
Robust and scalable adaptive BDDC preconditioners for virtual element
discretizations of elliptic partial differential equations in mixed form

Franco Dassi∗,a,1, Stefano Zampinib,1, S. Scacchic,1

aDipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, Via Roberto Cozzi 55 - 20125 Milano,
Italy

bExtreme Computing Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
cDipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy

Abstract

The Virtual Element Method (VEM) is a recent numerical technology for the solution of partial differential
equations on computational grids constituted by polygonal or polyhedral elements of very general shape. The
aim of this work is to develop effective linear solvers for a general order VEM approximation designed to approxi-
mate three-dimensional scalar elliptic equations in mixed form. The proposed Balancing Domain Decomposition
by Constraints (BDDC) preconditioner allows to use conjugate gradient iterations, albeit the algebraic linear
systems arising from the discretization of the problem are indefinite, ill-conditioned, and of saddle point nature.
The condition number of the resulting positive definite preconditioned system is adaptively controlled by means
of deluxe scaling operators and suitable local generalized eigenvalue problems for the selection of optimal primal
constraints. Numerical results confirm the theoretical estimates and the reliability of the adaptive procedure,
with the experimental condition numbers always very close to the prescribed adaptive tolerance parameter.
The scalability and quasi-optimality of the preconditioner are demonstrated, and the performances of the pro-
posed solver are compared with state-of-the-art parallel direct solvers and block preconditioning techniques in
a distributed memory setting.

Key words: Virtual Element Method, Saddle-point linear systems, Parallel computing, Domain
Decomposition, BDDC method.

AMS subject classifications: 65F08, 65N30, 65N35, 65N55

1. Introduction

Several physical phenomena in computational mechanics and fluid-dynamics are described by systems of
Partial Differential Equations (PDE) that, upon time and space discretization, yield the solution of saddle point
algebraic linear systems, which are indefinite and ill-conditioned. Consequently, solving such linear systems with
iterative methods (see e.g. [49, 63]) requires the development of robust and effective preconditioners, usually
based on approximate block factorization, see [4, 32, 50, 17, 40, 5].

In recent years, the interest of an increasing number of researchers has focused on the development of
numerical methods for the approximation of PDEs on polygonal or polyhedral grids, see e.g. [14]. Among the
different methodologies, the Virtual Element Method (VEM), introduced in the pioneering paper [10], represents
a generalization of the Finite Element Method that can easily handle general polytopal meshes. So far, VEM
has been analyzed for mixed formulation of elliptic problems [22, 13, 28], Stokes [15], parabolic equations
[54], discrete fracture networks [16] and several further applications. Different variants of the VEM have been
proposed and analysed: H(div) and H(curl)-conforming [12], serendipity [11] and non-conforming [6] VEM.

In the VEM literature only a few studies have focused on the conditioning of the stiffness matrix resulting
from VEM discretizations (see [41, 26]) and on the construction and analysis of preconditioners for VEM
approximations of PDEs (see [18, 3, 23, 24, 19]). In our previous works [28, 27], we have developed parallel
block preconditioners for three-dimensional VEM approximations of several saddle point PDEs. However, while
such block solvers are very effective in case of low order approximations, their performance deteriorates for high
order discretizations. Several Domain Decomposition preconditioners have also been proposed for finite element
discretizations of saddle point problems. In the context of finite element approximations of saddle point PDEs,

∗Corresponding author
Email addresses: franco.dassi@unimib.it (Franco Dassi), stefano.zampini@kaust.edu.sa (Stefano Zampini),

simone.scacchi@unimi.it (S. Scacchi)
1Member of INdAM-GNCS research group

Preprint submitted to Elsevier December 8, 2021

overlapping preconditioners have been developed for mixed formulation of linear elasticity and Stokes equations
[35, 36, 45, 33, 34] and for scalar elliptic equations in mixed form [42, 43], while non-overlapping preconditioners
have been developed for Stokes equations [47], almost incompressible elasticity [48] and scalar elliptic equations
in mixed form [61]. Within non-overlapping methods, the choices of scaling functions and primal constraints
define the coarse approximation, which is crucial to obtain the quasi-optimality (sublinear dependence on the
number of degrees of freedom) and scalability (independence of the number of subdomains) of the algorithm.

In this work, we will consider the Balancing Domain Decomposition by Constraints (BDDC) precondition-
ers [30] that belong to the non-overlapping class. Recently, a considerable effort has been put into developing
multilevel [53] and adaptive [25] methods for the selection of primal constraints for BDDC algorithms, in or-
der to improve their effectiveness by adaptively constructing the coarse primal problem. In [61], an effective
adaptive BDDC algorithm has been proposed for finite element discretizations of scalar elliptic equations in
mixed form; in this work, we extend the solver proposed in [61] to three-dimensional VEM approximations of
scalar elliptic equations in mixed form. Several parallel numerical tests show the optimality, scalability and
robustness of the adaptive BDDC preconditioner with respect to the VEM approximation order. The efficiency
of the BDDC preconditioner is compared with that of block preconditioners as well as with the parallel direct
solvers MUMPS [1, 2] and Pardiso [29, 55, 37].

The rest of the paper is organized as follows. In Section 2 we introduce the variational formulation of
the saddle point problem considered. Section 3 contains a brief description of the three-dimensional VEM
discretizations employed. Section 4, introduces the adaptive BDDC preconditioner, while numerical experiments
are reported in Section 5. Conclusions are drawn in Section 6.

2. Model problem: elliptic equation in mixed form

The object of this work is the solution of the variational problem arising from the mixed formulation of a
scalar elliptic equation in three dimension. Let Ω be a bounded Lipschitz domain in R3, whose boundary is
denoted by ∂Ω. We define the function spaces

V := {u ∈ H(div ,Ω) : u · n = uN on ∂Ω},

and

Q :=

{
q ∈ L2(Ω) :

∫
Ω

q dΩ = 0

}
,

where H(div ,Ω) is the space of vector-valued functions such that u and div (u) belong to [L2(Ω)]3 and L2(Ω),
respectively, and uN is the given Neumann datum.

We are interested in the solution of the following variational problem:
find (u, p) ∈ V ×Q :

a(u,v)− b(v, p) = 0 ∀v ∈ V

b(u, q) =

∫
Ω

f q dΩ ∀q ∈ Q,
(1)

where

a(u,v) :=

∫
Ω

ν u · v dΩ,

b(u, q) :=

∫
Ω

div (u) q dΩ,

(2)

with f a given function in L2(Ω) satisfying the compatibility condition
∫

Ω
f dΩ = 0, and ν a positive, piece-wise

constant, scalar function in L∞(Ω). Symmetric positive definite diffusivity tensors can be considered as well.
Problem (1) arises in the context of multiphase incompressible flow through porous media, see e.g. [20].

Functions u and p are usually called velocity and pressure. We refer to [20] for the mathematical analysis
of such problem. We note here that, in order to keep the presentation simple and concise, we only consider
essential boundary conditions on the velocity variable. The techniques outlined in this paper easily adapt to
the case of mixed boundary conditions.

3. Virtual element discretization

Let Ωh be a polyhedral discretization of a domain Ω ⊂ R3. In order to solve the problem defined in
Equation (1) we follow a standard VEM approach; we first define local spaces on each polyhedron P ∈ Ωh and
then a global one by gluing together the local spaces. In what follows we give a brief description of the local
discretization spaces. For further theoretical details and convergence properties, we refer the reader to [22]; for
implementation details on the discretization technique we suggest [28].

