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Abstract

We present some historical and recently developed techniques to perform semiclassical spectroscopy
calculations with both ground and excited state dynamics. The illustrated topics begin with a
derivation of the basic semiclassical van Vleck propagator starting from Feynman’s path integral
formulation, followed by the description of the initial value representation formalism and a derivation
of the Heller–Herman–Kluk–Kay semiclassical propagator. The chapter continues by introducing
the time averaging technique and its very recent developments consisting in the multiple coher-
ent, divide-and-conquer, and mixed semiclassical approaches. The main features of each method
are described through examples with the intent of helping readers have a gentle learning curve.
The chapter ends with a workflow chart, a few representative applications, a summary, and some
conclusions.

19.1 Introduction

The primary research goal in the field of spectroscopy is the study of the interaction between light
and matter. Depending on the frequency of the radiation, the term spectroscopy is usually specified
as ultraviolet (UV), infrared (IR), microwave, and others. The different energy ranges of the radia-
tion actually translate into different targets of investigation. For instance, UV spectroscopy focuses
on electronic transitions, IR or Raman spectroscopies on molecular vibrations, and microwave
spectroscopy on molecular rotations.

Infrared spectroscopy experiments are important tools for chemical characterization of unknown
samples. In fact, peak positions in an IR spectrum are correlated to the molecular structures of the
unknown chemical species. Many molecules strongly absorb in the mid-infrared region, defined
by frequencies in the range between approximately 400 and 4000 cm−1, with characteristic spectral
patterns that can be compared to those of the unknown sample. The spectrum can also be employed
in a quantitative way by exploiting peak intensities to estimate the species concentrations once
a reference has been set. Furthermore, the width of the peaks can provide useful insights about
the environment in which the molecule is embedded including pH conditions and the presence of
hydrogen bonding. Finally, the experimental technique is fast and has enough sensitivity to require
just a minimum amount of material.
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596 19 Semiclassical Molecular Dynamics for Spectroscopic Calculations

However, the assignment of experimental spectra may become difficult when the complexity
or dimensionality of molecular systems increases. Theoretical simulations can provide the neces-
sary support by identifying spectral features with more confidence and relating them to the actual
molecular motion. To this end, every theoretical method has to reconcile two different objectives.
First, it must describe quantum effects like zero-point energies, overtones, and resonances, which
cannot be neglected in spectroscopy. Secondly, it should be sufficiently manageable to be employed
also for high dimensional systems.

The starting point of quantum theoretical spectroscopy is the time-independent eigenvalue
equation ĤΨ(r⃗, R⃗) = EΨ(r⃗, R⃗) because, once eigenvalues and eigenvectors of the molecular Hamil-
tonian are known, frequencies of vibration and absorption spectra can be determined. The general
molecular Hamiltonian (neglecting spin-orbit interactions, and indicating electronic coordinates
with r⃗ and nuclear ones with R⃗) can be written as a sum of five terms

Ĥ = T̂N (R⃗) + T̂e(r⃗) + V̂eN (r⃗, R⃗) + V̂NN (R⃗) + V̂ee(r⃗) (19.1)

corresponding to the kinetic energies of nuclei and electrons and to the electron–nuclei,
nuclei–nuclei, and electron–electron interaction potential energies [1]. The Hamiltonian is not
separable into a nuclear and an electronic part due to the presence of V̂eN (r⃗, R⃗) which makes
the original eigenvalue problem difficult to solve. This interaction term is large and cannot be
neglected, so in order to separate nuclear and electronic motions an approximation must be
invoked. This is known as the Born–Oppenheimer approximation (for details see Chapter 1).
Solution of the electronic problem leads to the construction of the potential energy surface for the
system. Since the problem is solved at a discrete number of nuclear configurations, an analytical
form of the global surface is obtained only upon application of a fitting procedure, which may be
quite a difficult task and often constitutes a research topic on its own [2]. Furthermore, for each
electronic state a different potential energy surface can be constructed.

The eigenvalues of the vibrational Hamiltonian associated with a specific electronic state are
the vibrational energy levels Ek, starting with the zero-point one (E0), from which it is straight-
forward to compute the frequencies of all spectral transitions. For instance, the frequency of the
transition between the ground state and the generic k state with energy Ek is given by the differ-
ence (Ek − E0)∕ℏ. As for intensities, if the eigenfunctions are available, then (at least in principle)
all dipole matrix elements 𝜇0k = ⟨Ψ0|�̂�|Ψk⟩ could be calculated and, eventually, the absorption
formula

Iabs(E) ∝ E
∑

k
Δ(E − Ek + E0) |𝜇0k|2 (19.2)

can be evaluated, where Δ(E − Ek + E0) is a bell-shaped function (rigorously a Dirac 𝛿) peaked at
Ek − E0. However, the calculation may become prohibitive when the density of vibrational states is
very large, which, for high dimensional systems, may happen at low energies.

The goal of this second part of the book is to deal with dynamical approaches. Calculations of
vibrational frequencies and absorption spectra can indeed be undertaken by means of a dynam-
ical approach. Specifically, the eigenenergies of the vibrational Hamiltonian can be computed
from the Fourier transform of the survival amplitude ⟨Ξ|Ξ(t)⟩ of a generic reference state |Ξ⟩.
In fact,
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I(E) = 1
2𝜋ℏ ∫

+∞

−∞
dt eiEt∕ℏ⟨Ξ|Ξ(t)⟩

= 1
2𝜋ℏ ∫

+∞

−∞
dt eiEt∕ℏ⟨Ξ|e−iĤt∕ℏ|Ξ⟩

= 1
2𝜋ℏ ∫

+∞

−∞
dt eiEt∕ℏ

∑
k

|⟨Ξ|Ek⟩|2e−iEkt∕ℏ

=
∑

k
|⟨Ξ|Ek⟩|2𝛿(E − Ek). (19.3)

Peaks in the plot of I(E) obtained from numerical implementation of the first relation in Eq. (19.3)
are located at the vibrational eigenenergies of the system. Quantum vibrational frequencies are
then found easily by scaling the eigenenergies with respect to the ground state energy (i.e., the
vibrational zero point energy). A similar expression can be employed for absorption spectra. In
fact, in this latter case, the relevant formula is [3]

Iabs(E) ∝ E ∫
+∞

−∞
dt eiEt∕ℏ ⟨�̂�(0)�̂�(t)⟩, (19.4)

where the average is over the density matrix of the system.
In the case of a photo-absorption involving two different electronic states (in the low temperature

limit) [4]⟨�̂�(0)�̂�(t)⟩ = ⟨Ξgs|�̂�e−iĤf t∕ℏ�̂�eiĤit∕ℏ|Ξgs⟩, (19.5)

where |Ξgs⟩ is the ground vibrational state of the lower electronic state, while Ĥi and Ĥf are the
nuclear Hamiltonians in the lower and upper electronic surface respectively. This leads to the fol-
lowing working formula

Iabs(E) ∝ E ∫
+∞

−∞
dt ei(E+E0)t∕ℏ ⟨Θ(0)|Θ(t)⟩, (19.6)

where |Θ⟩ is obtained by applying the electronic transition moment𝜇 to the ground vibrational state|Ξgs⟩ in the starting electronic state, i.e., |Θ⟩ = �̂�|Ξgs⟩. E0 in Eq. (19.6) is the energy of |Ξgs⟩. Within
the Condon approximation, the electronic transition moment is taken as a constant. In this way, the
initial wave packet for the excited state dynamics (|Θ(0)⟩) is prepared in a non-stationary state. By
evolving it on the excited electronic state, the vibronic absorption spectrum is obtained similarly
to power spectra and shows peaks at the energy E of the vibronic transitions. In photoemission
calculations formulae are similar. The two surfaces are treated symmetrically, but there is a cubic
dependence on the energy in front of the integration [3].

Many different theoretical approaches to spectroscopy have been developed to calculate I(E) and
Iabs(E). In this chapter we focus on semiclassical (SC) molecular dynamics for spectroscopic calcu-
lations [5]. In this context “semiclassical” and “semiclassical dynamics” refer to a set of theories
and time-dependent approaches based on an approximate quantum propagator (i.e., the semiclas-
sical propagator) dependent on classical quantities. Therefore, the hallmark of SC dynamics is
represented by the possibility to extract quantum features from classical molecular dynamics simu-
lations [6]. This is permitted by the mathematical structure of the semiclassical propagator, which
is based on classically evolved trajectories with remarkable ease of computational needs. Due to
this property, semiclassical dynamics is a promising tool for high-dimensional applications. Other
advantages include the possibility to work in Cartesian coordinates and to use the potential energy
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obtained from the electronic problem “as is” and without any further approximation. In particular
the potential can be provided in the form of an analytical surface or calculated ab initio on-the-fly
for the whole dynamics. Finally, being based on classical dynamics, semiclassical methods may
provide a more intuitive picture with respect to quantum approaches.

In this chapter devoted to SC dynamics we illustrate first the derivation of the basic semiclassical
propagator as a stationary-phase approximation to Feynman’s path integral formulation of quan-
tum mechanics. Then the Heller–Herman–Kluk–Kay propagator is derived. It serves as the starting
point for developing the multiple coherent and divide-and-conquer techniques, which are neces-
sary to extend the applicability of semiclassical spectroscopy to high dimensional systems. These
techniques are described theoretically and through examples that guide the reader in their appli-
cation. We introduce also another family of semiclassical propagators known as “thawed Gaussian
propagators” and a promising approach to condensed phase spectroscopy, before moving to appli-
cations concerning vibrational and vibronic spectroscopy. The methods presented can be applied
to studies involving both ground-state and excited-state dynamics. Some general conclusions end
the chapter.

19.2 From Feynman’s Path Integral to van Vleck’s Semiclassical
Propagator

Among the many alternative derivations of the semiclassical propagator [7–9], perhaps the most
intuitive one originates from Feynman’s path integral formulation of the exact quantum propagator
[10]. For more information on Feynman’s propagator see Chapter 20.

