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Abstract We revisit the problem of the isothermal slab (in standard Cartesian coordinates, density distributions and mean gravita-
tional potential are considered to be independent of x and y and to be a function of z, symmetric with respect to the z = 0 plane) in
the context of the general issues related to the role of weak collisionality in inhomogeneous self-gravitating stellar systems. We thus
consider the two-component case, that is a system of heavy and light stars with assigned mass ratio (µ) and assigned global relative
abundance (α; the ratio of the total mass of the heavy and light stars). The system is imagined to start from an initial condition in
which the two species are well mixed and have identical spatial and velocity distributions and to evolve into a final configuration
in which collisions have generated equipartition and mass segregation. Initial and final distribution functions are assumed to be
Maxwellian. Application of mass and energy conservation allows us to derive the properties of the final state from the assumed
initial conditions. In general, the derivation of these properties requires a simple numerical integration of the Poisson equation.
Curiously, the case in which the heavy stars are exactly twice as massive as the light stars (μ = 2) turns out to admit a relatively
simple analytic solution. Although the general framework of this investigation is relatively straightforward, some non-trivial issues
related to energy conservation and the possible use of a virial constraint are noted and clarified. The formulation and the results
of this paper prepare the way to future studies in which the evolution induced by weak collisionality will be followed either by
considering the action of standard collision operators or by means of dedicated numerical simulations.

1 Introduction

The study of galaxies as self-gravitating stellar systems often proceeds by means of the Vlasov–Poisson system of equations (e.g.,
see [1]). Smaller stellar systems, such as globular clusters, are known to be affected by weak collisionality (e.g., see [2]). In recent
years, great progress in telescopes, instruments, and computers is making it possible to test some of the fundamental ideas at the
basis of the relevant relaxation processes, either by observations or by dedicated numerical experiments.

Standard relaxation, by means of the cumulative effects of stellar encounters, is expected to be responsible for a number of
phenomena that range from isotropization, equipartition, mass-segregation, and evaporation to more curious phenomena such as
the gravothermal catastrophe [3] or to a rather controversial instability associated with mass segregation [4–6]. In the presence
of collisions stars with different masses are expected to be characterized by different orbital evolution. Purely collisionless stellar
systems are also subject to various relaxation processes [7]; however, these processes are expected to lead to equilibria for which
the phenomena mentioned above are largely absent. In particular, collisionless stellar systems are generally thought to be well
described by a simple one-component distribution function even when they are made of stellar populations characterized by a rather
wide spectrum of stellar masses. For such simple stellar systems, the connection with the observations is performed by converting
the dynamically derived quantities into observable quantities by means of a constant mass-to-light ratio (under the assumption of
homogeneity of the stellar population characterizing the system). In contrast, if significant collisional effects occur gradients in the
relevant mass-to-light ratios should instead be unavoidable.

Especially in the context of globular clusters, generally modeled as tidally truncated spherical self-gravitating systems with finite
mass, great efforts have been made to address the role of weak collisionality in the evolution of stellar systems in the last 60 years
(in particular, see [2,8–10]; and a vast set of references, some of which can be found in the article [11]). As often is the case in the
astrophysical context, most of the attention has been turned to the astronomical issues and only in fewer articles to the underlying
physical mechanisms. Yet, as already indicated by some unexpected findings by [8], self-consistency and collective effects may be
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the source of surprising results that require clarification. In other words, some caution is generally advised when applying standard
expectations, such as isotropization, equipartition, and mass segregation, to self-gravitating inhomogeneous stellar systems.

In particular, we may note some interesting results that have emerged from recent simulations dedicated to the dynamical evolution
of weakly collisional globular clusters. The trend toward equipartition is only partial, even in the central, most relaxed regions (see
[12]), in the sense that the central velocity dispersion ratio is found to scale as the inverse mass ratio to a power smaller than
1/2 (as would be expected from full equipartition). In addition, most likely as a result of differential collisionality in the system,
isotropization is found to be established only in the central parts of the system, which further out slowly builds up (radially-biased)
pressure anisotropy profiles that may resemble those resulting from incomplete violent relaxation, known to be relevant to elliptical
galaxies (e.g., see [13]). Furthermore, there is clear evidence of evolution in the direction of detailed mass segregation (e.g, see
[14]; Fig. 1 in the article [11]). These theoretical results have been found to be largely consistent with rather recent observations,
especially some based on the Hubble Space Telescope or the Gaia mission (in this respect, some relevant references are provided
by [11]).