2

3.1. Virtual element spaces

Given a polyhedron P , the discrete velocity space is defined as

Vk
h(P) :=

{
vh ∈ H(div ;P) ∩H(curl;P) : vh · nF ∈ Pk(F) ∀F ∈ ∂P,

div (vh) ∈ Pk−1(P), curl(vh) ∈ [Pk−1(P)]
3

}
.

(3)

The following degrees of freedom uniquely identify a function in Vk
h(P):

• normal face moments ∫
f

(vh · n) pk df ∀pk ∈ Pk(F) and ∀f ∈ ∂P ,

• internal gradient moments ∫
P

vh · ∇pk−1 dP ∀pk ∈ Pk−1(P) ,

• internal cross moments ∫
P

vh · (x ∧ pk−1) dP ∀pk−1 ∈ [Pk−1(P)]
3
.

where x = (x, y, z)t.

Inside each polyhedron, we approximate the pressure variable via a polynomial of degree k − 1

Qh(P) :=

{
qh ∈ L2(P) : qh ∈ Pk−1(P)

}
,

that is uniquely determined by the following degrees of freedom

• internal pressure moments ∫
P

qh pk−1 dP ∀pk−1 ∈ Pk−1(P) . (4)

We then proceed in a standard way and we glue these local spaces together in order to build the global velocity
and pressure spaces, that will be denoted in what follows as Vk

h(Ωh) and Qh(Ωh), respectively, i.e.

Vk
h(Ωh) = {vh ∈ V : vh|P ∈ Vk

h(P)}

and
Qk

h(Ωh) = {qh ∈ L2(Ω) : qh|P ∈ Qh(P)}.
Starting from the definition of the local spaces, we observe that the pressure is a piece-wise discontinuous
polynomial of degree k − 1, while the vector fields in Vk

h(Ωh) are only continuous in their normal component
across each face of the polyhedral cells of the mesh. Moreover, the pressure is a polynomial that is computable
from its degrees of freedom while the velocity field is not. In other words, the velocity is a virtual function
that we do not know how, and do not want, to compute explicitly. Although vh is virtual, there are some
useful quantities that we can compute starting from its degrees of freedom. In particular, we can compute
the polynomial representation of the virtual function on each mesh face and div (vh) in the interior of each
polyhedron [28]; this is crucial for the well-posedness of our preconditioning strategy.

3.2. Discrete bilinear forms

Here we discuss the discretization of the bi-linear forms defined in Equation (2). The operator b(uh, qh) can
be computed on each polyhedron because both qh and div (uh) are piece-wise polynomials. The bi-linear form
a(u,v) is not computable since it requires knowledge of the velocity field inside each polyhedron, and we thus
substitute it with a suitable approximation ah,P that is computable from the degrees of freedom

a(u,v) ≈
∑

P∈Ωh

ah,P (uh,vh) ,

where

ah,P (vh,wh) :=

∫
P

ν(x) Π0,P
k uh ·Π0,P

k vh dP︸ ︷︷ ︸
(i)

+ sP (uh −Π0,P
k uh,vh −Π0,P

k vh)︸ ︷︷ ︸
(ii)

, (5)

In the above definition we distinguish two parts:

3

i) The consistency part that is based on the L2-projection operator Π0,P
k : Vk

h(P) → [Pk(P)]3 defined
from the following identity: ∫

P

Π0,P
k vh · pk dP =

∫
P

vh · pk dP . (6)

The left-hand side of such equation involves polynomials, while the right-hand side involves virtual func-
tions; the computability of the latter expression follows by using the polynomial identity [28]

pk = ∇pk+1 + x ∧ pk−1 ,

and integration by parts.
ii) The stabilization part where sP is any symmetric and positive definite bi-linear form which scales as

the continuous bi-linear form a(·, ·). In other words, we require that there exists two positive constants
α∗ and α∗, independent on the diameter of the polyhedron P , such that

α∗a(vh,vh) ≤ sP (vh,vh) ≤ α∗a(vh,vh) , ∀vh ∈ Vk
h(P) .

While there are many choices in literature, see e.g., [9, 26, 41, 10, 8, 13], in this paper we use the so-called
“dofi-dofi” stabilization [8, 13] and consider the Euclidean scalar product associated with the degrees
of freedom of Vk

h(P) multiplied by the volume of P and the value of ν(x) at its barycenter

sP (uh, vh) = τ ν(xP) |P |
#dofP∑
i=1

dofi(uh) dofi(vh) , (7)

where #dofP is the number of degrees of freedom associated with Vk
h(P), dofi : Vk

h(P) → R the linear
functional associating functions in Vk

h(P) with the value of their i-th degree of freedom and τ > 0 is a
suitable scalar parameter.

3.3. Discrete mixed problem
We can then define the discrete VEM problem as

find (uh, ph) ∈ Vk
h(Ωh)×Qh(Ωh) :

ah(uh,vh)− b(vh, ph) = 0 ∀v ∈ Vk
h(Ωh)

b(uh, qh) =

∫
Ωh

f qh dΩh ∀qh ∈ Qh(Ωh) ,

(8)

or equivalently in matrix form [
A BT

B 0

] [
uh

ph

]
=

[
0
fh

]
. (9)

Note that the left-hand side of the above equation is singular, with a null-space spanned by the constant
functions on the pressure. If we consider a polyhedral mesh Ωh where all polyhedrons are uniformly star
shaped with respect to a ball and where the edge/face diameters are comparable with respect to the polyhedron
diameters, Problem (8) has a unique solution (uh, ph) ∈ Vk

h(Ωh)×Qh(Ωh) and, assuming enough regularity on
the solution, the following error estimates hold

‖u− uh‖0 ≤ C hk+1‖u‖k+1 ,

‖p− ph‖0 ≤ C hk(‖p‖k + ‖u‖k) ,

‖div(u− uh)‖0 ≤ C hk‖f‖k ,

where C is a constant independent on the mesh size, ‖ · ‖0 is the standard L2(Ω) norm and ‖ · ‖k is the norm
associated with Hk(Ω). We refer the reader to [54, 13] for the theoretical proof of such estimate and to [28] for
numerical verification.

4. Balancing Domain Decomposition by Constraints solver

Balancing Domain Decomposition by Constraints methods [30] are powerful methods to construct precon-
ditioners for discrete systems arising from the discretization of partial differential equations; for a variational
description of the method, see e.g. [21]. The robustness of the methods extends to div-conforming [44] and
curl-conforming [31, 59, 62] discretization spaces, as well as to IsoGeometric Analysis [46]. For a recent review,
see [56]; for algorithmic details see [58, 60].

In this work, we will consider the extension of these methods to saddle point problems with discontinuous
pressure spaces first presented in [38, 52], and later extended to unstructured finite element computations and
arbitrary number of levels in [61]. In what follows, we will present a concise description of their theoretical
aspects by focusing on the VEM discretization; for further algorithmic details, see [61]. For solvers designed
for continuous discretizations of the pressure space, the interested reader is referred to [57] and the references
therein.

4

Figure 1: One subdomain with subdomain faces high-lighted in green and red; subdomain boundary face is in gray.

4.1. Non-overlapping domain decomposition

Within the framework of iterative sub-structuring [51] we decompose Ωh into N non-overlapping connected
subdomains

Ωh =

N⋃
i=1

Ωi, Γ =
⋃
i 6=j

∂Ωj ∩ ∂Ωi,

where each Ωi is a collection of polyhedrons, and where Γ denotes the interface among subdomains.
We then consider the splitting of Vh(Ωh) into a direct sum of two subspaces VI ⊕VΓ. VI contains virtual

functions identified by degrees of freedom that are associated to only one of the Ωi, whereas the virtual functions
in VΓ are those associated with degrees of freedom shared by two subdomains, see Section 3.1. We will use
the term subdomain face to identify the union of the polyhedral faces of the mesh that are shared by two given
subdomains. See e.g. Figure 1 for an example.

