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Abstract

Bats are an important group of mammals, frequently foraging in farmland and potentially exposed to
pesticides. This statement considers whether the current risk assessment performed for birds and ground
dwelling mammals exposed to pesticides is also protective of bats. Three main issues were addressed.
Firstly, whether bats are toxicologically more or less sensitive than the most sensitive birds and
mammals. Secondly, whether oral exposure of bats to pesticides is greater or lower than in ground
dwelling mammals and birds. Thirdly, whether there are other important exposure routes relevant to
bats. A large variation in toxicological sensitivity and no relationship between sensitivity of bats and bird
or mammal test-species to pesticides could be found. In addition, bats have unique traits, such as
echolocation and torpor which can be adversely affected by exposure to pesticides and which are not
covered by the endpoints currently selected for wild mammal risk assessment. The current exposure
assessment methodology was used for oral exposure and adapted to bats using bat-specific parameters.
For oral exposure, it was concluded that for most standard risk assessment scenarios the current
approach did not cover exposure of bats to pesticide residues in food. Calculations of potential dermal
exposure for bats foraging during spraying operations suggest that this may be a very important
exposure route. Dermal routes of exposure should be combined with inhalation and oral exposure. Based
on the evidence compiled, the Panel concludes that bats are not adequately covered by the current risk
assessment approach, and that there is a need to develop a bat-specific risk assessment scheme. In
general, there was scarcity of data to assess the risks for bat exposed to pesticides. Recommendations
for research are made, including identification of alternatives to laboratory testing of bats to assess
toxicological effects.
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Summary

Bats are an important and large group of mammals, in terms of ecosystem services and
conservation status. They help to regulate arthropod populations, including pest species in farmland,
forests and urban areas. The 53 European bat species provide an important component of vertebrate
diversity, all being protected under the agreement ‘Conservation of Populations of European Bats’
(Annex I to the Agreement on the Conservation of Populations of European Bats, EUROBATS, 1991)
under ‘The Convention on Migratory Species (UNEP/CMS)’ (also known as the Bonn Convention). Bats
are not specifically mentioned under the current risk assessment for pesticides methodology, and
recent research has raised concern regarding whether this methodology is sufficiently protective of
bats. The objective of the current statement is therefore to elaborate on whether the current risk
assessment for birds and ground dwelling mammals exposed to pesticides is also protective of bats.

It is clear from a literature survey that bats forage frequently in intensively used farmland, which could
lead to potential exposure to pesticide residues via oral, dermal and inhalation routes. In addition, they
have some particular traits that may increase their vulnerability to pesticide effects and exposure. For
example, bats have very high energy requirements compared to terrestrial mammals due to their flight
activity. This leads to high food intake rates and subsequently to potentially high residue intake with their
food. Bats use fat storage for seasonal and daily patterns of torpor and arousal, which might result in high
internal exposure peaks if lipophilic substances are accumulated in the fat. Bats are typical k-selected
species with a low fertility and high parental investment, resulting in a low potential for recovery of
perturbed populations. Self- and social grooming represent a way through which pesticide residues,
which collected on the fur and the wing membranes after dermal exposure may be ingested. Bats have a
very large wing surface with high degree of vascularisation and extremely thin epidermis, which indicates
that if exposed dermally there is potential for this to be a very important exposure route. Bats also use
echolocation to locate their food, which provides a further potential vulnerability to neurotoxic
substances.

In order to conclude whether or not bats are covered by the current risk assessment scheme for
birds and mammals, the Panel considered the following three main questions: (a) Are bats
toxicologically more or less sensitive than the most sensitive birds and mammals? (b) Is the oral
exposure of bats to pesticides greater or lower compared to ground dwelling mammals and to birds?
(c) Are there other important exposure routes that may be relevant to bats?

Toxicology

The available toxicity data for bats is not sufficient to draw a firm conclusion on whether bats are
more or less sensitive to pesticides than ground dwelling mammals. However, in the restricted data
set, a great variation in toxicity compared to standard test species was observed Therefore, given the
current state of knowledge, it must be concluded that toxicological sensitivity of bats cannot be
predicted by current acute and chronic toxicity studies on birds and mammals. Other studies indicated
that due to the specific physiology and behaviour of bats other acute and chronic endpoints may also
need to be considered, such as effects on echolocation and torpor, which both can lead to mortality of
individuals in the wild. Investigation of disruption of metabolic pathways and enzyme-specific targets
modifications, by ex vivo and in vitro tests, should be considered for susceptibility determination of
non-target species (such as bats) in order to avoid in vivo testing.

Oral exposure

The oral exposure of bats is partly covered in the screening step of the current risk assessment for
birds and mammals. However, at the first step of refinement (i.e. first-tier assessment), terrestrial
insectivorous mammals do not cover them, and only 4 out of 44 first-tier scenarios for insectivorous
birds cover bats. Furthermore, it is noted that bats might not be covered in those four scenarios if the
exposure assessment is refined.

Studies show that lipophilic pesticides can be transferred to the young bats via maternal milk. This
exposure route for pups can exceed the exposure of adults by a factor of more than 3. Therefore, the
transfer of pesticides via this route should be considered in any future bat risk assessment.

Therefore, it was concluded that specific risk assessment scenarios for oral exposure need to be
developed for bats taking into consideration the different feeding guilds of bats. This includes
establishing standard residues per unit dose (RUD) values for the food items eaten by bats. While
standard RUD values are available for ground-dwelling and leaf-dwelling arthropods, there is no
generic RUD value currently available for flying insects. Residues data in flying insects were available
from an EFSA supporting publication. This data set was analysed and several factors were identified
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which potentially have an influence on the insect residue values and might explain the high variability
in measured residue values. These factors relate to the sampling method used, toxicological profile of
the substance, insect behaviour and insect size.

The current standard estimates for drinking water exposure for birds and terrestrial mammals cover
the exposure of bats via drinking water.

Other exposure routes

Explorative exposure calculation for inhalation and dermal exposure suggests that the risk from
inhalation exposure is less than from oral exposure and that dermal exposure can be much greater
than oral or inhalation exposure. However, the uptake via the lung membrane may be different to the
skin and direct effects on the respiratory membrane of the lungs may also be more severe than effects
on the skin. If bats are exposed dermally during and immediately after spraying operations, the
exposure levels are likely to be extremely high and the probability of exposure would need to be
considered in any bat risk assessment for pesticides. Furthermore, it is reasonable to assume that the
different exposure routes (oral, dermal and inhalation) would be additive if bats are foraging in the
field when a pesticide is applied in the evening.

Overall conclusion

The Panel concludes that bats are not adequately covered by the current risk assessment scheme
and there is a need to develop a bat-specific risk assessment scheme. Based on the current
assessment, this should include a focus on (a) oral exposure via residues in insects and grooming, (b)
dermal exposure and (c) exposure of pups via milk. It is important to highlight that any risk
assessment scheme should consider the total body burden from all exposure routes as bats foraging in
the field will be exposed to residues in insects, and via dermal and inhalation routes.

Coverage of bats in pesticide risk assessment
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1. Introduction

1.1. Background and Terms of Reference as provided by the requestor

The pesticide regulation (Regulation (EU) No 1107/2009) requires the protection of non-target
organisms (no unacceptable effects on non-target species including the ongoing behaviour of those
species and its impact on biodiversity and the ecosystem). The risk assessment should cover i.a. all
terrestrial vertebrate groups (as laid down in the requirements for data, Regulation (EU) No 283/2013).
The risk assessment is conducted for birds and mammals based on standardised scenarios for indicator
species.

A concern has been raised regarding whether the current risk assessment methodology is sufficiently
protective of bats which may forage in agricultural landscapes (Stahlschmidt and Br€uhl, 2012). The
current risk assessment scheme only considers birds and ground dwelling mammals and it is not
immediately clear whether this risk assessment is protective of bats. The ecology and characteristics of
bats could potentially result in a higher risk than that for birds and ground dwelling mammals. Moreover,
there are 53 species of European bat species which are protected in the agreement “Conservation of
Populations of European Bats” (Annex I to the Agreement on the Conservation of Populations of
European Bats, EUROBATS, 19911) under “The Convention on Migratory Species (UNEP/CMS)” (also
known as the Bonn Convention).2 For these reasons it is considered vital that a consideration is given for
the need of a specific risk assessment covering bat species.

The objective of the ‘PPR Panel statement on potential coverage of bats by the risk assessment for
birds and mammals0 is to establish whether the current risk assessment for birds and ground dwelling
mammals exposed to pesticides is also protective of bats. The main focus will be on the risk resulting
from oral exposure of bats to pesticides. Other exposure routes such as inhalation and dermal
exposure are currently not assessed for birds and mammals. An analysis should be provided to
determine whether bats could be specifically at risk from inhalation and dermal exposure routes in
addition to oral exposure to pesticides. A consideration should be given as to whether there are gaps
in the current knowledge of bat ecology, in the estimation of exposure of bats to plant protection
products and to identify possible areas for future research.

If it becomes evident from the PPR statement that bat species are not sufficiently covered by the
current risk assessment schemes, then it is proposed to develop in a next step a scientific opinion that
collates the necessary information to make proposals for a risk-assessment scheme to cover bat species.

Ecological/biological and exposure information on bats which was retrieved in a preparatory
literature review (see below) should be used to investigate whether bat species are already sufficiently
covered by the current risk assessment schemes for birds and mammals. Additional information can be
added to the literature review if justified.

The following points will be specifically investigated in the current statement:

1) Explore whether available toxicological endpoints derived from tests with other vertebrate
species might be useful to predict the toxicity of pesticides to bats.

2) Conduct an assessment of exposure and toxicity of pesticides for bats in comparison with
the outcome of current risk assessment schemes for birds and mammals. This should be
performed preferably based upon explicit exposure and effect assessment goals for bats.

3) Provide an analysis of the relative importance of potential exposure via non-oral routes
(dermal and inhalation) in comparison with oral exposure for the overall risk of bats exposed
to pesticides.

4) Conclude on the possible coverage of bats by the current bird and mammal pesticide risk
assessment schemes. This should also include an analysis of ecological vulnerability based
on life history traits and bat population biology, linked to exposure probabilities.

5) If identified, illustrate knowledge gaps and possible research priorities to adequately address
the risk for bats exposed to pesticides in agricultural landscapes and make
recommendations for further actions.

1 Agreement on the Conservation of Populations of European Bats, EUROBATS, 1991 http://www.eurobats.org/official_docume
nts/agreement_text [Accessed: 22 June 2018]

2 Convention on the Conservation of Migratory Species of Wild Animals; Bonn, Germany, 23 June 1979. Available online: http://
www.cms.int [Accessed: 22 June 2018)
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Interpretation of the terms of references

The scientific statement dealt only with insectivorous bat species, which account for all European
bat species except Rousettus aegyptiacus. The latter is a frugivorous pteropodid occurring, within the
EU, on Cyprus, where its population experienced a concerning decline in the last few years (Del Vaglio
et al. 2011). Moreover, overseas territories of some European countries host considerably diverse bat
assemblages, often featuring frugivorous species. Frugivorous bats differ from insectivorous species in
terms of physiology, ecology and behaviour; so, a separate risk assessment would be needed to cover
these species.

Although pesticide applications in forestry are not dealt with specifically, it is acknowledged that
forests make important roosting and foraging habitats in bats. However, most of the points raised in
the current document also apply to pesticide use in forestry.

The document focused on spray applications as the exposure via spray treatment is the most
relevant for bats. Exposure from seed treatment, granules and other types of applications are not
considered.

The underlying assumption of the exposure assessments in this document is that individual bats are
effectively exposed (e.g. bats do eat contaminated arthropods or do fly close to the spray boom). This
is in accordance with the current EFSA Birds & Mammals Guidance document (2010) with its toxicity-
exposure ratio (TER) approach, as well as the fact that lower tiers of the exposure assessment (i.e. the
screening step and first tier) are intended to be conservative. However, this does not reflect the
current proposals for exposure assessment in more recent documents (e.g. EFSA Guidance on bee risk
assessment, Scientific opinion on amphibians & reptiles risk assessment) where the probability of
exposure concentrations in space and time is more explicitly considered in higher tiers.

2. General biology and ecology of bats and differences to other
mammalian species relevant for risk assessment

A more comprehensive description of bat natural history (morphology, physiology, ecology,
behaviour) and conservation biology is provided in Appendix A. Here, the main points are summarised
extensively covered therein and their relevance to pesticide risk assessment for bats are highlighted.

2.1. Diversity and evolutionary history

Among mammals, bats stand out for their remarkable species richness (over 1,300 species), being
second only to rodents (Altringham, 2011). Bats belong to the order Chiroptera, which is characterised
by the unique occurrence of powered flight, accomplished thanks to the modification of forelimbs into
wings. The first bats appeared on the scene ca. 52 million years ago, and their evolutionary lineage
arouse within the mammalian group named Laurasiatheria. The order comprises species whose body
mass spans from ca. 2 g to over 1 kg

Bats have evolved a nocturnal behaviour probably in response to the evolutionary pressure exerted
by diurnal avian predators, and most of them broadcast ultrasonic pulses to echolocate, which allows
them to orientate and detect targets, including food, in complete darkness.

2.2. Life history in bats and other mammals

Bats are so-called K-strategists and often give birth to one, more rarely two young per year. The
offspring are large at birth and are milked for several weeks, after which their body size equals that of
their mother. A comparison among life history traits of bats, shrews and rodents (families Muridae and
Cricetidae) reveals that female bats mature sexually later, give birth to fewer, heavier young, and have
a longer interbirth interval, a lower birth rate, and longer gestation and lactation than females of
rodents and shrews. At weaning, bats are also heavier than rodents – but not shrews – relative to
their body size; shrews are heavier than rodents.

Relative to ground dwelling small mammals, bats also live much longer, on average ca. 15 years,
and up to 41 years (Myotis brandtii; Podlutsky et al., 2005). Genetic, physiological and environmental
factors, plus some ecological variables, are responsible for the outstanding longevity of bats (Wilkinson
and South, 2002; Nabholz et al., 2008; Munshi-South and Wilkinson, 2010; Seim et al., 2013; Foley
et al., 2018).

Coverage of bats in pesticide risk assessment
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The exceptional longevity of bats makes them potentially susceptible to long-term contamination by
pesticides, and their low fertility and high parental investment exposes them to high risks of population
decline following contamination events.

2.3. Morphology

The most peculiar feature of a bat’s body plan is the wing, which is made of the elongated forelimb
whose skeleton supports a double layer of skin, the patagium (e.g. Altringham, 2011). Wing shape differs
across species in relation to their foraging mode and flying style (e.g. Norberg and Rayner, 1987). Wings
account for ca. 85% of the bat’s body surface (Bassett and Studier, 1988). Because of their large surface
and structure and their high degree of exposure to the environment during flight, wings play a major role
in controlling heat and water exchange (Thomson and Speakman, 1999), also contributing substantially
to total gas (CO2 and O2) exchange (Makanya and Mortola, 2007). The large wing surface of bats and its
high degree of vascularisation set the scene for a prime role of this structure within the context of dermal
exposure to pesticides; yet, this aspect warrants a quantitative assessment.

Relative to other mammals, bats also stand out for the peculiar shape of their ears and the
presence, in several species, of noseleaves. Ear shape and size are related to detection of faint echoes
for the functioning of bat biosonar (Altringham, 2011), or, in species that hunt by passive listening, to
detect the rustling sound produced by prey moving on the ground (Arlettaz et al., 2001; Holderied
et al., 2011). Noseleaves occur in most bats that broadcast ultrasound through the nostrils. They
represent an acoustic lens that concentrates energy on a focal area to improve echolocation
effectiveness (Vanderelst et al., 2010).

2.4. Physiology

Powered flight

Powered flight in bats is expensive – it may cost twice the energy needed for running (Thomas,
1987) – but it is also outstandingly efficient in terms of cost of transport, which is five times lower than
that faced by a non-flying mammal of equivalent size (Altringham, 2011). In this way, bats may cover
long distances (Popa-Lisseanu et al., 2009), access three-dimensional landscapes, feed on airborne
insects even at high altitudes (Voigt et al., 2018), escape predators effectively, overcome unsuitable
habitat, and, in some cases, migrate over long distances to search for suitable climatic conditions and
food in different seasons (Altringham, 2011). In the absence of sufficient fossil evidence, the stages
that led to powered flight in modern bats may only be speculated (Bishop, 2008).

Echolocation

Widespread among bats, echolocation occurs in over 85% of living bat species. Apart from rare
exceptions (genus Rousettus), bats generate the sound needed to echolocate through the larynx.
Echolocation often relies on the time delay between an emitted pulse and the return of the
corresponding echo to the emitter. Some bats adapted to hunt in clutter detect ‘acoustic glints’
generated by the interaction between the long constant-frequency components of the calls they
broadcast and the fluttering of objects they insonify, such as a moth’s wing stroke (Fenton et al., 2012).
These bats also possess an ‘acoustic fovea’ most sensitive to an individual-specific frequency value, so
that when flying, they will lower the frequency of their calls to compensate for the Doppler upwards shift
induced by their own movement, and tune the echo in to their preferred frequency value (Schuller and
Pollak, 1979). Echolocation provides a wealth of information about the surrounding world, since calls
often cover a broad frequency spectrum, and just like in the case of visible light, different frequencies
will provide different responses, overall showing ‘echo colours’ that inform the emitter about specific
properties of the target, such as size and texture (Smith, 2008). Echolocation is a flexible tool that shows
substantial variation both across species and within them, so that a certain individual may alter call
design to best perform in differently structured habitats (e.g. Russo et al., 2018a,b,c).

Echolocation is a vital sense to bats, and its impairment implies serious spatial disorders, and,
inevitably, fatal consequences. The insecticide imidacloprid may affect adversely spatial memory of bats
through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas (Hsiao et al., 2016).

Metabolic rate

In bats, basic metabolic rate (BMR) varies according to body mass, but also other factors such as
food habits, altitude and occurrence on islands vs mainland (McNab, 2015). Insectivorous bats (such

Coverage of bats in pesticide risk assessment
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as the European bats) tend to have slightly lower than expected BMR values relative to bats feeding
on vertebrates or plants, whose BMR values are equal or slightly greater than those predicted (McNab,
1982). Insects in temperate regions are an ephemeral resource, so a lower BMR may, from this
perspective, be adaptive. Active metabolic rates in bats are considerably high because powered flight
is an energetically expensive activity (Thomas, 1987).

Torpor and hibernation

Bats are endotherms, but behave as facultative heterotherms to overcome energetically critical
periods, such as winter for temperate insectivorous species, when food is too scarce to allow for active
foraging. Bats may downregulate their body temperature to approach ambient temperature, a
condition called torpor which makes it possible to save considerable amounts of energy (Altringham,
2011). Torpor is often adopted by active bats during daytime roosting: this is defined as ‘daily torpor’
because it lasts less than 24 h and is followed by nocturnal foraging. In bat hibernation, which takes
place in the cold months of the year, torpor spans across several consecutive days to several weeks
and energy is provided by metabolised fat accumulated in the active months (Ruf and Geiser, 2015).
Prolonged torpor makes it possible to save enormous amounts of energy when it is prolonged for
days, weeks or even months, i.e. during hibernation, which takes place in winter months. Torpid bats
reduce body temperature, respiratory rate, heart rate, oxygen consumption and metabolic rate, and
restrict blood flow to the main organs (Altringham, 2011). Arousal from torpor is sustained by the
massive heat release caused by depletion of brown adipose tissue (BAT) which allows conversion of
energy reserves into heat (Cannon and Nedergaard, 2004).

The massive fat consumption bats face in winter may expose them to the mobilisation of
accumulated lipophilic pesticides during hibernation and increase the risk of direct mortality, yet this
aspect warrants appropriate investigation.

Life cycle and reproduction

It is referred, here, to the general life cycle of a bat species from a temperate region. Bats typically
enter hibernation in late autumn and become active again around mid-spring, but significant changes
may occur according to the local climate, species, individual status, etc. Mating occurs since the end of
summer and may extend over the hibernation period. Several mating strategies occur among the bat
species so far studied worldwide, and a useful synthesis is offered in Altringham (2011).

The typical reproductive cycle of bats of temperate regions is monoestry, which leads to one, more
rarely two young per year (Altringham, 2011). In most cases, European bats show a delayed fertilisation
mechanism, i.e. mating takes place in late summer, autumn or winter, when females store the sperms in
their genital tract; females ovulate only once they arouse from hibernation to allow for an optimal
matching between the time of female reproduction and the seasonal abundance of insect food.

With reference to risks for bats arising from pesticide uses, it is important to remark that
considerable amounts of lipophilic pesticides may concentrate in milk and be consumed by the young
during lactation. For example, after an application of the insecticide methamidophos to potato fields
and apple orchards in Germany, high mortality was recorded among juvenile Myotis myotis, and
pesticide residues were likely transferred to them via the milk after their mothers had fed on
contaminated insects (Hofmann and Heise, 1991).

2.5. Ecology and behaviour

Foraging ecology and behaviour

European bats show a range of species-specific foraging strategies that allow them to get access to
habitats characterised by a different degree of structural complexity, or ‘clutter’. The ability of a given
species to exploit a certain habitat structure for foraging depends on a combination of wing
morphology and echolocation call design.