This short paper is a preparatory piece of work focused on what we think is one of the simplest models that should allow us to
follow in detail the evolution of weakly collisional stellar systems. The geometry is that of a slab model, that is an infinite layer
considered to be homogeneous on the (x, y) plane, inhomogeneous in the vertical direction z, and symmetric with respect to the
equatorial plane z = 0. The self-gravitating, stellar-dynamical case is known to be associated with simple analytical solutions ([15])
that have a direct counterpart in the plasma case (the slab model of a current sheet is often considered as a textbook case for the
introduction to magnetic reconnection in plasma physics; see [16]). For a very recent combined analytical and numerical study of
relaxation processes in a one-component 1-dimensional model, see [17].

The problem that we would like to address is the following. Suppose that the system considered is made of two species, light and
heavy stars, in different proportions, and imagine as initial condition a situation that is compatible with the solution of a Vlasov-
Poisson system of equation, in which the two species are perfectly well mixed and characterized by a common Maxwellian distribution
function in terms of specific energy; we are thus assuming here that light and heavy stars have exactly the same velocity distribution
(and z-independent thermal speed) and the same spatial distribution in the vertical direction. If we now turn on weak collisionality
can we predict the slow evolution and separation of the distribution functions characterizing the two species? Would evolution indeed
lead to equipartition and mass segregation as anticipated? Would the distribution functions remain quasi-Maxwellian in the course
of evolution? An application of the standard tools (that is, turning on a collision operator and resorting to some analytical model;
for example, a Fokker-Planck description) in this simple but inhomogeneous and self-consistent environment is not at all trivial.
Most likely, we will have to make use of numerical experiments. In the present preparatory work we simply calculate the properties
of the final state by assuming that it follows the standard expectations (the two species will have a different Maxwell-Boltzmann
distribution function with the lighter particles characterized by a larger thermal speed and by a more diffuse vertical distribution);
in order to determine the properties of such final state from the initial conditions we assume that mass and energy are conserved,
that is, that each species keeps the initial integrated surface mass density and that energy is exchanged by collisions between the
two species but the total energy is conserved. As illustrated in the following text, this preparatory work is relatively simple and
straightforward, but already raises some interesting issues. It will be the basis of a follow-up paper in which time evolution will be
considered explicitly.

2 Formulation of the problem

Consider a self-gravitating slab model, associated with a Maxwellian distribution function

f = f (E) = A exp (−E/c2) , (1)

normalized to the mass density, so that A = ρ0/(
√

2πc), and expressed in terms of the specific energy related to the vertical degree
of freedom E = v2/2 + �(z). For simplicity, we may assume that the three-dimensional velocity distribution is also Maxwellian
and characterized by isotropic velocity dispersion. The quantities A and c are positive constants. The coordinate z denotes the
inhomogeneity direction of the slab model, which is taken to be symmetric with respect to the equatorial plane z = 0. Therefore,
�(z) = �(−z); we take �(0) = 0, so that ρ0 represents the mass density at z = 0.

The self-gravitating solution is found by solving the Poisson equation

d2�

dz2 = 4πG
∫ ∞

−∞
f dv , (2)

under the regularity boundary condition d�/dz = 0 at z = 0 and leads to the well-known result

ρ = ρ0
4

[exp (−z/z0) + exp (+z/z0)]2 = ρ0 exp (−�/c2) , (3)
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where a measure of the thickness of the slab is given by

z2
0 = c2

2πGρ0
. (4)

If we integrate the density ρ over the vertical coordinate, we obtain the total (projected) surface density σ and we can easily show
that 2ρ0z0 = σ . Note that, independently of the solution obtained, we may introduce different measures of the thickness. One
possibility is that of the length scale zm defined by the implicit relation