We start from the observation that the differential Schrödinger equation

iℏ
𝜕|Ξ⟩
𝜕t

= Ĥ|Ξ⟩ → |Ξ(t)⟩ = e−iĤt∕ℏ|Ξ(0)⟩ (19.7)

can be written in the path integral form by projecting the state |Ξ⟩ onto the coordinate q⃗-space

Ξ(q⃗′(t)) ≡ ⟨q⃗′|Ξ(t)⟩ = ⟨q⃗′|e−iĤt∕ℏ|Ξ(0)⟩ = ∫
+∞

−∞
dq⃗0⟨q⃗′|e−iĤt∕ℏ|q⃗0⟩⟨q⃗0|Ξ(0)⟩. (19.8)

Insertion of the identity ∫ +∞
−∞ dq⃗0|q⃗0⟩⟨q⃗0| into Eq. (19.8) introduces the idea of quantum propagation

as the summation over all possible values in q⃗ − space of the probability amplitude ⟨q⃗′|e−iĤt∕ℏ|q⃗0⟩
matrix times the state vector ⟨q⃗0|Ξ(0)⟩. The focus for solving the quantum propagation is now
shifted to a suitable representation of the probability amplitude, instead of the wave function calcu-
lation as originally in Eq. (19.7). The first step consists in breaking N times the total time-evolution
interval into infinitesimal Δt = t∕N time slices

⟨q⃗′|e−iĤt∕ℏ|q⃗0⟩ = lim
Δt→0

⟨q⃗′|(e−iĤΔt∕ℏ)N |q⃗0⟩ = lim
Δt→0

⟨q⃗′|(e−iT̂Δt∕ℏe−iV̂Δt∕ℏ)N |q⃗0⟩, (19.9)

where T̂ is the kinetic energy operator, V̂ the potential energy one, and the last equality is often
referred to as the Suzuki–Trotter decomposition formula. The power of N can be interpreted as a
product of N terms, so the next step consists in the insertion of N − 1 quantum mechanical identi-
ties

⟨q⃗′|e−iĤt∕ℏ|q⃗0⟩ = lim
Δt→0 ∫

+∞

−∞
dq⃗1 …∫

+∞

−∞
dq⃗N−1⟨q⃗′|(e−iT̂Δt∕ℏe−iV̂Δt∕ℏ)|q⃗N−1⟩

×⟨q⃗N−1|(e−iT̂Δt∕ℏe−iV̂Δt∕ℏ)|q⃗N−2⟩ · · · ⟨q⃗1|(e−iT̂Δt∕ℏe−iV̂Δt∕ℏ)|q⃗0⟩. (19.10)
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In the time limit Δt → 0 the potential can be approximated to a constant, the value being that
of the potential at the mid-point between the two coordinates of each bracket in Eq. (19.10). The
effect is twofold. On the one hand the exponential involving the potential can be evaluated straight-
forwardly. On the other hand what is left corresponds to a product of free-particle probability
amplitudes which is analytically known. In fact, for a single probability amplitude

⟨q⃗N−1|(e−iT̂Δt∕ℏe−iV̂Δt∕ℏ)|q⃗N−2⟩ = e−i V (q⃗N−1 )+V(q⃗N−2 )
2

Δt∕ℏ⟨q⃗N−1|e−iT̂Δt∕ℏ|q⃗N−2⟩. (19.11)

Eventually, Feynman derived the following expression for the coordinate representation of the
quantum propagator of a system of mass m (in the first sum qN = q′)

⟨q⃗′|e−iĤt∕ℏ|q⃗0⟩ = lim
N→∞

( m
2𝜋iℏΔt

)N∕2

∫
+∞

−∞
dq⃗1...∫

+∞

−∞
dq⃗N−1

exp

[
imΔt

2ℏ

N∑
K=1

(qK − qK−1

Δt

)2
]

exp

[
− iΔt

ℏ

(
V(q⃗0)

2
+

V(q⃗′)
2

+
N−1∑
k=1

V(q⃗K)

)]
= ∫ [q⃗(t)]eiSt(q⃗′ ,q⃗0)∕ℏ (19.12)

St(q⃗′, q⃗0) is the action along the path going from q⃗0 to q⃗′ in time t. It is defined as the time integral
of the difference between kinetic and potential energies. ∫ [q⃗(t)] is a special functional measure
proportional to the product

∏N−1
i=1 ∫ +∞

−∞ dq⃗i. In Figure 19.1 the integration of Eq. (19.12) is pictorially
represented, with the time interval on the x-axis and the dashed vertical lines which are examples
of time slices. Composition of all possible q⃗𝛼 values at each time slice accounts for all possible path
integrations.

Some of the possible paths are reported as continuous lines in Figure 19.1. Paths can be of any
type, including polygonal chains (red curves). In general, they are not classical paths. Identifica-
tion of all possible paths is, however, a formidable task which needs to be eased by approximating
Eq. (19.12) in an appropriate way.

A stationary phase approximation [7] to the quantum propagator leads to what is called the semi-
classical propagator. In detail, the stationary phase approximation to an oscillatory 1-dimensional
integral can be written as

∫
+∞

−∞
dx eif (x) ≈

∑
{xj|df (xj)∕dx=0}

√
2𝜋i

d2f (xj)∕dx2 eif (xj). (19.13)

0

q0

q(t)

s
p

a
c
e

t
time

Generic
Paths

Classical
Paths

Figure 19.1 Pictorial representation of the Feynman path integral integration.
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Easy extension to the multi-dimensional case is obtained by substituting d2f (xj)∕dx2 with the cor-
responding determinant of the matrix of second derivatives of f with respect to the position (i.e.,
the Hessian). This anticipates that in a SC simulation Hessian calculations are required along the
trajectory. From classical mechanics it is known (Hamilton’s principle) that for classical paths the
functional derivative of the action with respect to a given path q⃗(t) is zero. This is exactly the station-
ary phase condition for the path integral. Thus, the stationary phase approximation to the Feynman
probability amplitude between q⃗0 and q⃗′ in Eq. (19.12) leads to the following sum over all possible
classical paths (called roots) connecting points q⃗0 and q⃗′ in time t including fluctuations up to the
second order around the classical action of each path

⟨q⃗′|e−iĤt∕ℏ|q⃗0⟩ ∝ ∑
roots

ei
(

Scl
t (q⃗

′ ,q⃗0)+
𝜕

𝜕q⃗(t) Scl
t (q⃗

′ ,q⃗0)+
𝜕2

𝜕q⃗(t)2
Scl

t (q⃗
′ ,q⃗0)

)
∕ℏ
, (19.14)

where 𝜕Scl
t (q⃗

′, q⃗0)∕𝜕q⃗(t) = 0 because the sum is over classical paths. This is pictorially represented
by the blue lines in Figure 19.1. Finding all the roots is not a trivial problem, which is generally
known as the “double boundary problem”. A suitable technique to overcome this formidable issue
will be presented in the next section.

In the following we proceed with the algebra to determine explicitly an analytical formula for
the coordinate representation of the semiclassical propagator. For simplicity we work in single
dimensionality, but formulae are easily generalizable to multiple dimensions. The Feynman path
integral is

⟨q′|e−iĤt∕ℏ|q0⟩ = lim
N→∞

( Nm
2𝜋iℏt

)N∕2

∫
+∞

−∞
dqN−1 …∫

+∞

−∞
dq1eiSN (q)∕ℏ, (19.15)

with (qN = q′) and

SN (q) =
Nm
2t

N∑
K=1

(qK − qK−1)2 − t
N

[N−1∑
K=1

V(qK) +
1
2
(V(q0) + V(qN ))

]
. (19.16)

The stationary phase condition is 𝜕SN∕𝜕qK = 0 for K = 1,N − 1 leading to the following relation
for each qK

−V ′(qK) = m
qK+1 + qK−1 − 2qK

Δt2 ≈ mq̈K , (19.17)

where the second derivative of the position is approximated with a central finite difference for-
mula. Equation (19.17) is nothing other than Newton’s law for the classical motion of a particle of
mass m moving in the potential V , thus confirming that application of the stationary phase con-
dition restricts the general Feynman paths to classical trajectories only. To perform the stationary
phase integration (see Eq. (19.13)), upon insertion of Eq. (19.16) into Eq. (19.15) one integrates the
Gaussian integrals of each path fluctuation. By writing [11]||||| 𝜕

2SN

𝜕qi𝜕qj

|||||
−1

= −
( t

Nm

)N ||||| 𝜕2SN

𝜕q0𝜕qN

||||| , (19.18)

the final, multidimensional expression is

⟨
q⃗′ |||e− i

ℏ
Ĥt||| q⃗0

⟩
≈

∑
roots

⎡⎢⎢⎣−
||| 𝜕2St
𝜕q⃗′𝜕q⃗0

|||
(2𝜋iℏ)F

⎤⎥⎥⎦
1∕2

e
i
ℏ

St(q⃗′ ,q⃗0)

ei𝜐𝜋∕2

=
∑
roots

[
(2𝜋iℏ)F

||||| 𝜕q⃗′

𝜕p⃗0

|||||
]−1∕2

e
i
ℏ

St(q⃗′ ,q⃗0)

ei𝜐𝜋∕2

(19.19)
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where we have introduced the formula valid for classical trajectories 𝜕St(q⃗′, q⃗0)∕𝜕q⃗0 = −p⃗0 and F
indicates the number of degrees of freedom [12, 13]. In Eq. (19.19) the sum is only over classical
trajectories.

Equation (19.19) represents the semiclassical approximation to Feynman’s path integral [7], an
expression analogous to the one proposed by van Vleck many years before [13]. The exponential
term e−i𝜐𝜋∕2 ensures the continuity of the complex square root of the pre-exponential factor and
𝜐 is called the Maslov index [14]. It is important to stress that the semiclassical approximation is
not simply a sum over all possible classical paths of the exact Feynman path integral, but each
path takes into account the second-order fluctuations around the classical path. In other words,
the semiclassical approximation is able to reproduce quantum effects with high accuracy because
it does not only include the interference effects generated by the sum of many classical trajectories
weighted by the complex quantity exp [iS(q⃗′, q⃗0)∕ℏ], but it also reproduces the quantum fluctua-
tions 𝜕2St∕𝜕q⃗′𝜕q⃗0 up to the second order around each path.

19.3 The Semiclassical Initial Value Representation and
the Heller–Herman–Kluk–Kay Formulation

Equation (19.19) has the intriguing feature of reproducing quantum effects starting from classical
trajectories, but nevertheless its application has been quite limited. The reason for this limitation
is twofold.

First, simulations are hindered by the presence of caustic points (defined by the relation
𝜕q⃗′∕𝜕p⃗0 = 0) at which the determinant in the pre-exponential factor becomes singular. q⃗′ is a
caustic (or focal) point for the classical trajectories started at q⃗0 when the trajectories reach q⃗′

independently of their initial momentum. As an example, we calculate the caustic points of a
1-dimensional harmonic oscillator of unitary mass that starts at (p0, q0). After an evolution time T

q(T) = q0cos(𝜔T) +
p0

𝜔
sin(𝜔T). (19.20)

The condition for caustic points 𝜕q(T)∕𝜕p0 = 0 is in this case equivalent to sin(𝜔T)∕𝜔 = 0. This
means that at times T = n𝜋∕𝜔 the trajectory lands on the caustic points, which are located at ±q0,
i.e., the inversion points of the harmonic oscillator if no momentum is given initially.

Secondly, a search for multidimensional trajectories satisfying the double boundary condition is
requested.

Even though the first of the two issues can be removed analytically by means of “uniformization”
approximations, which consist in switching to appropriate, caustic-free representations in proxim-
ity of the singularity, solving the double boundary problem is quite a cumbersome task in spite of
the ever increasing availability of computational power.