Considering a change of basis of the pressure approximation space

Qh = QI ⊕Q0, Q0 =

N∏
i=1

{qh ∈ Qh(Ωi) | qh constant in Ωi},

and the computability of b(uh, qh), we can use the divergence theorem and rewrite Equation (9) as
AII BT

II AIΓ 0
BII 0 BIΓ 0
AT

IΓ BT
IΓ AΓΓ BT

0Γ

0 0 B0Γ 0




uI

pI

uΓ

p0

 =


0
fΓ
0
f0

 . (10)

Our preconditioning strategy considers a block factorization of the above linear system[
I −K−1

II KIΓ

0 I

] [
K−1

II 0
0 S†

] [
I 0

−KT
IΓK

−1
II I

]
, (11)

where

KIΓ =

[
AIΓ 0
BIΓ 0

]
, KII =

[
AII BT

II

BII 0

]
, SΓ = AΓΓ−

[
AIΓ

BIΓ

]T [
AII BT

II

BII 0

] [
AIΓ

BIΓ

]
, S =

[
SΓ BT

0Γ

B0Γ 0

]
.

(12)
We note here that, recalling that AII and [

AII AIΓ

AT
IΓ AΓΓ

]

5

are positive definite and due to their saddle point structure, the matrices AII BT
II AIΓ

BII 0 BIΓ

AT
IΓ BT

IΓ AΓΓ

 and

[
AII BT

II

BII 0

]
,

have the same number of negative eigenvalues. Then, by Sylvester’s law of inertia, the matrices AII BT
II AIΓ

BII 0 BIΓ

AT
IΓ BT

IΓ AΓΓ

 and

 AII BT
II 0

BII 0 0
0 0 SΓ

 ,
have the same number of positive and negative eigenvalues, from which it follows that the velocity Schur
complement SΓ has only positive eigenvalues, thus it is positive definite. The operator K−1

II (which represents
the solution of decoupled subdomain problems) is well defined since the spaceQI does not contain any subdomain
constant function. On the other hand, the saddle point Schur complement S is singular, with a kernel spanned
by the representation of the pressure constant function in Q0. For the definition of its pseudo-inverse, we require
that the application of S† will have a null component in such a kernel.

Within the preconditioner, the pseudo-inverse of the saddle point Schur complement S† is replaced by the
action of a suitable preconditioner, resulting in the preconditioner

M−1 =

[
I −K−1

II KIΓ

0 I

] [
K−1

II 0
0 M−1

Γ

] [
I 0

−KT
IΓK

−1
II I

]
. (13)

Since subdomain interior problems are solved exactly, the spectrum of the global operator preconditioned by
M−1 and the spectrum of M−1

Γ S are the same.

4.2. BDDC methods for saddle point Schur complement

BDDC methods construct preconditioners for the interface Schur complement operator S by relaxing conti-
nuity requirements of the operator; specifically, these methods are completely characterized by (cf. [39]):

• the definition of a partially assembled space ṼΓ, direct sum of a primal, continuous, space VΠ and a dual,
discontinuous space V∆, such that VΓ ⊂ ṼΓ = V∆ ⊕VΠ

• a scaling operator D : VΓ → ṼΓ such that D′D = I; here D′ denotes the adjoint of D, and it will be
referred to as averaging operator.

In this work we use the so-called deluxe variant of the scaling operator, which has proven robust for vector field
problems in H(curl) [31, 59, 62], H(div) [44], as well as in the context of IsoGeometric Analysis [46].

A crucial observation for the construction of our preconditioner is that the saddle point problem S is
symmetric positive definite on {VΓ ∩ker (B0Γ)}×Q0. Following [52], we then require that the virtual functions
in the dual space satisfy the so-called no-net-flux condition∫

∂Ωi

v∆ · n = 0, ∀ v∆ ∈ V∆. (14)

Since we have assumed that each Ωi is connected, in our algorithm we will consider one constraint for each
subdomain face F ∫

F

v∆ · n = 0.

The quadrature weights associated with the above constraint can be computed by considering the linear func-
tional b(·, q0) restricted to those virtual functions in Vh represented by nonzero degrees of freedom on F only,
and where q0 ∈ Q0 is defined as q0 = 1 in Ωi and zero otherwise. In turn, the virtual functions in the primal
space will be characterized by the continuity of∫

F

vΠ · n, ∀ vΠ ∈ VΠ, ∀F ⊂ Γ. (15)

for each subdomain face F.
Using the divergence theorem, it is easy to see that the VEM problem on {VI ⊕ ṼΓ} × {QI ⊕Q0} can be

recast as 
AII BT

II AI∆ AIΠ 0
BII 0 BI∆ BIΠ 0
AT

I∆ BT
I∆ A∆∆ A∆Π 0

AT
IΠ BT

IΠ AT
∆Π AΠΠ BT

0Π

0 0 0 B0Π 0

 . (16)

6

Eliminating the degrees of freedom of VI×QI we can define a partially assembled Schur complement on ṼΓ×Q0S∆∆ S∆Π 0
ST

∆Π SΠΠ BT
0Π

0 B0Π 0

 , S̃Γ =

[
S∆∆ S∆Π

ST
∆Π SΠΠ

]

and define the BDDC preconditioner as
M−1

Γ = D′S̃†D. (17)

By using block factorization arguments, the action of S̃† can be implemented as additive combination of un-
coupled subdomain solvers defined on {VI ⊕V∆} × QI and the solution of a coarse saddle point problem on
VΠ ×Q0 which inherits the kernel from S.

It is easy to see that the preconditioned operator M−1
Γ S is positive definite on {VΓ ∩ ker (B0Γ)} × Q0 by

requiring that the average operator preserves fluxes (15) of the virtual functions in ṼΓ [61, Lemma 3.5]. We can
then solve the VEM linear system (9) by splitting the velocity solution as uh = u∗h + uh, where u∗h is defined
by its components in VΓ and VI as[

u∗h,Γ
∗

]
= M−1

Γ

[
0

fh,0

]
, (u∗h)I = −K−1

II KIΓu∗h,Γ,

and use conjugate gradient iterations to solve the deflated system[
A BT

B 0

] [
uh

ph

]
=

[
−Au∗h

fh −Bu∗h

]
. (18)

Convergence rate estimates for BDDC preconditioned conjugate gradient methods are completely character-
ized by the norm of the average operator ||D′||S̃Γ

; for the finite element method, the latter is usually bounded

from above by C(1 + log(H/h)2 provided the proper primal space has been designed; here, C is a constant in-
dependent of the characteristic mesh size h, the diameter of the subdomains H, and the number of subdomains
N . Proving such result for the virtual element method requires two-grid estimates and, more importantly, a
face lemma, see e.g. [61, Section 4]; we do not provide such theoretical bound in this work. On the other
hand, unravelling the expression for ||D′||S̃Γ

, we can devise generalized eigenvalue problems, defined on each
subdomain face F, to enrich the minimal primal space VΠ characterized by Eq. (15). In particular, given
any νtol ∈ [1,∞), we can algebraically construct an enriched primal space such that condition number of the
preconditioned system will be bounded from above by νtol times a constant independent on h, H and N .