ρ(zm) = 1

2
ρ0 . (5)

For the self-gravitating solution recorded above, we have zm ≈ 0.88z0. Given the experience with studies of mass segregation in
spherical geometry (globular clusters; [18], [11]), another possibility is that of the half-mass length zMi defined as the value of the
vertical coordinate at which ∫ zMi

0
ρi dz = (1/2)

∫ ∞

0
ρi dz . (6)

For the one-component self-gravitating solution recorded above, we have zM ≈ 0.55z0.
Now imagine that the system is made of two species, heavy and light particles, with masses m1 > m2, and related distribution

functions f1 and f2, each of them of the form given in Eq. (1), that is, with coefficients A1, A2, c1, and c2.
In the purely collisionless case, a condition with A1 + A2 = A, and c1 = c2 = c would be a perfectly viable equilibrium solution

of the Vlasov-Poisson system of equations if we take for �(z) the result of Eq. (3). In particular, the two species would have the
same thermal speed (c1 = c2) and the same spatial distribution (with zm1 = zm2 ≈ 0.88z0). (This situation is that naturally expected
in stellar systems relaxed via collisionless mechanisms; [7].)

The problem is the following. If we take the condition just stated as an initial condition and we turn on the presence of weak
collisionality, is it possible to prove, at least qualitatively, that the time evolution induced by collisions leads to quasi-equilibria with
distinct properties, that is c1 < c2 and zm1 < zm2 (or the corresponding relation for other measures of the thickness of the two
species), consistent with the expectations that the system should tend toward equipartition and mass segregation? It is not obvious
that the two distribution functions would evolve by remaining Maxwellian, but we may first start by the assumption that they do,
study the evolution of the coefficients Ai and ci , with the related change in time of the self-gravitating solution, and then discuss
the merits of this simplifying assumption.

3 A direct solution

A first solution to the problem thus posed is obtained by addressing the issue of the final state that we may presume collisions would
tend to achieve asymptotically, in the long run. In other words, we may assume that collisions enforce a Maxwellian with a common
temperature (often called a condition of equipartition), so that the final state will be characterized by

c2
1 f

c2
2 f

= m2

m1
≡ 1

μ
. (7)

In addition, during the process we expect the number of particles and the total energy (per unit surface) to be conserved. In other
words:

A1 f

(√
2πc1 f

) ∫ ∞

−∞
exp [−� f (z)/c

2
1 f ]dz = ρ01 f

∫ ∞

−∞
exp [−� f (z)/c

2
1 f ]dz

= 2ρ01 f z01 f =
∫ ∞

−∞

∫ ∞

−∞
f1dvdz = 2ρ01z0 = σ1 , (8)

A2 f

(√
2πc2 f

) ∫ ∞

−∞
exp [−� f (z)/c

2
2 f ]dz = ρ02 f

∫ ∞

−∞
exp [−� f (z)/c

2
2 f ]dz

= 2ρ02 f z02 f =
∫ ∞

−∞

∫ ∞

−∞
f2dvdz = 2ρ02z0 = σ2 , (9)

where σi are the surface (projected) densities of the two species. Note that z01 f and z02 f are defined by Eqs. (8)–(9), whereas the
two relations 2ρ01z0 = σ1 and 2ρ02z0 = σ2 derive directly from the self-consistent solution Eq. (3).

We then argue that the transition between the two configurations occurs without change of energy

K f − K + W f − W = 0 . (10)
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Here the relevant kinetic energy K is defined naturally as

K =
∫ ∞

−∞

∫ ∞

−∞
1

2
v2 f1dvdz +

∫ ∞

−∞

∫ ∞

−∞
1

2
v2 f2dvdz . (11)

Equation (10) involves only the difference in gravitational energy between final and initial configuration, which allows us to eliminate
possible undesired divergences. In practice, we may refer to the standard definition in terms of the gravitational field so that

W f − W = − 1

8πG

∫ ∞

−∞

[(
d� f

dz

)2

−
(
d�

dz

)2
]
dz . (12)

Note that the initial and the final configuration are required to be characterized by the same (projected) surface density 2ρ0z0 and
thus by exactly the same (constant) gravitational field at large distances from the equatorial plane; such constant terms cancel out
so that no divergence occurs in the last equation.