To overcome both issues, William H. Miller incorporated an initial value representation
(IVR) into the SC approximation [15]. In semiclassical IVR (SCIVR) the sum over all possible
boundary-ended classical trajectories is replaced by an integration over initial momenta, such that
the final position is equal to q⃗′

∑
roots

→ ∫ dp⃗0

||||| 𝜕q⃗′

𝜕p⃗0

||||| 𝛿(q⃗t − q⃗′). (19.21)

In Eq. (19.21) the determinant is the Jacobian for the change of variables from q⃗′ (the final position)
to p⃗0 (the starting momentum), while the delta function enforces the desired boundary condition.
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This change of variables presents two advantages. First, the pre-exponential singularity is removed
and the semiclassical approximation is uniform. Secondly, the root search is replaced by a phase
space integration, which can be evaluated by means of Monte Carlo techniques with much less
computational effort. Eventually, the SCIVR version of Eq. (19.19) is⟨

q⃗′ |||e− i
ℏ

Ĥt||| q⃗0

⟩
≈ ∫ dp⃗0𝛿(q⃗t − q⃗′)

[ |𝜕q⃗′∕𝜕p⃗0|
(2𝜋iℏ)F

]1∕2
e

i
ℏ

St(p⃗0,q⃗0)

ei𝜐𝜋∕2 . (19.22)

For numerical calculations, the Dirac delta in Eq. (19.22) can be conveniently represented as an
appropriately narrowed Gaussian function.

However, the SCIVR probability amplitude is not employed per se, but rather for calculating phys-
ical observables. We will use it for spectroscopic calculations using the time-dependent approach of
Eq. (19.3). By inserting twice the q⃗-space identity and by means of the SCIVR probability amplitude
of Eq. (19.22), the survival amplitude becomes⟨

Ξ |||e− i
ℏ

Ĥt|||Ξ⟩ = ∫ dq⃗′dq⃗0⟨Ξ|q⃗′⟩ ⟨q⃗′|e− i
ℏ

Ĥt|q⃗0

⟩ ⟨q⃗0|Ξ⟩
≈ ∫ dp⃗0 ∫ dq⃗0

[
1

(2𝜋iℏ)F

||||| 𝜕q⃗t

𝜕p⃗0

|||||
]1∕2

e
i
ℏ

St(p⃗0,q⃗0)

ei𝜐𝜋∕2 Ξ∗(q⃗t)Ξ(q⃗0). (19.23)

As anticipated, the great advantage of Eq. (19.23) is that now the survival probability can be
evaluated via Monte Carlo integration. Calculations aimed at vibrational spectroscopy are
commonly performed in normal mode coordinates. By diagonalizing the Hessian matrix at
the equilibrium geometry the normal frequencies of vibrations are obtained, and the associ-
ated eigenvectors serve to define the transformation matrix from normal modes to Cartesian
coordinates.

Further advances in SC dynamics were introduced by Heller [16], who inspired later work by
Herman and Kluk [17], and eventually Kay [18–20]. They represented the semiclassical propagator
in terms of coherent states. Coherent states (|p⃗, q⃗⟩) have a Gaussian representation in coordinate
space

⟨x⃗|p⃗, q⃗⟩ = (
det(Γ)
𝜋F

)1∕4

e−(x⃗−q⃗)T Γ
2
(x⃗−q⃗)+ip⃗ T(x⃗−q⃗)∕ℏ, (19.24)

where the Gaussian width is determined by the (usually diagonal) Γ width parameter matrix. It is
possible either to reformulate the Feynman paths directly in terms of coherent states [21, 22], or to
represent Eq. (19.23) on the basis of coherent states [17]. In both instances the following expression
for the survival amplitude is derived⟨

Ξ |||e− i
ℏ

Ĥt|||Ξ⟩ ≈ 1
(2𝜋ℏ)F ∫ ∫ dq⃗0dp⃗0Ct(p⃗0, q⃗0)e

i
ℏ

St(p⃗0,q⃗0)

× ⟨Ξ|p⃗t, q⃗t⟩⟨p⃗0, q⃗0|Ξ⟩, (19.25)

where, in its most general form [18],

Ct(p⃗0, q⃗0) =

√|||||1
2

(
𝜕q⃗t

𝜕q⃗0
+ Γ−1

𝜕p⃗t

𝜕p⃗0
Γ − iℏ

𝜕q⃗t

𝜕p⃗0
Γ + iΓ−1

ℏ

𝜕p⃗t

𝜕q⃗0

)|||||. (19.26)

The semiclassical way to calculate the survival amplitude of Eq. (19.25) numerically is to perform
the phase space integration by Monte Carlo methods upon sampling of the initial phase space coor-
dinates (p⃗0, q⃗0). The real part of the term ⟨p⃗0, q⃗0|Ξ⟩ in Eq. (19.25) constitutes a natural weight for
the Monte Carlo sampling. After the classical evolution is performed employing preferentially a
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simplectic algorithm [23], at the generic time t, starting from the values of p⃗t and q⃗t, the classi-
cal action St(p⃗0, q⃗0) and the pre-exponential factor Ct(p⃗0, q⃗0) are calculated. Eventually, the power
spectrum is obtained by Fourier transforming Eq. (19.25)

I(E) = 1
2𝜋ℏ ∫

+∞

−∞
dteiEt∕ℏ 1

(2𝜋ℏ)F ∫ ∫ dq⃗0dp⃗0Ct(p⃗0, q⃗0)

× eiSt(p⃗0 ,q⃗0)∕ℏ⟨Ξ|p⃗t, q⃗t⟩⟨p⃗0, q⃗0|Ξ⟩. (19.27)

19.4 A Derivation of the Heller–Herman–Kluk–Kay Propagator

Once the mathematical expression of the Heller–Herman–Kluk–Kay (HHKK) propagator has been
introduced

(e−iĤt∕ℏ)HHKK = 1
(2𝜋ℏ)F ∫ ∫ dq⃗0dp⃗0Ct(p⃗0, q⃗0)eiSt(p⃗0 ,q⃗0)∕ℏ|p⃗t, q⃗t⟩⟨p⃗0, q⃗0|, (19.28)

following Miller’s original derivation [24] we detail how Eq. (19.25) – and consequently
Eq. (19.28) – can be derived from Eq. (19.23).

For simplicity we work in one dimension and begin by showing that an appropriate filter
can be introduced into an oscillatory integral to speed up the convergence of the integration.
This technique, known as Filinov filtering, is based on the insertion of a Gaussian identity into the
target integral. Specifically

I = ∫ dx0ei𝜙(x0) = ∫ dx0 ∫ dxG

√
A
𝜋

e−A(xG−x0)2 ei𝜙(x0), (19.29)

which can be approximated by expanding to the second order the function 𝜙(x0) around xG and
then integrating analytically in the x0 variable

I ≈
√

A
𝜋 ∫ dxG ∫ dx0e−A(x0−xG)2 ei[𝜙(xG)+𝜙′(xG)(x0−xG)+

1
2
𝜙′′(xG)(x0−xG)2]

= ∫ dxG ei𝜙(xG)
√

A
A − i

2
𝜙′′(xG)

e−𝜙′(xG)2∕[4A−2i𝜙′′(xG)]. (19.30)

Equation (19.30) retains the original integrand with the addition of a damping factor that facili-
tates numerical convergence [25]. The A parameter can be chosen arbitrarily, but Makri and Miller
suggested employing the value A = [i𝜙′′(xG) + c−1]∕2, where c is a constant or a constant matrix in
the multidimensional case. This choice is justified by the observation that the Gaussian identity is
still approximately valid even if A is a function of the variable of integration [26].

The next step consists in applying this Filinov filter to calculate the propagation from a coherent
state |Ξi⟩ ≡ |pi, qi⟩ to a coherent state |Ξf ⟩ ≡ |pf , qf ⟩ (both of Γ width) by means of van Vleck’s
propagator according to⟨

Ξf
|||e− i

ℏ
Ĥt|||Ξi

⟩
= ∫ dqtdq0 (2𝜋iℏ 𝜕qt∕𝜕p0)−1∕2 eiSt(qt ,q0)∕ℏ ⟨pf ,qf |qt⟩ ⟨q0|pi, qi⟩, (19.31)

where the exponential with the Maslov index is left implicit. We work out the case of a
1-dimensional system (i.e., a bidimensional phase space) but results are generalizable to multiple
dimensions. We assume also that the complex-valued pre-exponential factor in Eq. (19.31) is slowly
varying with respect to the rest of the integrand, so that the filter applies only to the latter. Then, by
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rearranging Eq. (19.31) in the form I = ∫ dqt dq0 A′ ei𝜙(qt ,q0) with A′ including the pre-exponential
factor and normalization constants, we need to evaluate the first and second derivatives of 𝜙(qt,q0)

𝜙(qt, q0) = St(qt, q0) + pi(q0 − qi) − pf (qt − qf ) + iΓ
2
(qf − qt)2 + iΓ

2
(qi − q0)2 (19.32)

𝜕𝜙(qt, q0)
𝜕q0

= −p0 + pi + iΓ(q0 − qi)
𝜕𝜙(qt,q0)

𝜕qt
= pt − pf + iΓ(qt − qf ) (19.33)

⎛⎜⎜⎜⎜⎝
𝜕2𝜙(qt,q0)

𝜕q2
t

𝜕2𝜙(qt, q0)
𝜕q0𝜕qt

𝜕2𝜙(qt, q0)
𝜕qt𝜕q0

𝜕2𝜙(qt, q0)
𝜕q2

0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
𝜕pt

𝜕qt
+ iΓ

𝜕pt

𝜕q0

−
𝜕p0

𝜕qt
−
𝜕p0

𝜕q0
+ iΓ

⎞⎟⎟⎟⎠ , (19.34)

and then choose a diagonal Filinov parameter matrix

c =
(

c0 0
0 c1

)
. (19.35)

In agreement with Eq. (19.30) the Filinov filtered version of the integral in Eq. (19.31) becomes

I ≈ ∫ dqtdq0

(Γ
𝜋

)1∕2 (
2𝜋iℏ

𝜕qt

𝜕p0

)−1∕2

det[1 + ic𝜙′′]1∕2 e[−𝜙
′T c

2
𝜙′+i𝜙], (19.36)

where 𝜙′ is shorthand for the vector of first derivatives (Eq. (19.33)) and 𝜙′′ for the matrix of second
derivatives in Eq. (19.34). Eventually, moving to the IVR framework

I ≈ (2𝜋ℏ)−1 ∫ dp0dq0

(
−2iℏΓ

𝜕qt

𝜕p0

)1∕2

CFil e[i𝜙+𝜙Fil]. (19.37)

Matrix–matrix and matrix–vector products appearing in Eq. (19.36) can be evaluated using stan-
dard algebraic manipulations. This leads to

C2
Fil = (1 − c0Γ)(1 − c1Γ) +

(
𝜕qt

𝜕p0

)−1 (
ic1

𝜕qt

𝜕q0
(1 − c0Γ) + ic0(1 − c1Γ)

𝜕pt

𝜕p0
− c0c1

𝜕pt

𝜕q0

)
𝜙Fil = −

c1

2
[(pt − pf )2 + 2iΓ(pt − pf )(qt − qf ) − Γ2(qt − qf )2]

−
c0

2
[(p0 − pi)2 + 2iΓ(pi − p0)(q0 − qi) − Γ2(q0 − qi)2],

and the HHKK propagator of Eq. (19.28) in the mono-dimensional case is obtained by choosing
c0 = c1 = 1∕2Γ. This demonstrates that the more practical HHKK propagator can be derived as an
approximate version of the van Vleck one. The key advantages of the former lie in the built-in
Gaussian probability density for Monte Carlo integration and in the possibility to preserve the uni-
tarity of the propagator longer in time thanks to its pre-exponential factor [27].

