring and tracing facility to the running SUT is av-
erage if not less than the one of the other frameworks, we
measure it on a real case: cowboy!?, a well-known Erlang
HTTP server, and compare it with the overhead of similar
Erlang tools. In addition to Per formERL, the other chosen
tools were Wombat [33], a proprietary performance mon-
itoring framework, eprof!* and fprof,' two profiling
tools distributed with the Erlang standard library. Unfor-
tunately, to the best of our knowledge, there are no other
performance testing frameworks for the Erlang ecosystem
and we have to compare Per formERL with performance
monitoring frameworks. To maintain the comparison fair,
we are measuring a resource (the average response time) ob-
servable without accessing to the SUT data structures: access
that the performance monitoring framework do not have. The
experiment will measure the server average response time to
a number of HTTP GET requests both when the monitoring
facility is active and when it is not.

The configuration of Per formERL used in this experi-
ment had the target MFA patterns matching all the functions
inside the cowboy codebase. Wombat was used with a stan-
dard configuration. eprof and fprof were set up to trace
every process in the cowboy server node. For each tool, the
experiment was set up with five increasing amounts of HTTP
requests to measure the impact of the tools under different
workloads. The requests are synchronous: a new request is
made when the results of the previous one are received. In
this way, each request is satisfied when cowboy receives it
and no time is spent in a waiting queue that would bias the
final measurements. For each of the described settings the
experiment was run 100 times and the results of each set up

13 Cowboy—Small, fast, modern HTTP server for Erlang/OTP: https://
github.com/ninenines/cowboy.

14 https://erlang.org/doc/man/eprof.html.
15 https://erlang.org/doc/man/fprof.html.

@ Springer

Cowboy Request Average Response Time

2000
fprof_monitoring
» 1500 _’—‘\’/—4
©
o
o
O
9 1000 -
o performerl_monitoring
P
o
1S
500 —_— eprof,momtorulg
D .
not,monitoret‘i
0
10 100 1000 10000 100000

number of requests

Fig.6 Average overhead on cowboy response time

were averaged to minimize any spike due to external factors
beyond our control.

Figure 6 shows the results of the experiment, in terms of
average response time for each workload. From the diagram,
it can be noticed that all the considered tools caused a no-
ticeable overhead when the number of requests is low. This
is likely due to the tools performing some initial operations,
such as setting up their monitoring facility, that affects the
first few requests received by the server. In particular, Per-
formERL imposed a higher slowdown factor of 6 that settles
on 2 with the growing of the workload. The initial peak can
be attributed to Per formERL PDA which must discover all
the cowboy processes, populate its data structures, and up-
date the match specifications before the first request could
be served. The cusp corresponds to when the number of re-
quests is such that their satisfaction allows to mitigate the
initial overhead. At that point the slowdown can be attributed
to the heavy usage of tracing done by Per formERL, as de-
scribed in Sect. 5.2. eprof shows a slowdown of around
1.4 for every workload. This tool is only employing call
time tracing which, as shown in the previous section, causes
a smaller overhead on the monitored functions, hence the
slowdown factor is lower compared to Per formERL as ex-
pected. Womba t, similarly to Per f ormERL, causes a higher
overhead in the monitored node in the first few seconds after
its deployment due to the setting up of its plugin infrastruc-
ture. After that it can be seen that over time Womba t does not
impose any overhead at all. £prof is the tool that showed
the highest overhead in the experiment, with a constant av-
erage slowdown factor of 5 across all workloads. This is due
to the heavy use of the tracing infrastructure done by fprof
which traces every function call made by the monitored pro-
cesses and writes the trace message in a file that will later be
analyzed to produce a detailed call graph reporting for each
function how much time was spent executing code local to
the function and in functions called by that one.

https://github.com/ninenines/cowboy
https://github.com/ninenines/cowboy
https://erlang.org/doc/man/eprof.html
https://erlang.org/doc/man/fprof.html

PerformERL: a performance testing framework...