Equations (7), (8), (9), and (10) set four conditions from which we can derive the final values of the four coefficients that define the
two distribution functions from the assumed initial values. Note that the self-consistent problem requires a solution for the potential
� f (z) which should be obtained from:

d2� f

dz2 = 4πG

(∫ ∞

−∞
f1 f dv +

∫ ∞

−∞
f2 f dv

)
(13)

with boundary conditions � f = 0 and d� f /dz = 0 at z = 0.
The one-component problem to determine the self-consistent potential of Eq. (3) has two scales (either A and c or ρ0 = ρ01 +ρ02

and z0) and no free dimensionless parameters. The two-component problem to determine the final self-consistent potential � f (z) is
a two-parameter problem (the scales can be kept as above); the two dimensionless parameters are the mass density ratio α ≡ σ1/σ2

and the particle mass ratio μ ≡ m1/m2 that define the adopted relative properties of the two components. In principle, this approach
can be extended to an arbitrary number N of components in which case there will be two scales and N −2 dimensionless parameters.

3.1 Note on the virial theorem

The hydrostatic equilibrium condition for the one-component isothermal slab model (in the notation used earlier in this text) is

c2 dρ

dz
= −ρ

d�

dz
. (14)

The standard procedure to derive the scalar virial theorem is to multiply the equation by z and integrate over the spatial coordinate,
that is ∫ ∞

−∞

(
zc2 dρ

dz

)
dz = −

∫ ∞

−∞

(
zρ

d�

dz

)
dz . (15)

Here we follow the general approach taken when dealing with the energy conservation of Eq. (10) and work on the difference
between the two equations that govern the hydrostatic equilibrium in the final and the initial configuration:

∫ ∞

−∞

(
zc2

1 f
dρ1 f

dz
+ zc2

2 f
dρ2 f

dz

)
dz −

∫ ∞

−∞

(
zc2 dρ1

dz
+ zc2 dρ2

dz

)
dz

= −
∫ ∞

−∞

[
z(ρ1 f + ρ2 f )

d� f

dz

]
dz +

∫ ∞

−∞

(
zρ

d�

dz

)
dz . (16)

The left-hand side integrated by parts by treating the individual elements as
∫ ∞

−∞

(
zc2 dρ

dz

)
dz = −c2

∫ ∞

−∞
ρdz (17)

gives −2(K f − K ).
The right-hand side can be written as

−
∫ ∞

−∞

(
zρ f

d� f

dz

)
dz +

∫ ∞

−∞

(
zρ

d�

dz

)
dz

= −
∫ ∞

−∞

[
z

1

4πG

1

2

d

dz

(
d� f

dz

)2
]
dz +

∫ ∞

−∞

[
z

1

4πG

1

2

d

dz

(
d�

dz

)2
]
dz

+ 1

8πG

∫ ∞

−∞

[(
d� f

dz

)2

−
(
d�

dz

)2
]
dz = −(W f − W ) . (18)
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In conclusion, energy conservation Eq. (10) can be expressed in terms of only the change in kinetic energy, which must vanish:

K f = K . (19)

In other words, once the virial constraint is imposed, the variation of kinetic energy and the variation of gravitational energy must
vanish separately.