Specifically, given a subdomain face F shared by subdomains i and j, and the two subdomain Schur comple-
ment matrices S(i) and S(j) associated to the subdomain interfaces Γi and Γj , we solve the following generalized
eigenvalue problem (separately on each subdomain face)

S̃
(i)
F∆F∆

: S̃
(j)
F∆F∆

ψ = ν S
(i)
F∆F∆

: S
(j)
F∆F∆

ψ.

where A : B = (A−1 +B−1)−1. Here F∆ denotes the set of dual degrees of freedom on the face and

S̃
(i)
F∆F∆

= S
(i)
F∆F∆

− S(i)T
F ′F∆

S
(i)−1
F ′F ′ S

(i)
F ′F∆

,

with F ′ = Γi \ F∆. The elements of the primal space are obtained as S
(i)
F∆F∆

: S
(j)
F∆F∆

Ψ, where Ψ is the matrix
formed column-wise by those eigenvectors associated with eigenvalues smaller than a fixed tolerance 1/νtol.
We note here that the choice of deluxe scaling is crucial for the construction of efficient primal spaces: for a
comparison of primal spaces obtained with deluxe and diagonal scaling techniques in the context of a mixed
discretization, see [61].

To summarize, we can state the following theorem; for technical details and theoretical proofs, see [61,
Sections 3-4] and the references therein.

Theorem 1. Let the dual space satisfy the no-net-flux condition given in (14) and let the average operator
preserve subdomain normal fluxes as in (15). Then, M−1

Γ S is symmetric positive definite on the subspace
{VΓ ∩ ker (B0Γ)} × Q0; the minimum eigenvalue is 1 and the maximum eigenvalue is bounded from above by
||D′||S̃Γ

, with the norm taken on V∆. In addition, we can algebraically construct a primal space VΠ such that

κ(M−1
Γ S) ≤ Cνtol, ∀νtol ∈ [1,∞),

where C is independent of N , h, and H.

7

5. Numerical results

In this Section we report numerical results to validate the adapted BDDC algorithm for solving the model
problem (1) using the VEM discretization described in Section 2. We will consider three types of polyhedral
meshes: hexahedral (Cube), octahedral (Octa) or Voronoi (CVT), see Figure 2 for an example. In what
follows, we will denote by k the degree of approximation of the VEM discretization. Except otherwise stated,
in all numerical tests we choose τ = 1 as stabilitazion parameter in the bilinear form sP (·, ·) defined in (7).

Our parallel solver is based on the Portable and Extensible Toolkit for Scientific computing (PETSc) library
from Argonne National Laboratory [7], which is built on top of the MPI standard. PETSc offers advanced
data structures and routines for the parallel solution of PDEs, from basic vector and matrix operations to more
complex linear and nonlinear equation solvers. In our code, each subdomain is assigned to a different MPI
process. For details on the implementation of the BDDC method in PETSc, see [58, 61].

The BDDC algorithms are employed as preconditioners for the deflated system given in (18), which is solved
by the conjugate gradient (CG) method, using as a stopping criterion a 10−8 reduction of the l2 norm of the
relative residual. We will use νtol = ∞ to denote the BDDC algorithm with minimal primal space consisting
only of functions with continous normal fluxes across the subdomain interface.

All the numerical tests presented in the following have been performed on the Linux cluster INDACO
(www.indaco.unimi.it) of the University of Milan, constituted by 16 nodes, each carrying 2 INTEL XEON E5-
2683 V4 processors at 2.1 GHz, with 16 cores each. In the final section, the BDDC algorithms are compared
against our previous block-diagonal preconditioner Block-Schur [28], and the parallel direct solvers MUMPS
[1, 2] and Pardiso [29, 55, 37].

Figure 2: Sections of hexahedral (Cube, left), octahedral (Octa, middle) and Voronoi (CVT, right) meshes of the unit cube.

The main computational costs associated with the adaptive procedure consist in the explicit computation of
the subdomain Schur complement matrices and in their explicit inversion. Local Schur complement matrices,
which are also needed to construct the operators involved in the deluxe scaling procedure, are obtained as a
by-product of the factorization of the subdomain problems; their explicit computation thus adds very little on
the computational requirements of the overall algorithm. The complexity of the inversion task is independent
on the type of discretization used, and it only depends cubically on the size of these dense local matrices. These
Cholesky based inversions are the backbone of many numerical workflows, and high-performant implementations
are available for barely all computing architectures. The solution of the eigenvalue problems, with dense left-
and right-hand sides, also posses a cubical complexity, but it usually requires a fraction of the time needed by the
subdomain inversion since the sizes of the submatrices involved are smaller. For additional details, including
computational timings, see [58]. Besides these considerations, the analysis of the computational impact of
using the adaptive procedure within the overall BDDC algorithm can only be assessed in the context of a real
application. In particular, how the choice of νtol will affect the approximation properties of the primal space
will strongly depend on the mesh, on its decomposition, and on the distribution of the material coefficients;
moreover, the effect of choosing a tighter value (i.e. close to 1) on computational timings will depend on how
many times the preconditioner can be reused between successive applications. This kind of analysis is outside
the scope of this study.

5.1. Test 1: varying the adaptive tolerance

With the first set of numerical results we report about the reliability of the adaptive procedure for the
selection of primal constraints. We will consider νtol = 2, 5, 10,∞ as tolerances and test the algorithm against
different meshes with different number of elements and approximation degree, as reported in Table 1. Figure 3
summarizes the results.

8

Cube Octa CVT
k
1
2
3

nel dofs
32768 435200
13824 508032
8000 612000

nel dofs
30375 453600
9000 361200
4608 378880

nel dofs
16000 388042
8000 465720
4000 445950

Table 1: Details of the meshes used in Section 5.1 and 5.2.

Figure 3: Test 1. Ratio (top panel) between the number of primal constraints (NΠ) and the total number of interface dofs (NΓ)
and spectral condition number of the preconditioned system (cond, bottom panel) as a function of the tolerance νtol in the adaptive
BDDC algorithm. The number of processors is kept fixed at 32.

We first observe that the adaptive procedure works as expected, because the spectral condition number (cond)
of the preconditioned system is always close to the prescribed tolerance νtol. The number of selected primal
constraints NΠ increases as νtol is decreased, with a corresponding decrease in the number of CG iterations
(not shown) and condition number. Increasing the VEM degree yields a strong increase of primal constraints,
even by a factor of ten in some cases, but both CG iterations and condition number remain bounded. These
considerations hold for the three types of polyhedral meshes considered (Cube, Octa and CVT), confirming
the robustness of the algorithm with respect to the shape of the elements.

9

5.2. Test 2: strong scalability

We study the parallel performance of the solvers with a strong scaling test, by increasing the number of
processors from 4 to 128, while keeping fixed the global number of degrees of freedom. We recall that, denoting
by p the number of processors, the parallel speedup Sp is defined as

Sp :=
CPU time with 4 processes

CPU time with p processes
.

For details on the meshes used in the tests, see Table 1.