451

The experiment shows that the overhead caused in the web
server by the monitoring tools is proportional to the usage of
the tracing infrastructure, after an initial startup time where
some tools, namely PerformERL and Wombat, have to
setup their infrastructure which competes with the web server
for the scheduling, causing an increase in the slowdown. The
usage of the tracing infrastructure depends on the features
that the tool offers regarding function calls. fprof provides
more detailed information about function calls compared to
the other tools and, for that reason, is the one with the highest
overhead. Per formERL places in the experiment between
eprof and fprof and in fact, it provides the same infor-
mation as the former regarding function calls, but it also uses
tracing for the real-time discovery of processes, which is a
feature that no other tool offers. Wombat is different from
the other tools since it is meant for monitoring of live pro-
duction systems and focuses more on system wide metrics
rather than function calls, so it can afford to limit the usage of
the tracing infrastructure resulting in an overhead of almost
zero, at least in a standard configuration.

5.4 Discussion

PerformERL should be included in the testing pipeline of
a project and is not meant to be used in a production envi-
ronment. This means that the primary goal of the framework
is to provide a thorough insight into the SUT whilst offering
compatibility with as many applications as possible, rather
than achieving a low overhead. Nevertheless, the tests and
estimates presented in this section show that the users can
predict the dimension of the overhead caused by Per form-
ERL, both in terms of memory consumption and execution
time overhead. Both these dimensions depend on the num-
ber of processes that the SUT spawns and how many of them
PerformERL has to discover.

In general, PDA and MCA provide useful information
when there is a limited set of long-lived processes. On the
other hand, trying to get information over a large number of
worker processes that execute for a very short time before
terminating will not provide any useful insight other than
the number of such processes and the list of monitored func-
tions that they called, whilst degrading the performance of the
agents. This is a limitation inherent to the design of the Per -
formERL framework and the Erlang tracing infrastructure
itself, also discussed by Slaski and Turek [30]. To mitigate
this issue, we are developing an extension to Perform-
ERL that will enable the possibility of disabling some of the
agents, at the cost of losing some of the standard features.

The real challenge Per formERL had to face is to apply
performance testing on SUTs as Wombat [33] that actively
need tracing to run without hindering their operation. In this
respect, Per formERL uses and extends the meta-tracing
facility to tolerate the use of the tracing infrastructure by

the SUT (Sect. 3.3) as demonstrated by the experiment on
Wombat reported in Sect. 4.1. Said that, Per formERL still
has some limitations: for one, the SUT should not make use
of meta-tracing. This is not an issue, as with existing Erlang
applications, it seems that the meta-tracing facility is under-
rated and only used for troubleshooting live systems.

Another problem is the unloading (or reloading) of mod-
ules containing target function patterns during the tests. If this
happens, the call time profiling data will be lost. In future ver-
sions, a periodic back-up of this data could be implemented
at the cost of increased memory consumption, or a tracing-
based mechanism monitoring the unloading and reloading of
modules could be used to detect the issue.

6 Related work

The idea and the need of promoting performance testing in
the early stages of the development cycle, which is one of the
guiding principles behind this work, has been pointed out by
Woodside et al. [35]. Others, such as Johnson et al. [22],
suggested that performance testing should be incorporated
in test driven development and that is indeed a goal that can
be achieved using Per formERL.

In this section, we describe a few tools that are commonly
used and share similar goals with Per formERL. The focus
is on tools popular in the Erlang ecosystem but we will also
discuss the most akin approaches even if unrelated to the
BEAM.

6.1 Performance monitoring tools

In this paragraph we present tools related to Per formERL
that fall in the category of performance monitoring tools in
accordance to Jiang and Hassan [21] terminology.

A standard Erlang release ships with tools like eprof and
fprof, that are built on top of the tracing infrastructure and
provide information about function calls. A set of processes
and modules to trace can be specified to limit the overhead,
however, the approach of these tools is basic and has been
improved in our framework to both reduce the impact on
the SUT and gather more meaningful results. Furthermore,
their output is text based, which may result in a poor user
experience. More evolved tools, including Per formERL,
process the output to generate reports with plots and charts
to better help the user understand the gathered data.

Another tool already distributed with Erlang is the
Observer!®. Observer is an application that needs to
be plugged into one or more running Erlang nodes offering a
graphical user interface to display information about the sys-

16 observer, a GUI tool for observing an Erlang system:
http://erlang.org/doc/man/observer.html.

@ Springer

http://erlang.org/doc/man/observer.html

452

W. Cazzola et al.

tem such as application supervision trees, processes memory
allocations and reductions, and ETS!” tables. While some of
the metrics gathered by this tool are similar to what Per-
formERL offers, the approach is different, as Observer is
meant for live monitoring of entire nodes activity, whereas
PerformERL is used to write repeatable tests and can focus
on specific components of the SUT.