The kinetic energy (per unit surface) for the initial state is readily calculated

K =
∫ ∞

−∞

∫ ∞

−∞
1

2
v2 f1dvdz +

∫ ∞

−∞

∫ ∞

−∞
1

2
v2 f2dvdz = ρ0z0c

2 = 2πGρ2
0 z

3
0 . (20)

4 Initial state and dimensionless formulation

We may use the initial conditions to set the problem in dimensionless form. In particular, we define the dimensionless potential as

ψ ≡ �

c2 , (21)

and the dimensionless vertical coordinate

ζ ≡ z

z0
, (22)

where z0 is given by Eq. (4). We assume that the two components in the initial state have the same thermal speed c1 = c2 = c and
are in relative mass proportion with

α ≡ ρ01

ρ02
= σ1

σ2
, (23)

where the total mass density in the equatorial plane is given by ρ0 = ρ01 +ρ02. Then the two-component case, with initial conditions
ρ1(0) = ρ01, ρ2(0) = ρ02, c1 = c2 = c is described in dimensional form by the two functions

f1 = ρ01√
2πc

exp
[−(v2/2 + �(z))/c2] (24)

and

f2 = ρ02√
2πc

exp
[−(v2/2 + �(z))/c2] . (25)

Thus, the Poisson equation for the initial state

d2�

dz2 = 4πG

(∫ ∞

−∞
f1dv +

∫ ∞

−∞
f2dv

)
(26)

in dimensionless form becomes

d2ψ

dζ 2 = 2 exp (−ψ) (27)

with boundary conditions ψ(0) = 0, (dψ/dζ )(0) = 0.

5 Final configuration

For the final configuration, let us introduce the two scale heights z01 f and z02 f for the two components in such a way that the
standard relations with the (projected) surface density 2ρ01 f z01 f = σ1 f and 2ρ02 f z02 f = σ2 f apply.

If we consider as initial state the one with c1 = c2 = c and A1 = αA2, following the definition of Eq. (23), we may refer to the
scales ρ0 and z0 and reduce the four conservation constraints to:

c2
1 f

c2
2 f

= 1

μ
, (28)

2ρ01 f z01 f = σ1 f = 2ρ01z0 , (29)

2ρ02 f z02 f = σ2 f = 2ρ02z0 , (30)

and

K = c2
1 f σ1 f + c2

2 f σ2 f = 2ρ0z0c
2 . (31)

123
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By combining the first three relations into the fourth and by dividing by 2ρ0z0, we get:

ρ01

ρ0
c2

1 f + ρ02

ρ0
c2

2 f = c2 . (32)

In other words, the final velocity dispersion of the first component is related to the initial conditions:

c2
1 f = 1 + α

α + μ
c2 . (33)

Note that if the mass ratio of the single particles μ ≡ m1/m2, as defined in Eq. (7), is larger than unity, the above relation requires,
as naturally expected, c1 f < c for any value of α.

The Poisson equation for the final configuration may be written in dimensionless form, by using the scales of the initial state,
that is A and c, or ρ0 and z0, so that it becomes an equation for the dimensionless potential ψ f = � f /c2 in the vertical coordinate
ζ = z/z0, subject to the same boundary conditions as for Eq. (27)

d2ψ f

dζ 2 = 2

[
ρ01 f

ρ0
exp (−a1ψ f ) + ρ02 f

ρ0
exp (−a2ψ f )

]
, (34)

where

a1 = c2

c2
1 f

= μ + α

1 + α
(35)

and

a2 = c2

c2
2 f

= 1

μ

(
μ + α

1 + α

)
. (36)

The two “free parameters” ρ01 f /ρ0 and ρ02 f /ρ0 are eventually determined by imposing the conditions of mass conservation
Eqs. (8)–(9).

Equation (34) can be integrated once by multiplying both sides by dψ f /dz:

1

2

(
dψ f

dζ

)2

= 2

[
ρ01 f

a1ρ0
+ ρ02 f

a2ρ0
− ρ01 f

a1ρ0
exp (−a1ψ f ) − ρ02 f

a2ρ0
exp (−a2ψ f )

]
, (37)

where the integration constant has been chosen in order to meet the imposed boundary conditions at ζ = 0. With simpler notation,
we may rewrite this equation as

1

2

(
dψ f

dζ

)2

= 2
[
b1 + b2 − b1 exp (−a1ψ f ) − b2 exp (−a2ψ f )