19.5 The Time-Averaging Filter

Application of the original HHKK propagator is limited to low-dimensional systems due to the
presence of the oscillatory exponential in the integrand. Several methods such as cellular dynamics
[28–30], Filinov and generalized Filinov filtering [26, 31, 32] have been proposed and can be effec-
tive to speed up the convergence of the Monte Carlo integration of Eq. (19.27). Here we describe in

micheleceotto
Sticky Note
Eq.33 Please add two more spaces after(q_0-q_i)
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detail a different approach based on the insertion of a time-averaging (TA) filter. Time-averaging
was introduced by Elran and Kay [33, 34], and later by Kaledin and Miller [35, 36]. The idea is that
starting from a phase space average of the form of the HHKK propagator

IPS = ∫ ∫ dp⃗0dq⃗0 A(p⃗0, q⃗0), (19.38)

one can speed up convergence by time-averaging the integrand, thus damping disadvantageous
oscillations. In practice, the time averaged version of IPS is

IPS-TA = ∫ ∫ dp⃗0dq⃗0
1
T ∫

T

0
dt A(p⃗t, q⃗t), (19.39)

which is fully equivalent to IPS. The demonstration is achieved first by changing the order of integra-
tions, and then by invoking Liouville’s theorem, which guarantees that the phase-space distribution
function is constant along the trajectories and the change of variables dp⃗0dq⃗0 → dp⃗tdq⃗t has a uni-
tary Jacobian.

IPS-TA = 1
T ∫

T

0
dt ∫ ∫ dp⃗0dq⃗0A(p⃗t, q⃗t)

= 1
T ∫

T

0
dt ∫ ∫ dp⃗tdq⃗tA(p⃗t, q⃗t)

= 1
T ∫

T

0
dtIPS = IPS

(19.40)

The phase-space and time integrations commute, but Eq. (19.40) is exact only when, within numer-
ical accuracy, both integrations have converged. Kaledin and Miller [35, 36] worked out the follow-
ing time averaged version of Eq. (19.27)

I(E) = 1
(2𝜋ℏ)F ∫ ∫ dq⃗0dp⃗0

1
T ∫

T

0
dt1

Re
𝜋ℏ ∫

+∞

0
dteiEt∕ℏ

× Ct1+t(p⃗t1
, q⃗t1

)eiSt1+t(p⃗t1 ,q⃗t1 )∕ℏ⟨Ξ|p⃗t1+t, q⃗t1+t⟩⟨p⃗t1
, q⃗t1

|Ξ⟩. (19.41)

Finally, moving from the integration variable t to t2 = t1 + t, Eq. (19.41) becomes

I(E) = 1
(2𝜋ℏ)F ∫ ∫ dq⃗0dp⃗0

Re
𝜋ℏT ∫

T

0
dt1

× ∫
+∞

t1

dt2e
i
ℏ
(St2 (p⃗0 ,q⃗0)+Et2)⟨𝜒|p⃗t2

, q⃗t2
⟩e−

i
ℏ
(St1 (p⃗0 ,q⃗0)+Et1)

× ⟨p⃗t1
, q⃗t1

|𝜒⟩Ct2
(p⃗t1

, q⃗t1
)

(19.42)

which is the time-averaged SCIVR (TA-SCIVR) formula for power spectrum calculations.
We now focus on the bound states and consider a number N𝑣ib of vibrational degrees of

freedom. In order to get to a simpler form of Eq. (19.42), we approximate the pre-exponential
factor Ct2

(p⃗t1
, q⃗t1

) in Eq. (19.42), in agreement with previous work [36]. We note that for the
harmonic oscillator Ct2

(p⃗t1
, q⃗t1

) = e−i(ℏ𝜔)(t2−t1)∕2ℏ = e−i(𝜙(t1)−𝜙(t2))∕ℏ, which is a complex number of
unit modulus with a time-dependent phase. The pre-exponential factor is analytically separable,
i.e., Ct2

(p⃗t1
, q⃗t1

) = Ct2
(p⃗t0

, q⃗t0
)C∗

t1
(p⃗t0

, q⃗t0
), where Ct(p⃗0, q⃗0) ≈ ei𝜙(t)∕ℏ. Inspired by this consideration,

we decide to approximate for any bound degree of freedom the exact Herman Kluk prefactor
to an element of unitary norm dependent on the prefactor phase Ct(p⃗0, q⃗0) ≈ ei𝜙(t)∕ℏ, where
𝜙(t) = phase[Ct(p⃗0, q⃗0)], as suggested in Ref. [36]. Finally, noting that the integration over t2 is for
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practical purposes limited to the simulation time T and duplicating the integral by integrating
from 0 to T also in t2 (and consequently dividing the result by a factor of 2), the power spectrum
formula obtained by means of this separable approximation is

I(E) =
( 1

2𝜋ℏ

)N𝑣ib

∫ ∫ dp⃗0dq⃗0
1

2𝜋ℏT

×
|||||∫

T

0
dte

i
ℏ
[St(p⃗0,q⃗0)+Et+𝜙t]⟨Ξ|p⃗tq⃗t⟩|||||

2

. (19.43)

Equation (19.43) is the “separable” version of TA SCIVR. For the phase-space integration in
Eq. (19.43) the quantity |⟨p⃗0, q⃗0|Ξ⟩|2 is often employed as Monte Carlo importance sampling
density and named “Husimi distribution”, if the reference state |Ξ⟩ is chosen to be a coherent
state. The choice of this Gaussian sampling density is, however, arbitrary and it can be tuned
by varying the Gaussian width. The convergence issue in TA SCIVR is much alleviated since a
number of trajectories of the order of just 1000 per degree of freedom is generally required, and the
approach has permitted evaluation of vibrational frequencies accurately for a set of small isolated
molecules including water, formaldehyde, and methane [37]. For such molecules pure quantum
dynamical calculations have been also performed, so the challenge for semiclassical dynamics is
to investigate much larger systems. However, for this purpose it is necessary to develop the semi-
classical theory further in order to obtain reliable results on the basis of just a handful of classical
trajectories.

19.6 The Multiple Coherent States SCIVR

The time-averaged version of the semiclassical propagator has permitted the first semiclassical
vibrational spectroscopy calculations on real molecular systems for which high-level potential
energy surfaces (PES) are available. However, the approach is strongly limited by the neces-
sity to rely on precise, but fast-to-compute, versions of the potential. For large molecular and
supra-molecular systems analytical potentials are usually not available because of the difficulty
to fit an analytical expression to such large systems, or, in case a force field exists, it may be not
accurate enough for reliable spectroscopic calculations. A way to overcome this PES issue is to
employ ab initio on-the-fly (i.e., direct) molecular dynamics simulations, in which the potential
energy and gradient calls are performed at each time step while the dynamics is in progress [38].
These simulations are very computationally demanding though, and the number of trajectories
required, even by a time averaged semiclassical simulation, is too large and not affordable.

Nevertheless, ab initio on-the-fly semiclassical spectroscopy has become possible by the recent
introduction of the multiple coherent (MC) technique [39]. The foundation of MC SCIVR lies in
pioneering work by De Leon and Heller [40] who demonstrated on low-dimensional model sys-
tems that accurate semiclassical eigenenergies and eigenfunctions can be obtained even by means
of a single trajectory if it is run at the correct (quantum) energy. MC SCIVR assumes that reliable
frequency estimates can be secured also for real molecular systems if a single trajectory is employed
with an energy in the neighborhood of the true (but unknown) quantum one. A straightforward
way to accomplish this goal is to work in normal mode coordinates by starting the trajectory from
the equilibrium molecular geometry (q⃗eq) with momenta selected according to a harmonic approxi-
mation, i.e., p⃗eq =

√
(2n⃗ + 1)ℏ�⃗�. Another pillar on which MC SCIVR is based concerns the choice of

the reference state |Ξ⟩. In order to enhance the Fourier transform signal of the vibrational mode of
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interest, the reference state is chosen as a coherent state centered at the phase-space point (p⃗eq, q⃗eq)
from which the classical trajectory has originated. In general, one different trajectory per each of
the Nst states to be investigated is run. For each state (K), the corresponding reference state |Ξ(K)⟩
is appropriately chosen as

|Ξ(K)⟩ = N𝑣ib∏
J=1

N𝛼∑
𝛼=1

𝜀
(K)
𝛼,J | p(K)

eq,𝛼,J , q(K)
eq,𝛼,J⟩. K = 1,… ,Nst. (19.44)

N𝛼 is the number of coherent states and associated coefficients 𝜀(K)
𝛼,J that are employed to enforce

parity or molecular symmetry to favor detection of signals corresponding to specific mode excita-
tions or symmetry species. The examples reported below will clarify this aspect. Equation (19.43)
still serves as the working formula and, for the exact case of the harmonic oscillator, the phase-space
integration is substituted by a sum over the tailored trajectories (Ntr = Nst) [41–43]

I(E) =
( 1

2𝜋ℏ

)N𝑣ib
Ntr∑

K=1

1
2𝜋ℏT

|||||∫
T

0
dte

i
ℏ
[S(K)

t (p⃗ (K)
0 ,q⃗ (K)

0 )+Et+𝜙(K)
t ]⟨Ξ(K)|p⃗ (K)

t q⃗ (K)
t ⟩|||||

2

. (19.45)

In the general case of an anharmonic and coupled potential, the total spectrum is obtained as the
convolution of the spectral features provided by each trajectory in an energy range close to the
energy of the trajectory.