Cube mesh with 32768 elements
k = 1, dofs = 435200

procs Sid
p Tass Sp νtol = 2 νtol =∞

NΠ it Tsol Sp NΠ it Tsol Sp

4 - 30 - 104 10 198 - 8 17 83 -
8 2 15 2.0 400 11 70 2.8 26 21 34 2.4

16 4 9 3.3 860 11 48 4.1 62 22 21 3.9
32 8 4 7.5 1823 11 16 12.4 147 24 7 11.8
64 16 2 15.0 3479 11 6 33.0 336 24 3 27.7

128 32 1 30.0 6944 11 3 66.0 768 25 2 42.0

Cube mesh with 13824 elements
k = 2, dofs = 508032

procs Sid
p Tass Sp νtol = 2 νtol =∞

NΠ it Tsol Sp NΠ it Tsol Sp

4 - 117 - 203 9 239 - 6 18 119 -
8 2 64 1.8 797 9 92 2.6 24 28 51 2.3

16 4 34 3.4 2071 10 66 3.6 63 31 30 4.0
32 8 17 6.9 4291 11 32 7.5 146 39 11 10.8
64 16 9 13.0 8095 10 11 21.7 337 44 6 19.8

128 32 5 23.4 15398 11 6 39.8 730 55 4 29.7

Cube mesh with 8000 elements
k = 3, dofs = 612000

procs Sid
p Tass Sp νtol = 2 νtol =∞

NΠ it Tsol Sp NΠ it Tsol Sp

4 - 491 - 375 9 332 - 8 58 211 -
8 2 254 1.9 748 11 121 2.7 16 62 81 2.6

16 4 138 3.6 1873 11 82 4.0 43 84 42 5.0
32 8 66 7.4 4103 11 33 10.1 99 89 18 11.7
64 16 33 14.9 6848 12 11 30.2 192 85 7 30.1

128 32 18 27.3 19312 11 9 36.9 509 109 7 30.1

Table 2: Test 2. Strong scalability, Cube meshes. procs:=number of processors; Sid
p :=ideal speedup; Tass:=assembling time in

seconds; NΠ:=number of primal constraints; it:=CG iterations; Tsol:=solution time in seconds; Sp:=parallel speedup computed
with respect to the 4 processors run.

The results on Cube meshes are reported in Table 2 and plotted in the first row of Figure 4. We first observe
that the CPU times needed to assemble the stiffness matrix and right hand side (Tass) are scalable, with very
good speedup values close to the ideal ones. The same holds true for the other meshes (data not shown). The
adaptive BDDC solver (νtol = 2, continuous lines) results scalable, since CG iterations remain bounded and CPU
times are reduced super-linearly as the number of processors is increased. This is expected when performing a
strong scaling analysis of preconditioners based on exact local factorizations. In addition, we observe that the
scalability of the adaptive BDDC solver is independent of the degree of the VEM approximation. The minimal
primal space solver (νtol =∞, dashed lines) is also scalable for k = 1, but its parallel performance deteriorates
when increasing the degree of approximation. We also remark that the minimal primal space BDDC is always
faster in terms of CPU times considering together preconditioner assembling and solution phases. However,
adaptive BDDC is faster in the solution phase, making it an attractive option when we have to solve several
linear systems with the same matrix.

The results using Octa and CVT meshes are reported in the second and third row of Figure 4, respectively.
Experiments confirm the scalability of the adaptive BDDC solver, both in terms of CG iterations and CPU
times, irrespective of the degree of approximation. The minimal primal space solver exhibits a good scalability
for k = 1, however for k = 2 and k = 3 the CG iterations slightly increase with the number of processors. In case

10

Figure 4: Test 2. Strong scalability. Plots of conjugate gradient iterations (left) and parallel speedup (right) with respect to the
number of processors on Cube (first row), Octa (second row) and CVT (third row) meshes for adaptive (νtol = 2, solid lines)
and minimal primal space (νtol = ∞, dashed lines) BDDC preconditioners.

of CVT mesh, k = 3, minimal primal space, 128 procs, the method did not converge, thus the corresponding
data are missing.

5.3. Test 3: Optimality with respect to the mesh size

We investigate here the behavior of the solver when refining the mesh size, thus increasing the number
of dofs. The number of processors is kept fixed at 32 and the orders of the VEM discretization considered
are k = 1, 2, 3. Results are reported in Tables 3, 4, 5, for Cube, Octa and CVT meshes, respectively. The
adaptive solver exhibits an optimal behavior irrespective of the polyhedral mesh considered, since the number
of CG iterations and the condition number remain almost constant when increasing the number of dofs. The
minimal primal space solver is optimal for k = 1, while in the higher order cases it shows an erratic behavior,
with large iteration counts and condition number, especially for k = 3.

5.4. Test 4: Optimality with respect to the polynomial degree

We then numerically study the solver when the VEM approximation degree is increased, while the mesh is
kept fixed. The poyhedral meshes considered are Hexa with 4096 elements, Octa with 576 elements and CVT
with 1000 elements, with the degree k of the VEM discretization varying between 1 and 5. As a consequence,
the number of dofs varies from 55552 to 904960 in case of Hexa meshes, from 9024 to 135744 in case of Octa
meshes and from 23509 to 290563 in case of CVT meshes. The number of processors is kept fixed at 32.

The results reported in Table 6 show that the adaptive solver (with νtol = 2) is robust with respect to k,
since the number of CG iterations and the condition number remain almost constant when k increases. On the

11

Cube mesh, k = 1, procs = 32
nel dofs νtol = 2 νtol =∞

NΠ it cond NΠ it cond
21952 292432 1460 11 1.88 124 23 6.42
32768 435200 1823 11 1.87 147 22 5.95
46656 618192 1951 11 1.75 149 21 5.60
64000 846400 2229 11 1.84 148 22 6.26
85184 1124816 2445 11 1.88 151 22 6.84

Cube mesh, k = 2, procs = 32
nel dofs νtol = 2 νtol =∞

NΠ it cond NΠ it cond
4096 152064 2258 11 1.76 106 31 11.99
8000 295200 2694 11 1.77 99 30 11.22

13824 508032 4291 11 1.87 146 37 33.90
21952 804384 4577 11 1.76 124 31 11.17
32768 1198080 5981 10 1.69 147 33 15.67

Cube mesh, k = 3, procs = 32
nel dofs νtol = 2 νtol =∞

NΠ it cond NΠ it cond
512 40320 2148 11 1.88 107 115 171.63

1728 133920 3178 12 2.00 107 93 97.00
4096 314880 3623 12 1.99 106 89 93.50
8000 612000 4103 11 1.95 99 86 85.86

13824 1054080 7028 12 2.01 146 131 648.41

Table 3: Test 3. Optimality with respect to the mesh size, Hexa meshes. nel:=number of polyhedra; dofs:=degrees of freedom;
NΠ:=number of primal constraints; it:=CG iterations; cond:=experimental condition number.

Octa mesh, k = 1, procs = 32
nel dofs νtol = 2 νtol =∞

NΠ it cond NΠ it cond
576 9024 528 11 1.87 106 20 4.71

4608 69888 920 11 1.88 104 21 5.53
9000 135600 1366 11 1.84 130 26 7.14

15552 233280 1544 11 1.86 134 26 6.93
30375 453600 2133 11 1.96 144 27 7.03

Octa mesh, k = 2, procs = 32
nel dofs νtol = 2 νtol =∞

NΠ it cond NΠ it cond
576 23808 1224 11 1.85 106 38 17.31

4608 185856 2342 12 1.82 104 32 11.32
9000 361200 3978 11 1.79 130 44 33.12

15552 622080 4572 11 1.73 134 33 19.50
30375 1210950 6507 11 1.91 144 32 13.87

Octa mesh, k = 3, procs = 32
nel dofs νtol = 2 νtol =∞

NΠ it cond NΠ it cond
72 6280 1309 10 1.73 109 228 1210.27

576 48320 2089 12 1.95 106 123 204.54
4608 378880 3609 13 2.00 104 90 87.50
9000 737000 6608 12 2.19 130 159 552.21

15552 1270080 7175 12 2.04 134 112 255.88

Table 4: Test 3. Optimality with respect to the mesh size, Octa meshes. nel:=number of polyhedra; dofs:=degrees of freedom;
NΠ:=number of primal constraints; it:=CG iterations; cond:=experimental condition number.