Food intake in bats is quite high, and peaks in especially demanding phases of the life cycle, such
as lactation, when females may consume up to ca. 130% of their body mass in insects per foraging
night (Kurta et al., 1989a).

A high food intake means that pesticide residues present in insects may be ingested in large
amounts and lead to a considerable risk of high oral exposure. Bats are typically active at night. Some
species, such as pipistrelles, start foraging soon after (or occasionally before) sunset and are especially
active during the first hours of the evening, exploiting the abundance peak in crepuscular insects
(Jones and Rydell, 1994). Others are active all night because their prey (such as moths or diurnal

Coverage of bats in pesticide risk assessment

www.efsa.europa.eu/efsajournal 9 EFSA Journal 2019;17(7):5758

 18314732, 2019, 7, D
ow

nloaded from
 https://efsa.onlinelibrary.w

iley.com
/doi/10.2903/j.efsa.2019.5758 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [12/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



insects that are gleaned when resting on the substrate) show no temporal decline later in the evening
(Jones and Rydell, 1994). In addition to oral exposure, bats can be exposed dermally if pesticides are
sprayed after sunset. There is no evidence that bats avoid operating machinery, and in some cases bats
have been seen foraging near tractors (D. Russo, pers. obs.). Artificial lighting associated with pesticides
applications made in the evening might even be attractive to some bat species such as pipistrelles,
common in farmland, that forage near lamps to exploit the insects attracted by the latter (Arlettaz et al.,
2000).

Habitat use

While some bat species are strictly associated with one or few habitat types (Biscardi et al., 2007;
Nardone et al., 2015), others are more flexible and show generalist habits (Russo and Jones, 2003).
Farmed landscapes provide foraging opportunities for many bat species (Boughey et al., 2011). While
traditional or organic farming, often associated with structural heterogeneity and a high connectivity, is
important to sustain diverse bat assemblages (Wickramasinghe et al., 2003; Davy et al., 2007), based
on habitat selection and dietary studies (Appendix C), there is strong evidence that bats also forage
frequently in intensive farmland across Europe (e.g. Heim et al., 2016; Stahlschmidt et al., 2017) and
consume agricultural pests in large numbers (Aizpurua et al., 2018).

Roosting ecology and behaviour

Bats spend over half of their lives in the roost, where they are sheltered from adverse weather and
predation, and where they carry out many key activities of their life cycles including food digestion,
hibernation, mating, parturition and nursing. Roost type changes according to species, sex, age and
physiological phase (e.g. hibernation, mating or reproduction) or age. Many species of temperate bats
overwinter in natural (caves) or artificial underground sites, while only some also reproduce there; the
others may use overground, in buildings or tree cavities. Much of the evidence concerning
contamination of bats in their roost regards the effects of roofing timber treatments with pesticides
such as lindane, pentachlorophenol (PCP) and pyrethroids, which may have adverse consequences for
bats (Mitchell-Jones et al., 1989; Swanepoel et al., 1999; Voigt et al., 2016). In specific cases, there
might be some chance of direct contamination through inhalation or dermal contact when bats roost in
farmland structures, like rural buildings (barns, stables) or cavities in trees (e.g. in treelines or
hedgerows). The probability of exposure is particularly high when bats roost in shallow cracks of
exterior walls (Marnell and Presetnik, 2010), or in shallow tree cavities such as underneath flaking bark
(Russo et al., 2017a). Because bats often use a given roost for several weeks or months and may
reutilise it over years, slow poisoning of synanthropic bats in the roost, where they might not die
immediately but suffer sublethal effects over time, is possible (Voigt et al., 2016). The probability of
exposure to pesticides may be more pronounced when bats use night-roosts to pause from nocturnal
activity, in case pesticides are spread in the evening, because in such cases bats may roost in exposed
outbuildings such as woodsheds or porches (Knight and Jones, 2009) or even hang from trees (Russo
et al., 2002).

Drinking behaviour

Bats from temperate regions drink regularly to compensate for the significant amounts of water
that they lose by transpiration through their body surface, especially via the respiratory system and the
large surfaces of wing membranes (Korine et al., 2016). Drinking water constitutes one of the potential
routes of bat exposure to pesticides. In fact, bats drink at a range of water sites (Korine et al., 2016),
including those found in farmland such as irrigation canals or small ponds which are potentially
contaminated with pesticides.

Other behavioural aspects relevant to pesticide contamination

Bats often form very numerous colonies both during hibernation and reproduction, which may often
comprise thousands and up to several million individuals (Betke et al., 2008). In such situations, many
individuals congregate in clusters to achieve social thermoregulation or buffer themselves from
temperature shifts. Clusters may include several species, and in reproductive colonies, comprise also
young. Roosting bats spend considerable time self-grooming to keep their bodies clean and reduce
parasite load (Ter Hofstede and Fenton, 2005). Moreover, social grooming – the cleaning of an
individual’s fur by a conspecific – is also frequent, and its role is likely that of strengthening social
bonds within colonies and pacifying the subject groomed. Both self- and social grooming represent a
way through which pesticide residues collected on the fur and the wing membranes may be ingested.
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Hairless juveniles in clusters or clinging to their mother’s fur might also be affected by the tight contact
with adults whose fur has been exposed to pesticide residues during foraging. One of the techniques
used to cull vampire bats employs the coating of some individuals with anticoagulants and release
them so that, once returned to the roost, they will contaminate others through mutual contact in
clusters and social grooming (Linhart et al., 1972; Johnson et al., 2014). The topical treatment of
vampire bats for culling demonstrates that contaminants, including pesticides, may easily spread to
most or all colony members from just a few contaminated subjects.

2.6. Ecosystem services

Bats are important providers of ecosystem services worldwide, including pollination, seed dispersal
and insect consumption (Kunz et al., 2011). While the first two services are restricted to tropical
regions, arthropod consumption also occurs in temperate regions, including Europe. There is growing
evidence that bats consume considerable numbers of pest species (Aizpurua et al., 2018; Russo et al.,
2018a,b,c) and that this may produce tangible benefits to agriculture (Maine and Boyles, 2015;
Puig-Montserrat et al., 2015). Bat insectivory is worth 3.7 billion USD per year in North America
(Boyles et al., 2011), and implies significant cost savings also in other regions (Taylor et al., 2018). No
economic assessment of bat insectivory is available for Europe, where this service is likely to be as
important to agriculture as seen elsewhere.

2.7. Conservation status and protection goals

Although recent estimates of positive population trends in European bat populations have led to
some optimism (Van der Meij et al., 2015), the situation of many bat species is still of concern, and, at
the national scale, bats are still on the decline in several EU countries. European bat species are
threatened by several factors, including roost loss (Mitchell-Jones et al., 2007; Marnell and Presetnik,
2010; Stone et al., 2015a; Voigt et al., 2016), alteration or disappearance of foraging habitat (Racey
and Entwistle, 2003), agricultural intensification including pesticide use (Stahlschmidt and Br€uhl, 2012;
Park, 2015; Stahlschmidt et al., 2017), intensive forestry (Russo et al., 2016a), large-scale wildfires
(Bosso et al., 2018), light pollution (Stone et al., 2015b), alien species (Welch and Leppanen, 2017)
and windfarm development (Arnett et al., 2016).

Bats are important contributors to European vertebrate biodiversity and provide key ecosystem
services (Kunz et al., 2011; Russo et al., 2018a,b,c; see chapter 2.6). All European bat species and
their habitats are protected according to the 92/43/EEC ‘Habitats’ Directive (EEC, 1992) and listed in
Annex IV under ‘animal and plant species of community interest in need of strict protection’. Moreover,
several bat species are listed in Annex II, giving ‘animal and plant species of community interest
whose conservation requires the designation of special areas of conservation’.

Another main conservation framework for European bats is offered by the UNEP EUROBATS
‘Agreement on the Conservation of Populations of European Bats’, which came into force in 1994 (FCO,
1994) and to date includes 36 out of 63 range states. Paragraph 8 of Article III of the EUROBATS
‘Agreement on the Conservation of Populations of European Bats’ states that Parties ‘shall, wherever
appropriate, consider the potential effects of pesticides on bats when assessing pesticides for use’.
More recently, EUROBATS Resolution 8.13 ‘Insect Decline as a Threat to Bat Populations in Europe’ has
also requested Parties, besides avoiding ‘the use of pesticides, particularly those problematic for bats
and their food resources, in and around areas which are important for bat conservation’, also to
‘consider bats in pesticide risk assessments’ (available at: https://www.eurobats.org/node/1422#3).

EU Regulation 1107/2009 (EU, 2009) sets the general protection goals for all non-target organisms
exposed to pesticides and should therefore in principle also cover bats. An authorised pesticide ‘shall
have no unacceptable effects on the environment, having particular regard to [. . .] its impact on non-
target species, including on the ongoing behaviour of those species and its impact on biodiversity and
the ecosystem’. Accordingly, the data requirements for pesticides (EU, 2013) demands that presented
information shall permit also an assessment of short- and long-term risks to terrestrial wildlife. Effects
on biodiversity and the ecosystem, including potential indirect effects via alteration of the food web
shall be considered.

After the hazard characterisation and in order to conclude on the acceptability of observed effects
in respect to the protection goals, the decision-making in risk assessment follows the uniform
principles for pesticide evaluation and authorisation (EU Regulation No 546/2011; EU, 2011). As for all
other mammals, bats are not specifically mentioned, but are subsumed under ‘other non-target
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terrestrial vertebrates’. ‘Where there is a possibility of birds and other non-target terrestrial vertebrates
being exposed, no authorisation shall be granted if the acute and short-term toxicity-exposure ratio for
birds and other non-target terrestrial vertebrates is less than 10 on the basis of LD50 or the long-term
toxicity-exposure ratio is less than 5 [. . .]’.

Following this decision scheme, a specific level of protection is envisaged for non-target terrestrial
vertebrates, which was agreed during the development of the relevant guidance document (EFSA 2009):
‘There was a consultation of Member States on the level of protection that should be provided. The
outcome was that there should be no visible mortality and no long-term repercussions for abundance and
diversity. A high level of certainty was desired. Because of uncertainties around the methodology on
determining visible mortality and to achieve a high certainty that there are no long-term repercussions for
abundance and diversity, surrogate protection goals were defined. These surrogate protection goals were
defined as no acute mortality and no reproductive effects. The risk assessment scheme was designed in
such a way that acute mortality and reproductive effects from pesticide exposure are unlikely’.

Summarising, the legislation and guidance in place establish that all birds and mammals, including
bats, are not exposed to residues levels which would cause mortality or reproductive effects. However,
no calibration of the assessment scheme and the respective assessment factors generally chosen for
birds and mammals (TER ≥ 10 for acute effects and ≥ 5 for long-term impacts) has been undertaken
to specifically ensure the protection of bat populations in the field.

Considering the particular characteristics of this group presented above, it needs to be critically
explored whether the current risk assessment in place for birds and ground dwelling mammals is
protective of bats.

3. Comparison of toxicity and exposure estimates between birds/ground
dwellingmammals and bats

The current risk assessment for birds and mammals is based on the TER for the acute and long-term
(reproductive) risk. If the TER is below a certain threshold, then it is assumed that the protection goals
are not met. The risk assessment follows a tiered approach with a conservative screening and first-tier
assessment. The risk assessment can be refined with further data generated to allow a more realistic
exposure and effects estimate for concerned focal species. The comparative assessment presented
below is focused only on the screening step and first-tier assessments for birds and mammals as in
higher tiers specific data for focal species need to be generated.

The first aspect relates to the exposure assessment. It can be assumed that bats are not covered
by the current exposure assessment if the exposure estimates for bats are greater than the exposure
estimates for terrestrial mammals and birds.

A second aspect in the risk assessment is the toxicological sensitivity of bats compared to terrestrial
mammals and birds. If there is evidence of bats being less or equally sensitive to pesticides, then the
standard toxicity endpoints are also applicable to bats (i.e. bats are covered by the standard toxicity
endpoints). However, if bats are systematically more sensitive, then an extrapolation factor may be
applied to the toxicity endpoint in order to cover toxicity to bats. This is, however, only feasible when
the degree of toxicity of the assessed pesticides to birds and mammals correlates to the degree of
toxicity to bats (i.e. a pesticide that is more toxic to mammals compared to other pesticides would be
also more toxic to bats). If no correlation is detectable, then the application of an extrapolation factor
would not deliver the appropriate toxicological endpoint.

A third aspect is the assessment factor associated with the risk quotient (e.g. TER values) that
needs to be reached to demonstrate the fulfilment of the protection goals. The magnitude of this
assessment factor (e.g. 5 for long-term effects) relates to the span between the step in the tiered
approach where the assessment is currently performed and the reference tier (e.g. the populations of
mammals in the field). The risk assessment factor to be applied to the risk quotient needs to be
calibrated with the reference tier (or the surrogate reference tier if needed) and covers the
vulnerability of, e.g. the populations in the field.

This chapter is split in two major sections. The first section summarises available information on
toxicology and bioaccumulation, and draws conclusions on possible coverage of toxicological sensitivity
of bats with current toxicological endpoints used in the risk assessment for terrestrial mammals. The
second section is focused on the different routes of exposure and compares potential exposure of bats
with the exposure estimates in the standard risk assessment for birds and terrestrial mammals. A
conclusion is drawn on the coverage of bat exposure by the current exposure estimated for birds and
terrestrial mammals.

Coverage of bats in pesticide risk assessment
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3.1. Toxicological coverage of bats by the acute and long-term
endpoints for mammals

3.1.1. Bioaccumulation of PPPs in bats

Bioaccumulative substances which fulfil the Persistent, Bioaccumulative and Toxic (PBT) criteria
should not be approved any more according to EU Regulation 1107/2009. However, here, it is
investigated whether bioaccumulation may affect bats more than birds and other mammals.
Bioaccumulation occurs if the metabolisation and excretion rate is lower than the intake rate of Plant
Protection Products (PPPs). This usually occurs as a consequence of the high lipophilicity of active
substances and their distribution in the fatty tissues of the animals. In hibernating mammals, a lot of
attention has been put on the analysis of the fat composition and especially on the role of the brown
fat and the white fat as energy sources.

In three bat species, the big brown bat (Eptesicus fuscus), the little brown bat (Myotis lucifugus) and
the eastern pipistrelle (Pipistrellus subflavus), brown fat represents a small proportion of the total
amount of fat (2.8-3% for these three American species). White fat, by contrast, represents 13–19% of
the total body weight and by far the major part of the total lipid content. Brown fat contains 23–30%
lipids, while white fat contains ca. 90% of lipids. Brown fat content will decrease very rapidly during
arousal of hibernating bats, providing high-energy triglycerides. On the contrary, white fat shrinks slowly
over hibernation time (Clark and Krynitsky, 1983). According to Jonasson and Willis (2011), the
overwinter decline in fat reserves can account for ca. 29% of body weight loss in little brown bats
(M. lucifugus)

Very limited information is available on bioaccumulation of PPPs or any organic compound in bats.
Therefore the following paragraph includes examples of compounds which are not approved as pesticides
under EU Regulation 1107/2009. Most studies rely on the analysis of residues in tissues of bats exposed
in their natural habitat. In Indiana (Eidels et al., 2012), analytical investigations were conducted in
free-ranging bats (either distressed or dying) between 2005 and 2007. Among them, 40 were analysed
for whole-body insecticide residues. Organochlorine insecticides were detected in all bats (100%, range
0.01–5.15 mg/kg), organophosphates were detected in 10 bats (25%, range 0.03–0.81 mg/kg),
pyrethroids were quantified in 5 bats (12.5%, range 0.004–0.37 mg/kg) and carbamates (carbaryl) was
detected in only 1 bat (limit of quantification 0.025 mg/kg). Unfortunately, these analyses were
conducted on whole body samples. Nevertheless, the authors suggested that, despite wide use at the
time the study was conducted, several insecticides such as diazinon and pyrethroids were only detected
in a limited number of individuals due to their relative short half-life in the body (based on rodent or other
mammalian data). Former on-site studies with the big brown bat (E. fuscus), the little brown bat
(M. lucifugus) or the eastern pipistrelle (P. subflavus) showed that brown fat contained the highest
concentrations of Dichlorodiphenyldichloroethylene (DDE) lipid weight, followed by white fat. During the
course of hibernation, with the decline in the total amount of fat, DDE concentration markedly increased
in the body. The authors stated that a similar trend could be observed in the brain, thereby leading to
toxicity and death (Clark and Krynitsky, 1983). For the examples found, there is a clear positive trend
between the log Kow and the degree of bioaccumulation of organic compounds and there is evidence to
suggest that bats accumulate more Dichlorodiphenyltrichloroethane (DDT) than birds and that this trend
is even stronger for substances with higher log Kow (Streit et al., 1995). A review was published on
organic contaminants in bats (Bayat et al., 2014) discussing former and current compounds of concern.
There is substantial evidence that insectivorous bats accumulate insecticide residues such as pyrethroids
and organophosphates (Bayat et al., 2014). Among the risk factors for accumulation, diet (insectivores)
and location of roosting and foraging sites appear to be the major determinants. Some studies (Nagel
and Disser, 1990) included in this review indicate that juveniles may accumulate more compounds, from
milk transfer, as well as adult males may display higher concentrations than females, believed to eliminate
some contaminants through the milk.

Few experimental data have been published on the kinetics and degree of pesticide accumulation in
bats. Shore et al. (1991) exposed common pipistrelles (Pipistrellus pipistrellus) to PCP and/or
permethrin. Common pipistrelles were exposed for 32 days. After termination of the experiments, bats
were euthanised and different tissues and organs were sampled for analysis. The highest concentrations
of PCP were found in brown fat and white fat, followed by liver and kidney. There was a significant
positive association between PCP accumulation and total lipid weight of the carcass, confirming the high
potency of PCP for bioaccumulation. Permethrin, however, was never detected.

Coverage of bats in pesticide risk assessment
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To conclude, bioaccumulation of lipophilic compounds has been demonstrated or observed in bats.
No evidence was found comparing bioaccumulation potential in bats and other mammals. According to
the limited evidence accumulation appears to be even more important in bats than in birds, this trend
increases with increasing log Kow in organochlorines.

3.1.2. Toxicity

A comprehensive review of the literature available on toxicity data in bats was conducted. Details
on the literature review can be found in Appendix B. Each relevant reference was considered for
inclusion in this statement as a reference toxicity value but most studies failed to reach this step due
to either poor design, lack of information, inability to determine an actual exposure dose or duration of
study not comparable with current guidelines for bird and mammal testing. A table comparing toxicity
values of bats with standard toxicity measures for mice, rats and birds can be found in Appendix D.

Older studies conducted with pesticides such as DDT, fenthion or zinc phosphide (see e.g. Hurley and
Fenton, 1980), provided limited data on the acute toxic dose tested (concentration in a sprayed solution,
formulation, etc.) and it was not possible to determine the actual exposure dose and/or the actual route
of exposure for all substances. In the study of Hurley and Fenton (1980), DDT was applied topically
(dusted on the back of isolated bats). Doses of 2.5, 5, 10, 15 or 20 mg/bat were applied. All bats treated
with the high dose of 20 mg died after showing typical signs of organochlorine toxicity (tremors,
seizures), while none of the others did. Unfortunately, the body weight of the animals was not mentioned
in the paper. The dermal LD50 might therefore range between 680 mg/kg body weight (bw) and
1300 mg/kg bw assuming a body weight between 11 and 22 g for adult bats. This is somewhat lower
than the reported dermal LD50 in rats and mice (ca. 2,000–3,000 mg/kg bw) but would still be covered
by the current assessment factors used.

An acute toxicity study (Clark, 1986) was conducted in the big brown bat (E. fuscus) with methyl-
parathion and the oral LD50 was estimated to be 372 mg/kg bw. Although, as the authors stated, this
value is quite high compared with other toxicity values in rodents (e.g. 44 mg/kg bw for mice as cited in
this paper), it should be mentioned that the bats showing severe loss of coordination were not able to
right themselves for 24 h, while mice recovered within 2 h only (Clark, 1986; see Table D.1 in
Appendix D for more comprehensive comparison of toxic endpoints between bats, mice, rats and birds).

Studies conducted by gavage with permethrin in Indiana bats (Myotis sodalis), using a formulation
(cis 51:trans 49, Pounce® 38.4%) or analytical grade active substance (cis 52:trans 48, 99.4%),
dissolved in distilled water or corn oil, respectively, showed major differences in toxicity (McFarland,
1998). LD50 of the formulation was 38 mg a.s./kg bw per day while the analytical grade active substance
had an LD50 of 502 mg a.s./kg bw per day and impaired flight was observed for a dose of 16% of the
LD50. The commercial product used in this study contained some aromatic hydrocarbons such as xylene
and benzene (unspecified proportions) which probably enhanced the toxicity of permethrin by increasing
the bioavailability of the active substance as evidenced by higher concentrations of permethrin in all
tissues of the bats exposed to Pounce (McFarland, 1998; see Table D.1 in Appendix D for more
comprehensive comparison of toxic endpoints between bats, mice, rats and birds).

Three studies are considered below, because they are more recent and also because their design
and results can provide some valuable information with respect to bat sensitivity to pesticides.