The water molecule serves as a representative example of the technique. There are N𝑣ib = 3 vibra-
tional degrees of freedom, and initially we consider simulations based on just one classical trajec-
tory (Ntr = 1) to point out the features of a specific choice of the reference state |Ξ⟩ [44]. By choosing
N𝛼 = 1 and |Ξ⟩ = ∏N𝑣ib

J=1 𝜀J |peq,J , qeq,J⟩, the total power spectrum can be easily simulated. We intro-
duce for shorthand notation the total vector (𝜀) collecting the coefficients 𝜀J , which, in this case,
is made of three elements (one per degree of freedom) all equal to 1. Figure 19.2 shows indeed
the time averaged power spectrum obtained by running a single classical trajectory with harmonic
zero point energy (indicated in Table 19.1 as “TA SCIVR 1traj (zpe)”) and 𝜀 = (1;1;1) – semicolons
separate the different degrees of freedom – on an analytical potential energy surface constructed

0 5000

Ezpe

(0,0,0)ε = (1;1;1)

(0,2,0)

(0,1,0)

(0,0,1)

Higher Overtones
(1,0,0)

10000

E (cm–1)

15000

Figure 19.2 Total power spectrum of water using a single trajectory with harmonic zero point energy.
Peaks are assigned and labeled by means of the usual quantum harmonic notation (symmetric stretch,
bending, asymmetric stretch).
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Table 19.1 Values (cm−1) of zero point energy and some vibrational transitions of water. Frequency
estimates are given in harmonic approximation (second column), with time averaged semiclassical
dynamics based on a single trajectory with harmonic zero-point energy (third column), by means of MC
SCIVR (fourth column), and quantum mechanically with a DVR technique (last column). In the last row the
mean absolute error with respect to the QM values is reported. The usual quantum harmonic state notation
has been employed with the first index corresponding to the symmetric stretch, the second index to the
bending mode, and the third index to the asymmetric stretch.

Transition Harm TA SCIVR 1traj (zpe) MC SCIVR QM (DVR)

(0,0,0) 4711 4632 4632 4660
(0,0,0) → (0,1,0) 1650 1608 1584 1587
(0,0,0) → (0,2,0) 3300 3209 3171 3139
(0,0,0) → (1,0,0) 3830 3732 3706 3716
(0,0,0) → (0,0,1) 3941 3813 3813 3803
(0,0,0) → (1,1,0) 5480 5340 5231 5292
(0,0,0) → (0,1,1) 5591 5423 5307 5350
(0,0,0) → (2,0,0) 7660 7461 7410 7417
(0,0,0) → (0,0,2) 7882 7545 7500 7499

MAE 176 40 19 –

by Thiel et al. [45]. Due to the energetics of the trajectory, the most accurate peak is expected to be
the zero-point energy (ZPE) one.

To assign peaks in the power spectrum with more confidence it is possible to insert symmetry
into the calculations. This is obtained by duplicating the number of coherent states (N𝛼 = 2) that
make up the reference state in Eq. (19.44). The dimensionality of 𝜀 is also doubled. Specifically,
parity symmetry can be enforced by choosing the reference states as |Ξ⟩ = ∏N𝑣ib

J=1(𝜀1,J|peq,J , qeq,J⟩ +
𝜀2,J |−peq,J , qeq,J⟩). In fact, the sign of 𝜀2,J determines if an odd (𝜀2,J = −1) or even (𝜀2,J = 1) number
of quanta in the mode J is associated to the peak to be assigned. For instance, for the ground state
𝜀 = (1, 1; 1, 1; 1, 1), while for the first excited state 𝜀 = (1,−1; 1, 1; 1, 1). This is also evident from
the upper plot in Figure 19.3 where in the first of the four panels only the ZPE peak is enhanced.
There are also minor peaks which can be barely seen at high energy. Some of them correspond to
double excitations of the modes. In the other three panels of the same plot the first excited states of
each mode have been enhanced with an appropriate choice of the 𝜀 components. All spectra were
obtained from the very same single trajectory with harmonic zero point energy.

As for the molecular symmetry we note that symmetric stretch and bending of water are of a1
symmetry, while the asymmetric stretch is of b2 symmetry. This means that we can enforce the
desired symmetry and get the corresponding peaks in the power spectrum by employing the refer-
ence state |Ξ⟩ = ∏N𝑣ib

J=1(𝜆1,J |peq,J , qeq,J⟩ + 𝜆2,J|−peq,J ,−qeq,J⟩). Note that the second coherent state in
the linear combination is now centered at (−peq,J ,−qeq,J), and the symmetry parameters have been
renamed as 𝜆 to help the reader. To discriminate between peaks, we set the value of the 𝜆2 compo-
nent relative to the asymmetric stretch equal to 1 (a1 symmetry) or −1 (b2 symmetry). Figure 19.3
reports on the bottom plot the two simulations for water in which peaks are distinguished according
to their molecular symmetry. The proposed methodology to enforce parity or molecular symmetry
is rigorous for the harmonic oscillator but, as demonstrated by the simulations here presented, it
is effective also for realistic molecular systems.
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Ezpe

Ezpe

ε = (1,1;1,1;1,1)

ε = (1,–1;1,1;1,1)

Ezpe

ε = (1,1;1,–1;1,1)

Ezpe

Ezpe

ε = (1,1;1,1;1,–1)
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Figure 19.3 Top: Selection of water semiclassical eigenvalues from a single trajectory with harmonic zero
point energy. Panel (a): zero point energy (4632 cm−1, black line); panel (b): bending mode (red); panel (c):
symmetric stretch (blue); panel (d): asymmetric stretch (green). Frequencies of the fundamental transitions
can be obtained as differences with respect to the zero point energy. They are: 𝜔b = 1608 cm−1; 𝜔s = 3732
cm−1; 𝜔a = 3813 cm−1. Bottom: peaks are selected on the basis of molecular symmetry. On the top panel (e)
modes with a1 symmetry are presented, while the bottom panel (f) illustrates peaks with b2 symmetry. Note
that in the simulations the elements of 𝜀 and 𝜆 are ordered according to the ascending harmonic frequency
of the modes.

So far a single harmonic zpe trajectory has been employed but, in the true spirit of the multiple
coherent states technique (Ntr = Nst), results can be refined in a peak-by-peak fashion by running
for each mode one trajectory with one quantum of excitation in that specific mode and employ-
ing the corresponding reference state. This leads to a better estimate of fundamental transition
frequencies and especially overtones. Table 19.1 reports a comparison of the frequencies provided
by different approaches. As expected, the enhanced accuracy of a multiple coherent technique is
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evident when comparing semiclassical estimates to the quantum benchmark obtained by means
of a discrete variable representation (DVR) calculation in normal mode coordinates. We stress that
the simulations yield the spectrum (i.e., the eigenvalues) of the vibrational Hamiltonian, so we are
able to assign a frequency even to those vibrational transitions which are not IR or Raman active.

Among remarkable applications of the MC-SCIVR method we recall a study of ammonia, which
has permitted detection of the spectrum of this molecule and to mimic its peculiar tunneling split-
ting feature with just eight trajectories [46], and an investigation of the simplest aminoacid: glycine
[47]. Glycine is characterized by several conformers as demonstrated by the multiple minimum
structure of its potential energy surface. An ab initio on-the-fly MC-SCIVR approach has allowed
investigation of all these conformers in full dimensionality and to estimate the potential effect of
conformer interconversion on vibrational frequencies. More details on this system will be presented
in Section 19.10. The advantage with respect to other methods based on calculations confined
to a single well is evident. Furthermore, electronic theory calculations are needed only for the
geometries experienced along the dynamics so a global full-dimensional surface (which can be
very difficult to construct) is not required.

19.7 The “Divide-and-Conquer” SCIVR

Perhaps the most relevant issue that semiclassical dynamics and other quantum approaches must
face is the scaling of computational overheads with the dimensionality of the system under inves-
tigation. In the case of SC approaches the challenge is to get a well resolved spectroscopic signal
when the number of degrees of freedom exceeds 25–30. The principal reason for this issue is the
multidimensional coherent state overlap which characterizes the SC formulation as in the case,
for instance, of Eq. (19.43). In fact, a sensible signal requires all mono-dimensional coherent state
overlaps to be simultaneously not negligible at each step of the dynamics, a request which is harder
and harder to satisfy as the dimensionality of the problem increases. There is an evident difference
with respect to classical simulations based on the Fourier transform of the dipole–dipole auto-
correlation function in which a scalar product of 3-dimensional vectors is involved whatever the
dimensionality of the system is.

Approaches have been developed to identify the effective vibrational modes for the calculations
[48], while here we focus on the possibility to work in reduced dimensionality by projecting the
full-dimensional problem onto a set of lower dimensional ones, where it is easier to have a recur-
ring coherent state overlap. The total spectrum is eventually recollected as a convolution of the
lower dimensional spectra [49]. Figure 19.4 depicts this “divide-and-conquer” (DC-SCIVR) idea.
We note that the trajectory, i.e., the classical dynamics, is still performed in full dimensionality,

(p,q)

(p1,q1)~ ~(p 2
,q 2

)

~
~

Figure 19.4 Pictorial representation of the DC-SCIVR idea. The black line is the full-dimensional trajectory
while the red and blue lines represent its projection onto two different subspaces.
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while associated quantities are projected onto different subspaces in which the semiclassical sim-
ulations are undertaken. The multiple coherent states reduced-dimensionality (MC-DC SCIVR)
working formula becomes

Ĩ(E) =
( 1

2𝜋ℏ

)M Ntr∑
K=1

1
2𝜋ℏT

|||||∫
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0
dte
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2

, (19.46)

where M is the dimensionality of the subspace. Equation (19.46) is at the heart of the
MC-DC-SCIVR approach. Mathematically, the projection process is equivalent to a singular
value decomposition which allows to reduce the dimensionality of the system.

In practice, after the full-dimensional trajectory has been run, the reduced quantities appearing
in Eq. (19.46) are calculated. Specifically, the prefactor phase is estimated by employing the
appropriate sub-block of monodromy matrix elements, and evaluation of the coherent state
overlap is straightforward. Calculation of the projected action is more complicated instead,
due to the non-separability of the potential energy. In fact, if the degrees of freedom not
belonging to the M-dimensional subspace are simply downgraded to parameters, then the
resulting potential V(q⃗(t)) ≡ V(q⃗M(t); q⃗ eq

N𝑣ib−M) is in general not suitable to reproduce the “correct”
low-dimensional dynamics. An ideal reduced-dimensional potential should permit generation
of a reduced-dimensional dynamics which, starting from the initial point in phase space (p⃗0, q⃗0),
visits all points (p⃗t, q⃗t) obtained projecting the full-dimensional trajectory onto the subspace. This
is not the case for the trivial definition proposed above. Instead, it is possible to introduce a time
dependent external field

Ṽ(q⃗M(t)) = V(q⃗M(t); q⃗ eq
N𝑣ib−M) + 𝜆(t); (19.47)

𝜆(t) = V(q⃗M(t); q⃗N𝑣ib−M(t)) − V(q⃗M(t); q⃗ eq
N𝑣ib−M) − V(q eq

M ; q⃗N𝑣ib−M(t)).

This choice of the field returns the exact dynamics in the case of a separable potential, while it
still provides a reliable approximation in the general instance of a non-separable potential. This
means that in the DC-SCIVR simulations the projected action must be calculated by means of
the potential defined in Eq. (19.47). This is achieved by performing, after the trajectory is com-
plete, a single-energy calculation for each configuration of the dynamics upon substitution of the
coordinates of the modes belonging to the subspace of interest with their equilibrium values. As
usual, the transformation from normal mode coordinates to Cartesian ones is done by means of the
matrix of eigenvectors of the equilibrium Hessian. The interested reader can find further details in
Refs. [49–51].