other hand, the performance of the minimal primal space solver deteriorates significantly when the degree k is
greater than 2. As a final remark, we also observe that, for Cube and Octa meshes, the ratio between the

12

CVT mesh, k = 1, procs = 32
nel dofs νtol = 2 νtol =∞

NΠ it cond NΠ it cond
1000 23509 812 12 2.05 163 18 4.18
2000 47513 938 12 2.03 157 19 4.97
4000 95785 1018 12 2.04 158 18 4.27
8000 192860 1170 12 2.06 160 19 4.59

16000 388042 1207 12 2.00 147 19 4.60

CVT mesh, k = 2, procs = 32
nel dofs νtol = 2 νtol =∞

NΠ it cond NΠ it cond
1000 57018 3230 10 2.00 163 40 22.99
2000 115026 3978 10 1.89 157 38 19.70
4000 231570 4966 10 1.96 158 35 14.18
8000 465720 5998 11 1.92 159 34 16.12

16000 936084 7100 11 1.89 147 32 12.91

CVT mesh, k = 3, procs = 32
nel dofs νtol = 2 νtol =∞

NΠ it cond NΠ it cond
125 13275 2811 12 2.15 165 146 303.36

1000 110030 6810 12 2.03 163 101 141.87
2000 221710 8540 11 1.92 157 97 150.03
4000 445950 10729 11 1.90 158 91 119.28
8000 896200 13091 11 1.98 157 103 118.69

Table 5: Test 3. Optimality with respect to the mesh size, CVT meshes. nel:=number of polyhedra; dofs:=degrees of freedom;
NΠ:=number of primal constraints; it:=CG iterations; cond:=experimental condition number.

Cube mesh, nel = 4096, procs = 32
k dofs νtol = 2 νtol =∞

NΠ it cond NΠ it cond
1 55552 866 11 1.92 106 20 5.02
2 152064 2258 11 1.76 106 31 11.98
3 314880 3623 12 1.99 106 89 93.50
4 560384 7686 11 1.92 106 382 2052.33
5 904960 9103 12 2.13 106 1353 28663.80

Octa mesh, nel = 576, procs = 32
k dofs νtol = 2 νtol =∞

NΠ it cond NΠ it cond
1 9024 528 11 1.87 106 20 4.71
2 23808 1224 11 1.85 106 38 17.31
3 48320 2089 12 1.95 106 123 204.54
4 84864 3133 11 1.86 106 510 4913.25
5 135744 4164 11 1.88 106 1754 62878.43

CVT mesh, nel = 1000, procs = 32
k dofs νtol = 2 νtol =∞

NΠ it cond NΠ it cond
1 23509 812 12 2.05 163 18 4.18
2 57018 3230 12 2.00 163 40 22.99
3 110030 6810 12 2.03 163 101 141.87
4 186545 12629 12 2.03 163 213 741.88
5 290563 21142 11 2.00 163 540 7304.78

Table 6: Test 4. Optimality with respect to the polynomial degree k. nel:=number of polyhedra; dofs:=degrees of freedom;
NΠ:=number of primal constraints; it:=CG iterations; cond:=experimental condition number.

number of primal constraints (NΠ) and the total dofs decreases with the polynomial degree k, as it occurs with
standard finite elements, while for CVT meshes, this ratio increases with k; see Fig. 5.

13

1 2 3 4 5

10
-2

10
-1

10
0

Figure 5: Test 4. Optimality with respect to the polynomial degree k. Plot of the ratio between the number of primal constraints
(NΠ) and the total number of dofs for the adaptive BDDC preconditioner as a function of k.

CVT mesh, nel = 16000, dofs = 388042
k = 1, procs = 32

τ νtol = 5 νtol =∞
NΠ it cond NΠ it cond

0.01 3128 19 4.52 147 64 53.68
1 147 19 4.60 147 19 4.60

100 4732 19 4.39 147 76 87.16

CVT mesh, nel = 8000, dofs = 465720
k = 2, procs = 32

τ νtol = 5 νtol =∞
NΠ it cond NΠ it cond

0.01 7452 19 4.96 159 103 104.06
1 1184 21 5.56 159 34 16.12

100 1844 22 5.62 159 53 75.04

Table 7: Test 5. Robustness with respect to the stabilization parameter τ . NΠ:=number of primal constraints; it:=CG iterations;
cond:=experimental condition number.

5.5. Test 5: robustness with respect to the stabilization parameter τ

In this test, we investigate how the stabilization parameter τ in the bilinear form sP (·, ·) defined in (7)
affects the performance of the BDDC solver. We report in Table 7 only the results obtained on CVT meshes,
for k = 1 and k = 2, being the behavior of the solver in case of Cube and Octa meshes analogous. We let τ
assuming the following values: 0.01, 1, 100. The number of processors is fixed to 32. The results show that the
adaptive solver (with νtol = 5) is robust with respect to τ , since it is able to enrich the primal space in order
to maintain the condition number controlled by the adaptive tolerance, resulting in a number of CG iterations
independent of τ . When employing the minimal primal space solver (νtol =∞), instead, the condition number
and iterations counts are significantly affected from the value of τ , being the choice τ = 1 the most effective.

5.6. Test 6: robustness with respect to jumping coefficients

We investigate here the robustness of the BDDC solver with respect to jumps in the parameter ν of the
bilinear form a(·, ·) in (2). We divide the unit cube domain into 32 = 4 × 4 × 2 subdomains, coloured with
two colors (black and red), according to a checkerboard configuration. In the black subdomains, we set ν = 1,
whereas in the red subdomains we set ν = νred as given in Table 8. For sake of conciseness, we report only the
results obtained on CVT meshes, for k = 1 and k = 2, since the behavior of the solver in case of Cube and Octa
meshes is analogous. The number of processors is fixed to 32. We note here that even if the jump. configuration
is structured, the mesh partitioning is instead unstructured, and it is not aligned with the coefficient’s jumps.
The results show that the adaptive solver (with νtol = 5) is robust with respect to jumps in ν, since both the

14

CVT mesh, nel = 16000, dofs = 388042
k = 1, procs = 32

νred νtol = 5 νtol =∞
NΠ it cond NΠ it cond

1e-4 235 27 5.10 147 117 2.77e+3
1e-2 226 22 5.20 147 39 28.84

1 147 19 5.60 147 19 4.60
1e+2 214 20 4.91 147 25 9.77
1e+4 237 20 4.91 147 27 13.32

CVT mesh, nel = 8000, dofs = 465720
k = 2, procs = 32

νred νtol = 5 νtol =∞
NΠ it cond NΠ it cond

1e-4 1614 26 5.72 159 194 3.37e+3
1e-2 1582 25 5.72 159 47 44.28

1 1184 21 5.56 159 34 16.12
1e+2 1579 22 5.74 159 50 95.12
1e+4 1619 22 5.76 159 128 6.52e+3

Table 8: Test 6. Robustness with respect to jumping coefficients. NΠ:=number of primal constraints; it:=CG iterations;
cond:=experimental condition number.

condition number and the CG iteration counts remain bounded. Moreover, the growth of the primal space with
respect to the jump magnitude is not large, because the dimension of the primal space remains of the same
order when varying νred. The minimal primal space solver (νtol = ∞), instead, is not robust with respect to
the jumps, since both the condition number and iterations counts increase significantly when νred is far from 1.