Oliveira et al. (2017) conducted a study in fruit bats exposed to deltamethrin applied to their diet.
The animals were exposed to contaminated fruits daily for 7 days. Many parameters were recorded,
including food consumption, body weight, biochemical biomarkers indicative of oxidative stress such as
catalase, superoxide dismutase, but also lipid peroxidation or protein oxidation, energy reserves and
liver damage. Two doses of deltamethrin were applied (respectively, 0.02 mg/kg diet and 0.04 mg/kg
diet) and a negative control group was included. The results show statistically significant dose-
dependent responses in most parameters. As the authors point out, several of these responses were
associated with increased oxidative stress. Lipidosis was observed in liver cells, associated with
increased AST/ALT (transaminases) activities, indicating potential liver damage (steatosis). A mean
deltamethrin daily dose could be determined from this study. Based on body weight change, a no
observable effect level (NOEL) of 0.03 mg/kg bw per day could be estimated from the concentrations
tested. This value should just be considered as indicative, because it is estimated it based on mean
values of all parameters (body weight, food consumption, deltamethrin concentration). There are no
comparable studies on other mammals. Nevertheless, from studies with longer exposure duration and
other endpoints, it would appear that the toxicity of deltamethrin is much higher to bats than it is to
laboratory mammals (rats, mice, rabbits, dogs) or birds (toxicity endpoints above 1 mg a.s./kg bw per
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day) (EC review report for the active substance deltamethrin: http://ec.europa.eu/food/plant/pesticides/
eu-pesticides-database/public/?event=activesubstance.ViewReview&id=60, accessed on 14/05/2019).

Similarly, Eidels et al. (2016) conducted a study in big brown bats (E. fuscus) to investigate the
sublethal effects of chlorpyrifos. Briefly, adult female brown bats were orally dosed by gavage with
either 0, 10, 30 or 60 mg/kg bw. chlorpyrifos (single exposure, 24 h observation). A second
comparable trial used lower doses (0, 5, 10, 15, 20, 25 mg/kg bw). In addition, a short-term toxicity test
was conducted with 0 or 60 mg/kg bw followed by a 1, 3, 7 or 14 day observation period, using 5 bats
per duration-group. All animals were sacrificed at variable time points in the study to measure brain
acetylcholinesterase (AChE) activity. Body weight measurement and behavioural evaluation was also
conducted in all bats, including overall appearance, tremors/clonic movements, righting reflex, crawling
ability and flying ability. From these results, the authors determined a Benchmark dose (10) using
standard models from the US-EPA. Mortality was reported in the short-term trial (14 days): 4 out of 20
bats died within 3 days, the last one died on day 7. There was a significant dose-dependent decrease in
both brain and plasma AChE activity after 24 h of chlorpyrifos exposure. Some bats exhibited a decrease
in body weight during the acute toxicity test, but all surviving bats in the short-term study exhibited a
significant body weight gain. Body temperature was monitored throughout both trials as heterothermy is
a constant feature of bat species and the ability to regulate body temperature is a critical factor for
wintering bats. The major variable in body temperature fluctuation appeared to be the diurnal cycle and
external temperature, but some interactions with chlorpyrifos were observed. The authors concluded that
more attention should be paid to this effect in further studies. Based on behavioural evaluation, the
BMDL10 (benchmark dose 10, lower limit of the confidence interval) could be determined at 3.5, 6.6 and
5.3 mg/kg bw for impaired flight, impaired movement or tremors, respectively. The BMDL10 was 3.5 mg/
kg bw for brain AChE activity after 24 h (short-term study). These values are in the range of other toxicity
values obtained for chlorpyrifos in other laboratory experiments. Available data for chlorpyrifos (EFSA,
2011) indicate a NOEL of 2.88 mg/kg bw in Mallard ducks (reproduction), an acute LD50 of 13.3 mg/kg
bw in common quail and a NOEL of 0.1 mg/kg bw in rats (2-year study, AChE inhibition).

Recently, neurological effects of imidacloprid on bats have been demonstrated (Hsiao et al., 2016).
Three Formosan leaf-nosed bats (Hipposideros terasensis) were orally dosed with imidacloprid (20 mg/kg
bw per day) for 5 days. Every day, bats were placed in flight chambers and their flight paths were
recorded (up to 3 min of flight time per session), analysed for stereotypy and other abnormalities. All
flight sessions were performed at the same time of the day in complete darkness. The results clearly
show that non-treated bats always presented a standard flight path, very similar to those recorded before
the exposure period. Conversely, imidacloprid-treated bats showed significantly different flight paths.
Their paths were shorter and very different from their usual flight paths recorded during the pretreatment
period. Immunostaining of brain regions showed evidence of neural impairment in areas important for
echolocation, suggesting that imidacloprid administered at 20 mg/kg bw per day-for 5 days could
interfere with the spatial memory of echolocation. This value can be compared with the NOEL values
available for neurotoxicity in other mammalian studies. The acute no-observed-adverse-effect-level
(NOAEL) for neurotoxicity is 42 mg/kg bw per day (reduced motor activity in dogs, 1-year study), the
subchronic neurotoxicity NOAEL value is 9.3 mg/kg bw per day (13 weeks in rats) and the developmental
NOAEL is 30 mg/kg-bw per day in rats and 24 mg/kg bw per day in rabbits (EFSA, 2008).

The limited available literature on toxicity of PPPs in bats is not sufficient to draw conclusions on
the sensitivity of bats relative to other birds or mammal species for a wide range of active substances.

In a recent report to the Canadian Wildlife Federation (Mineau & Callaghan, 2018), the authors
discussed the potential immunological effects of some neonicotinoids in bats. A study conducted in rats
(Mohany et al., 2012) and also discussed by (Gibbons et al., 2014) showed some indications of
imidacloprid to affect the immune system of rats. However, the study was not conducted according to
standard guidelines for immunotoxicity studies. One of the uncertainties of the study was the fact that
it was performed with Confidor®, the commercial product containing 20% imidacloprid, neglecting the
influence of other ingredients on the results.

Only limited information on bat sensitivity to pesticides could be found in the literature. Most
studies retrieved were focused on insecticides, and for the ones that could be fully discussed, they
showed that bat species could be either more sensitive (pyrethroids, imidacloprid), equally sensitive
(chlorpyrifos) or less sensitive (parathion) than rodent species. Therefore, it is not possible to draw a
conclusion on bat susceptibility to pesticides relative to other bird or mammal species, and there is
probably no relationship between toxicity to bats and other mammals or birds on which a predictive
assessment could be made. In lieu of direct toxicity testing, the Panel suggests the development of an
adverse outcome pathway approach, whenever possible. The development of ex vivo and in vitro tools
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was successfully applied to the investigation of species susceptibility to anticoagulant rodenticides for
instance. In this case, liver Vitamin K epoxide reductase (VKOR, the target enzyme) activity was
investigated in several species or in resistant vs susceptible strains of rats (Hodroge et al. 2011),
showing important differences, which could be related to differences in susceptibility in vivo. Similarly,
Boitet et al. (2018) showed that differences in cytochrome 450 (CYP)-associated metabolism of
difenacoum explained the differences in susceptibility between two strains of resistant rats with the
same mutated target enzyme. The development of genetic tools identifying either the VKOR
polymorphism or metabolic differences in CYP expression (Boitet et al., 2018) offers promising
techniques to investigate species susceptibility without experimental in vivo testing. Investigation of
disruption of metabolic pathways and enzyme-specific targets modifications, which can be partially
achieved ex vivo and in vitro, should be considered for both active substances and PPPs for non-target
species (such as bats) susceptibility determination.

3.2. Coverage of bats by the current exposure estimates for birds and
terrestrial mammals

3.2.1. Exposure routes

The working group investigated the different exposure routes for bats (see Table 1). Oral exposure
from uptake of contaminated food items and drinking water were calculated and compared with the
exposure estimates for birds and terrestrial mammals. Dermal and inhalation exposure was also
estimated and their relative importance in the overall exposure was assessed. The available data were
not sufficient to provide a quantitative estimate for oral exposure via grooming and for dermal exposure
from residues on leaves or on soil for bats which glean insects from the canopy or from the soil surface.
For exposure of bat pups via residues in milk, only an explorative calculation could be provided. Although
it was not possible to provide a quantitative assessment, it does not mean that exposure via these routes
is negligible. For example, distribution of toxic substances by grooming behaviour is used to control
vampire bats (Linhart et al., 1972; Johnson et al., 2014) and residues in food items transfer to milk of
lactating bats and can lead to mortality of pups (Hofmann and Heise, 1991).

The oral, dermal and inhalation exposure routes in Table 1 which are shaded in grey are addressed
in more detail in the document below. For the other exposure routes, the information retrieved was
not sufficient to provide quantitative exposure estimates for bats. The exposure estimates for dermal,
inhalation exposure and oral exposure of pups via milk are explorative and for the purpose of deriving
an indication on the relative importance of these exposure routes. They are less robust than the oral
exposure estimates for residues in food items and water.

3.2.2. Oral exposure estimation

Oral exposure by residues in food items

The oral exposure calculations for bats follow the same methodology as in the EFSA Birds and
Mammals Guidance Document (EFSA, 2009). The text below provides a short description of the oral
exposure assessment according to EFSA (2009).

The risk assessment is based on TERs. TER thresholds are defined in the pesticide regulation. TER
values < 10 for the acute risk and TER values < 5 for the long-term risk to birds and mammals indicate
that the current protection goals for birds and mammals are not met.

Table 1: Overview on the most important exposure routes for bats

Oral exposure Dermal exposure Inhalation exposure

Residues in food items Direct overspray (flying through spray cloud
during foraging)

Inhalation of droplets and vapour when
foraging in the field or field margins

Residues in water taken
up orally

Contact with residues on leaves (gleaners)

Grooming Contact with residues on soil (gleaners)

Pups via drinking milk Contact with residues on the surface of
roosting sites or conspecifics carrying
residues on the fur

Coverage of bats in pesticide risk assessment
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Equations for TER calculations:

TERacute ¼ LD50=DDD

TERlong�term ¼ NOAEL=DDD

with
LD50 = lethal dose 50, expressed in mg/kg bw, derived from studies where birds and mammals are

dosed once by gavage
NOAEL = No-observed-adverse-effect level, expressed in mg/kg bw per day, derived from bird

reproduction studies and from two-generation rat studies and mammalian developmental toxicity
studies.

DDD = daily dietary dose expressed in mg/kg bw per day

Formula from the Birds and Mammals Guidance Document for calculating the daily dietary dose
(DDD):

Acute risk assessment for single application:

DDD (single application) ¼ application rate (kg/ha)� SV (shortcut value)

Long-term (reproductive) RA for single application3:

DDDðsingle applicationÞ ¼ application rateðkg/haÞ � SVðshortcut valueÞ � TWAðtime weighted averageÞ

SV ¼ FIR=bw� RUD

with
SV = shortcut value (mg/kg bw per day)
FIR = food intake rate (g fresh weight/day)
bw = body weight (g)
RUD = pesticide residues per unit dose in food items (fresh weight) (mg/kg fresh weight,

normalised to an application rate of 1 kg/ha)

The DDD (single application) must be multiplied with an appropriate multiple application factor
(MAF) for uses with multiple applications. For the purpose of comparing the oral exposure estimates
for bats with birds and terrestrial mammals, it is not necessary to apply the MAF and hence it was left
out from the exposure calculations.

FIR ¼ DEE=ðFE� ð1�MC=100Þ � ðAE=100ÞÞ

with:
FIR = food intake rate (g fresh weight/day)
DEE = daily energy expenditure of the indicator species (kJ/day)
FE = food energy (kJ/g dry weight)
MC = moisture content (%)
AE = assimilation efficiency (%)

The FIRs and residues in food items are two key parameters in the exposure equation. Differences
in FIRs and composition of food items can lead to differences in oral exposure of bats, birds and
terrestrial vertebrates. These two parameters were investigated in more detail below.

Food intake rates in bats:

One of the key parameters for estimating oral exposure via food intake is the daily energy
requirement or metabolic rates. Articles were found in the literature review where metabolic rates of
bats were estimated. Most of the studies were related to basal metabolic rates (see Appendix A,
Table A.2). However, the energy requirements of active and free-ranging bats are more relevant for

3 The value to be used for the time-weighted average factor (TWA) depends on whether the toxicity endpoint could be caused
by short-term exposure or only by a long-term exposure. For further details, see EFSA (2009). For the comparative exposure
calculations in the current document, no TWA factor was applied as the exposure estimate was not related to a specific effect
endpoint.

Coverage of bats in pesticide risk assessment
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estimating oral exposure from food uptake than basal metabolic rates. Highest energy requirements
were found in pregnant and lactating female bats (Kurta et al., 1989a,b; McLean and Speakman,
1999). The time of pregnancy and lactation overlaps with the time where most pesticides are applied
(spring and early summer). Oral exposure of pregnant and lactating female bats is therefore
considered as a relevant scenario for the risk assessment and is the basis of the calculations presented
below. Data on energy requirements of lactating female bats were available for M. lucifugus (little
brown bat) and Plecotus auritus (brown long-eared bat).

Plecotus auritus occurs in Europe while M. lucifugus occurs in the US. However, the measurements
in the study with Myotis were more accurate than in the study with Plecotus, where energy
requirements could only be indirectly measured for lactating bats. Furthermore, M. lucifugus is smaller
than P. auritus and hence represents better the energy requirements for smaller European bat species
such as P. pipistrellus. Therefore, it was decided to use the data for M. lucifugus to calculate the SVs
for the comparison with ground dwelling mammals and birds (Table 2).

Insect residue data

In order to estimate the oral exposure, it is necessary to know the amount of residues of active
substances (a.s.) in the food items consumed. The residue values used in the birds and mammals risk
assessment according to EFSA 2009 are based on a large data set. The residues values are normalised
to an application rate of 1 kg a.s./ha and expressed in mg a.s./kg food per kg a.s./ha. These
normalised residues values are called residues per unit dose (RUD) and need to be multiplied with the
actual application rate when conducting the risk assessment for a particular use. In the standard risk
assessment for birds and mammals, RUD values for ground dwelling and canopy dwelling insects are
used. These RUDs are also applicable for exposure estimates for bats gleaning insects from the ground
and from leaves. However, most bat species feed on flying insects and hence RUD values for flying
insects would be most appropriate for the exposure estimate for aerial hawkers. No generic RUD value
is currently available for flying insects and it was investigated further if data from insect residues
studies could be used to derive a RUD value for flying insects.

Residues data in flying insects were available from an EFSA supporting publication (by Lahr et al.,
2018). The studies were evaluated by the authors of the supporting publication as useful for risk
assessment -except the study with fenoxycarb (by Stahlschmidt and Br€uhl, 2012) which was
considered as less reliable because of lack of replicates, no checking of stability of the samples and no
reporting of meteorological data. However, the methodology used for collecting the insects and
handling of insects as well as the analytical methods was appropriate and the recovery of residues was
checked with spiked insects. The residues measured in insects were higher in the study by
Stahlschmidt and Br€uhl (2012) than in the other available studies. Therefore, it is unlikely that the
meteorological conditions in the study were such that they would have caused a rapid decline of
residues. The number of replicates was not sufficient to meet the quality criteria which were originally
defined for refinement of the risk assessment for individual substances. However, in the context of
deriving an overall estimate on residues levels in flying insects for different compounds, locations and
crops, it was considered as useful to retain the study for the oral exposure calculations.

Overall 17 measurements of residues in flying insects from 9 different studies were included in the
database. Seven of the measurements were from three studies with insecticides and 10 measurements
from seven studies with fungicides. No studies were available for herbicide residues in flying insects.

Table 2: Energy requirements of lactating Myotis lucifugus and Plecotus auritus and the
corresponding food intake rates and weight of arthropods needed to cover the energy
demand of the bats. The food intake rate used in the calculations is highlighted in bold

Myotis lucifugus
Average weight lactating bat: 7.9 g
Energy requirement: 41.3 kJ/day per bat

Plecotus auritus
Average weight lactating bat: 9.72 g
Energy requirement: 45.3 kJ/day per bat

FIR/bw
(arthropods required/average bat
weight)
FIR calculated according to EFSA
2009, Appendix G

Arthropods (g)
(wet weight)

FIR/bw
(arthropods required/average bat
weight)
FIR calculated according to EFSA
2009, Appendix G

Arthropods (g)
(wet weight)

0.848 6.702 0.756 7.352

FIR: food intake rate; bw: body weight.

Coverage of bats in pesticide risk assessment
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Two studies were conducted in oilseed rape and wheat and all other studies were conducted in
orchards and vineyards.

The available studies give an indication of factors which can influence the residues levels found in
flying insects (see Appendix E). One important factor is the sampling method applied. For example, the
RUD from insects caught in malaise traps was 1.6 mg a.s./kg food per kg a.s./ha while from car
netting it was 28.5 mg a.s./kg food per kg a.s./ha. A pronounced difference in RUDs was also
observed in studies where a similar crop and sampling method was applied and the investigated
substances had a very different toxicological profile: with quite low RUDs for fast-acting acutely toxic
insecticides and high RUDs for insecticides with a different mode of action. This can be explained by
rapid immobilisation of insects exposed to fast-acting highly acutely toxic substances. As a
consequence, only less exposed insects and hence carrying less residues are able to reach the light
traps. A difference in RUDs is also observed in relation to different insect size, with smaller insects
having greater RUDs than larger insects due to the larger surface to volume ratio. In some of the
studies, there were differences observed in RUDs among plots and differences in RUDs of active
substances applied in the same product. In order to cover all the different factors, it would be ideal to
have a data base with residues from flying insects for a broad range of substances and crops for which
an appropriate sampling method was applied to obtain a representative sample of insects eaten by
bats. For example, bats from the feeding guild of aerial hawkers mainly feed on small flying insects
while gleaners take larger insects from the vegetation or from the ground.

The number of available studies is low in order to account for all the sources of variation and also
to account for the specific groups of insects eaten by bats. Therefore, it was decided to provide an
overview on the resulting RUD values depending on the choices made to include or exclude certain
types of residues studies with flying insects.

The RUDs are very unevenly distributed with a majority of values in the range of 0–2 mg a.s./kg
food per kg a.s./ha, half of the values evenly distributed between 2–16 and few very high values.
However, the high RUD values are from measurements which can be considered most relevant for the
risk assessment as they represent well the insects potentially eaten by bats (insects were caught with
light traps in the study with fenoxycarb). Furthermore, the active substance in that particular study
was of low acute toxicity to insects and hence it is not biased towards low residue load.

The following table provides an overview on RUDs of flying insects as food for bats depending on
the choices made for inclusion of residues studies (Table 3).
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Figure 1: Number of RUD values grouped in ranges of 2 starting with the range of 0-2 and ending
with the range of 32–34
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The acute risk assessment for birds and mammals is based on the 90th percentile RUD values and
the long-term risk assessment is based on arithmetic mean RUD values. The data set for flying insects
is very limited and it is also not following a normal distribution. It is questionable whether a meaningful
90th percentile can be derived from the available data. Therefore, it is suggested to focus on the
studies which are most relevant in terms of representativeness of insects eaten by bats, i.e. RUDs from
studies where light traps were used and considering small insects. The residues in flying insects might
be underestimated for slow-acting actives if based on the current data set for light traps which
includes also highly acutely toxic actives. It is therefore recommended to base the comparative
exposure assessment between bats and birds and mammals on the highest observed RUD value of
32.8 mg a.s./kg per kg a.s./ha.

Comparison of oral exposure based on shortcut values

The current risk assessment for birds and mammals (EFSA, 2009) is built on a tiered approach
starting with a screening step followed by a first-tier assessment and higher tier refinements of the risk
assessment. The screening step assessment is conducted for indicator species representing a worst-
case scenario covering all feeding guilds, i.e. if an active substance passes the screening step then the
risk to all birds and mammals is low. If a substance does not pass the screening step, then the risk
assessment proceeds to the first-tier assessment which makes use of scenarios for different crops and
their growth stages and generic focal species. For example, if registration is requested for use on bulbs
and onion like crops for the crop stage corresponding to growth stage BBCH ≥ 40 the exposure and
risk is assessed for three avian (granivorous, omnivorous and insectivorous) and three mammalian
(herbivorous, omnivorous and insectivorous) generic focal species which gives in total six scenarios for
this crop growth stage (see Annex 1 of EFSA, 2009). The SVs calculated for bats in Table 4 were

Table 3: RUD values (for flying insects as food for bats (in mg a.s./kg food per kg a.s./ha) based
on different choices for selecting residues studies. The arithmetic means and 90%tile RUD
values are highlighted in bold as mean values and 90%tiles are applied in the standard
long-term and acute risk assessments for birds and mammals

All residue
data

N = 17

All residue data without
fast-acting actives

N = 13

Only Light
trap data
N = 7*

Only Light trap data without
fast-acting actives

N = 3**

Arithmetic Mean 7.31 8.97 9.14 18.8

Geomean 3.58 4.49 4.49 16.26
Median 2.52 4.85 3.38 14.67

90%tile 20.2 25.74 21.92 29.17
Maximum 32.8 32.8 32.8 32.8

Minimum 0.78 0.78 0.99 8.93

a.s.: active substance; RUD: residues per unit dose.
*: From three studies.
**: From one study.