XProf [15]is avisual tracer and profiler focused on func-
tion calls and production safety. It achieves a low overhead
by only allowing the user to measure one function at a time
and gives detailed real-time information about the monitored
function execution time, arguments and return value. Its pur-
pose is mainly to be used to debug live production systems.

Womba t [33]is a monitoring, operations and performance
framework for the BEAM. It is supposed to be plugged into a
production system all the time and its features include gather-
ing application- and VM-specific metrics and showing them
in the GUI as well as sending threshold based alarms to the
system maintainer so that issues and potential crashes can
be prevented. The aim of Wombat is different from that of
PerformERL, asitis notatesting tool, even if both share the
idea of injecting agents into the monitored system to gather
metrics.

Keiker [34]is aWombat counterpart outside the BEAM
written in Java. It replaces the Erlang tracing infrastructure by
using aspect-oriented programming [23] to instrument code,
but the users have to write the aspects, which requires to
know Aspect] and an additional coding effort.

6.2 Load testing tools

In this section we present the related tools that—because of
their black-box approach to performance testing—we cate-
gorize under the name of load testing tools, in accordance to
Jiang and Hassan [21] terminology.

Apache JMeter [16] and Tsung!'® are widely used load
testing tools. The former is written in Java and the latter
is its Erlang counterpart. They share with our framework
the repeatability of the tests and the idea of running them
with increasing amounts of load but similarities stop there.
Test configurations are specified via JSON-like files instead
of code and their goal is to measure the performance of
web applications—or various network protocols in general—
under a large number of requests from an external point of
view by looking at response times. Per formERL, on the
other hand, provides information from the inside of the sys-
tem, showing how each component reacts to the load.

17 ETS tables are an efficient in-memory database included with the
Erlang virtual machine.

18 msung, a distributed load testing tool: http://tsung.erlang-projects.
org.

@ Springer

Basho Bench!? is a benchmarking tool created to con-
duct accurate and repeatable performance and stress tests
inside the Erlang environment. It was originally implemented
to test Riak [24] but can be extended by writing cus-
tom probes in the form of Erlang modules. The approach
is indeed similar to the one used in Per formERL, but it
focuses on two measures of performance—throughput and
latency—related to network protocols and DB communica-
tions. Basho Bench differs from PerformERL in the
sense that the former gives an overview of what the per-
formance of an entire system looks like from the outside,
while the latter provides insights into the performance of
the system’s components. Moreover, Basho Bench does
not support the concept of run that permits to execute the
same test with different loads. This is a crucial feature for a
performance testing framework as Per f ormERL that must
monitor how the SUT behaves as the load increases. Similar
considerations can be done for BenchERL [4] as well.

Akka tracing tool [12] is a library to be used with Akka
applications that permits to generate a trace graph of mes-
sages. It focuses on collecting metrics related to the messages
exchange. It is extendable and provides an interfaces to show
the collected data. It shares a philosophy and an architecture
similar to Per formERL without providing its insights on
the used resources/data structures. However, this is an ex-
tension whose support is envisionable since they already use
Aspect] to inject the code to trace the messages (as we sug-
gest in Sect. 3.6 for the Per formERL implementation on
the JVM).

6.3 Performance testing tools

In this section we will present the tools related to Per-
formERL whose white-box approach we consider to be
performance testing.

erlperf? is a collection of tools useful for Erlang
profiling, tracing and memory analysis. It is mainly a per-
formance monitoring tool but it offers a feature called
continuous benchmarking meant for scalability and perfor-
mance inspection that allows the user to repeatedly run
tests and record benchmark code into test suites. This fea-
ture together with the collected profiling data suggest that
erlperf could serve a purpose similar to Per formERL.
However, the characteristics that would make erlperf a
performance testing tool are still in a rudimentary state and
no documentation is available to clearly understand their pur-
pose and functionality.

detectEr tool suite [1,5] has some commonalities
with Per formERL. They both target Erlang infrastructure,

19 Basho benchhttps:/github.com/basho/basho_bench.

20 erlperf, a collection of tools useful for Erlang profiling, tracing

and memory analysis: https://github.com/max-au/erlperf.

http://tsung.erlang-projects.org
http://tsung.erlang-projects.org
https://github.com/basho/basho_bench
https://github.com/max-au/erlperf

PerformERL: a performance testing framework...