Once the mathematical formalism of DC-SCIVR has been introduced, an efficient strategy to
partition the full-dimensional problem into lower-dimensional ones must be devised. An educated
choice of subspaces has to deal with the trade-off between simulation accuracy, which is maximum
(at the net of compensation of errors) for the full-dimensional system, and the necessity to work in
reduced dimensionality to get a sensible spectroscopic signal from the Fourier transform. The intu-
itive way to proceed consists in collecting the normal modes that are more strongly interacting into
the same subspace. For this purpose a few strategies have been developed. The first one (known as
the Hessian decomposition method) is based on averaging the off-diagonal elements of the normal
mode Hessian matrix (which are initially 0 since the normal-mode Hessian is diagonal at the start-
ing equilibrium geometry) dynamically along the harmonic zero-point-energy trajectory and then
comparing them to an arbitrary threshold. The average Hessian elements are taken as an estimate
of the coupling between the modes, so, if they are above the threshold, the two involved modes
are set into the same subspace. The method has been proved effective in a number of applications
[49, 50] even if it suffers from the arbitrariness of the threshold choice. In fact, if the threshold is
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Figure 19.5 Influence of the choice of the threshold parameter on the partition of a 6-dimensional space
into subspaces. For 𝜀 = 1.5 ⋅ 10−6 the six vibrational modes are collected into a 4-dimensional space and a
2-dimensional one. For 𝜀 = 1.5 ⋅ 10−5 there are two bi-dimensional subspaces and two mono-dimensional
ones identified by a red entry in the diagonal. Diagonal Hessian elements are not of interest and they have
not been reported.

too small, then the full-dimensional work space is left unchanged, whereas, if the threshold is too
big, then all subspaces are inaccurately chosen to be mono-dimensional ones. Figure 19.5 exem-
plifies the different partition into subspaces obtained for a 6-mode model system when modifying
the threshold parameter. Note that in the top panel modes 𝜈3 and 𝜈5 are in the same subspace even
if they are not sufficiently coupled. This is because they are both strongly coupled to other modes
(𝜈1 and 𝜈2 in this specific case). A similar methodology, but still dependent on an arbitrary param-
eter, is based on an average along the trajectory of the monodromy matrix elements instead of the
Hessian [48].

To make the subspace partition less arbitrary, a procedure based on the unitarity of the determi-
nant of the phase-space Jacobian in the subspaces has been developed [50]. This approach is known
as the Jacobi decomposition method. The starting point is the definition of the full dimensional
Jacobian (equivalent to the monodromy matrix) as

J(t) =

(
𝜕q⃗t∕𝜕q⃗0 𝜕q⃗t∕𝜕p⃗0

𝜕p⃗t∕𝜕q⃗0 𝜕p⃗t∕𝜕p⃗0

)
, (19.48)

whose determinant is equal to 1 at all times. This property is easy to demonstrate because at time
0 the determinant equals 1, and its time derivative is identically zero independently of time. A
direct and important consequence is that dp⃗tdq⃗t = dp⃗0dq⃗0, one of the ways to express Liouville’s
theorem of Hamiltonian mechanics. If we define a set of Nsub subspaces as requested by DC SCIVR,
the determinant of the full-dimensional Jacobian can be calculated as the product of the partial
determinants defined by the projected positions and momenta, i.e., det(J) =

∏Nsub
i=1 det(J̃i). If the
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system is separable, the unitarity of the determinant is valid also in the reduced-dimensionality
subspaces (i.e., dp⃗tdq⃗t = dp⃗0dq⃗0) but this is no longer true for the generic case of a non-separable
system. In general, the determinant of the Jacobian is not conserved in the subspaces, so a good
criterion to select the best way to collect vibrational modes is one that preserves as much as possible
the Jacobian determinant. For this purpose it is possible to employ an iterative procedure consisting
in evaluating along the dynamics the Jacobian determinants of all possible reduced-dimensional
subspaces. At each time step and for each dimensionality, the best subspace is the one with the
closest Jacobian determinant to unity. Within a given dimensionality the overall best subspace is
then chosen to be the one that most frequently had det(J̃) closest to unity. Finally, the representative
candidates of all subspaces of different dimensionality are compared among them and the one
with the Jacobian determinant closest to unity is selected. The whole procedure is then repeated
for the remaining degrees of freedom until all of them have been assigned. Figure 19.6 sketches the
methodology for a 6-dimensional model system. Note that in the example a 4-dimensional subspace
is selected, which means the procedure will be repeated involving only modes four and six that end
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Figure 19.6 Schematic representation of the Jacobi decomposition method. First the best set of modes for
each possible subspace dimensionality is calculated at every step along the trajectory. This is shown in the
four boxes, where the “Subs” column indicates the subspace dimensionality and the “Count” one the
incremental number of times that particular set of modes has been selected along the trajectory. For each
subspace dimensionality the most frequent mode combination acts as the representative of that subspace
dimensionality and it is highlighted (violet). Then, |1 − det J̃| values of all the representatives are averaged
over the trajectory and compared (bottom, triangles). The 4-dimensional subspace made of modes 1,2,3,5
has the lowest |1 − det J̃| average value and it is therefore selected. Modes 4 and 6 are left and the
procedure is reiterated for these two remaining degrees of freedom to check out if they belong to the same
bi-dimensional subspace or if they split into a pair of mono-dimensional subspaces.
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up either in a single 2-dimensional subspace or in two separate mono-dimensional subspaces. The
latter instance is, in principle, not desirable but part of the interactions are anyway preserved due
to the full-dimensional trajectory on which projected quantities are based. The Hessian and Jacobi
decomposition methods provide generally different types of subspace partitions. On the one hand,
the Jacobi approach has been shown to lead to more accurate results [50], but it is harder and
harder to apply it as the total number of degrees of freedom increases due to the necessity to check
all possible vibrational mode subsets. On the other hand, the Hessian decomposition approach is
less accurate and depends on an arbitrary parameter, but its application is instantaneous once the
averaged Hessian has been computed.

We conclude this section by reporting on an application of DC SCIVR to C60 fullerene, a sys-
tem made of 174 vibrational degrees of freedom. A force field originally created to study graphene
layers is adapted to permit analytical potential calls but, nevertheless, these are very time consum-
ing, so a MC-DC-SCIVR approach is employed by running 175 classical trajectories about 1.2 ps
long (1 at harmonic zero point energy plus other 174, each one with a harmonic quantum of
excitation in a different mode). The subspaces are determined by means of the Hessian decom-
position criterion based on the harmonic zero-point energy. We first scan the maximum subspace
dimensionality for different values of the threshold parameter as shown in Figure 19.7, and then
choose for the threshold the value 𝜀 = 10−6 corresponding to a maximum subspace dimensionality
of 25. This choice is driven by the trade-off between expected accuracy and the possibility to col-
lect a sensible spectral signal. The whole degrees of freedom are consequently collected into one
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Figure 19.7 Maximum subspace dimensionality versus threshold when applying the Hessian
decomposition method to the C60 fullerene molecule (top). The red arrow indicates the chosen threshold
and the corresponding maximum subspace dimensionality. The green dashed lines determine the desired
range for the maximum subspace dimensionality. The table reports the detailed partition into subspaces.
On the bottom, a bi-dimensional DC-SCIVR spectrum (involving modes 110 and 147) is shown (the zpe of
the subspace has been shifted to zero).
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25-dimensional, two 14-dimensional, one 8-dimensional, two 6-dimensional, three 3-dimensional,
one bi-dimensional, and 90 mono-dimensional subspaces.

Once the subspaces have been determined, MC-DC-SCIVR calculations can be performed. On
the bottom of Figure 19.7 an example concerning a bi-dimensional subspace is reported where
the two fundamentals and some overtones are clearly detected. For detailed results we refer to a
previous publication (see Ref. [49]). Here we conclude this section by pointing out that even if,
as already demonstrated, molecular symmetry can be incorporated into semiclassical dynamics to
facilitate peak assignment, it does not help speed up calculations and it is not necessary for a good
outcome of DC-SCIVR simulations, which are successful independently of symmetry.

19.8 Mixed SCIVR Dynamics: Towards Semiclassical Spectroscopy
in Condensed Phase

The various semiclassical methodologies so far presented have in common the characteristic to
be based on the evolution of Gaussian wave packets of fixed width. Such propagators go under
the collective name of “Frozen Gaussian propagators”. Another family of semiclassical Gaussian
propagators has been introduced [52] in which the Gaussian width is permitted to change in time.
They are called “Thawed Gaussian propagators”. In practice (for simplicity we illustrate equations
in one dimension, but generalization to multiple dimensions is straightforward) the wave packet is
chosen to be of the coherent state form

Ξ(q, t) =
(Γ0

𝜋

)1∕4

exp
[
−
Γt

2
(q − qt)2 + i

ℏ
pt(q − qt) +

i
ℏ
𝛿t

]
, (19.49)

with the usual Hamiltonian evolution for qt and pt, and the appropriate equations of motions for
Γt and 𝛿t

−iℏ
dΓt

dt
= −ℏ2Γ2

t +
d2V(qt, t)

dq2
t

d𝛿t

dt
=

p2
t

2
− V(qt, t) − ℏ2

2
Γt. (19.50)

Thawed Gaussian propagation is known to be less accurate than the Heller–Herman–Kluk–Kay
one, but its major flexibility allows results of good accuracy to be gained with just a single Gaussian
propagation.

An interesting development of semiclassical dynamics involving both Frozen and Thawed Gaus-
sian propagators is represented by Grossmann’s hybrid (or mixed) SCIVR and its recent simplified
version [53]. The method is based on the observation that the Thawed Gaussian propagator can
be obtained as an approximation to the HHKK one [54]. In mixed SCIVR, the higher HHKK level
of theory is reserved for a few degrees of freedom, while all the others are treated by means of the
computationally cheaper Thawed Gaussian propagator. A promising application of the technique is
represented by the spectroscopic investigation of a molecular system embedded in an environment.
In spectroscopic applications of the mixed SCIVR the starting point is the time-averaged version
of the HHKK propagator in Eq. (19.43). On this propagator the mixed approximation is inserted.
The total 2F phase-space variables are divided into 2FHHKK for the system and 2FTG for the bath.
The system, on which more accurate information is sought, is represented with the HHKK label,
meaning it is treated at the HHKK level of theory, whereas the environmental degrees of freedom
are indicated with the subscript TG and treated by means of the Thawed Gaussian propagator. The
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method, similar to DC SCIVR, is characterized by classical dynamics runs in full dimensionality.
The partition of the degrees of freedom is adopted only in the semiclassical formalism. In fact, if
the Gaussian reference state |Ξ⟩ = |p⃗eq, q⃗eq⟩ is chosen, where q⃗eq is the equilibrium position and
p⃗eq is the momentum corresponding to an approximate eigenenergy, then the initial phase space
coordinates (p⃗0, q⃗0) are defined as

p⃗0 =

(
p⃗HHKK,0

p⃗eq,TG

)
, q⃗0 =

(
q⃗HHKK,0

q⃗eq,TG

)
. (19.51)