Table 4: Results of shortcut value (SV) calculations for Myotis lucifugus. RUD: Residues per unit dose
(in mg a.s./kg per kg a.s/ha); FIR: food intake rate (in g fresh weight/day); bw: body weight
(in g)

Arthropod feed items which could
be taken up by different bat feeding
guilds

RUD
Myotis lucifugus

(FIR/bw = 0.848)

Mean 90%tile*
SV long-term

(based on mean
RUD)

SV acute
(based on 90% tile or
highest RUD value)

Ground dwelling invertebrates (EFSA GD) 7.5 13.8 6. 4 11.7

Leaf dwelling insects (EFSA GD) 21.0 54.1 17.8 45.9
Flying insects (RUD from Lahr et al., 2018) 18.8 32.8* 15.9 27.8*

50% flying/50% gleaning from leaves 19.9 43.45* 16.8 36.9*

a.s.: active substance; GD: Guidance Document.
*: For flying insects, the maximum RUD value of 32.8 mg a.s./kg per kg a.s./ha (see text above) is used instead of the 90% tile RUD.
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compared to the SVs used in the screening step and first-tier assessments for birds and mammals. For
the comparison with first-tier SVs, only insectivorous birds and mammals were considered because of
their similarity with bats in terms of food composition.

Conclusions from the comparison with shortcut values calculated for bats with the
shortcut values for birds and terrestrial mammals used in the screening and first-tier risk
assessment (the conclusions refer to coverage of bats in terms of exposure assessment):

1. Screening step risk assessment

The screening step exposure assessment by birds and/or by mammals (comparison with the acute
and long-term SV for M. lucifugus) covers the exposure of bats, except for the following scenarios
where some or all feeding guilds of bats are not covered:

Acute risk assessment

Bare soil and hop: Bats feeding on flying insects are not covered and ground dwelling arthropods
are covered in the exposure estimates. Only the SV for bats feeding on flying insects and ground
dwelling arthropods are considered for the comparison, since there are no or few plants from which
leaf dwelling insects could be foraged on.

Grassland: Bats feeding on leaf dwelling insects and for a mix of 50% leaf dwelling and 50%
flying insects are not covered in the exposure estimates. The exposure of bats feeding exclusively on
flying insects is covered.

Long-term risk assessment

Bare soil and hop: The exposure of bats feeding on flying insects are not covered and bats
feeding on ground dwelling insects are covered by the exposure calculation for birds and mammals in
the screening step. Only the SV for bats feeding on flying insects and ground dwelling insects were
considered for the comparison, since there are no or only few plants from which leaf dwelling insects
could be foraged on.

Grassland: Bats feeding on leaf dwelling insects and bats feeding on a mix of 50% leaf dwelling
and 50% flying insects are not covered, bats feeding exclusively on flying insects are covered in terms
of exposure.

The screening step scenarios are based on granivorous and herbivorous bird and mammal species,
except for orchards for which insectivorous birds are considered in the screening step.

Therefore, if the risk assessment is refined for the species considered in the screening step, then it
may be that the risk to insectivorous species is not covered any more. Therefore, the next step in the
risk assessment, the first-tier assessment, includes scenarios for insectivorous bird and mammal
species.

2. First-tier risk assessment

Ground dwelling insectivorous mammals

The first-tier exposure assessment for insectivorous mammals (assuming 100% insect diet) in
shrews and woodmouse does not cover the exposure of bats. The maximum SV for acute risk are the
SV of 7.6 (shrew) and 6.1 (woodmouse) and the maximum SV for long-term risk are the SV of 4.2
(shrew) and 3.3 (woodmouse) which are all below the SVs calculated for bats (see Table 4).

Insectivorous birds

A comparison with insectivorous bird species in the first-tier assessment was conducted. There are
44 scenarios with different insectivorous bird species, feeding on different arthropods guilds, in
different crops and at different crop stages included in the first-tier assessments (see Appendix A of
EFSA, 2009). The shortcut values from each of the scenario were compared to the shortcut values for
bats feeding on ground dwelling arthropods, leaf dwelling insects, flying insects and a 50% mix of
flying and leaf dwelling insects.

Acute risk assessment

Of the 44 exposure assessment scenarios, 29 cover the exposure of bats when feeding on ground
dwelling arthropods, but only 4 scenarios cover the exposure of bats feeding on leaf dwelling insects,
flying insects or on a 50% mix of flying and leaf dwelling insects. This means that 34% of the
exposure scenarios available in the acute first-tier risk assessment for insectivorous birds do not cover

Coverage of bats in pesticide risk assessment
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the exposure of bats feeding on ground dwelling arthropods and 91% of these scenarios do not cover
bats feeding on leaf dwelling insects, flying insects or a 50% mix of flying and leaf dwelling insects, i.e.
the exposure via food is underestimated for these species.

Long-term risk assessment

Twenty-eight of the 44 available exposure scenarios in the first-tier risk assessment step for
insectivorous birds result in exposure that are higher or comparable to that of bats feeding on ground
dwelling arthropods, but only 4 out of 44 scenarios cover bats feeding on leaf dwelling insects, flying
insects or on a 50% mix of flying and leaf dwelling insects. This means that 36% of the scenarios for
the assessment of the reproductive risk for insectivorous birds do not cover bats feeding on ground
dwelling arthropods and 91% of the available scenarios do not cover bats feeding on leaf dwelling
insects, flying insects or a 50% mix of flying and leaf dwelling insects.

Conclusion

The current exposure assessment for birds and mammals cover the exposure of bats at the
screening step – with some exceptions for bare soil, hop and grassland. This means that all calculated
screening steps for birds and mammals in the scenarios bare soil, grassland and hops according to the
current scheme would indicate a low risk, while the risk to insectivorous bats is higher. All calculations
are based on the estimated exposure for bats as given in Table 4.

In the first-tier assessment, the exposure calculations do not cover the exposure for bats if the
available scenarios for insectivorous ground dwelling mammals is used. Considering birds, 29 (acute)
and 28 (long-term) scenarios out of 44 scenarios cover the exposure of bats feeding on ground
dwelling arthropods. Only 4 out of 44 scenarios for insectivorous birds cover the exposure of bats
feeding on flying insects, leaf dwelling insects or a 50% mixture of these. This is the case for acute
and for long-term risk assessment. It is noted that the exposure for bats might not be covered
anymore in those four scenarios if the first-tier risk assessment is refined. Ideally for every
combination of crop and BBCH growth stage for which registration is sought, the exposure of the four
feeding guilds of bats is covered by one (or more) scenarios.

Overall, it is concluded that specific risk assessment scenarios for oral exposure need to be
developed for bats taking into consideration their different feeding guilds. The current methodology
used for exposure assessment calculations for birds and mammals is in principle also applicable to
bats, but with bat-specific parameters for bat-specific FIRs. Future research should focus particularly
on enhancing the database for flying insects’ residues and the type of insects eaten by the different
feeding guilds of bats.

Oral exposure by residues in drinking water

Bats must satisfy part of their water demand by drinking. Information is available that bats may
also drink from small water sources such as cattle troughs or puddles in the field (Korine et al., 2016).
Therefore, the exposure for bats via drinking water was compared with the standard assessments for
birds and terrestrial mammals.

The standard risk assessment for birds and mammals (EFSA, 2009) includes an assessment for
uptake of residues by drinking water from leaf whorls of some crops and from puddles formed in the
field. Exposure to residues in larger water bodies is not assessed, as experience has shown that this is
unlikely to pose a risk to birds and mammals.

The generic species considered for the drinking water assessment are small granivorous birds and
mammals. Granivorous species have a higher drinking water demand compared to insectivorous or
herbivorous species because seeds contain lower amounts of water compared to food items such as
insects, fruits or other green plant matter.

Only limited data are available where the drinking water demand of bats was investigated.
Lactating bats are expected to have a high water demand. Information of the water demand of
lactating bats is available for big brown bats E. fuscus (study of Kurta et al., 1990) and for little brown
bats M. lucifugus (study of Kurta et al., 1989b). The two species are from North America but they are
considered as representative with regard to their water demand for European species as they share
the same features as European species in terms of body size, insect food, habitats (temperate
climates). Bat species living in arid and semi-arid climates (e.g. Mactrotus californicus) can have a
much lower drinking water demand (Geluso, 1978; Bell et al., 1986). However, species adapted to arid
conditions do not occur in Europe and hence are not considered further in the comparison with birds
and terrestrial mammals.

Coverage of bats in pesticide risk assessment
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Most of the water demand of bats is covered by the water content in their insect food. About 20–
22% (E. fuscus) and 23–26% (M. lucifugus) of the total water intake is from drinking. The amount of
water uptake (in L/kg bw per day) was calculated for E. fuscus and M. lucifugus based on the data
from Kurta et al. (1989b, 1990) (see Table 5 below)

The drinking water uptake for granivorous birds and mammals used in the standard risk
assessment is 0.46 L/kg bw per day for birds and 0.24 L/kg bw per day for mammals. The drinking
water uptake of E. fuscus and M. lucifugus were in the range of 0.088–0.206 L/kg bw per day (see
Table 5) which is similar or lower than the drinking water uptake considered in the birds and mammal
risk assessment. Only little information is available on drinking water demands of bats which adds
some uncertainty to the calculations. However, the available studies are of high quality and the species
tested are considered as being representative also for European species. Furthermore, the data are for
pregnant and lactating bats which are most likely the life stages with the highest drinking water
demand. Therefore, on balance it is concluded that the available information is sufficient to conclude
that bats are likely covered in terms of exposure by the current assessment for birds and terrestrial
mammals. Bats exposure might not be covered any more in case that the assessment of risks resulting
from drinking water uptake is refined based on a change of focal species or proportion of time spent in
the treated field (PT). However, such refinement of the risk assessment is rare (see EFSA, 2009).

3.2.2.1. Oral exposure by grooming

Grooming is a common behaviour in bats which could lead to additional oral exposure if a bat was
dermally exposed. This is relevant for the individual and also for the colony exposure via social
grooming. Social grooming is a natural mechanism that is used to control vampire bats whereby
individual bats are dermally dosed and released to bring back the toxin to the colony. The toxin is then
spread via grooming among the individuals in the bat colony. For example, vampire bats (Desmodus
rotundus) were housed in captivity and treated topically with diphacinone in order to investigate the
dispersion of this rodenticide via social grooming and the presence of residues in dead bats. The
experiment was conducted on 20 bats (10 females and 10 males) (Burns and Bullard, 1979 was
excreted via maternal milk.

When born, young bats are very small; Jones et al. (2009) gives the weight of a new born common
pipistrelle as being 1.28 g. Therefore, it can be calculated that in the case of the study by Nagel and
Disser (1990), the oral exposure for new born young would be equivalent to the adult exposure
multiplied by 0.83 times the ratio of adult to young body weight. P. pipistrellus adult body weight is 5.0 g
(see Table 6 in Section 3.2.3). We can calculate 0.83 x (5.0/1.28) = 3.24. This means that a factor of
3.24 would need to be applied to the oral exposure of adults via contaminated insects in this case.

In another study, after an application of methamidophos to potato fields and apple orchards in
Germany, high mortality was recorded among juvenile M. myotis, and pesticide residues were likely
transferred to them via the milk after their mothers had fed on contaminated insects (Hofmann and
Heise, 1991).

Transfer in maternal milk of bats is also recorded in other studies (e.g. Clark and Lamont, 1976)
and for other compounds including anticoagulants (Clark and Lamont, 1976; Dennis and Gartrell,
2015). Therefore, the transfer of pesticides via this route needs to be considered in any future bat risk
assessment.

In case that no physiological difference between rats and bats is known or assumed as regards
species specific mechanism for transfer of pesticides into maternal milk, information from standard
regulatory multigeneration toxicity studies with rats (OECD 416) can be potentially considered to

Table 5: Drinking water demand (L/kg bw per day) for the bat species Eptesicus fuscus and Myotis
lucifugus. Data on the percentage water taken up by drinking compared to the total water
intake taken from Kurta et al. (1989b, 1990)

Eptesicus fuscus Myotis lucifugus

Bats
BW
(g)

Drinking water
(mL/day)

Drinking water
(L/kg bw per day)

BW
(g)

Drinking water
(mL/day)

Drinking water
(L/kg bw per day)

Pregnant 20.84 1.85 0.088 9.02 1.60 0.177

Lactating 17.37 1.61 0.093 7.88 1.62 0.206

BW: body weight.

Coverage of bats in pesticide risk assessment
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support bat pups risk assessment. It needs to be investigated further on whether bat pups are
exposed more to residues via milk as they rely solely on milk until they reach almost the size of an
adult whereas rat pups start feeding on other items already when they did not reach the size of adults.
It indeed appears that transfer to milk rather depends on kinetic factors of the substance like lipid
solubility, molecular size, protein binding, oral bioavailability or half-live of the molecule. Transfer of
substance via milk however does not ultimately mean that there is a concern for pups, as this depends
on the toxicity of the substance.

Rat pups open their eyes 10–14 days post-partum. Until this time, they are only lactated and do
not feed on their own. Potential effects on pups body weight, not observed at delivery but measured
in the first days post partum (until days 10–14), are likely due to the effect of the compound
transferred via maternal milk. If effects are observed after 14 days in rats, then it can be expected
that similar effects will also occur in bats. Since bat pups are likely to be exposed more via milk, the
effects could be more severe for bats.

In terms of estimating exposure for risk assessment purpose, the rat multigeneration study does
not provide sufficient information. In rat multigeneration studies, residues in rat milk are not
analytically investigated on routine basis. However, additional information on content of the pesticide in
the milk could be retrieved from metabolism studies on livestock (lactating ruminants like goats and
cows) when those studies are triggered in the pesticide approval process. In these studies, radioactive
labelled material is fed to animals and the presence of radioactivity in milk gives indication as regards
to a possible transfer to milk. Radioactivity found in milk may be subject to further identification in
case of sufficient levels of milk radioactivity (levels > 0.01 mg/kg). It is noted that the aim of these
studies is mainly the investigation of metabolites.

3.2.3. Dermal exposure

Dermal exposure may be of importance to bats as a combination of behavioural and physiological
features specific to them. As noted in the introduction, they have a very large and highly vascularised
wing surface. Makanya and Mortola (2007) studying fruit bats found that the body skin epidermis was
thick (61 � 3 lm). In contrast, the wing epidermis was thin at 9.8 � 0.7 lm. The rate of oxygen
consumption of the wings alone and of the whole animal measured under light anaesthesia at ambient
temperatures of 24°C and 33°C, averaged 6% and 10% of the total oxygen consumption, respectively,
with similar values for CO2 production. Thus, permeability of the wing membrane must be considered
to be high, and it is assumed that any dermal exposure to pesticides will result in 100% penetration.
The assumption of 100% penetration seems reasonable since 70% is used as the highest default value
used for in human dermal exposure estimations (when data from experimental studies on dermal
absorption with the pesticide under consideration are not available, see EFSA, 2017) for a much
thicker and complex epidermis with more layers, and 100% was also suggested for dermal exposure of
amphibians and reptiles (EFSA PPR Panel, 2018).

Behaviourally, for this section, it is considered that a primary foraging bout typical of small hawkers
which will occur at dusk and early evening (Jones and Rydell, 1994). This main foraging bout of a bat such
as a common pipistrelle may last for e.g. 2 h (Bartoni�cka et al., 2008), during which time the bat may
consume a very large proportion of its daily food intake. If this foraging bout takes place during a spraying
operation, then the bat may be exposed directly to the pesticide as it flies in and around the spray cloud.
The extent to which the bat is dermally exposed will be determined by the time spent in the air with
different pesticide concentrations, and the amount of the pesticide in that air that is intercepted by the
bat. There is no evidence to suggest that bats avoid machinery. Some species are even attracted to light
(e.g. Arlettaz et al. 2000; Stone et al., 2015b), and hawkers might be attracted to insects that are stirred
up by machinery, as seen for other insectivorous predators in farmland (Catry et al., 2014). Therefore, it
cannot be ruled out that some bats will be attracted to spraying operations, and be exposed dermally.

Integrating the bat foraging behaviour with the concentrations of pesticides in air following
spraying to calculate exposure accurately would be a complex task. The path of the bat as it forages
behind a spraying operation is unknown and although the pesticide concentrations in the air above the
crop with time behind the sprayer could be calculated, this is also quite complex. Both these two
curves would need to be described, and the sum of products of the two curves would give the
exposure. Figure 2 shows two hypothetical cases, giving the pesticide concentrations in air with
distance and two possible patterns of bat flight (A and B). Flight pattern A is with variable distances
from the spray boom (most of the time with a large distance from the spray boom and only short
times close to the spray boom). Flight pattern B is for a constant distance from the spray boom. Flight

Coverage of bats in pesticide risk assessment
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pattern A is closer to real behaviour of bats than flight pattern B but needs integration of varying
exposure over time. In this example, flight pattern B has 5 times the exposure of flight pattern A,
assuming we use the product of the time and air concentration for the whole curve. Note that this is in
contrast with the model used to calculate values for Table 6, where we assume 1 min exposure at
distance zero only.

Since the calculation of the necessary curves for air concentration and bat time spent with distance
from boom is beyond the scope of this statement, to provide some indication of the potential for
concern three simple scenarios have been calculated, designed to represent possible conditions
immediately behind the spray boom in a field crop (flight pattern B). The calculations were conducted
based on the assumptions that bats are exposed at this concentration for 1 min per hour and 119 min
unexposed (i.e. not on the graph in Figure 2), or for a full 2-h exposure.

3.2.3.1. Calculation of exposure of bats when foraging during spraying operations

To do this, a simple model was created representing the volume of air that a bat is assumed to fly
through, which is the basis for assessing potential dermal exposure.

To approximate the volume of air, the front surface area of the bat as it moves forward through the
air was calculated. It is assumed that the rapid wing-beat of the bats will effectively expose the large
wing surface to the full volume of the wing stroke, and therefore, only the front surface area needs to
be calculated. Surface area is given by twice the area of the segment of the circle formed by the
stroke of the wing (wa) of length (wl), plus the area of a circle formed by the body diameter (bd).

Figure 2: Hypothetical curves for air concentration of pesticide behind the boom with distance and
time spent by bats at distance behind the boom. A and B are the curves for two different
flight patterns of bats. A flies most of the time at a larger distance from the spray boom
and only for short times close to the spray boom while B flies continuously at a certain
distance from the spray boom

Figure 3: Scheme of surface area/air volume covered by bats flying through a spray cloud. (wa =
stroke angle of wing, wl = wing length, bd = body diameter)

Coverage of bats in pesticide risk assessment
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Note that this model does not take the area of the ears of the bat nor the tail of the bat into
account, both of which would add surface area and in the case of the tail may considerably increase
the front profile as it is used as a ‘scoop’ for flying insects.

The volume of air in litres passed through (v) is assumed to be the surface area multiplied by the
speed s (m/sec) and by the number of seconds spend in the spray cloud (t).

v ¼ s� t� ðp� ðbd=2Þ2 þ p�wl2 � ð2� wa=360ÞÞ

The dermal exposure (de in mg/kg bw) is then calculated by defining the interception rate of the
bat in terms of the proportion of pesticide coming into contact with the surface of the bat (i), and the
concentration of active substance in the air volume (ac).

de ¼ v� i� ac=bw

Here, it is assumed for simplicity in all cases that i is 1.0.
It is assumed that the pesticide concentration in the air (ac) can be calculated in three different ways.

The simplest is just to assume an even distribution of active substance in the volume of air above the
surface of the field, i.e. divide the application rate/m2 by the volume of air between the boom (0.5 m
above the ground) and the surface of 1-square metre of crop. This is referred to as the even distribution
method, whereby the bats fly through a constant concentration with height in the spray cloud. This
method is named ‘Even Distribution Method’.

The second method used was the terrestrial investigation model (TIM) model (US-EPA, 2015),
which results in a lower ac of 12% of the concentration calculated by the even distribution method.
This method calculates the air concentration after spraying at ground level, assuming 90-second
exposure. This is referred to as the ‘TIM method’.

The third method was to assume a constant proportion based on a drift calculation at 1 m from the
spray point. Assuming Rautmann et al. (2001) figures, this gives 2.77% of the application rate per unit
area (this is the spray drift value for arable crops, for orchards this value would be higher). This
calculation uses the width of the bat but not the volume, and is therefore width multiplied by distance
covered multiplied by 2.77% of the application rate per unit area. This method is further referred to as
‘drift area method’.

We used all three methods of calculation for the largest and smallest of the three types of bats
(hawker, hawker/gleaner and ground gleaner) considered for testing (see Table 6), and two different
assumptions of speed and two of time in the spray cloud. These assumptions were 2.0 m/s (second),
6.7 m/s and 1 min and 2 h. These extremes are based on the fastest and slowest flight and assuming
2 h of activity directly in the spray cloud, or 1 min in the spray cloud, both providing a cumulative
exposure. In all cases, the application rate was assumed to be 0.025 kg a.s./ha. Bat parameters used
in each case are given by Table 6. The results are given in Table 7.