Cube meshes, procs = 64
nel k dofs Pardiso MUMPS Block-Schur BDDC νtol = 5

Tsol Tsol it Tsol it Tsol
85184 1 1124816 1397 479 79 64 20 25
32768 2 1198080 1708 621 155 32 20 32
13824 3 1054080 1358 325 745 85 22 43

Octa meshes, procs = 64
nel k dofs Pardiso MUMPS Block-Schur BDDC νtol = 5

Tsol Tsol it Tsol it Tsol
30375 1 453600 167 63 80 15 21 5
30375 2 1210950 1166 892 577 96 20 37
15552 3 1270080 1665 785 1468 201 18 60

CVT meshes, procs = 64
nel k dofs Pardiso MUMPS Block-Schur BDDC νtol = 5

Tsol Tsol it Tsol it Tsol
16000 1 388042 1916 742 112 11 18 27
16000 2 936084 14992 5926 690 70 22 201
8000 3 896200 15735 5028 3510 318 21 265

Table 9: Test 7. Performance comparison among different parallel solvers. nel:=number of polyhedra; k:=degree of VEM approxi-
mation; dofs:=degrees of freedom; Tsol:=solution time in seconds; it:=GMRES (Blcok-Schur) and CG (BDDC) iterations.

5.7. Test 7: performance comparison with other parallel solvers

Here we compare the performance in terms of CPU times of the adaptive BDDC solver against the parallel
direct solvers Pardiso and MUMPS, as well as against the parallel Block-Schur iterative solver proposed in [28].
The Block-Schur solver is a block-diagonal preconditioner of the form

BD =

[
B1 0
0 B2

]
, (19)

15

where

B−1
1 = diagonal preconditioner for A, i.e. B1 = diag(A)

B−1
2 = exact solution of the approximate Schur complement Sapp (20)

with Sapp = −B diag(A)−1BT . The inversion of Sapp at each preconditioning step is obtained by MUMPS.
With the adaptive BDDC preconditioner, we use CG as iterative solver, whereas we use the GMRES method

with the Block-Schur preconditioner. We consider Cube, Octa and CVT meshes, degree of the VEM approxi-
mation k = 1, 2, 3 and 64 processors. With the adaptive BDDC solver, the adaptive tolerance is set to νtol = 5.
The results are reported in Table 9.

For all meshes, adaptive BDDC is always significantly faster than Pardiso and MUMPS. For Cube and
Octa meshes, adaptive BDDC is also faster than Block-Schur. Only for CVT meshes, with k = 1 and k = 2,
adaptive BDDC results slower than Block-Schur, while for k = 3 adaptive BDDC is again about 25% faster
than Block-Schur.

6. Conclusions

In this work, we have constructed and numerically studied adaptive BDDC preconditioners for the saddle
point linear systems arising from general order three-dimensional VEM approximations of scalar elliptic equa-
tions in mixed form. The results show the reliability of the adaptive procedure, which yields a condition number
of the preconditioned system close to the prescribed adaptive tolerance parameter νtol. Several parallel tests
demonstrates the scalability and optimality of the proposed solver. The comparison with a BDDC precondi-
tioner with minimal coarse space shows that the adaptive solver is more robust with respect to high-order VEM
approximations and jumps in the coefficients. In terms of CPU times, the adaptive BDDC solver outperforms
the parallel direct solvers Pardiso and MUMPS, and our Block-Schur iterative solvers, especially in the case of
high order VEM approximations.

Acknowledgments

The authors would like to acknowledge INDAM-GNCS for the support. Moreover they would like to thank
Lourenco Beirão da Veiga and Alessandro Russo for many helpful discussions and suggestions.

References

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous multifrontal solver using
distributed dynamic scheduling. SIAM J. Matr. Anal. Appl., 23(1):15–41, 2001.

[2] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the parallel solution
of linear systems. Paral. Comput., 32(2):136–156, 2006.

[3] P. F. Antonietti, L. Mascotto, and M. Verani. A multigrid algorithm for the p-version of the virtual element
method. ESAIM: Math. Model. Numer. Anal., 52(1):337–364, 2018.

[4] O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1994.

[5] O. Axelsson, R. Blaheta, P. Byczanski, J. Karátson, and B. Ahmad. Preconditioners for regularized saddle
point problems with an application for heterogeneous Darcy flow problems. J. Comput. Appl. Math.,
280:141–157, 2015.

[6] B. Ayuso de Dios, K. Lipnikov, and G. Manzini. The nonconforming virtual element method. ESAIM:
Math. Model. Numer. Anal., 50(3):879–904, 2016.

[7] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D.
Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan,
B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 -
Revision 3.14, Argonne National Laboratory, 2020.

[8] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. The hitchhiker’s guide to the virtual element
method. Math. Mod. Meth. Appl. Sci., 24(08):1541–1573, 2014.

[9] L. Beirão da Veiga, F. Dassi, and A. Russo. High-order virtual element method on polyhedral meshes.
Comput. Math. Appl., 74(5):1110–1122, 2017.

16

[10] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. Basic principles of
virtual element methods. Math. Mod. Meth. Appl. Sci., 23(1):199–214, 2013.

[11] L. Beirão Da Veiga, F. Brezzi, F. Dassi, L. D. Marini, and A. Russo. Serendipity virtual elements for
general elliptic equations in three dimensions. Chinese Ann. Math., Series B, 39(2):315–334, Mar 2018.

[12] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. H(div) and h(curl)-conforming virtual element
methods. Numer. Math., 133:303–332, 2016.

[13] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Mixed virtual element methods for general
second order elliptic problems on polygonal meshes. ESAIM: Math. Model. Numer. Anal., 50(3):727–747,
2016.

[14] L. Beirão da Veiga and A. Ern. Preface. ESAIM: Math. Model. Numer. Anal., 50(3):633–634, 2016.

[15] L. Beirão da Veiga, C. Lovadina, and G. Vacca. Divergence free virtual elements for the stokes problem on
polygonal meshes. ESAIM: Math. Model. Numer. Anal., 51(2):509–535, 2017.

[16] M. F. Benedetto, S. Berrone, S. Pieraccini, and S. Scialò. The virtual element method for discrete fracture
network simulations. Comput. Meth. Appl. Mech. Eng., 280:135–156, 2014.

[17] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta numerica,
14:1–137, 2005.

[18] S. Bertoluzza, M. Pennacchio, and D. Prada. BDDC and FETI-DP for the virtual element method. Calcolo,
54(4):1565–1593, 2017.

[19] S. Bertoluzza, M. Pennacchio, and D. Prada. FETI-DP for the three dimensional virtual element method.
SIAM J. Numer. Anal., 58(3):1556–1591, January 2020.

[20] D. Boffi, F. Brezzi, and M. Fortin. Mixed finite element methods and applications, volume 44 of Springer
Series in Computational Mathematics. Springer, Heidelberg, 2013.

[21] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods, volume 15 of Texts in
Applied Mathematics. Springer, New York, third edition, 2008.

[22] F. Brezzi, R. S. Falk, and L. D. Marini. Basic principles of mixed virtual element methods. ESAIM: Math.
Model. Numer. Anal., 48(4):1227–1240, 2014.

[23] J. G. Calvo. On the approximation of a virtual coarse space for domain decomposition methods in two
dimensions. Math. Mod. Meth. Appl. Sci., 28(07):1267–1289, 2018.

[24] J. G. Calvo. An overlapping schwarz method for virtual element discretizations in two dimensions. Comput.
Math. Appl., 77(4):1163–1177, 2019.

[25] J. G. Calvo and O. B. Widlund. An adaptive choice of primal constraints for bddc domain decomposition
algorithms. Electron. Trans. Numer. Anal., 45:524–544, 2016.