453

they both rely on the SUT execution for their analysis and
both consider benchmarking and experiment reproducibil-
ity. Even if detectEr targets a post-deployment phase and
runtime property validation. As Per formERL, detectEr
relies on Erlang’s actor model and the authors [1] discussed
how the approach can be realized in other languages with dif-
ferent implementations of the actor model—with highlights
similar to those described in Sect. 3.6. Due to its nature,
detectEr has a limited view on the runtime usage of the
resources. To some extends, the two approaches complement
each other.

Stefan et al. [31] conducted a survey on unit testing per-
formance in Java projects. From the survey, many tools
emerged—such as JUnitPerf?!, gMu?? and JPL [9]—
that through various techniques apply microbenchmarking
to portions of a Java application in the form of unit tests.
This tools share with Per formERL the repeatability and
a systematic approach aimed at testing performance, so we
consider them performance testing frameworks. However,
they are aimed at testing specific units of a Java system and
mostly focus on execution time only.

A different approach to performance testing in Java was
proposed by Bhattacharyya and Amza [7]. They proposed a
tool, PReT, that tries to automatically detect any Java pro-
cess in a system that is running a regression test and starts
to collect metrics on them. The tool employs machine learn-
ing both to identify the processes running a specific test and
to detect any anomalies in the collected measurements that
could indicate a performance regression. The approach can
definitely be considered performance testing but it differs
from PerformERL in the sense that they evaluate perfor-
mance measurements on tests already in place rather than
providing an interface to generate a workload.

Moamen et al. [27] explored how to implement resource
control in Akka-based actor systems. Their proposals share
the general philosophy of PerformERL but are based on
the manipulation of the basic mechanisms of the actor model:
the spawning of the actors and the dispatch of the messages.
The former permits to know the existence of an actor and
then monitoring it since its spawning without the need of a
PDA. The latter obviates to the need for a tracing facility.
These approaches are more invasive and cannot be used to
do performance testing of systems that cannot be stopped.
AkkaProf [28,29] provides an approach similar to the one
proposed by Moamen et al. [27] but instead of instrumenting
the way an actor is spawned AkkaProf dynamically instru-
ments the actors when their classes are loaded in the JVM.
The injected code takes also care of collecting the metrics

21 https://github.com/clarkware/junitperf.

22 Oracle Corporation, Java Microbenchmarking Harness: http:/
openjdk.java.net/projects/code-tools/jmh/.

and sending them back to the AkkaProf logic agent (de
facto implementing a sort of tracing facility).

7 Conclusion and future developments

This paper introduces PerformERL: a performance test-
ing framework for the Erlang ecosystem. Per formERL can
be used to monitor the performance of a SUT during its
execution or be included in its testing pipeline thanks to Per -
formERL interface for defining load tests programmatically.
PerformERL can collect several kind of metrics both about
SUT internals and its behavior and it can also be extended
with new metrics. Throughout this paper we have investi-
gated Per formERL usability and visibility over the SUT,
highlighted its flexibility demonstrating how it can be ex-
tended to match the user needs and the overhead it imposes
over the SUT, showing both its strengths and weaknesses.

One of PerformERL weak points is the module used to
visualize the results. Although it automatically shows the col-
lected data, it is quite rigid wrt. the possible customizations
of PerformERL forcing its manual extension to accom-
modate the visualization of new metrics. In future work, a
more sophisticated approach could be adopted for the pre-
sentation of the test results that will ease the integration of
data produced by both custom agents and custom metrics.
Moreover, to increase the level of automation, future devel-
opments could include an interface to provide performance
requirements—in the form of threshold values for the col-
lected metrics—in order to define a pass/fail criteria [19].
Alternative criteria could be the no-worse-than-before prin-
ciple defined by Huebner et al. [20] or the application of
machine learning techniques as proposed by Malik ez al. [25].
We are also considering to investigate how PerformERL
could be integrated in the detectEr [5] tool chain.

Acknowledgments This work was partly supported by the MUR
project “T-LADIES” (PRIN 2020TL3X8X). The authors wish also to
thank the anonymous reviewers for their comments: they helped a lot
in improving the quality of this work.