The HHKK initial conditions (p⃗HHKK,0, q⃗HHKK,0) are selected by means of the usual Monte Carlo
sampling around (p⃗eq,HHKK, q⃗eq,HHKK), while the bath starting coordinates are always at the equilib-
rium positions, (p⃗TG,0, q⃗TG,0) = (p⃗eq,TG, q⃗eq,TG). Then, expansion of classical trajectories and action
to first and second order, respectively, in the displacement coordinates of the bath subspace allows
the phase-space integration over the original initial bath conditions (p⃗TG,0, q⃗TG,0) to be performed
analytically. In this way the dimensionality of the phase space integration is reduced. Finally, by
expanding all quantities to second order for the bath variables we arrive at the separable mixed
TA-SCIVR (M-TA SCIVR)

I(E) = 1
(2ℏ)F

1
𝜋FHHKK

1
2𝜋ℏT ∫ dp⃗HHKK,0 ∫ dq⃗HHKK,0

|||||∫
T

0
dt ei[Et+𝜙t(p⃗0,q⃗0)+St(p⃗0,q⃗0)]∕ℏ

× ⟨p⃗eq,HHKK, q⃗eq,HHKK|p⃗HHKK,t, q⃗HHKK,t⟩⟨p⃗eq,TG, q⃗eq,TG|p⃗TG,t, q⃗TG,t⟩
× 1

[det(A(t) + A∗(t))]1∕4 exp
{1

4
b⃗ T

t (A(t) + A∗(t))−1b⃗t

}||||2
. (19.52)

The elements of the matrix A(t) are defined as

A11(t) =
1
4

MT
21(t) 𝚪M21(t) +

1
4ℏ2 MT

11(t) 𝚪
−1M11(t)

A12(t) =
1
4

MT
21(t) 𝚪M22(t) +

1
4ℏ2 MT

11(t) 𝚪
−1M12(t)

A21(t) =
1
4

MT
22(t) 𝚪M21(t) +

1
4ℏ2 MT

12(t) 𝚪
−1M11(t)

A22(t) =
1
4

MT
22(t) 𝚪M22(t) +

1
4ℏ2 MT

12(t) 𝚪
−1M12(t),

(19.53)

while the vector b⃗(t) ≡ (b⃗ T
1,t, b⃗ T

2,t)
T is made of the sub-vectors

b⃗ T
1,t = −1

2
(q⃗(t) − q⃗(0))T

[
𝚪M21(t) +

i
ℏ

M11(t)
]

− 1
2ℏ2 (p⃗(t) − p⃗(0))T [𝚪−1M11(t) − iℏM21(t)]

b⃗ T
2,t = −1

2
(q⃗(t) − q⃗(0))T

[
𝚪M22(t) +

i
ℏ

M12(t)
]

− 1
2ℏ2 (p⃗(t) − p⃗(0))T[𝚪−1M12(t) − iℏM22(t)],

(19.54)
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where (p⃗(t), q⃗(t)) is the trajectory starting from the initial conditions defined in Eq. (19.51). The Mij
in the above equations are the F × FTG sub-matrices of the stability matrix,

M11(t) =
𝜕p⃗t

𝜕p⃗TG,0
, M12(t) =

𝜕p⃗t

𝜕q⃗TG,0
,

M21(t) =
𝜕q⃗t

𝜕p⃗TG,0
, M22(t) =

𝜕q⃗t

𝜕q⃗TG,0
.

(19.55)

In Eq. (19.52) the Monte Carlo integration involves only the system coordinates, while the bath
degrees of freedom are included through the dynamics which starts from the conditions in
Eq. (19.51). The interested reader will find more details in Refs. [53, 55, 56].

The mixed SC-IVR approach is effective, but, when studying systems characterized by a large
number of degrees of freedom, spectra are noisy and difficult to interpret. To overcome this issue
a simplified approach to M-TA SCIVR (SAM) has been introduced. It is based on two assump-
tions. First, the following bath components are replaced by their analytic harmonic oscillator
results

1
[det(AHO(t) + A∗

HO(t))]1∕4 ≈ (2ℏ)FTG∕2

b⃗ T
t,HO(AHO(t) + A∗

HO(t))
−1b⃗t,HO ≈ 0,

(19.56)

(where HO stands for Harmonic Oscillator) which permits Eq. (19.52) to be considerably simplified,
transforming it into

I(E) = 1
(2𝜋ℏ)FHHKK

1
2𝜋ℏT ∫ dp⃗HHKK,0 ∫ dq⃗HHKK,0

×
|||||∫

T

0
dt ei[Et+𝜙t(p⃗0,q⃗0)+St(p⃗0,q⃗0)]∕ℏ ⟨p⃗eq, q⃗eq|p⃗t, q⃗t⟩|||||

2

. (19.57)

Then, the multiple coherent technique is employed and the final SAM working formula is

I(E) = 1
(2𝜋ℏ)FHHKK

1
2𝜋ℏT ∫ dp⃗HHKK,0 ∫ dq⃗HHKK,0||||∫ dt ei[Et+𝜙t(p⃗0,q⃗0)+St(p⃗0,q⃗0)]∕ℏ⟨p⃗eq,HHKK, q⃗eq,HHKK|p⃗HHKK,t, q⃗HHKK,t⟩||||2

. (19.58)

It should be pointed out that, in spite of the different derivations of SAM and DC SCIVR, both
methods are in fact related. Adoption of the few-trajectory approach from MC SCIVR to Eq. (19.58)
by replacing the HK initial state |p⃗eq, HHKK, q⃗eq, HHKK⟩ with |Ξ⟩ from Eq. (19.44) turns the phase
space integration into a sum over (few) trajectories. The resulting equation has the same structure
as the MC-DC-SCIVR working formula of Eq. (19.46), except for the specific form of the action and
the prefactor phase. In this sense, SAM can be seen as an intermediate step between HK SCIVR and
DC SCIVR. A remarkable application of the method has permitted a full study of anharmonic vibra-
tions of the iodine molecule to be performed (I2) in a krypton matrix made of 218 atoms [56]. This
shows that SAM is a promising tool for performing highly accurate condensed phase spectroscopy
in the near future.
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19.9 Semiclassical Spectroscopy Workflow

Before showing some applications of SC dynamics, we present a workflow chart (Figure 19.8) sum-
marizing the steps on which the various semiclassical approaches previously described are based.
This chart keeps evolving as new semiclassical methodologies are being developed.

Relevant input data for the simulations include the reference state and the number of clas-
sical trajectories to be run. A preliminary routine optimization of the equilibrium geometry
and calculation of harmonic frequencies (as usual via Hessian diagonalization) are requested.
Afterwards, the chart branches according to the number of trajectories chosen. On the one hand,
if just a single or a few trajectories are employed, then either thawed Gaussian propagation or
the family of multiple coherent approaches is enabled. In this case, initial conditions for the
trajectories are tailored, and upon classical evolution and Hessian calculation the corresponding
mathematical expressions are used to get the spectrum. On the other hand, when Monte Carlo
phase-space integration is performed by means of thousands of trajectories, initial conditions
are sampled from a distribution (generally a Husimi one). Again, after dynamics evolution and
Hessian calculation, application of the appropriate equations allows us to get the spectrum. A
third instance is represented by M-TA SCIVR, which employs a multiple trajectory approach for
the system and a thawed Gaussian (single trajectory) approach for the bath. For the required
electronic structure calculations the freely available NWChem suite of codes is suggested [57] due
to its interface with VENUS. VENUS is another free software for ab initio dynamical calculations
[58] which includes semiclassical codes [59].

Semiclassical Spectroscopy Simulation Workflow

Initial Setup

(N. Trajectories, Reference State)

Are You Adopting

a Single (Few)

Trajectory?

Classical Dynamics

Evolution

and Hessian Calculation

MC-TA-SCIVR MC-DC-SCIVR DC-SCIVR TA-SCIVR HHKKM-TA-SCIVR

Determine

Subspaces
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Subspaces

Eq. (44) Eq. (51)
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Figure 19.8 Workflow chart.
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19.10 A Taste of Semiclassical Spectroscopy

A few relevant applications of semiclassical spectroscopy to molecular power, photoemission, and
photoabsorption spectra are presented in this section. The semiclassical calculations of power and
photoemission spectra involve electronic ground state dynamics, while photoabsorption spectra
rely on electronic excited state dynamics in agreement with the formulae reported in the introduc-
tory section of the chapter.

The first application regards gas-phase glycine [47]. An analysis of the potential energy surface
of this simple amino acid reveals quite a complex landscape with the presence of four conformers.
Three of them are separated by small barriers which may favor conformer interconversion. The
dynamics employed in the SC simulations shows that conformer interconversion takes place when
exciting selectively some of the normal modes or when starting from Conf IV. This is confirmed in
the top panel of Figure 19.9 by the much broader peaks obtained for Conf IV whose dynamics at
harmonic zero point energy (even if less than 1 ps long) moves fast back and forth to Conf I. This
aspect allows us to point out a couple of peculiar features of semiclassical dynamics. One is that
the dynamics permits us to visit the effective portion of the potential energy surface and in this way
construction of a global PES is not needed and ab initio on-the-fly calculations are fully legitimated.
The second characteristic is that power spectra have a band shape determined by the dynamics.
Results for Conf IV are corroborated by experiments performed at 13 K in argon matrices, which are
much more difficult and less resolved for Conf IV [60]. The semiclassical calculations performed for
glycine are based on an ab initio molecular dynamics at DFT-B3LYP level of theory with aVDZ basis
set associated to MC SCIVR in full dimensionality. Results are in good agreement with experiments,
and the interested reader can find all the details in Ref. [47]. Very recent work in the field has
permitted calculation of the semiclassical IR spectrum of glycine [71].
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Figure 19.9 Left: Energetics of glycine calculated at DFT-B3LYP level of theory with aVDZ basis set.
Energy values in parentheses include the harmonic zero-point energy contribution. Right: High frequency
range vibrational power spectra for the four conformers of glycine. Peaks identify the OH (black), NH2
asymmetric (orange), NH2 symmetric (green), CH2 asymmetric (blue), and CH2 symmetric (red) stretches.
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Another interesting application of semiclassical spectroscopy involving glycine is represented
by the supra-molecular system made of protonated glycine tagged with hydrogen molecules. The
goal is to reproduce and explain on a quantum mechanical basis the intriguing features of a recent
experiment by Williams, Rizzo and coworkers [61]. In particular, in the experiment, the OH stretch
signal presents twin peaks, separated by about 50 cm−1, where it appears that at least three hydro-
gen molecules are present. The reason is that while the first pair of H2 molecules interacts with
the amino group of the protonated glycine, the third H2 moiety can still interact either with the
NH3 group or with the hydroxyl. In this latter instance, the OH stretch is weakened and a second
red-shifted peak is found in the experiment consistently with the mixture of the two conform-
ers. Another feature of Williams and Rizzo’s spectra is that the lowest in frequency among the
three NH3 bands is more and more blue-shifted as the number of tagging H2 molecules increases,
with a second peak appearing when three hydrogen molecules are involved. The blue shift is of
about 60 cm−1. This time the effect can be explained with a re-orientation of the NH3 group which
weakens the intramolecular hydrogen bond leading to a blue shift of the NH3 signal. A theoreti-
cal description at the harmonic level fails even upon an ad-hoc scaling of frequencies calibrated
on the OH stretch. In particular, the blue shift of the NH3 peak is too overestimated predicting a
complete cleavage of the intramolecular hydrogen bond instead of its simple weakening. This draw-
back is found also in a classical simulation based on the Fourier transform of the velocity–velocity
correlation function. Conversely, a semiclassical description is able to gather both features, and fre-
quencies are found within 20–30 cm−1 of the experiment. This SC simulation has been performed
by means of the MC-DC-SCIVR technique interfaced to an ab initio on-the-fly molecular dynamics
less than 1 ps long at DFT-B3LYP level of theory and with aVDZ basis set. Inclusion of dispersion
corrections has been considered, but without any relevant gain in accuracy [62].