Table 6: Parameter estimates with references for the dermal exposure model for examples of three
foraging ecotypes of bats

Parameter Pipistrellus pipistrellus Plecotus auritus Myotis myotis

Foraging type Hawker Hawker/Foliage Gleaner Ground Gleaner

Body weight (g) 51 121 291

Body diameter (m) 0.03* 0.07*

Wingspan (m) 0.180–0.2402 0.255-0.3002 0.350-0.4302

Coverage of bats in pesticide risk assessment
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Parameter Pipistrellus pipistrellus Plecotus auritus Myotis myotis

Flight speed (m/s) Older studies conducted with
this species done in captivity
show a low flight speed
(2.48 m/s � 0.233) but this
may not represent what is
observed in the field. Based on
more recent work4 using real-
world data on a similar bat
species, Pipistrellus kuhlii,
which is only slightly larger,
commuting flight was
significantly faster than
foraging flight (9�3 vs. 6�7 m/s).
Further data on European
pipistrelle bats show that flight
speed decreases from 4 to
7 m/s during search flight to
2–4 m/S during approach flight5.
Finally, another study measured
an average flight speed of
5.4 m/s in edge habitat during
foraging6

Plecotus are typically slow
when foraging (2.35 m/s in
P. auritus7), but they fly faster
when commuting (up to
4.5 m/s8)

Not much information is
available. In a study done in
captivity where bats were
presented with prey items
on the ground, they ‘flew in
large circles over the feeding
area at average heights
between 0.6 m and
1.4 m and average speeds
between 3.0 m and
4.2 m/s’.9

Commuting speeds are
certainly higher than in the
other two species since
M. myotis is much larger

Angle of wing
strokes

54.6°–83.8°3 Stroke angle of ca. 91°7 Not available – may be close
to Plecotus but smaller

*: Estimated by the working group.
1: AnAge website (http://genomics.senescence.info)
2: Eurobats website (www.eurobats.org)
3: Hughes, P., & Rayner, J. M. V. (1993). The flight of pipistrelle bats Pipistrellus pipistrellus during pregnancy and lactation.

Journal of Zoology, 230(4), 541–555.
4: Grodzinski, U., Spiegel, O., Korine, C., & Holderied, M. W. (2009). Context-dependent flight speed: evidence for energetically

optimal flight speed in the bat Pipistrellus kuhlii? Journal of Animal Ecology, 78(3), 540–548.
5: Kalko, E. K. V. (1995). Insect pursuit, prey capture and echolocation in pipistrelle bats. Anim. Behav. 50, 861–880.
6: Seibert, A. M., Koblitz, J. C., Denzinger, A., & Schnitzler, H. U. (2013). Scanning behavior in echolocating common pipistrelle

bats (Pipistrellus pipistrellus). PloS one, 8(4), e60752.
7: Norberg, U. M. (1976). Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus

auritus. Journal of Experimental Biology, 65(1), 179–212.
8: Baagøe, H. J. (1987). The Scandinavian bat fauna: adaptive wing morphology and free flight in the field. Recent advances in

the study of bats, 57–74.
9: Budenz, T., Denzinger, A., & Schnitzler, H. U. (2018). Reduction of emission level in approach signals of greater mouse-eared

bats (Myotis myotis): No evidence for a closed loop control system for intensity compensation. PloS one, 13(3), e0194600.

Table 7: Calculation of dermal exposure in mg/kg bw under different assumptions of flight speed, time
in spray cloud, species and for the Even Distribution, TIM Method, and Drift Area models for a
hawker (Pipistrellus pipistrellus) and a ground gleaner bat (Myotis myotis). See text for
further details. The following parameters were used for the calculations: P. pipistrellus – body
weight of 5 g, body diameter of 0.03 m, wing length of 0.105 m (wing span of 0.24 m/2
minus half of body diameter of 0.015 m) and wing angle of 60°, M. myotis: body weight of
29 g, body diameter of 0.07 m, wing length of 0.17 m (wing span of 0.43 m/2 minus half of
body diameter of 0.035 m) and wing angle of 90°. Flight speeds of 2 m/sec and 4 m/sec
were assumed for slow and fast flying bats, respectively. The Hawker/Foliage Gleaner was
ignored being intermediate in all cases between the other two species

Time in the spray cloud Flight speed
Dermal exposure

(mg/kg bw)

Hawker Even* TIM* Area

1 min Fast 2,490 311 798
Slow 1,470 184 399

2 h Fast 352,863 44,108 95,731
Slow 176,430 22,054 47,865

Coverage of bats in pesticide risk assessment
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A typical bat foraging bout at the start of the foraging period is 2 h. If flying around the spraying
equipment foraging on disturbed insects, then an estimate of 1 min in the spray cloud does not seem
unreasonable (being 0.833% of the time of a foraging period).

In all cases, the model predicting the lowest exposure was the TIM Method, with a slow-flying
ground gleaner receiving 127 mg/kg bw. A slow hawker would receive 184 mg/kg bw and a fast one
311 mg/kg bw. Even using the TIM model and despite the high uncertainty of these estimates, these
calculations suggest that there is the potential for dermal exposure to be a very significant pesticide
exposure route for bats.

The working group did not calculate a value for a non-arable crop, e.g. orchard spraying, which
would be needed for any future risk assessment.

3.2.4. Inhalation exposure

The calculations below are based on the respiratory rates of three different bat species. The
breathing rates and tidal volumes were available for flying and resting bats (see Table 8 below). In
order to estimate the inhalation exposure of bats foraging in the field, it is suggested to use the
breathing rates and tidal volumes of flying bats. Inhalation exposure of resting bats is also calculated
for information and comparison.

The inhalation exposure was calculated according to the following formula:

IE ¼ Cair� Vr

Vr ¼ f � Tv� t=bw

With:
IE = inhalation exposure in mg/kg bw
Cair = concentration of spray in air in mg/L
Vr = Volume of air respired in L/kg bw
Tv = Tidal volume in L
t = time in minutes
f = frequency of breathing (breath per minute)
bw = bodyweight in kg

The concentration in air in the calculations presented below are based on the even distribution of
spray under the boom and soil surface (same as done for dermal exposure) and on the air
concentration calculated for droplets in the TIM model. A correction factor of 0.28 is applied to the air
concentration to account for the proportion of inhaled droplets as suggested in the US-EPA TIM
(Tables 9 and 10).

Time in the spray cloud Flight speed
Dermal exposure

(mg/kg bw)

Ground Gleaner
Even* TIM* Area

1 min Fast 2,037 255 234
Slow 1,018 127 117

2 h Fast 244,524 30,566 56,007

Slow 122,673 15,334 16,718

bw: body weight.
*: At 100% interception.

Coverage of bats in pesticide risk assessment
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The bat exposure via inhalation is much lower compared to the values which were calculated for
the dermal exposure (a factor of > 10,000). The oral exposure from uptake of residues in insects
would be in the range of 0.29–1.15 mg/kg bw per day (depending on the feeding guild) for an

Table 8: Respired volumes calculated for different bat species during flight and rest. Rows with
calculations for flying bats are shaded in grey

Species
Body

mass (g)
f (breath/

min)

Tidal
volume
(mL)

Respired
volume mL
per min

Respired volume in l
per min and kg bw

Activity

Phyllostomus
hastatus

105.9 500 1.75 875 8.262511804 Flying1

Noctilio albiventris 40 125 0.25 31.25 0.78125 Resting2

Pteropus gouldii 733 44.75 9.8 438.55 0.598294679 Resting3

Pteropus gouldii 870 180.9 40.6 7344.54 8.442 Flying3

bw: body weight.
1: From Thomas et al. (1991).
2: From Chappell and Roverud (1990).
3: From Thomas (1981).

Table 9: Pesticide concentrations in air calculated according to even distribution of spray and
according to the TIM model (US-EPA) and the corresponding inhalation exposure for 1 min
of inhalation. Rows with calculations for flying bats are shaded in grey and calculations for
resting bats are without shading. Please see the text above for more details

Species

Air
concentration
according to

even distribution
of 5 µg/

L = 0.005 mg/L*

Air
concentration

droplets
according to
TIM in mg/L

(C air drops for
applied rate of
0.025 kg/ha)

Air
concentration

of TIM in
mg/L**

Exposure of
bats in

mg/kg bw for
1 min of
inhalation

according to
TIM

(droplets)

Exposure of bats
in mg/kg bw for

1 min of inhalation
for the even
distribution of
concentration

(5 µg/L as in the
dermal exposure
calculation)**

Phyllostomus
hastatus

0.005 0.000625 0.000175 0.00144594 0.0116

Noctilio
albiventris

0.005 0.000625 0.000175 0.000136719 0.0011

Pteropus gouldii 0.005 0.000625 0.000175 0.000104702 0.0008

Pteropus gouldii 0.005 0.000625 0.000175 0.00147735 0.0118

bw: body weight.
*: The same as used in the dermal exposure calculation.
**: Please see Section 3.2.3.1 for details; the air concentrations were the same as for dermal exposure and corrected by a factor

of 0.28 to account for the fraction of droplets inhaled (only small droplets can be inhaled).

Table 10: Inhalation exposure for bats after 2 h of breathing air with a certain pesticide
concentration. Rows with calculations for flying bats are shaded in grey and for resting
bats are without shading. For further details, see Table 9 and the text above

Species
Exposure in mg/kg bw for 2 h of

inhalation according to TIM
(droplets)

Exposure in mg/kg bw for 2 h of inhalation for
the even distribution of concentration (5 µg/L

as in the dermal exposure calculation)

Phyllostomus
hastatus

0.1735 1.388

Noctilio
albiventris

0.0164 0.131

Pteropus gouldii 0.0125 0.101

Pteropus gouldii 0.1773 1.418

bw: body weight.

Coverage of bats in pesticide risk assessment
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application rate of 0.025 kg/ha as assumed in the dermal and inhalation exposure estimates. The
inhalation exposure calculated for an exposure of 1 min is about 5–100 times lower than oral exposure
and the 2 h inhalation exposure calculation is in the same range as the oral exposure from residues
uptake via contaminated food items covering the daily energy requirement.

This suggests that the risk from inhalation exposure is for bats less than from dermal exposure and
that inhalation exposure might be in a similar range as oral exposure. However, inhalation exposure to
vapour was not considered in the calculations. For volatile substances, this could significantly increase
inhalation exposure.

The different exposure routes are not directly comparable in terms of potential effects. The uptake
via oral route, dermal route and inhalation can lead to different levels of internal concentrations
because of differences in the membrane barriers. Substances which are taken up orally will not
immediately reach the target organs as they first pass the liver and might undergo a detoxification
mechanism or activation in case of more toxic metabolites. Effects on uptake via the lung membrane
may be different than those via the skin and direct effects on the respiratory membrane of the lungs
may also be more severe than effects on the skin.

Furthermore, it may be reasonable to assume that the different exposure routes (oral, dermal and
inhalation) additive if bats are foraging in the field when a pesticide is applied in the evening and this
should be considered in the risk assessment.

4. Uncertainty analysis

A high variation in toxicological sensitivity of bats in comparison to birds and ground dwelling
mammals was observed. Bats were 1,000 times more sensitive (in the case of the active substance
deltamethrin) to 100 times less sensitive (in the case of fenthion) than the standard mammalian and
bird test species. This add substantial uncertainty if the same endpoint from the standard test species
would be used in a risk assessment for bats.

Table 11 provides an overview on the main sources of uncertainty in the exposure calculations for
bats. The potential over- or underestimation of exposure is only described qualitatively since the
information available for a quantitative analysis of uncertainty is not available.

Table 11: Uncertainty analysis for exposure estimations

Source of
uncertainty

Potential to
over- (�)*or
underestimate
the exposure
(+)**

Explanation

Uncertainty analysis for oral exposure estimates

Food intake rates
(FIR) used in the
oral exposure
estimates

�/+ The food intake rate is based on a small bat species which can be
considered representative for small European bats. Some European bats
such as Pipistrellus pipistrellus are smaller and may have higher FIRs but
the majority of European bats are larger. The FIR was measured in
lactating bats and hence covers the life stage with highest FIRs. Further
studies measuring FIR or energy requirements of bats may broaden the
database and the resulting FIRs may change to higher or lower values
but the magnitude of change is likely to be low

Residue per Unit
Dose (RUD) for
residues in insect
food items

��/+ The residues for flying insects were taken from a study where insects
most relevant as food items for bats were collected. The study was
conducted with a substance which has no acute toxic mode of action for
insects and as such may be well representative for substances with low
toxicity to insects. However, the data are from one study only and hence
broadening the database may lead to a lowering or increase of the RUD

For substances which are highly acutely toxic to insects, the real
residues are most likely lower as the insects with high pesticide load will
not be able to fly anymore and hence will not be available to bats
feeding on flying insects

Coverage of bats in pesticide risk assessment
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Source of
uncertainty

Potential to
over- (�)*or
underestimate
the exposure
(+)**

Explanation

Drinking water
demand

�/+ The drinking water demand was taken from a study with lactating
females of a small bat species. The life stage with highest drinking water
demand is therefore covered. However, it is only one study and if the
database would be broadened the values for the drinking water demand
could be increased or reduced but the magnitude of this change is likely
to be low

Oral exposure by
grooming

���/+++ Grooming is a potential source of oral exposure from residues collected
on the fur and wings of bats. The available data were not sufficient to
provide an estimate of oral exposure from grooming. There is indication
that this exposure route could be substantial since a method to control
vampire bats is even derived from the natural behaviour of social
grooming

Oral exposure of
pups based on a
measured excretion
of 83% of residues
in milk

�� The estimate of exposure of pups from uptake of residues in milk is
based on an excretion of 83% of residues via milk. This measurement is
from one study only. Broadening the database may lead to an increase
or decrease of this value

Dermal exposure estimates

Duration of exposure
of 1 min

+++ If bats forage in a field where a pesticide is applied then the duration of
exposure is likely to be greater than for 1 min

Duration of exposure
of 2 h

��� A typical foraging flight of an aerial hawker lasts for 2 h. These 2 h
could be spent in the vicinity of the treated field. However, it is unlikely
that it will be exposed continuously for 2 h at high air concentrations

Distance to spray
boom

��� In the dermal exposure estimates, it is assumed that the bat is very
close to the sprayer. In reality, the bat will be only for a short time close
to the sprayer each time when it is passing by the machinery during the
foraging flight

Pesticide
concentrations in air

��/++ The calculation of more accurate air concentrations and the path of the
bat takes through the spray cloud may lead to higher or lower exposure

All spray droplets in
the volume of air
passed through by
the bat ends up on
the bat surface
(calculation methods
1 and 2)

� In reality, not all spray droplets in the volume of air the bat is passing
through will end up on the surface of a bat

All spray droplets in
the drift at 1 m
away from the
sprayer end up on
the upper surface of
the bat over the
distance covered
during bat flying
time (calculation
method 3)

+/� In reality, not all spray droplets in the area covered by the bat flight will
end up on the bat surface but on the other hand bats may be exposed
to some droplets from the spray which would deposit further away than
1 m from the sprayer

Inhalation exposure
Duration of exposure
of 1 min

+++ If bats forage in a field where a pesticide is applied, then the duration of
exposure is likely to be greater than for 1 min

Duration of exposure
of 2 h

��� A typical foraging flight of an aerial hawker lasts for 2 h. These 2 h
could be spent in the vicinity of the treated field. However, it is unlikely
that it will be exposed continuously for 2 h at high air concentrations

Coverage of bats in pesticide risk assessment
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5. Conclusions

Habitat use

Farmed landscapes provide foraging opportunities for many bats and there is strong evidence that
bats forage frequently in intensive farmland across Europe and consume agricultural pests by large
numbers.

Given the role bats play as suppressors of arthropods in farmland, forests and even urban areas,
preserving insectivorous bats in temperate regions is seen as a major goal to keep benefiting of this
important ecosystem service. In Europe, bats also make an outstanding contribution to vertebrate
diversity. Most importantly, they are strictly protected across the EU.

Biology

Bats have exceptional longevity making them potentially susceptible to long-term contamination by
pesticides. They also have a low fertility and high parental investment that exposes them to high risks
of population decline following perturbation events. They are therefore k-selected specialist with
potentially high vulnerability to stressors.

Bats use fat storage to support both daily and seasonal patterns of torpor and arousal; therefore,
they are potentially at risk from internal exposure to pesticides as a result of rapid mobilisation of
these fat reserves and the pesticides contained therein either on a daily or seasonal basis.

Pesticide residues may be ingested by the young during lactation. Since the young have a very high
relative energy need, there is potential for this oral exposure route to be very important in bats.

Exposure

Food intake in bats is quite high, and peaks in especially demanding phases of the life cycle, such
as lactation, when females may consume up to ca. 130% of their body mass in insects. A high FIR
means that if food items contain pesticide residues, the oral exposure route is important.

Drinking water constitutes one of the potential routes of bat exposure to pesticides. In fact, bats
drink at a range of water sites, including those found in farmland, such as irrigation canals or small
ponds, which are potentially contaminated with pesticides. Exposure via contaminated water therefore
is relevant.

Source of
uncertainty

Potential to
over- (�)*or
underestimate
the exposure
(+)**

Explanation

Distance to spray
boom

��� In the dermal exposure estimates, it is assumed that the bat is very
close to the sprayer. In reality, the bat will be only for a short time close
to the sprayer each time when it is passing by the machinery during the
foraging flight

Pesticide
concentrations in air

��/++ The calculation of more accurate air concentrations and the path of the
bat takes through the spray cloud may lead to greater or lower
exposure

Respired volumes �/+ Data on respiratory volumes were available for four bat species. The
bats were large in comparison to European bat species. However, there
was no indication that smaller bats would have greater respired volumes
per kg bw and the available data for the four species were consistent.
Therefore, it is not expected that respired volumes of European bats
would be significantly different than the ones used in the exposure
calculations

Inhalation of vapour
not considered

+++ Exposure to vapour can be significant for volatile substances and this
may significantly increase inhalation exposure compared to inhalation of
droplets

*: ’�’, ‘��’, ‘���’ Low, medium or high potential to make the true exposure lower.
**: ‘+’, ‘++’, ‘+++’ Low, medium or high potential to make the true exposure higher.
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While oral exposure via food and water are also considered under the Birds and Mammals Guidance
Document, there are other routes of exposure that need to be considered for bats that are not part of
the current birds and mammals RA. These are:

Grooming – both self- and social grooming represent a way through which pesticide residues
collected on the fur and the wing membranes may be ingested. Hairless juveniles in clusters or
clinging to their mother’s fur might also be affected by the tight contact with adults whose fur has
been exposed to pesticide residues during foraging.

Dermal exposure during foraging – Bats have a very large wing surface with high degree of
vascularisation and extremely thin epidermis that may lead to a high level of dermal absorption. This
indicates that if exposed dermally there is potential for this to be a very important exposure route.
Therefore, there is a need to consider dermal exposure.

Inhalation exposure – if bats are foraging during spray applications, then they are also exposed via
inhalation.

Dermal exposure during roosting – in specific cases, there might be some risk of direct
contamination through inhalation or dermal contact when bats roost in farmland in rural buildings (e.g.
barns, stables) in the proximity of the spray cloud or in treelines or hedgerows. The risk may be more
pronounced when bats use night-roosts to pause from nocturnal activity in areas where pesticides are
sprayed.

Overall – for evening applications, the bats foraging in the field will be exposed via different
exposure routes (oral, dermal, inhalation) simultaneously.

Toxicology

It is important to know whether toxicity to bats can be inferred by studies done on mammals and
birds. There is insufficient data available on toxicity of pesticides to bats to draw firm conclusions.
However, using the data available, there probably is no relationship between toxicity to bats and other
mammals or birds on which a predictive assessment could be made Even within the same group of
pesticides, there was no clear pattern relating toxicity of test species to bats.

There is evidence that echolocation and patterns of torpor can be affected by exposure to
pesticides, both being potentially lethal to individuals in the wild. Therefore, bat-specific endpoints may
need to be used. However, currently there is a lack of information to address effects on these
bat-specific features.

Conclusions on coverage of bats by current risk assessment for birds and mammals

The oral exposure of bats is covered in the screening step assessment of the current assessment
for birds and mammals with some exceptions for bare soil, hop and grassland. However, bats are not
covered by exposure scenario of the terrestrial insectivorous mammals for the first-tier assessment.
Only few (4 out of 44) of the first-tier scenarios for insectivorous birds cover the exposure for bats. It
is noted that the exposure of bats might be underestimated even in those 4 scenarios if the exposure
assessment is refined. Therefore, it is concluded that specific risk assessment scenarios for oral
exposure need to be developed for bats taking into consideration the different feeding guilds of bats.
This includes establishing standard pesticide residues values (RUD) for the food items eaten by bats.
While standard RUD values are available for ground dwelling and leaf dwelling arthropods, there is no
generic RUD value currently available for flying insects. Residues data in flying insects were available
from an EFSA supporting publication (by Lahr et al., 2018). This data set was analysed and several
factors were identified which potentially have an influence on the insect residues values and might
explain the high variability in measured residues values. These factors are related to the sampling
method used, toxicological profile of the substance and insect size.

Furthermore, it is frequent that risk assessments for birds and mammals under regulation 1107/
2009 are refined in higher tier assessment steps. Often these are based on the refinement of
ecological parameters, such as the proportion of diet obtained in the treated area, for key focal
species. The studies used to derive these focal species are performed during the day and do not
account for animals present at dusk. The assessment of the vulnerability of bat species against real
focal species has not been considered in the context of this statement. For the reasons discussed
previously, owing to the specific biology and ecology of bats, it could be expected that higher tier
refinements for birds and mammals are not protective of bat species. However, to reach a definitive
conclusion further experimental investigation would need to be performed.