]
, (38)

where a1 > 0 and a2 > 0 are assigned parameters whereas b1 > 0 and b2 > 0 are determined by imposing the conditions of mass
conservation Eqs. (8)–(9):

b1

∫ ∞

0
exp (−a1ψ f )dζ = σ1

2a1ρ0z0
= α

μ + α
(39)

and

b2

∫ ∞

0
exp (−a2ψ f )dζ = σ2

2a2ρ0z0
= μ

μ + α
. (40)

The mass conservation constraints Eqs. (29)–(30) lead to the following alternative definitions of the parameters b1 and b2 in
terms of the two different thicknesses that characterize the two species in the final state:

b1 = α

μ + α

(
z0

z01 f

)
(41)

and

b2 = μ

μ + α

(
z0

z02 f

)
. (42)

The last two expressions restate what is recorded in Eqs. (39)–(40) in terms of the definite integrals in the variable ζ . On the other
hand, given the choice of initial conditions, with a1 = a2 = 1, the Gauss theorem and the conservation of mass also require that
b1 + b2 = 1. Therefore, a simple linear relation is expected to hold in the plane of the inverse dimensionless thicknesses:

α

μ + α

(
z0

z01 f

)
+ μ

μ + α

(
z0

z02 f

)
= 1 . (43)

123
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Fig. 1 Final dimensionless mass
density profiles ρ1 f /ρ0 and
ρ2 f /ρ0 for μ = 5 and α = 1/2

Fig. 2 Thickness ratio z01 f /z02 f
versus μ for α = 1/2

The problem is solved by computing the “eigenvalue” b1 = b1(α, μ). After this is done, from Eqs. (41)–(42) we obtain the thickness
ratio:

z01 f

z02 f
= α

μ

1 − b1

b1
, (44)

which, for μ > 1, is expected to be smaller than unity.
Equation (38) can be solved by quadrature. However, in the absence of an explicit solution as is available for the initial config-

uration, because of the vanishing derivative boundary condition at ζ = 0, it is more convenient to address the integration of the
second-order ODE Eq. (34).

In the absence of other strategies to solve this unusual nonlinear integral eigenvalue problem we may proceed by iteration. From
the initial configuration, we have an initial seed for the solution �(z) given by Eq. (3). For the assigned values of α and μ, we insert
this seed solution in Eqs. (39)–(40) and obtain b(0)

1 and b(0)
2 , which we insert in Eq. (34) to obtain �(1)(z). This allows us to update

the parameters b1 and b2. Convergence is expected in a few steps.
An example of a case with significant mass segregation is shown in Fig. 1, where the normalized mass density profiles are plotted

versus the normalized variable ζ for μ = 5 and α = 1/2.
The dependence of the thickness ratio z01 f /z02 f on the mass ratio μ for fixed α = 1/2 is shown in Fig. 2. It indicates a rapid

decrease of the scale height of the heavier mass component that tends to flatten out for large values of μ.

5.1 Subtleties in the definition of the gravitational energy

In the above discussion, we have carried out our argument by referring explicitly to the change in gravitational energy, rather than
the direct calculation of the gravitational energy for the initial and for the final configuration. We were prompted to do so by some
apparent inconsistencies that would show up if we used other commonly considered definitions of gravitational energy, which can
be used safely for problems in which the potential can be set to vanish at infinity (which is not the case here). In particular, we note
that, for the initial state defined by Eq. (3), the quantity

1

2

∫ ∞

−∞
ρ�dz = 1

2

∫ ∞

−∞

[∫ ∞

−∞
( f1 + f2)dv

]
�dz

= ρ0z0c
2
∫ ∞

0

4

[exp (−ζ ) + exp (+ζ )]2 ψ(ζ )dζ = wρ0z0c
2 , (45)

where w = 2(1 − ln 2) ≈ 0.6137. Taking this as a definition of (positive) gravitational energy would be incompatible with the
virial constraint derived earlier in this note.