[26] F. Dassi and L. Mascotto. Exploring high-order three dimensional virtual elements: Bases and stabiliza-
tions. Comput. Math. Appl., 75(9):3379–3401, 2018.

[27] F. Dassi and S. Scacchi. Parallel block preconditioners for three-dimensional virtual element discretizations
of saddle-point problems. Comput. Meth. Appl. Mech. Eng., 372:113424, 2020.

[28] F. Dassi and S. Scacchi. Parallel solvers for virtual element discretizations of elliptic equations in mixed
form. Comput. Math. Appl., 79(7):1972–1989, April 2020.

[29] A. De Coninck, B. De Baets, D. Kourounis, F. Verbosio, O. Schenk, S. Maenhout, and J. Fostier. Needles:
Toward large-scale genomic prediction with marker-by-environment interaction. 203(1):543–555, 2016.

[30] C. R Dohrmann. A preconditioner for substructuring based on constrained energy minimization. SIAM J.
Sci. Comput., 25(1):246–258, 2003.

[31] C. R. Dohrmann and O. B. Widlund. A BDDC algorithm with deluxe scaling for three-dimensional H
(curl) problems. Comm. Pure Appl. Math., 69(4):745–770, 2016.

[32] G. H. Golub and C. Greif. On solving block-structured indefinite linear systems. SIAM J. Sci. Comput.,
24(6):2076–2092, 2003.

17

[33] A. Heinlein, C. Hochmuth, and A. Klawonn. Monolithic overlapping schwarz domain decomposition meth-
ods with GDSW coarse spaces for incompressible fluid flow problems. SIAM J. Sci. Comput., 41(4):C291–
C316, 2019.

[34] A. Heinlein, C. Hochmuth, and A. Klawonn. Reduced dimension GDSW coarse spaces for monolithic
schwarz domain decomposition methods for incompressible fluid flow problems. Int. J. Numer. Meth. Eng.,
121(6):1101–1119, 2019.

[35] A. Klawonn. Block-triangular preconditioners for saddle point problems with a penalty term. SIAM J.
Sci. Comput., 19(1):172–184, 1998.

[36] A. Klawonn and L. F. Pavarino. A comparison of overlapping schwarz methods and block preconditioners
for saddle point problems. Numer. Lin. Alg. Appl., 7(1):1–25, 2000.

[37] D. Kourounis, A. Fuchs, and O. Schenk. Towards the next generation of multiperiod optimal power flow
solvers. IEEE Transactions on Power Systems, PP(99):1–10, 2018.

[38] J. Li and O. B. Widlund. BDDC algorithms for incompressible Stokes equations. SIAM J. Numer. Anal.,
44(6):2432–2455, 2006.

[39] J. Li and O. B Widlund. FETI-DP, BDDC, and block Cholesky methods. Int. J. Numer. Meth. Eng.,
66(2):250–271, 2006.

[40] K.-A. Mardal and R. Winther. Preconditioning discretizations of systems of partial differential equations.
Numer. Lin. Alg. Appl., 18(1):1–40, 2011.

[41] L. Mascotto. Ill-conditioning in the virtual element method: Stabilizations and bases. Numer. Meth. Part.
Diff. Eq., 34(4):1258–1281, 2018.

[42] T. P. Mathew. Schwarz alternating and iterative refinement methods for mixed formulations of elliptic
problems, part i: Algorithms and numerical results. Numer. Math., 65(1):445–468, 1993.

[43] T. P. Mathew. Schwarz alternating and iterative refinement methods for mixed formulations of elliptic
problems, part II: Convergence theory. Numer. Math., 65(1):469–492, 1993.

[44] D.-S. Oh, O. B. Widlund, S. Zampini, and C. R. Dohrmann. BDDC algorithms with deluxe scaling and
adaptive selection of primal constraints for Raviart–Thomas vector fields. Math. Comput., 87(310):659–692,
2017.

[45] L. F. Pavarino. Indefinite overlapping schwarz methods for time-dependent stokes problems. Comput.
Meth. Appl. Mech. Eng., 187(1–2):35–51, 2000.

[46] L. F. Pavarino, S. Scacchi, O. B. Widlund, and S. Zampini. Isogeometric BDDC deluxe preconditioners
for linear elasticity. Math. Mod. Meth. Appl. Sci., 28(07):1337–1370, 2018.

[47] L. F. Pavarino and O. B. Widlund. Balancing neumann-neumann methods for incompressible stokes
equations. Comm. Pure Appl. Math., 55(3):302–335, 2001.

[48] L. F. Pavarino, O. B. Widlund, and S. Zampini. BDDC preconditioners for spectral element discretizations
of almost incompressible elasticity in three dimensions. SIAM J. Sci. Comput., 32(6):3604–3626, 2010.

[49] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[50] V. Simoncini. Block triangular preconditioners for symmetric saddle-point problems. Appl. Numer. Math.,
49(1):63–80, 2004.

[51] A. Toselli and O. B. Widlund. Domain decomposition methods - Algorithms and theory, volume 34. Springer
Science & Business Media, 2006.

[52] X. Tu. A BDDC algorithm for a mixed formulation of flow in porous media. Electron. Trans. Numer. Anal,
20:164–179, 2005.

[53] X. Tu. A three-level BDDC algorithm for a saddle point problem. Numer. Math., 119(1):189–217, 2011.

[54] G. Vacca and L. Beirão da Veiga. Virtual element methods for parabolic problems on polygonal meshes.
Numer. Meth. Part. Diff. Eq., 31(6):2110–2134, 2015.

[55] F. Verbosio, A. De Coninck, D. Kourounis, and O. Schenk. Enhancing the scalability of selected inversion
factorization algorithms in genomic prediction. J. Comput. Sci., 22(Supplement C):99–108, 2017.

18

[56] O. B. Widlund. BDDC domain decomposition algorithms. In 75 Years of Mathematics of Computation:
Symposium on Celebrating 75 Years of Mathematics of Computation, November 1-3, 2018, the Institute for
Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island, volume
754. American Mathematical Soc., 2020.

[57] O. B. Widlund, S. Zampini, L. F. Pavarino, and S. Scacchi. Block FETI–DP/BDDC preconditioners for
mixed isogeometric discretizations of three-dimensional almost incompressible elasticity. Math. Comput.,
page 1, 2021.

[58] S. Zampini. PCBDDC: a class of robust dual-primal methods in PETSc. SIAM J. Sci. Comput., 38(5):S282–
S306, 2016.

[59] S. Zampini. Adaptive BDDC deluxe methods for H (curl). In Domain Decomposition Methods in Science
and Engineering XXIII, pages 285–292. Springer, 2017.

[60] S. Zampini and D. E Keyes. On the robustness and prospects of adaptive BDDC methods for finite element
discretizations of elliptic PDEs with high-contrast coefficients. In Proceedings of the Platform for Advanced
Scientific Computing Conference, pages 1–13, 2016.

[61] S. Zampini and X. Tu. Multilevel balancing domain decomposition by constraints deluxe algorithms with
adaptive coarse spaces for flow in porous media. SIAM J. Sci. Comput., 39(4):A1389–A1415, 2017.

[62] S. Zampini, P. Vassilevski, V. Dobrev, and T. Kolev. Balancing domain decomposition by constraints algo-
rithms for curl-conforming spaces of arbitrary order. In International Conference on Domain Decomposition
Methods, pages 103–116. Springer, 2017.

[63] W. Zulehner. Analysis of iterative methods for saddle point problems: a unified approach. Math. Comp.,
71(238):479–506, 2001.

19