The current standard estimates for drinking water exposure for birds and terrestrial mammals cover
the exposure of bats via drinking water.

Coverage of bats in pesticide risk assessment
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The inhalation exposure calculated for an exposure of 2 h is in the same range as the oral exposure
from residues uptake via contaminated food items covering the daily energy requirement and it is a
factor of more than 1,000 less than what is calculated for dermal exposure. This suggests that the risk
from inhalation exposure for bats is less than from dermal exposure and that inhalation exposure may
be in the same range as oral exposure. However, inhalation exposure to vapour was not considered in
the calculations. This could significantly increase inhalation exposure for volatile substances. The
uptake via the lung membrane may be different to that via the skin and direct effects on the
respiratory membrane of the lungs may also be more severe than effects on the skin. Furthermore, it
is reasonable to assume that the different exposure routes (oral, dermal and inhalation) are additive if
bats are foraging in the field when a pesticide is applied in the evening.

If bats are exposed dermally during and immediately after spraying operations, exposure levels are
likely to be extremely high and would need to be considered in any bat risk assessment for pesticides.

One measure to mitigate the risk from dermal exposure is to avoid evening applications of
pesticides. The exact timing of such a restriction would need to carefully consider the behaviour of
different bat species occurring in a certain region.

Overall, considering the low fertility and specific exposure routes of bats, the Panel concludes that
bats are not adequately protected following the current birds and mammals guidance for regulatory
assessment of pesticides.

6. Recommendations

In preparing these recommendations, the Panel is fully aware that due to the protected status of
bats in Europe, experimentation on these species to generate ecotoxicological data is generally not
possible. There is a need for a broad investigation of patterns of bat exposure to pesticides, which
should focus on the routes described below.

6.1. Knowledge gaps

Dermal exposure during spraying operations in both rotational and permanent crops may have
considerable importance, yet no study has addressed this important topic. For instance, bats are
unlikely to avoid machinery, instead they might be attracted to the insects stirred up during agricultural
operations, including pesticide spraying. Moreover, the artificial lighting adopted at night may
concentrate phototactic insects such as moths and small dipterans, and, in turn, opportunistic bat
species that tolerate illumination such as pipistrelles. These aspects warrant investigation.

Dermal exposure at roosting sites may be an issue for bat colonies that roost in buildings occurring
in agricultural fields potentially exposed to pesticide drift, and probably even more for bat colonies that
roost in the cavities of trees bordering fields or occurring as isolated trees in farmland. In such cases,
suitable roosts might in fact, act as ‘ecological traps’ leading to occasional high mortality.

Assessing oral exposure requires an in-depth knowledge of the generic residue per unit dose (RUD)
values for flying insects as currently there are adequate RUDs only for ground- and canopy-dwelling
insects. The available database for flying insects residues is limited and should be broadened to derive
robust RUDs specific for the type of insects eaten by the different feeding guilds of bats. It is also
recommended establishing density, composition and pesticide content of insects on which bats feed in
areas as the ones described above. The aim is to obtain insight into the temporal and spatial
distribution of insects, and their pesticide contents, on which the bats feed.

Exposure of young bats to pesticides in maternal milk is of importance since mothers feed their
young intensively on milk for ca. 1 month, thus representing a potentially high risk for pups.

Grooming also represents a potential way of oral exposure: in daytime roosting, bats scratch or lick
their own fur (self-grooming) and also chew or lick another individual’s body (social grooming). Social
grooming is especially important for bats because these mammals are highly gregarious and often
cluster together by hundreds or thousands, not rarely forming heterospecific associations. Grooming
may be an important way through which bats ingest pesticide residues they carry on the fur, but there
is a lack of a quantitative assessment of the time spent grooming for most European species and an
evaluation of the amount of pesticide that bats might ingest in this way.

Species susceptibility determination: the limited toxicity data available showed no evidence of a
relationship between toxicity of PPPs to bats and other mammal or bird species. In lieu of direct
toxicity studies, the Panel suggests the development of mechanism of action and adverse outcome
pathway approaches. This should probably rely on two complementary approaches. First, elucidation
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of metabolic pathways, investigating for instance genetic and metabolic differences in phase I (e.g.
CYP enzymes) and II xenobiotic metabolising enzymes, which affect species-specific patterns of PPP
toxicokinetics. Second, identification of molecular and functional targets for PPPs and their species-
specific variability should also be considered for assessing potential toxicodynamic susceptibilities and
resistances to PPPs. Both approaches should rely primarily on ex vivo and in vitro techniques.

Both passive and active surveillance are urgently needed to assess the amount of residue in bats.
Due to the protected status of bats, surveillance cannot rely on the killing of bats for research, rather
passive surveillance might focus on individual bats found dead (e.g. from rehabilitation centres or
windfarm fatalities), and active surveillance could focus on non-invasive sampling such as collection of
droppings.

Species-specific variation – Different bat species might differ in the degree to which they are
exposed to pesticides, for example in relation to their foraging style, habitat selection patterns or diet
composition, or exhibit different resistance to the adverse effects of pesticide exposure. Any associated
population effect might influence interspecific interactions such as competition patterns and have
community-scale consequences. In assessing such patterns, a combination of field observations (e.g.
spatial use analysis, diet assessment) and modelling is recommended.

6.2. Development of a bat risk assessment guidance

6.2.1. Short-term developments

Before guidance for risk assessment for bats is developed, a definition of clear Protection Goals is
recommended, including the Specific Protection Goals (SPGs) for bats in accordance with the
procedures described in EFSA (2010 and 2016). In operationalising the SPGs, the appropriate exposure
estimate and its timeframe should be made explicit, for example using the approach of the
Ecotoxicologically Relevant Concentration (ERC) developed in Boesten et al. (2007). This approach
needs to take into account bat ecology and behaviour.

Bats are not covered by the current exposure assessment scheme for birds and mammals and
there is a need to develop a bat-specific risk assessment scheme. Based on the current analysis, this
should include a focus on (a) oral exposure via residues in insects and grooming, (b) dermal exposure
and (c) exposure of pups via milk. It is important to highlight that any risk assessment scheme should
consider the total body burden from all exposure routes as bats foraging in the field will be exposed to
residues in insects and also via dermal and inhalation routes.

It is recommended that the current higher tier risk assessment methodologies are further
developed and adapted to cover bats.

For exposure assessment, it is recommended to consider explicitly the probability of occurrence in
time and space, i.e. it acknowledges that there are also spatial units (i.e. fields, habitats), or periods in
time (e.g. years, lactating periods) during which exposure to the relevant substance does not take
place, and it is also explicitly stated for which percentile of the statistical population of
Ecotoxicologically Relevant Exposure Quantities the protection goal should be met. In this way the
variety of exposure values encountered in reality is better reflected and a better estimate of the
wished degree of protection can be made. To achieve this exposure assessment goal, approaches as in
the scientific opinion on Amphibians and Reptiles risk assessment (EFSA PPR Panel et al., 2018) and
Boesten (2018) could be applied to create a systematic inventory of all relevant exposure items, incl.
the exposure pathways.

6.2.2. Long-term developments

In order to calibrate any future risk assessment methodology against protection goals, generic field
studies in combination with suitable and validated population models would be needed. Consequently,
it is recommended that such data or models are developed.

Although not the focus of the current statement, in order to properly protect bats from the effects
of pesticide usage, it would be necessary to ensure that indirect effects are covered. Mitigation
measures could be employed within farmlands to ensure that there are sufficient non-treated areas to
provide a source of insects.

As noted above, the risk to bats can be reduced (but not eliminated) by preventing spray
applications during the foraging time for bats. For example, mortality of juvenile bats was observed
after evening applications of methamidophos but no mortality was observed the years before during
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day applications (Hofmann and Heise, 1991). It is recommended to consider other possible mitigation
measures to protect bats from exposure to pesticides.

We recommend gathering data on spatial and temporal foraging behaviour to link exposure to
specified levels of pesticides in the air (dermal and inhalation exposure) or insects (oral exposure). In
the long term, if population level effects are considered in the risk assessment it is necessary to
integrate bat behaviour with landscape structure and environmental fate, such as including field size
and distribution, spatial and temporal patterns of spray applications and bat utilisation of those areas.
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Glossary and Abbreviations

AChE acetylcholinesterase
AE assimilation efficiency
a.i. active ingredient
ALT alanine aminotransferase
AR aspect ratio
a.s. active substance
AST aspartate aminotransferase
BAT brown adipose tissue
BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie), the

BBCH scale defines the Principal Plant Growth Stages
BMD benchmark dose. The benchmark dose is the minimum dose of a substance that

produces a clear, low level health risk, usually in the range of a 1–10% change in
a specific toxic effect such as cancer induction (e.g. BMD10 is a 10% change)

BMR basic metabolic rate
bw body weight
CYP cytochrome 450 -
DDD daily dietary dose
DEE daily energy expenditure of the indicator species
ERC Ecotoxicologically Relevant Concentration
FE food energy
FIR food intake rate
k-selected species k-selected species produce relatively low numbers of offspring and individual

offspring tend to be quite large. K-selected species are also characterised by
extended parental care and long life spans.

LD50 lethal dose, 50%
LD100 lethal dose, 100%
LOAEL lowest-observed-adverse-effect level
log Kow logarithm of the octanol–water partition coefficient
MAF multiple application factor
MC moisture content
mtDNA mitochondrial DNA
NOAEL no-observed-adverse-effect-level
NOEL no observable effect level
PBT Persistent, Bioaccumulative and Toxic
PCP pentachlorophenol
PPP Plant Protection Product
PT proportion of an animal’s daily diet obtained in habitat treated with pesticide
RA risk assessment
RUD residues per unit dose
SPG Specific Protection Goal
SV shortcut value
TER toxicity-exposure ratio
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Torpor Torpor is a physiological state of an animal which is characterised by decreased
physiological activity, reduced body temperature and metabolic rate. Torpor
enables animals to survive periods of reduced food availability (e.g. during
winter ‘hibernation’)

TWA time weighted average
UNEP/CMS The Convention on Migratory Species
VKOR Vitamin K epoxide reductase
WL wing loading
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Appendix A – General biology and ecology of bats and differences to other
mammalian species relevant for risk assessment

General biology and ecology of bats and differences to other mammalian species relevant for risk
assessment

A.1. Diversity and evolutionary history

All bats belong to an order of placental mammals named ‘Chiroptera’, from the Greek words for
‘hand’, ‘cheir’, and ‘wing’, ‘pteron’, which highlights the order’s main feature, i.e. the presence of wings
arising from the forelimb’s adaptation to flight. While other mammals, such as flying squirrels and
colugos, may glide (Jackson, 2000), bat’s unique wings make them the only mammalian group capable
of powered flight. Bats may fly over long distances, and due to their outstanding dispersal ability, not
surprisingly they are often the only native mammals on remote islands (Conenna et al., 2017).

Among mammals, bats stand out for their remarkable species richness (over 1,300 species), being
second only to rodents (Altringham, 2011). Although all species share the same body plan,
physiological, ecological and behavioural adaptations have allowed bats to conquer all continents
except Antarctica, succeeding in a wide array of habitats, from rainforests to the deserts, from
temperate forests to human-altered environments such as farmland and even urban areas.

Another remarkable feature of bats is their nocturnal behaviour, which is thought to constitute an
evolutionary response to predation by diurnal avian predators that rely on vision (Mikula et al., 2016).
Although all bats may show sporadic daytime flights, the few exceptions that do so frequently are
typically restricted to oceanic islands that have never been reached by such predators (e.g. Russo
et al., 2011a); even more rarely, daytime flight may take place at mainland sites where the risk of
being caught is negligible compared to the advantage of foraging before dark (Russo et al., 2011b).
The most remarkable adaptation to the bat’s nocturnal lifestyle is the biosonar, or echolocation; the
majority of living bats broadcast ultrasonic pulses and listen for their echoes to probe the space
around them for orientation, navigation, and foraging (Fenton, 2013).

The oldest fossil remains of bats date back to the Eocene (over 50 million years ago), and testify
that bats have been through a long evolutionary history. The 52.5 million-year old Onychonycteris
finneyi, the oldest bat known to date (Simmons et al., 2008), from the sedimentary rocks of the Green
River Formation (US), possessed some primitive characters no longer recorded in living bats, such as
the presence of claws on all fingers, yet it basically shows the same body plan shared by all modern
bat species. Although, based on its skeletal morphology, O. finneyi has been suggested not to be able
to echolocate (Simmons et al., 2008) in agreement with the hypothesis that bats evolved flight before
echolocation, this interpretation has been questioned by Veselka et al. (2010) who suggested that this
species was actually able to echolocate based on the fact that its stylohyal bone may have articulated
with the tympanic bone, a condition typical of echolocating bats. Only slightly more recent (50 million
years), Icaronycteris index, from the Polecat Bench Rocks of Wyoming were agile flyers and already
efficient echolocators.

There is now strong evidence that bats are monophyletic. They belong to a diverse group of
mammals called Laurasiatheria, comprising a diverse array of mammalian groups (Tsagkogeorga et al.,
2013). Bats have long been classified into two suborders, Megachiroptera (megabats) and
Microchiroptera (microbats), which although today is no longer considered valid is still useful. The
former, comprising some of the largest bat species, are the so-called flying foxes, forming a group of
200 species from the family Pteropodidae, and confined to the Palaeotropics. They are often of a large
size and lacking the biosonar with the only exception of Rousettus aegyptiacus and Rousettus
amplexicaudatus, which click their tongues to generate echolocation calls. All remaining bat species,
the Microchiroptera, are mostly small, occur over most of the globe and possess laryngeal
echolocation. This traditional separation was highly intuitive, yet sometimes misleading because some
‘microbats’ are actually larger than the smallest ‘megabats’. Molecular studies (Teeling et al., 2005)
have shown that some of the microbat families (Rhinolophidae, Rhinopomatidae, Hipposideridae and
Megadermatidae) are phylogenetically closer to the megabats than to the remaining microbats:
Microchiroptera are therefore paraphyletic. In the latest classification, the Pteropodidae and the above-
mentioned four ‘microbat’ families constitute the suborder Yinpterochiroptera, while all other species
form the suborder Yangochiroptera.
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A.2. Life history in bats and other mammals

The body size of bats shows a remarkable range, spanning from the 2-g bumblebee bat
(Craseonycteris thonglongyai) to the largest flying foxes weighing over one kg, and showing a
wingspan > 1.5 m (Altringham, 2011). However, most species are small: for example, most European
bat species weigh < 20 g (Dietz and Kiefer, 2016). Yet, bats stand out of the crowd of living ‘small
mammals’ such as shrews or rodents thanks to their unique life histories. This has important
conservation consequences, because it is these features that render bats especially vulnerable to
habitat changes and other threats posed by humans. In a nutshell, bats may be defined as k-
strategists, because they are long-lived and in the course of their lives produce few, large offspring
that are milked for several weeks, after which their body size practically equals that of their mother.

To provide a comparison between bats and other common terrestrial small mammals, we examined 10
life-history traits, selecting for analysis 227 species of bats (order Chiroptera), 433 species of rodents
(order Rodentia, families Muridae and Cricetidae) and 72 species of shrews (order Soricomorpha, family
Soricidae). The mammal taxa considered have several characteristics in common, including similar body
sizes, broad geographic distribution, high metabolic rates, and in many cases, the use of torpor as an
energy-saving strategy (Barclay and Harder, 2003). Life-history data were extracted from the AMNIOTE
database (Myhrvold et al. 2015). An approach similar to adopted by Barclay and Harder (2003) was used
for statistical comparisons. A general linear model was used where ‘mammal order’ was the main
treatment and ‘adult body mass’ entered as a covariate to adjust for the effects of interspecific
differences in body size on life history traits. While the ‘adult body mass’ did not refer to a specific sex,
Barclay and Harder (2003) used female mass only. This represents a negligible difference in the approach
used in the two studies since most species considered show limited or no sexual dimorphism. Unlike
Barclay and Harder (2003), the analysis was not restricted to insectivorous bats only, added rodents and,
in most cases, used larger sample sizes. Despite such discrepancies in the approach we adopted, the
findings are very similar to those presented in Barclay and Harder (2003). Data were log-converted when
the distribution of residuals departed significantly from the normal distribution.

In general, the analysis (Table A.1) confirms that bats on one side, and shrews and rodents on the
other, are located at opposite ends of the fast-slow continuum of life history traits that characterise
mammals (Read and Harvey, 1989; Barclay and Harder, 2003). It also shows that body size has a
significant effect in most cases. As discussed ahead, it was found that bats are the most long-lived of
the three groups, followed by rodents and shrews, and that reproduction is, in general, much slower
than in the other mammalian groups considered (see Table A.1), namely:

1) In bats, females mature later than in rodents/shrews, taking on average slightly more than
1 year (similar to what shown in Barclay and Harder 2003), while female rodents mature
earlier than shrews. Males also take more time to reach sexual maturity in bats than in the
other groups; shrews take longer than rodents.

2) Bats produce fewer offspring than rodents and shrews (see also Barclay and Harder, 2003),
and litter size in shrews is slightly larger than in rodents.

3) On average, bats give birth once a year, i.e. less frequently than shrews (2.7/year) and
rodents (3.5/year). Birth rate differs significantly across the three groups considered.

4) Bats have a gestation, respectively, 4.0 and 4.7 longer than rodents and shrews, whereas
the duration of gestation in the remaining two groups shows no significant difference. This
difference is greater than that found by Barclay and Harder (2003) in their ‘bats vs. shrews’
comparison.

5) Lactation takes almost three times longer in bats than in the other two groups, which do
not differ from each other (see also Barclay and Harder, 2003).

6) The body mass of bats at birth relative to that of adult conspecifics is over twice that of the
other orders, which do not differ from each other. The magnitude of this difference is similar
to that found between bats and shrews by Barclay and Harder (2003).

7) At weaning, bats are also heavier than rodents but not shrews relative to their body size;
shrews are heavier than rodents. The lack of difference between bats and shrews was also
found by Barclay and Harder (2003), and given the greater litter size of shrews, highlights
that (assuming all juveniles survive to weaning) shrews wean litter > three times heavier
than those of bats.

8) Bats have a longer interval between consecutive births (almost 1 year) than the other two
groups, while rodents have a shorter interval than shrews.
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Table A.1: Comparison of 10 life-history traits among bats (order Chiroptera), rodents (order
Rodentia, families Muridae and Cricetidae) and shrews (order Soricomorpha, family
Soricidae). Data extracted from the AMNIOTE database (Myhrvold, N. P., Baldridge, E.,
Chan, B., Sivam, D., Freeman, D. L., & Ernest, S. M. (2015). An amniote life-history
database to perform comparative analyses with birds, mammals, and reptiles. Ecology,
96(11), 3109–3109.). Statistical comparisons were made with a General Linear Model
where ‘order’ was used as the main treatment and ‘adult body mass’ as a covariate to
adjust for the effects of interspecific differences in body size on life history traits. In the
‘mean’ column, same letters label means that do not differ from one another

Trait N mean SD Range F P

Female sexual maturity (days)

Bats 227 372.9a 183.3 53.6–831.0
Rodents 433 81.1b 45.2 23.8–438.9

Shrews 72 210.9c 122.8 36.0–417.4
body mass 42.2 < 0.001

order 627.7 < 0.001
Male sexual maturity (days)

Bats 127 473.5a 160.3 98.0–775.8
Rodents 146 76.1b 37.3 36.0–335.0

Shrews 37 154.8c 128.3 36.0–365.0
body mass 3.5 n.s.

order 530.8 < 0.001
Litter size (n individuals)

Bats 647 1.2a 0.4 1.0–3.1
Rodents 783 3.6b 1.5 1.0–8.9

Shrews 188 4.0c 1.6 1.0–9.0
body mass 56.7 < 0.001

order 1943.2 < 0.001
Number of litters per year

Bats 378 1.3a 0.4 0.8–3.0
Rodents 382 3.5b 1.5 1.0–10.0

Shrews 82 2.7c 1.6 1.0–9.8
body mass 8.3 < 0.005

order 683.8 < 0.001
Maximum longevity (years)

Bats 263 14.7a 0.3–41.0
Rodents 491 4.0b 0.1–13.6

Shrews 98 2.4c 0.1–4.0
body mass 3.9 0.048

Order 229.7 < 0.001
Duration of gestation (days)

Bats 291 110.2a 48.0 22.9 – 260.2
Rodents 439 27.0b 6.5 13.5 – 53.3

Shrews 76 23.6c 4.3 17.0 – 30.4
body mass 64.4 < 0.001

Order 1863.5 < 0.001
Days till weaning

Bats 264 66.9a 59.1 15.0–668.8
Rodents 437 24.1b 7.6 11.8–68.7

Shrews 71 23.6c 4.2 17.3–41.5
body mass 125.7 < 0.001

Order 491.2 < 0.001
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A.2.1. A focus on longevity

A first outstanding feature of bats is their longevity. Relative to ground dwelling small mammals
(Table A.1, rodents: 4 years; shrews: 2.4 years), bats may live much longer, on average ca. 15 years
(Table A.1), despite their high active metabolic rate: the longevity record is held by Brandt’s bat
(Myotis brandtii), which in the wild may live up to 41 years (Podlutsky et al., 2005). It is important to
consider, however, that longevity data are available only for a limited number of species, that data
quality differ among those, and that records originate from recaptures of adult individuals banded as
juveniles (as with the above-mentioned M. brandtii) or, in a few cases, from captive bats.