Funding Open access funding provided by Universita degli Studi di
Milano within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this arti-
cle are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your in-
tended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

@ Springer

https://github.com/clarkware/junitperf
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

454

W. Cazzola et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Aceto, L., Attard, D. P, Francalanza, A., Ingélfsdéttir, A.: On
Benchmarking for Concurrent Runtime Verification. In FASE’21,
LNCS 12649, pp. 3-23, Luxembourg City, Luxembourg, (2021).
Springer

Agha, G.: Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, Cambridge (1986)

Andersson, A.: General Balanced Trees. J Algorithms 30(1), 1-18
(1999)

Aronis, S., Papaspyrou, N., Roukounaki, K., Sagonas, K., Tsiouris,
Y., Venetis, L.LE.: A Scalability Benchmark Suite for Erlang/OTP.
In Erlang’12, pp. 33—42, Copenhagen, Denmark, (2012). ACM
Attard, D.P., Aceto, L., Achilleos, A., Francalanza, A., Ing6lfs-
dottir, A., Lehtinen, K.: Better Late Than Never or: Verifying
Asynchronous Components at Runtime. In FORTE’21, LNCS
12719, pp. 207-225, Valletta, Malta, (2021). Springer

Bagwell, P.: Ideal Hash Trees. Technical report, Ecole Polytech-
nique Fédérale de Lausanne, Lausanne, Switzerland (2001)
Bhattacharyya, A., Amza, C.: PReT: A Tool for Automatic Phase-
Based Regression Testing. In CloudCom’ 18, pp. 284289, Nicosia,
Cyprus, (2018). IEEE

Bruneton, E., Lenglet, R., Coupaye, T.. ASM: A Code Manipu-
lation Tool to Implement Adaptable Systems. In: Adaptable and
Extensible Component Systems, (2002)

Bulej, L., Bures, T., Horky, V., Kotr¢, J., Marek, L., Trojanek, T.,
Tidma, P.: Unit Testing Performance with Stochastic Performance
Logic. Automated Softw. Eng. 24, 139-187 (2017)

Cesarini, F., Thompson, S.J.: Erlang Programming: A Concurrent
Approach to Software Development. O’Reilly, (2009)

Cesarini, F., Vinoski, S.: Designing for Scalability with
Erlang/OTP: Implementing Robust, Fault-Tolerant Systems.
O’Really Media, (2016)

Ciotczyk, M., Wojakowski, M., Malawski, M.: Tracing of Large-
Scale Actor Systems. Concurrency and Computation-Practice and
Experience 30(22), e4637 (2018)

Dahm, M.: Byte Code Engineering. In Java-Informations-Tage,
267-277, (1999)

Gheorghiu, G.: Performance vs. Load vs. Stress Testing
[Online]. http://agiletesting.blogspot.com/2005/02/performance-
vs-load-vs-stress-testing.html, (2005)

GoOmori, P.: Profiling and Tracing for All with Xprof. In: Proceed-
ings of the Elixir Workshop London, London, United Kingdom,
(2017)

Halili, E.H.: Apache JMeter: A Practical Beginner’s Guide to Au-
tomated Testing and Performance Measurement for Your Websites.
Packt Publishing, (2008)

Haller, P.: On the Integration of the Actor Model in Mainstream
Technologies: The Scala Perspective. In AGERE!’12°, pp. 1-6.
ACM, (2012)

Haller, P., Odersky, M.: Scala Actors: Unifying Thread-Based and
Event-Based Programming. Theoret. Comput. Sci. 410(2-3), 202—
220 (2009)

Ho, C.-W., Williams, L.A., Ant6n, A.L: Improving Performance
Requirements Specifications from Field Failure Reports. In RE’07,
pp. 79-88, New Delhi, (2007). IEEE

Huebner, F., Meier-Hellstern, K., Reeser, P.: Performance Testing
for IP Services and Systems. In GWPSED’00, LNCS 2047, pp.
283-299, Darmstadt, Germany, (2000). Springer

@ Springer

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Jiang, Z.M., Hassan, A.E.: A Survey on Load Testing of Large-
Scale Software Systems. IEEE Trans. Softw. Eng. 41(11), 1091—
1118 (2015)