123
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For systems with finite mass under the condition that the potential vanishes at large distances, an alternative definition of
gravitational energy Wvir emerges from the standard derivation of the virial theorem, which starts from taking the scalar product of
the force term and the position vector (for a general discussion in the context of tensor virial equations, see [19]). In our case (see
Eq. 14), this definition would give

Wvir = −
∫ ∞

−∞
zρ

d�

dz
dz = −2ρ0z0c

2 . (46)

The reason why the two expressions Eqs. (45) and (46) are different is that in the present 1-dimensional model the potential does not
vanish at infinity and some integrations by parts that are normally carried out to relate Wvir to other expressions of the gravitational
energy cannot be performed here.

Therefore, the procedure adopted in this paper is based on the technique of computing the difference between the final and the
initial gravitational energies, as defined in terms of the integral of the energy density given by the square of the gravitational fields,
in such a way as to cancel the undesired divergent terms.

This can also be checked on the final solution that we provide. Starting from Eq. (27), we obtain

1

2

(
dψ

dζ

)2

= 2
[
1 − exp (−ψ)

]
. (47)

Then, from Eq. (38), we have

1

2

∫ ∞

0
dζ

[(
dψ f

dζ

)2

−
(

dψ

dζ

)2
]

= −2
∫ ∞

0
dζ

[
b1 exp (−a1ψ f ) + b2 exp (−a2ψ f ) − exp (−ψ)

]
. (48)

Finally, after inserting Eqs. (39)–(40) into the r.h.s. of Eq. (48), we find

1

2

∫ ∞

0
dζ

[(
dψ f

dζ

)2

−
(

dψ

dζ

)2
]

= 0 . (49)

5.2 The special case μ = 2

For μ = 2 and free α, Eq. (40) can be solved for b2 (with b2 = 1 − b1) by performing an elementary integration in terms of the
variable exp (−a2ψ f ) and using Eq. (38) for the change of variables. We obtain

b2

∫ ∞

0
exp (−a2ψ f )dζ = b2

2a2

∫ 1

0

dξ[
1 − b2ξ − (1 − b2)ξ2

]1/2 = 1

1 + α/2
, (50)

which does not require the explicit knowledge of ψ f . Recalling that a2 = (1 + α/2)/(1 + α) and performing the integration over
ξ , we find the following implicit relationship between b2 and α

b2
π/2 − arcsin [b2/(2 − b2)]

(1 − b2)1/2 = 2

1 + α
. (51)

Using this relationship in Eqs. (41, 42) we can draw, see Fig. 3, the dependence of the normalized thickness scales z01 f /z0 and
z02 f /z0 on the mass density ratio α for μ = 2.

For small α most of the mass is in the light component and, as expected, z02 f /z0 ∼ 1, whereas the smaller, heavier component
is segregated at z01 f /z0 < 1. For large values of α mass segregation is reversed with z01 f /z0 ∼ 1 and z02 f /z0 > 1.

6 Concluding remarks

In this preparatory paper, in a simple 1-dimensional model, we have formulated the problem of calculating the final self-gravitating
configuration subject to equipartition and mass segregation as expected to be induced by collisional processes starting from an initial
condition of well-mixed stellar populations with identical spatial distributions and velocity dispersions. The problem has been solved
for the simple case of two components, light and heavy stars. The case in which the heavy stars are twice as massive as the light
stars has been shown to admit a simple analytic solution. The adopted procedure can be generalized to the case of N components
with N different masses.

This short paper opens the way to a comparison with either analytical investigations or numerical simulations in which the
evolution induced by collisionality is followed explicitly, in the context of self-consistent stellar dynamics (the Vlasov–Poisson
system of equations, modified by the presence of weak collisions). A similar analysis might then be carried out in the different
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Fig. 3 Dependence of the
normalized thickness scales
z01 f /z0 and z02 f /z0 on α for
μ = 2

environment of spherical stellar systems, to bring out analogies and differences that are likely to occur when a different geometry
is considered. Indeed, the interest in the present straightforward study is partly due to the fact that some subtleties in the definition
of gravitational energy and in the derivation of the virial constraint for the adopted 1-dimensional problem have been identified and
discussed. For the spherical case, some curious properties in the solution of a problem similar to the one addressed here had been
noted earlier (N.C. Amorisco and L. Ciotti, 2010, private communication).
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