So far applications have been focused on power spectra that describe vibrational features on the
ground electronic state, but semiclassical approaches can also be employed to simulate vibronic
emission and absorption spectra that involve different electronic surfaces. A key example is given
by the on-the-fly photoemission spectra of oligothiophenes calculated by the Vaníček group on
the basis of the Fourier transform of a dipole–dipole autocorrelation function in Franck–Condon
approximation (i.e., vertical electronic transition) for the initial wave packet [48]. The working for-
mula is similar to Eq. (19.6) with the roles of the electronic ground (S0) and excited (S1) states
interchanged, and a cubic dependence on the energy difference in front of the Fourier integra-
tion. A Thawed Gaussian approach was employed, and the emission spectrum was obtained upon
short-time evolution (≈ 200 fs) of the vibrational ground state of S1 on the S0 surface. This dynam-
ical approach permits us to go beyond a static global harmonic approximation and to account for
anharmonicities. Energy calculations and geometry optimization on the excited state surface were
performed with TD-DFT, CAM-B3LYP functional and 6-31+G** basis set. The DFT level of theory
was employed instead for the dynamics on the ground electronic state. Figure 19.10 reports the
semiclassical photoemission spectra of a series of oligothiophenes and shows excellent agreement
with the experimental results. Furthermore, in this work a strategy has been implemented to assess
couplings between vibrational degrees of freedom during the dynamics, and their contribution to
the spectral features. The same strategy permits us also to generate a partially uncoupled dynamics
in reduced dimensionality, which may serve for application of more refined semiclassical or quan-
tum techniques. The approach is different from DC SCIVR (which is based on a frozen instead of
thawed Gaussian propagator), but it makes clear that DC SCIVR as well as the other techniques
described in the chapter have the potential to also be applied successfully to the simulation of
photoemission (absorption) spectra.
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Figure 19.10 Photoemission spectra for oligothiophenes of increasing size. “OTF-AI-TGA” stands for
on-the-fly ab initio thawed Gaussian approximation. Reproduced from Marius Wehrle, Miroslav S̆ulc, and
Jiří Vaníček The Journal of Chemical Physics 140, 244114 (2014), with the permission of AIP Publishing.

As a final application we consider another very recent work by the Vaníček group concerning
the photoabsorption spectrum of benzene [63]. The relevant equation is Eq. (19.6), but in this
case the Condon approximation cannot be invoked because the (Ã1 B2u ← X̃1 A1g) electronic
transition is symmetry forbidden. However, it is vibronically allowed due to the contribution
of the gradient of the transition dipole. In order to simulate the absorption spectrum of ben-
zene one has to resort to the more refined Herzberg–Teller approximation in which the dipole
depends linearly on the nuclear coordinates, i.e., 𝜇(R⃗) ≈ 𝜇(R⃗eq) + ∇R⃗𝜇(R⃗eq) ⋅ (R⃗ − R⃗eq). The
Franck–Condon–Herzberg–Teller (FCHT) absorption spectrum of benzene (see Figure 19.11)
was obtained by multiplying the initial Gaussian wave packet by a polynomial (linear) term. This
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Figure 19.11 Semiclassical absorption spectra of benzene Ã1 B2u ← X̃1 A1g. In the top panel, a comparison
between experiment and Franck–Condon–Herzberg–Teller (FCHT) spectra obtained from on-the-fly excited
electronic state dynamics (OTF-AI), static adiabatic harmonic (AH), and static vertical harmonic (VH)
approximations is presented. Scaled intensities are reported for each approach next to the peaks. In the
bottom panel, the experiment is compared again to the FCHT spectrum from on-the-fly dynamics and to the
Franck–Condon (FC) spectrum in Condon approximation. Note that the latter is zero because the electronic
transition is symmetry forbidden. Reproduced from Aurélien Patoz, Tomislav Begus̆ić, and Jiří Vaníček The
Journal of Physical Chemistry Letters 9, 2367 (2018). https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett
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permitted adoption of ab initio on-the-fly thawed Gaussian semiclassical dynamics with inclusion
of the Herzberg–Teller approximation. The electronic excited state dynamics was performed
for 2 ps with TD-DFT, B3LYP functional, and 6-31+G** basis set. DFT was employed for the
optimization at the electronic ground state. The importance of a semiclassical approach able to
account for the anharmonicities of the potential is pointed out in Figure 19.11, where a comparison
between FCHT spectra adopting on-the-fly ab initio dynamics and the static adiabatic harmonic
(AH) and vertical harmonic approximations (VH) is presented. In the AH approximation the
upper electronic surface is obtained by means of a second-order expansion of the potential around
the minimum, while the VH approximation is similar but based on the equilibrium configuration
of the lower electronic state. The semiclassical approach outperforms the other two very clearly,
with the VH approach returning very inaccurate results. Also in this application a different
semiclassical approach based on a frozen Gaussian propagator and the techniques previously
illustrated can be adopted.

19.11 Summary and Conclusions

In this chapter we have presented the derivation of the basic van Vleck and Heller–Herman–Kluk–
Kay semiclassical propagators followed by a description of some recently developed SC techniques
tailored for spectroscopy simulations. The multiple coherent states approach permits us to adopt
ab initio on-the-fly molecular dynamics for semiclassical simulations with the advantage of avoid-
ing construction of a global analytical potential energy surface. The divide-and-conquer technique
allows us to investigate the quantum spectroscopic features of large molecular and supra-molecular
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systems beating the so-called “curse of dimensionality”. The simplified mixed semiclassical method
is a promising tool that employs both frozen and thawed Gaussian semiclassical propagators to
study vibrations of a molecule in a bath. Finally, some representative applications have been pre-
sented. They include power spectra of molecular and supra-molecular glycine (experimentally
tagged with H2 molecules), photoemission spectra of oligothiophenes, and the photoabsorption
spectrum of benzene. In general, the described semiclassical techniques can be employed both for
simulations on the electronic ground state and for calculations involving excited state dynamics.

To conclude we would like to review a few aspects of semiclassical spectroscopy that have either
been recently solved or are the focus of current methodological developments. The bottleneck of
semiclassical calculations lies in the determination of the Hessian matrix for the configurations
visited along the trajectory, which is necessary for evolving the monodromy matrix elements and
calculating the pre-exponential factor. This overhead has been alleviated by means of an interpo-
lation scheme based on gradient estimates [64–66], and further improvements have recently led
to an efficient strategy based on the dynamical construction of databases of Hessian matrices [67].
In the case of thawed Gaussian propagators, even an approximation based on a single Hessian
has been recently proposed [68]. A potential issue of semiclassical simulations comes from the
chaoticity of classical dynamics. Chaotic trajectories lead to a numerical loss of the unitarity of
the determinant of the monodromy matrix and to unphysical values of the pre-exponential factor.
This may endanger the entire calculation and often chaotic trajectories have to be discarded [20].
Some approximations to the pre-exponential factor have been proposed for overcoming this issue
[69], and substantial progress on this issue has been achieved recently through development of
an adiabatic switching technique for semiclassical spectroscopy [74]. As for the intensity of the
calculated spectroscopic signals, apart from the possibility to simulate IR spectra starting from
the dipole–dipole autocorrelation function, it is also possible to calculate them from the oscilla-
tor strengths once the wave functions are known. A procedure to determine the semiclassical wave
functions expanding them on a harmonic basis set has been recently presented [70], followed by
another approach capable of returning the semiclassical IR spectrum starting from power spectra
even in the case of systems characterized by high densities of vibrational states [71].

Altogether we believe that semiclassical dynamics is a powerful tool for molecular spectroscopy
with specific features that may make it the privileged approach for simulations of high dimensional
systems. For instance, application of semiclassical spectroscopy has permitted the explaination of
some features of two experiments which were left unanswered [62], while a very recent investiga-
tion focused on nucleobases [72]. Furthermore, the first calculations of vibrational semiclassical
spectroscopy for molecules adsorbed on titania surfaces are now accessible [75]. We think that
quantum effects should not be neglected a priori when investigating large systems spectroscopi-
cally. This is in part due to the quantum nature of spectroscopy itself and partly because of the not
unusual presence of hydrogen bonds which require a quantum formalism to be described correctly.
An advantage of semiclassical approaches is that they can be interfaced with ab initio molecular
dynamics quite easily, since neither approximations to the potential energy nor ad hoc parameters
are required. However, electronic calculations are computationally expensive and only a desirable
speed up of electronic theory routines will permit employment of the highest levels of electronic
theory in ab initio semiclassical simulations. Within the precision permitted by the electronic the-
ory employed, an estimate of the accuracy of semiclassical simulations can be obtained by looking
at the full width at half maximum of spectral peaks. This is generally found to be of the order of
20–25 cm−1 with occasional lower accuracy for particularly complex systems or spectral features,
which may require further refinement. For example, a preliminary application of semiclassical
spectroscopy to the Zundel cation (H5O2)+ has demonstrated that accuracy is good even for this
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Table 19.2 Principal strengths and weaknesses of semiclassical spectroscopy.

Strengths
+ Quantum effects from classical dynamics simulations.
+ Real potential energy – no approximations.
+ Interface to both analytical PESs and ab initio molecular dynamics.
+ No tunable nor ad hoc parameters.
+ Applicability to ground and excited electronic states.
+ Applicability to high dimensional systems.

Weaknesses
− Hessian calculation required.
− Classical chaotic trajectories may hamper simulations.
− Low ab initio level of electronic theory due to computational overhead.

floppy molecule [50]. A more refined and targeted study of this particular chemical species has
been undertaken [76], leading to results of accuracy comparable to that of quantum calculations.
A general formula to estimate the error with respect to the exact quantum mechanical result is not
available, but formalisms to correct the semiclassical estimate towards the exact quantum mechan-
ical result have been proposed by Kay and Pollak [9, 73].

Finally, we provide a brief summary of the main strengths and weaknesses of semiclassical spec-
troscopy, as reported in Table 19.2.
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