Why are bats so long-lived? Based on the analysis of 64 bat species, Wilkinson and South (2002)
established that hibernation, body mass and occasional cave use increase longevity, while reproductive
rate has an opposite effect. Occasional cave roosting may protect bats from predators, while
hibernation may reduce the risk associated with extreme weather or starvation in the cold months,
when resources are scarce (Munshi-South and Wilkinson, 2010). Caloric restriction such as that
occurring during hibernation may also prolong life span.

According to the disposable soma theory, allocating resources to reproduction rather than somatic
maintenance and repair leads to physical degradation and ageing (Kirkwood, 2002). Bats that
hibernate limit the cost of somatic maintenance for up to several months per year, so they save extra
energy that can be allocated to reproduction (Munshi-South and Wilkinson, 2010). The low
reproductive rate of bats, compared to the greater rate known for other small, shorter lived mammals,
allows bats to save resources that are allocated to somatic maintenance, prolonging individual lifespan
at the expense of reproduction (Munshi-South and Wilkinson, 2010). Bat species that exhibit higher
reproductive rates have shorter lifespan (Wilkinson and South, 2002), and within species, early
breeding may be associated to shorter individual lives (Rhinolophus ferrumequinum; Ransome, 1995).

Moreover, bat mitochondria produce smaller amounts of free radicals per unit of oxygen used
compared to other small mammals. For example, in the mouse-eared bat Myotis lucifugus (living up to
34 years), the amount of hydrogen peroxide produced in the mitochondria per unit of oxygen
consumed is 1/2 to 1/3 those recorded, respectively, for the short-tailed shrew Blarina brevicauda
(maximum lifespan of 2 years) and the white-footed mouse Peromyscus leucopus (maximum lifespan
of 3 years), despite all these species show similar activity levels of the antioxidant superoxide
dismutase enzyme (Brunet-Rossini, 2004). According to mitochondrial theories of ageing, mitochondrial
DNA (mtDNA) in long-lived animals should undergo less frequent mutations than in short-lived species
to counter cumulative damage caused by reactive oxygen species, which seems to be the case with
bats, whose mtDNA substitution rates are on average two times lower than in rodents, despite the
smaller body size of the former (Nabholz et al., 2008).

Trait N mean SD Range F P

Birth/adult body mass (g)

Bats 285 0.2a 0.1 0.0–0.5
Rodents 388 0.1b 0.0 0.0–0.2

Shrews 75 0.1b 0.0 0.0–0.1
body mass 91.0 < 0.001

Order 426.2 < 0.001
Weaning/adult body mass (g)

Bats 120 0.7a 0.2 0.2–1.3
Rodents 306 0.4b 0.2 0.0–1.5

Shrews 65 0.8a 0.2 0.5–1.1
body mass 19.2 < 0.001

Order 133.2 < 0.001
Interbirth interval (fraction of year)

Bats 89 1.0a 0.1 0.4–1.0
Rodents 236 0.1b 0.1 0.0–0.6

Shrews 30 0.1c 0.1 0.1–0.3
body mass 16.1 < 0.001

Order 1643.4 < 0.001
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Finally, the genome and transcriptome of M. brandtii show significant sequence alterations in
growth hormone and insulin-like growth factor 1 receptors, a feature possibly common to other bat
species, which might partly account for the outstanding longevity of this species (Seim et al., 2013).
Telomere shortening, induced by cell reproduction is associated with the degradation processes typical
of ageing, but at least in the especially long-lived Myotis bat species, highly efficient genetic
mechanisms counter this process. Based on long-term mark-recapture field data, Foley et al. (2018)
found that telomeres shorten with age in R. ferrumequinum and Miniopterus schreibersii, yet not in
Myotis myotis or Myotis bechsteinii. Despite the absence of telomerase in Myotis bats, telomere
maintenance is carried out by 21 genes that are differentially expressed and are either enriched for
DNA repair or are linked to alternative telomere-lengthening mechanisms.

A.3. Morphology

A bat’s body plan for certain aspects reminds that of other mammals, with a noticeable exception,
i.e. that forelimbs are modified into wings employed to attain powered flight. Hindlimbs are small to
favour flight, and are rotated backwards. The tendons of the foot confer allow the bats to hang upside
down with no efforts thanks to a special locking mechanism. Skull structure in laryngeally echolocating
bats shows structural characteristics that are strictly related to echolocation (Veselka et al., 2010).
Moreover, craniofacial and tooth morphology are linked with biting style and dietary habits (e.g.
Dumont et al., 2005; Santana et al., 2012)

A.3.1. Wing structure and its physiological and ecological implications

The bat wing is made of the elongated forelimb (humerus, radius and hand bones, metacarpals
and phalanges) whose skeleton supports a double layer of skin named patagium. While the arm and
forearm bones sustain the medial section of the leading edge of the wing, the elongated metacarpals
and phalanges of fingers 2–5 support the wing surface. The thumb is small, clawed and protrudes
from the wing’s upper edge. In Pteropodidae, the second digit bears a vestigial claw on the leading
edge of the wing. The patagium typically includes the hindlimbs (which in comparison with a typical
mammal body plan are rotated backwards and less developed) and the tail. The portion of patagium
comprising the tail is called uropatagium, which, along with the wing surface, may be used by
insectivorous bats to catch their prey in flight. Hindlimbs may be moved in flight and used to alter
wing shape dynamically. Further details are provided in Altringham (2011).

Wings account for ca. 85% of the bat’s body surface (Bassett and Studier, 1988). The two layers of
skin the patagium is made of comprise a central connective core with collagen and elastic fibres where
a rich network of blood vessels, nerves and skeletal muscle fibres is found (Gupta, 1967). Like in birds,
the patagium’s stratum corneum contains cerebrosides to increase pliability needed during flight
(Ben-Hamo et al., 2016). Qualitative and quantitative differences in the stratum corneum’s lipid
composition play a role in changing the rate of cutaneous water loss (Mu~noz-Garcia et al., 2012).
Because of their large surface and structure and their high degree of exposure to the environment
during flight, wings play a major role in controlling heat and water exchange (Thomson and
Speakman, 1999). For the same reason, unlike most other mammals, whose small surface-to-volume
ratio and skin thickness limit gas exchange, in bats the wing’s contribution to total gas (CO2 and O2)
exchange is in fact substantial (Makanya and Mortola, 2007). For instance, in epauletted fruit bats
(Epomophorus wahlbergi), the rate of oxygen consumption of the wings vs. that of whole individual
under light anaesthesia, averaged, respectively, 6% (at 24°C ambient temperature) and 10% (at 33°C)
of the total, and similar values were recorded for carbon dioxide (Makanya and Mortola, 2007).

The shape of bat wings changes across species and is tightly linked with foraging habitat structure,
diet and foraging style (Altringham, 2011), so bat ecomorphological characteristics are powerful
predictors of species ecology. The two basic descriptors of bat wing shape are wing loading (WL) and
aspect ratio (AR). WL (the ratio between a bat’s body mass and its flight membrane area) expresses
how large the wing surface is relative to the bat’s body size (e.g. Norberg and Rayner, 1987). AR
expresses wing shape (wing span2/area; Farney & Fleharty, 1969): fast fliers possess high AR values,
i.e. long, narrow wings, while low AR values (short, broad wings) are typical of forest species. Bats
that have high WL and AR values such as the European free-tailed bat and the three species of
noctule found in the Old Continent show long, narrow wings and possess a fast, energetically
convenient flight, so they can cover long distances and exploit open spaces by hunting on the wing
(aerial hawking). On the other hand, these bats are poor manoeuvres in narrow space, such as that
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typical of dense vegetation. The opposite situation is found in bats showing low WL and AR values,
whose wings are typically short and broad, which are best suited to manoeuvre in dense vegetation
such as the forest, yet their flight is slow and energetically costly. Intermediate situations are observed
in bat species that mostly exploit edge habitats, such as pipistrelles (Pipistrellus spp.), which typically
hunt on the wing along forest edges and other linear structures (Verboom and Huitema, 1997), but
may fly frequently in open spaces or in moderately dense vegetation (Kalko and Schnitzler, 1993).

The large wing surface of bats and its high degree of vascularisation set the scene for a prime role
of this structure within the context of dermal exposure to pesticides, yet this aspect warrants a
quantitative assessment.

A.3.2. Ears and noseleaves

As discussed ahead, most living bats possess a biosonar, i.e. a sensorial modality based on the
production of ultrasonic echolocation calls to probe the surrounding space in full darkness. This
sophisticated system requires remarkable morphological adaptations, such as external ears (pinnae)
showing complex shapes and often including ridges, plus, in many species, a tragus, i.e. a
cartilaginous structure projecting upwards from the base of the ear. Such structures are needed to
increase hearing sensitivity and directionality, which is of prime importance for bats as they need to
detect the faint echoes of the echolocation calls that they emit (Altringham 2011). Elongated pinnae
such as those of long-eared bats (genus Plecotus) are used to listen to prey-generated sound and
hunt by passive listening, for instance when feeding on ultrasound-sensitive prey such as tympanate
moths (Anderson and Racey, 1991). Species that glean non-flying arthropods from off the ground,
where they would be difficult to detect through active echolocation, also use passive listening to
identify prey and therefore possess long pinnae, such as those of the greater mouse-eared bat
(M. myotis), often preying upon carabids (Arlettaz et al., 2001), or the scorpion-hunter Otonycteris
hemprichii (Holderied et al., 2011).

Although many bat species emit sound through the mouth, some do so through the nostrils, and in
such cases, bats often exhibit noseleaves (there are exceptions, however, such as Plecotus spp. and
Barbastella barbastellus, which lack them but still broadcast sound through their nostrils). Noseleaves
surround the nostrils, are present in bat species that broadcast long, constant-frequency echolocation
calls such as rhinolophids, and work as an acoustic lens that concentrates energy on a focal area
increasing the difference in the energy this reflects relative to the periphery (Vanderelst et al., 2010).

A.4. Physiology

A.4.1. Powered flight

Although powered flight in bats is energetically expensive – it may cost twice the energy needed for
running (Thomas, 1987) – it is outstandingly efficient in terms of cost of transport, which is five times
lower than that faced by a non-flying mammal of equivalent size (Altringham, 2011). Flight allows bats
to cover long distances: among European bats, nightly linear displacements > 10 km are not rare (e.g.
Biscardi et al. 2007), and greater noctules Nyctalus lasiopterus may cover up to 130 km on a single
night (Popa-Lisseanu et al., 2009). Thanks to powered flight, bats have access to three-dimensional
landscapes, and insectivorous species may feed on airborne insects even at very high altitudes (Voigt
et al., 2018). The ability of covering long distances also enables bats to cope with resources that are
scattered and ephemeral, which a non-flying mammal would, in most cases, miss: other advantages
comprise escaping predators effectively, overcoming unsuitable habitat, and, in some cases, migrating
over long distances to search for suitable climatic conditions and food in different seasons (Altringham
2011). Flight has surely played a major role in allowing bats to colonise practically the whole Earth
except the poles.

How bats evolved powered flight is still unclear. The common view is that flight originated through a
complex transition history from a quadrupedal arboreal mammal that possessed the ability of gliding
(Bishop, 2008). Molecular studies show that the Prx1 gene (expressing a transcription factor that is
involved in limb bone growth) is upregulated in the cartilage and perichondrium of distal limb in bats.
Hence, an alteration of this gene may have played a major role in specialising the bat forelimb from a
non-flying ancestor (Cretekos et al., 2008). Both palaeontological and molecular data suggest that the
ancestor of modern bats appeared on the scene at the Mesozoic–Tertiary interface (ca. 64 million years
ago) in the northern hemisphere (Teeling et al., 2005), but the oldest fossils available are ‘only’ 52 million
years old, and judging from wing morphology, those bats already possessed powered flight (Simmons
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et al., 2008). Therefore, based on current knowledge and in the absence of sufficient fossil evidence, the
steps that led to powered flight in modern bats can only be a matter of speculation (Bishop, 2008).

A.4.2. Echolocation

Along with flight, echolocation is one of the most astonishing bat features. Widespread among
Chiroptera, it occurs in over 85% of living bat species, i.e. in all those formerly classified as
‘Microchiroptera’ (possessing laryngeal echolocation) plus one megabat genus (Rousettus aegyptiacus)
which generates sound by clicking the tongue (Jones and Teeling, 2006). Here, the focus is on
laryngeal echolocators. Echolocation is a clear adaptation to being active in the dark, when vision
alone would be of little use. Echolocating bats broadcast ultrasonic calls apart from rare exceptions
that emit audible sounds (e.g. the European free-tailed bat Tadarida teniotis; e.g. Russo and Jones,
2002). Bats broadcast series of short (often a few ms) pulses characterised by a high amplitude, yet,
being ultrasonic, these undergo rapid atmospheric attenuation (Lawrence and Simmons, 1982). The
echoes reflected by the surrounding objects are detected by the bat, which in most cases assesses the
time delay occurring between call emission and echo reception to determine target distance. For this
system to work, however, no overlap between the outgoing call and the incoming echo is possible,
which explains why echolocation calls are so short (e.g. Fenton et al., 2012). Some bats (e.g.
rhinolophids, featuring five species in Europe) also rely on the detection of ‘acoustic glints’ generated
by the interaction between the long constant-frequency components of the calls they broadcast and
the fluttering of objects they insonify, such as a moth’s wing stroke, which generate distinct patterns
(Fenton et al., 2012). These bats are adapted to hunt in clutter, so they overcome the problem of
acoustic clutter produced by the structurally complex environment they hunt in by recognising the
above-described patterns. These bats also possess an ‘acoustic fovea’ most sensitive to an individual-
specific frequency value, so that when flying, they will lower the frequency of their calls to compensate
for the Doppler upwards shift induced by their own movement, and tune the echo in to their preferred
frequency value (Schuller and Pollak, 1979). Consequently, the frequency of the incoming echo will be
higher than that of the outgoing call, and this separation by frequency, rather than time, still allows
the assessment of time delay that the other bats use, even if in this case temporal overlap occurs
between call and echo.

Echolocation provides a wealth of information about the surrounding world, since calls often cover
a broad frequency spectrum, and just like in the case of visible light, different frequencies will provide
different responses, overall showing ‘echo colours’ that inform the emitter about specific properties of
the target, such as size and texture (Smith, 2008).

Different bat species show different echolocation call designs depending on the sensorial tasks they
face when commuting or foraging. Species that cope with the acoustic clutter typical of dense
vegetation such as the forest (e.g. the Natterer’s bat Myotis nattereri) often show brief broad-band
echolocation calls whose rich array of frequencies provides many details of their complex surroundings.
To the opposite end of the ecological scenario, species that fly in open space (e.g. the common
noctule, Nyctalus noctula) typically broadcast calls comprising a narrow range of frequencies, and
these are typically lower than in clutter specialists to mitigate atmospheric attenuation: this design is
clearly adapted to maximise echolocation’s operational range at the expense of discrimination power.
Species that exploit a broad range of habitats and often forage along vegetation edges, such as
pipistrelles, show calls that combine both designs, which confers on them sufficient flexibility to deal
with different spatial contexts (e.g. Russo et al., 2018a,b,c).

Although call structure is, broadly speaking, adapted to different environmental conditions, bats are
multiple habitat specialists that commute in a range of habitats, so they may change call design to
increase echolocation performances. Therefore, a species that flies in open space such as a noctule, once
in cluttered space will shorten call duration and broaden frequency bandwidth, whereas clutter specialists
may to some extent show opposite adjustments when flying in open space. Interpulse interval (the time
between two consecutive calls) may also change, decreasing in cluttered space (where the echo-acoustic
view needs to be refreshed more frequently), increasing in the open (e.g. Russo et al., 2018a,b,c).

Call structure, duration and interpulse intervals also change according to the task a bat is
accomplishing – searching for, approaching or attempting to catch prey, in which case a terminal, or
‘feeding’ buzz, is broadcast (Ratcliffe et al., 2013). The latter is made of a rapid sequence of broad,
short calls that are emitted by a bat locking in on a prey item. Buzzes are also emitted by bats when
drinking or landing on the ground (e.g. Russo et al., 2007, 2016b).
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Further sources of echolocation call variation may be associated with a bat’s sex, age, geographic
origin or even colony membership, or with different environmental conditions. A comprehensive review
of call variation is given by Russo et al. (2018a,b,c).

Echolocation is a vital sense to bats, and its impairment implies serious spatial disorders, and,
inevitably, fatal consequences. This may be relevant for pesticides, for example, exposure to
imidacloprid may affect adversely the spatial memory of bats through neural apoptosis in hippocampal
CA1 and medial entorhinal cortex areas (Hsiao et al., 2016).

Echolocation is the prime sensory modality bats use to find their way in the dark, detect obstacles
and food. However, during long-distance navigation bats are likely to employ also other senses, such
as vision (Smith and Goodpaster, 1958; Griffin, 1970; Davis and Barbour, 1970; Tsoar et al. 2011) to
identify distant landmarks and follow large-scale cognitive maps. Bats have also been found to be
sensitive to the Earth’s magnetic field, i.e. they use a magnetic compass but this is sun-calibrated
recording sunset information when they leave the roost (Holland et al., 2010).

A.4.3. Metabolic rate

Table A.2 shows values of basal metabolic rate (BMR) for 64 bat species differing largely in terms of
body mass, geographic origin and food habits. The average BMR value for such species is 37.4 � 33.7
mL O2/h (range 6.1–174.0 mL O2/h). BMR varies according to a range of factors: for instance, in 30
species of neotropical bats from the family Phyllostomidae, body mass explained most (ca. 80%) of
BMR variation, whereas the combination of body mass, food habits, altitude and occurrence on islands
vs mainland explained ca. 99% of it (McNab, 2015). Insectivorous bats tend to have BMR values that
are slightly lower than those predicted for mammals of their size according to the allometric
relationship linking BMR and body size, while bats feeding on vertebrates or plants have BMR values
equal or slightly greater than those predicted in this way (McNab, 1982). Insects in temperate regions
are an ephemeral resource, so a lower BMR may, from this perspective, be adaptive.

Table A.2: Basal metabolic rate (BMR) values used for the analyses presented in Fristoe et al.
(2015) and Menzies et al. (2016), and body mass for 64 bat species. Body mass values
were taken from the above-mentioned articles or from the EOL website (https://eol.
org). The reference column shows the articles from where the original values were
taken

Species Mass (g) BMR (mL O2/h) References

Anoura caudifer 11.5 42.7 McNab (1969)

Anoura latidens 13.6 36.9 Soriano et al. (2002)
Artibeus concolor 19.7 39.8 McNab (1969)

Artibeus jamaicensis 45.2 76.8 McNab (1969)
Artibeus lituratus 70.1 108.0 McNab (1969)

Carollia perspicillata 14.9 43.1 McNab (1969)
Chrotopterus auritus 96.1 141.3 McNab (1969)

Cynopterus brachyotis 37.4 47.5 McNab (1989)
Desmodus rotundus 29.4 34.7 McNab (1969)

Diaemus youngi 36.6 37.3 McNab (1969)
Diphylla ecaudata 27.8 38.6 McNab (1969)

Dobsonia anderseni 241.4 174.0 McNab and Bonaccorso (2001)
Dobsonia praedatrix 179.5 142.5 McNab and Bonaccorso (2001)

Eonycteris spelaea 51.6 48.0 McNab (1989)
Erophylla bombifrons 16.1 17.7 Rodr�ıguez-Dur�an (1995)

Glossophaga longirostris 13.5 26.5 Arends (1995)
Glossophaga soricina 6.8 17.7 Cruz-Neto and Abe (1997)

Hipposideros galeritus 8.5 9.4 McNab (1989)
Histiotus velatus 11.2 10.0 McNab (1969)

Leptonycteris curasoae 24 34.1 Arends (1995)
Macroderma gigas 107 94.2 Baudinette et al. (2000), 23)

Miniopterus schreibersii 10.91 26.0 Baudinette et al. (2000)
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It should also be considered that insectivorous bats from temperate regions are often torpid at rest
so in such cases they do not show a significant difference with ambient temperature and hence cannot
be assigned a ‘basal metabolic rate’ value, yet they may be assigned a ‘standard’ resting metabolic
rate at some fixed value of body temperature (McNab, 1997).