Johnson, M.J., Ho, C.-W., Maximilien, E.M., Williams, L.: In-
corporate Performance Testing in Test-Driven Development. IEEE
Software 24(3), 67-73 (2007)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Gris-
wold, B.: An Overview of Aspect]. In ECOOP’01, LNCS 2072,
pp- 327-353, Budapest, Hungary, (2001). Springer-Verlag
Klophaus, R.: Riak Core: Building Distributed Applications with-
out Shared State. In CUFP’ 10, pp. 14:1-14:1, Baltimore, Maryland,
USA, (2010). ACM

Malik, H., Hemmati, H., Hassan, A.E.: Automatic Detection of Per-
formance Deviations in the Load Testing of Large Scale Systems. In
ICSE’13, pp. 1012-1021, San Francisco, CA, USA, (2013). IEEE
Marek, L., Villazén, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.:
DiSL: A Domain-specific Language for Bytecode Instrumentation.
In AOSD’12, pages 239-250, Potsdam Germany, (2012). ACM
Moamen, A.A., Wang, D., Jamali, N.: Approaching Actor-Level
Resource Control for Akka. In JSSPP’18, LNCS 11332, pp. 127-
146, Vancouver, BC, Canada, (2018). Springer

Rosa, A., Chen, L.Y., Binder, W.: AkkaProf: A Profiler for Akka
Actors in Parallel and Distributed Applications. In APLAS’16,
LNCS 10017, pp. 139-147, Hanoi, Vietnam, (2016). Springer
Rosa, A., Chen, L.Y., Binder, W.: Profiling Actor Utilization and
Communication in Akka. In Erlang’16, pp. 24-32, Nara, Japan,
(2016). ACM

Slaski, M., Turek, W.: Towards Online Profiling of Erlang Systems.
In ERLANG’19, pages 13-17, Berlin, Germany, (2019). ACM
Stefan, P, Horky, V., Bulej, L., Tima, P.: Unit Testing Performance
in Java Projects: Are We There Yet? In ICPE’17, pp. 401412,
L’Aquila, Italy, (2017). ACM

Stivan, G., Peruffo, A., Haller, P.: Akka.js: Towards a Portable Ac-
tor Runtime Environment. In AGERE!’15, pp. 57-64, Pittsburgh,
PA, USA, (2015). ACM

Trinder, P., Chechina, N., Papaspyrous, N., Sagonas, K., Thomp-
son, S.J., Adams, S., Aronis, S., Baker, R., Bihari, E., Boudeville,
0., Cesarini, F., Di Stefano, M., Eriksson, S., Fordgs, V., Ghaffari,
A., Giantsios, A., Green, R., Hoch, C., Klaftenegger, D., Li, H.,
Lundin, K., MacKenzie, K., Roukounaki, K., Tsiouris, Y., Win-
blad, K.: Scaling Reliably: Improving the Scalability of the Erlang
Distributed Actor Platform. ACM Trans. Prog. Lang. Syst. 39(4),
17:1-17:46 (2017)

van Hoorn, A., Waller, J., Hasselbring, W.: Kieker: A Framework
for Application Performance Monitoring and Dynamic Software
Analysis. In ICPE’12, pp. 247-248, Boston, MA, USA, (2012).
ACM

Woodside, M., Franks, G., Petriu, D.C.: The Future of Software
Performance Engineering. In FOSE’07, pp. 171-187, Minneapolis,
MN, USA, (2007). IEEE

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

http://agiletesting.blogspot.com/2005/02/performance-vs-load-vs-stress-testing.html
http://agiletesting.blogspot.com/2005/02/performance-vs-load-vs-stress-testing.html

	PerformERL: a performance testing framework for erlang
	Abstract
	1 Introduction
	2 Overview
	3 PerformErl under the hood
	3.1 The load generator behavior
	3.2 The performERL module
	3.3 The tracer agent
	3.4 The processes discoverer agent
	3.4.1 Match Specifications
	3.4.2 The Custom Meta-Tracer

	3.5 The metrics collector agent
	3.6 PerformERL in different ecosystems

	4 PerformERL in action
	4.1 A usage example: Wombat Plugins
	4.2 How to extend PerformERL
	4.2.1 Collecting Custom Metrics
	4.2.2 Adding a Custom Agent

	5 Evaluation
	5.1 Memory footprint of the agents
	5.2 Overhead on monitored functions
	5.3 PerformERL in the real world
	5.4 Discussion

	6 Related work
	6.1 Performance monitoring tools
	6.2 Load testing tools
	6.3 Performance testing tools

	7 Conclusion and future developments
	Acknowledgments
	References