Active metabolic rates in bats are considerably high because powered flight is an energetically
expensive activity, in fact twice as costly as running for mammals that move on the ground (Thomas,
1987). In nectar feeding glossophagine bats, metabolic flight power was estimated as 15 times the

Species Mass (g) BMR (mL O2/h) References

Molossus molossus 15.6 22.5 McNab (1969)

Monophyllus redmani 8.7 11.1 Rodr�ıguez-Dur�an (1995)
Mormoops blainvillei 8.6 8.0 Rodr�ıguez-Dur�an (1995)

Natalus tumidirostris 5.4 8.3 Genoud et al. (1990)
Noctilio albiventris 27 31.6 McNab (1969)

Noctilio leporinus 61 70.8 McNab (1969)
Nyctimene albiventer 30.9 26.4 McNab and Bonaccorso (2001)

Peropteryx macrotis 5.1 11.8 Genoud et al. (1990)
Phyllostomus discolor 33.5 47.9 McNab (1969)

Phyllostomus elongatus 35.6 38.8 McNab (1969)
Phyllostomus hastatus 84.2 100.2 McNab (1969)

Pteronotus quadridens 4.9 6.1 Rodr�ıguez-Dur�an (1995)
Rhinonicteris aurantia 8.27 16.2 Baudinette et al. (2000)

Rhinophylla pumilio 9.5 18.6 McNab (1969)
Saccopteryx bilineata 8.2 15.3 Genoud and Bonaccorso (1986)

Sturnira erythromos 15.9 39.9 Soriano et al. (2002)
Sturnira lilium 21.9 53.2 McNab (1969)

Tonatia bidens 27.4 55.1 McNab (1969)
Uroderma bilobatum 16.2 31.6 McNab (1969)

Antrozous pallidus 20.8 21.20 Licht and Leitner (1967)
Chalinolobus gouldii 14.5 25.20 Hosken and Withers (1997)

Eptesicus fuscus 23.0 17.00 Willis et al. (2005)
Eptesicus serotinus 18.2 43.10 Menzies et al. (2016)

Glossophaga soricina 10.0 21.60 McNab (1969)
Hipposideros armiger 50.0 32.86 Liu and Karasov (2011)

Macroglossus minimus 16.0 21.00 Bartels et al. (1998)
Miniopterus schreibersii 11.2 25.42 Speakman et al. (2003)

Mops condylurus 26.6 31.09 Maloney et al. (1999)
Myotis lucifugus 10.0 9.30 Kurta and Kunz (1988)

Myotis myotis 28.6 25.00 Hanus (1959)
Myotis thysanodes 6.0 17.40 O’Farrell and Studier (1970)

Nyctalus noctula 27.8 39.69 Speakman et al. (2003)
Nyctimene albiventer 30.0 26.30 Geiser (1988)

Nyctophilus bifax 9.9 13.10 Stawski and Geiser (2011)
Nyctophilus geoffroyi 7.0 10.99 Hosken and Withers (1997)

Nyctophilus gouldii 11.3 10.39 Geiser and Brigham (2000)
Pipistrellus pipistrellus 5.0 12.10 Speakman et al. (2003)

Plecotus auritus 7.8 11.20 McLean and Speakman (1999)
Rhinolophus ferrumequinum 22.9 46.50 Speakman et al. (2003)

Rhinolophus megaphyllus 9.8 25.84 Willis (2008)
Tadarida brasiliensis 12.5 15.30 Licht and Leitner (1967)

Tadarida teniotis 35 31.52 Speakman et al. (2003)
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predicted BMR (Winter and Von Helversen, 1998) – a high figure, yet still 20–25% less than the costs
incurred by small birds.

A.4.4. Torpor and hibernation

Bats are endotherms, accomplishing high physiological performances by maintaining they body
temperature at a constant level independent of ambient temperatures when active. Endothermy has a
cost, however, and when ambient temperatures are low, much energy is needed to keep the body
warm and counter the heat lost through the body surface. The amount of heat lost in such
circumstances is greater for smaller animals such as bats because of their higher surface to volume
ratio. Flight is energetically costly, so active bats also spend massive amounts of energy for foraging,
commuting or migrating. Moreover, being small, bats have limited space in their bodies to store fat
reserves, and the many insectivorous species rely on highly fluctuating and seasonally variable
arthropods as their food source. To cope with this otherwise energetically unsustainable situation, bats
behave as facultative heterotherms, i.e. when needed, they downregulate their body temperature to
set point values that approach those of ambient temperature. This condition, called torpor, makes it
possible to save considerable amounts of energy (Altringham, 2011).

Torpor is often adopted by active bats (in late spring, summer and much of autumn, depending on
the climate of the region in question) during daytime roosting. In such cases, it is defined as ‘daily
torpor’ because it lasts < 24 h and is associated with nocturnal foraging, while in bat hibernation,
torpor periods span across several consecutive days to several weeks and the main source of energy is
offered by fat accumulated in the active months (Ruf and Geiser, 2015). In daily torpor, bats arouse in
order to leave the roost for their nocturnal foraging. Not all bats can utilise torpor in daytime,
depending on their physiological status: torpor may, in fact, slow down physiological activities that
require a high body temperature, such as pregnancy or lactation, so in summer, reproductive females
use torpor much less than non-reproductive ones or males (McAllan and Geiser, 2014; Russo et al.,
2017a). By the end of summer, it is the turn of males to avoid torpor because they need to maintain
high levels of activity for mating. Torpor also represents an emergency strategy useful when food
becomes suddenly scarce in the active season, such as on an unusually cold summer night, when
being torpid is more convenient than foraging (Altringham, 2011).

Torpor makes it possible to save enormous amounts of energy when it is prolonged for days, weeks
or even months, i.e. during hibernation, which takes place in winter months. Especially for
insectivorous bat species that occur in temperate regions, winter is in fact a very sensitive time of the
year, when ambient temperatures are low and insects are seasonally scarce. Put it simply, hibernation
is, therefore, a prolonged form of torpor. Hibernation is not continuous, however, and bats may arouse
to drink, urinate or defecate, sleep, mate or even forage on a warm evening. Winter foraging can be
especially frequent in regions characterised by a mild climate (Williams et al., 2010).

Torpid bats still regulate their body temperature, so when ambient temperatures drop to values
close to 0°C, which might lead to death, the bat will arouse from torpor and become normothermic.
Basically, a torpid bat will reduce: (a) body temperature to as little as 1–2°C above ambient
temperature; (b) breath rate (interrupting breathing for up to ca. 1.5 h); and (c) heart rate (from 200
to 300 beats at rest to 10 beats); oxygen consumption (which becomes 140 times lower than in a
normothermic condition) and metabolic rate; and blood flow, which is restricted to the main organs
and does not reach the limbs (Altringham, 2011).

Bats enter hibernation in response to low ambient temperatures; in such phase, they rely on the fat
reserves stored during the months of activity to support the highly reduced energy expenditure faced
during prolonged torpor. Arousal is spontaneous and sustained by the massive heat release caused by
consumption of brown adipose tissue (BAT), concentrated on the back of the bat, whose specific
metabolic dynamics allow conversion of energy reserves into heat (Cannon and Nedergaard, 2004).
Shivering also takes place to speed up the arousal process, which may last up to ca. 30 min. Arousals
are highly costly: a bat arousing itself every second week during hibernation will consume up to 85%
of the fat needed to survive winter (Thomas, 1995). Therefore, disturbance to hibernation colonies
takes a heavy toll on hibernating bats and their likelihood to survive winter.

Although an extensive use of torpor is typical of insectivorous bats from temperate regions, which
need to cope with an ephemeral food resource and seasonally harsh climate, torpor and hibernation
also occur frequently in many tropical and subtropical species, suggesting that heterothermy is an
ancestral trait common to all bats (Geiser and Stawski, 2011).
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The massive fat consumption bats face in winter may expose them to the mobilisation of lipophilic
pesticides during hibernation and increase the risk of direct mortality, an aspect warranting appropriate
investigation.

A.4.5. Life cycle and reproduction

We will refer to the general life cycle of a bat species from a temperate region. Bats typically enter
hibernation in late autumn and become active again around mid-spring, but significant changes may
occur according to the local climate, species, individual status, etc. Mating occurs since the end of
summer and may extend over the hibernation period. Several mating strategies occur among the bat
species so far studied worldwide, and a useful synthesis is offered in Altringham (2011). Among
European species, polygyny is widespread, but this may be more complex and multifaceted than
expected. For instance, a deeper insight into the mating system of some species, such as
R. ferrumequinum, has revealed that females may mate with the same males over the years and that
intra-lineage polygyny occurs, i.e. relatives in the maternal line such as mothers and daughters, tend
to share breeding partners (Rossiter et al., 2005). In some species, a ‘lek’ system exists, with males
advertising themselves by calling from the roost (Nyctalus noctula: Sluiter and Van Heerdt, 1964) or
performing songflights (Pipistrellus pipistrellus and Pipistrellus pygmaeus: Lundberg and Gerell, 1986;
Jones, 1997). In other species (Plecotus spp., Myotis spp., B. barbastellus and Eptesicus spp.),
numerous bats (whose sex ratio is strongly biased towards males), often from several species, swarm
at night in underground sites, perhaps where males lek to attract females, and mating takes place
(Glover and Altringham 2008; Altringham, 2011). The distances bats cover to reach swarming sites
may be considerable (Parsons et al., 2003), and swarming sites represent hot spots of genetic diversity
often overlooked, yet vital, in conservation plans (Kerth et al., 2003a; Veith et al., 2004).

The typical reproductive cycle of bats of temperate regions is monoestry, which leads to one, more
rarely two young per year (Altringham, 2011). In most cases, European bats show a delayed
fertilisation mechanism, i.e. mating takes place in late summer, autumn or winter, when females store
the sperms in their genital tract; females ovulate only once they arouse from hibernation, so mating
and fertilisation may occur months apart. This mechanism allows for an optimal matching between the
time of female reproduction, when they face a high energy demand, and the seasonal abundance of
insect food, which peaks right at the time when young are delivered and milked. All European bat
species exhibit delayed fertilisation except one, Miniopterus schreibersii, in which fertilisation is not
delayed and embryonic development starts immediately after it, but the embryo implants in the uterus
only after several months so that embryo’s further development, parturition and lactation take place in
summer, when sufficient food is available. Delayed implantation is a common strategy in other
mammal orders, e.g. ungulates (Aitken, 1974) and carnivores (Mead, 1989).

Lactation lasts for about a month, after which the young attains a body size close to that of adults,
which means that in the final part of lactation, the mothers need to supply milk to young that are
almost their own size (Kunz et al., 1995b). Before weaning, the young are unable to forage
independently. With reference to pesticide risk, it is important to remark that considerable amounts of
lipophilic pesticides may concentrate in milk and be consumed by the young during lactation. For
example, after an application of methamidophos to potato fields and apple orchards in Germany, high
mortality was recorded among juvenile M. myotis, and pesticide residues were likely transferred to
them via the milk after their mothers had fed on contaminated insects (Hofmann and Heise, 1991).

A.5. Ecology and behaviour

A.5.1. Foraging ecology and behaviour

European bats show a range of species-specific foraging strategies that allow them to get access to
habitats characterised by a different degree of structural complexity, or ‘clutter’. The ability of a given
species to exploit a certain habitat structure for foraging depends on a combination of wing
morphology and echolocation call design.

Echolocation call design is tailored to exploit different habitat structures, which explains why it
differs among species (e.g. Jones and Holderied 2007; Russo et al., 2018a,b,c). The species that hunt
in open space broadcast echolocation calls at lower frequencies, and exhibit narrower frequency
bandwidths, than those hunting in cluttered habitat. Calls made of low frequencies and showing a
narrow bandwidth probe long distances but provide low resolution, so they perform well in open
habitat but cannot cope with the complexity of dense vegetation, whereas calls with high frequencies
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and broader bandwidth undergo strong atmospheric attenuation, so that their operational range is
limited, but provide many details about the surroundings, which is vital in structurally complex
environments.

Finally, rhinolophids (Rhinolophus spp.) often adopt a ‘sit-and-wait’ strategy, known as perch-
hunting, in forest habitats or at the interface between forest and open habitat (Jones and Rayner,
1989): the bat hangs to a small branch, explores the surroundings with its specialised, high-frequency
biosonar (mostly relying on Doppler-shift compensated calls that detect flutter) and as soon as prey is
detected, takes off to seize it. Prey is typically dismembered and eaten while perching (Jones and
Rayner, 1989).

A limited number of studies have assessed food intake in insectivorous bats, and although not
everyone agrees on the estimates available in the literature, there is no doubt that bats consume
many arthropods per night, and obviously this has major consequences in terms of oral exposure to
pesticides.

One way to establish daily food intake is to measure it from captive subjects, yet this is likely to
provide only a gross underestimate of the actual energy needs of free-living bats. Based on studies
done in captivity on North American bats, a single individual would eat the equivalent of up to 25% of
its body mass in insects per night (Brisbin, 1966; Neuhauser and Brisbin, 1969; O’Farrell et al., 1971;
Coutts et al., 1973). Estimates for free-living bats show much higher food intakes, yet these vary
depending on the bat’s physiological status, and tend to be highest for females at their lactation peak.
By analysing the turnover of doubly labelled water, a lactating M. lucifugus is estimated to consume up
to 130% ca. of its body mass in insects (Kurta et al., 1989a,b), while in lactating Tadarida brasiliensis
this figure would be as high as ca. 70% ca. (Kunz et al., 1995a). Since large prey are dismembered
and their wings, heads and legs often discarded, the number of prey items eaten is actually larger
than that estimated from the biomass consumed only. Other experimental evidence points at intake
rates of wet food as high as 0.5 g/g body mass per day. For instance, Anthony and Kunz (1977)
compared pre-feeding vs. post-feeding body weights of M. lucifugus (ca. 10 g body mass) returning to
their roosts after two main nocturnal foraging bouts and established that pregnant females ate, on
average, 2.5 g of prey per night, while this figure reached 3.7 g in lactating females and was 1.8 g in
juveniles.

When prey is abundant, bats may show impressively high foraging rates. These are often estimated
from the numbers of feeding buzzes (sequences of rapidly emitted echolocation calls that precede prey
capture), but feeding buzzes represent foraging attempts, whether successful or not, so they may
overestimate the actual number of arthropods caught. For instance, in three 5-min foraging bouts, a
daytime foraging P. pygmaeus broadcast 18.0 � 5.8 feeding buzzes/min (Russo et al., 2011b).
Assuming 50% foraging success, this would translate into > 1600 insects caught in 3 hours, which
would account for a significant biomass despite the fact that in that case bats preyed upon small
dipterans (Coelosia truncata), but of course such estimates should consider the actual foraging
success, the seasonally changing individual-specific energy requirements, variability in prey availability,
and satiation.

From direct observations of foraging behaviour in Myotis daubentonii, Encarnac�~ao and Dietz (2006),
a species scooping small prey (often chironomids) from the water surface over rivers, lakes and canals
estimated that, using a high (92%) capture-success model, daily insect intake of females was 8.0 g
during pregnancy and 4.9 g during post-lactation, corresponding to 5.0 and 3.0 kJ of energy taken
daily per body mass gram. Males caught ca. 3.6 g insects per day in late spring, but this amount
raised to 8.0 g at the peak of spermatogenesis, respectively, providing 2.6 and 5.7 kJ/(g body mass 9

day).

A.5.2. Habitat use

For the reasons mentioned above, different guilds may be recognised among bat species according
to the structure of the habitat they forage in and the foraging mode they adopt, which are in turn
consequences of their wing morphology and echolocation call design. Denzinger and Schnitzler (2013)
divided bats into: (a) ‘open space aerial foragers’, hunting on the wing in open space; (b) ‘edge space
aerial foragers’, mostly foraging along vegetation edges such as treelines, hedgerows or forest
margins; (c) edge space trawling foragers, scooping prey from water surface (insects and in some
cases fish); and day) narrow space foragers, hunting in cluttered vegetation. The latter can be further
divided according to their foraging strategy into narrow space (active or passive) gleaners and narrow
space flutter detecting foragers. Gleaners may detect prey using active echolocation or passively by
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listening to prey-generated sound, while flutter detectors evaluate flutter information encoded in the
echoes of their long, constant-frequency calls corresponding to modulation in sound frequency and
amplitude generated by prey wingbeat.

Within species, some flexibility in choosing habitats of a given structure may be possible, such as in
pipistrelles, which are often observed foraging along vegetation edges but may also hunt in open
space. Flexibility is mostly associated with habitat-dependent, intraspecific variation in echolocation call
structure (Russo et al., 2018a,b,c).

Bats often travel long distances from their roosts to the foraging sites. Distances of several
kilometres on a single night are common in European bat species, sometimes up to > 20 km (Biscardi
et al. 2007). Thanks to this remarkable mobility, bats may reach, and exploit, a range of foraging sites,
and in many cases behave as multiple habitat specialists, like other terrestrial vertebrates (e.g. Law
and Dickman, 1998). The degree of specialisation in a given habitat type is, however, variables, from
generalist species such as Kuhl’s or common pipistrelles (e.g. Russo and Jones, 2003), which can
forage in a broad range of habitats, to the highly specialised foraging style of, e.g. trawling bat species
such as Myotis capaccinii or M. daubentonii, which forage almost exclusively in riparian sites (Biscardi
et al., 2007; Nardone et al., 2015).

Many European bat species forage in farmland (see Appendix C), and those that have been
documented to do so are probably only a fraction of the actual number, as shown by recent diet
analysis using state-of-art molecular techniques (Russo et al., 2018a,b,c). Farmed landscapes provide
an array of habitat structures that span from open spaces (e.g. a maize field) to structurally complex
woody habitat (orchards, olive groves, or residual woodland patches). Such landscapes are also rich
with ecotones (treelines, hedgerows, edges between woodland patches and pastures or open fields)
that may be exploited by edge foragers (Boughey et al., 2011), while canals and ponds may be used
by trawling species such as M. daubentonii and, especially if bordered with vegetation, support many
insects and thus significant bat activity (e.g. Russ and Montgomery, 2002). Besides hosting species
that forage on the wing, gleaners and flutter-detection foragers are also present in farmland. For
example, intensive apple orchards are used by gleaning M. myotis (Drescher, 2004), while the ecotone
between woodland and pastures often constitutes an important foraging habitat for perch-hunting
R. ferrumequinum (Duverg�e and Jones, 2003).

Bats are very sensitive to habitat fragmentation, and in farmland they often need linear landscape
elements such as hedgerow networks not only to forage but also to cross otherwise hostile landscapes
(Russo et al., 2002; Boughey et al., 2011; Frey-Ehrenbold et al., 2013; Monck-Whipp et al., 2018).
Structural heterogeneity such as that of traditional farmland, offering high connectivity, is important to
sustain diverse bat assemblages (Wickramasinghe et al., 2003; Davy et al., 2007). The higher activity
recorded at organic sites compared to conventional sites in some studies (e.g. Wickramasinghe et al.
2007) is likely to be due to a combination of multiple-scale factors that are different to disentangle in
analyses. However, the importance of intensive farmland should not be dismissed, since there is
overwhelming evidence that bats also forage frequently in such habitat in a range of landscapes across
Europe (e.g. Heim et al., 2016; Stahlschmidt et al., 2017; Appendix C). Bats that forage in intensive
agricultural landscapes tend to narrow their trophic niche concentrating on agricultural pests, as seen
in M. schreibersii (Aizpurua et al., 2018), which potentially implies a high risk of exposure to pesticides.

A.5.3. Roosting ecology and behaviour

Bats spend over half of their lives in the roost, where they are sheltered from adverse weather and
predation, and where they carry out many key activities of their life cycles including food digestion,
hibernation, mating, parturition and nursing. Roost characteristics such as roost structure and
microclimate largely vary across species and geographic ranges, but the same individual may typically
change roost according to its physiological requirements (e.g. hibernation, mating or reproduction) or
age. Tree-dwelling bats are typically less faithful to roosting sites and may switch between trees often,
even on a daily basis (e.g. Russo and Jones, 2003; Russo et al., 2017a). Bats are often highly social
and form colonies that can be very numerous, but at night their social groups typically split to reach
foraging sites, so most social interactions too occur within roosts. Bats use a considerable range of
roost types across the globe, but those of temperate regions may be broadly classified as underground
sites (natural or artificial), overground sites (buildings) and tree cavities. A thorough description of
roost structure and roosting behaviour lies beyond the scopes of this work, and much information is
available in the literature (see e.g. Kunz, 1982; Kunz et al., 2003; Barclay and Kurta, 2007). Much of
the evidence concerning contamination of bats in their roost regards the effects of roofing timber
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treatments such as lindane, pentachlorophenol, and pyrethroids, which may have adverse
consequences for bats (Mitchell-Jones et al., 1989; Swanepoel et al., 1999; Voigt et al., 2016). It is
important, however, to stress that roosts are often found in farmland, and in specific cases there is
some risk of direct contamination through inhalation or dermal contact when roosts are found where
pesticides are spread, for example in rural buildings (barns, stables) or cavities in trees (e.g. in
treelines or hedgerows), particularly when bats roost in shallow cracks of exterior walls (Marnell and
Presetnik, 2010), or in shallow tree cavities such as underneath flaking bark (Russo et al., 2017a).
Because bats often use a given roost for several weeks or months and may reutilise it over years, slow
poisoning of synanthropic bats in the roost, where they might not die immediately but suffer sublethal
effects over time, is possible (Voigt et al., 2016). The risk may be more pronounced when bats use
night-roosts to pause from nocturnal activity, in case pesticides are spread in the evening, because in
such cases bats may roost in exposed outbuildings such as woodsheds or porches (Knight and Jones,
2009) or even hang from trees (Russo et al., 2002).

A.5.4. Drinking behaviour

Bats from temperate regions drink regularly to compensate for the significant amounts of water
that they lose by transpiration through their body surface, especially via the respiratory system and the
large surfaces of wing membranes.

In some cases, morphological or physiological adaptations may limit water loss, such as specific
features of the lipid matrix in the epidermis’ stratum corneum (Mu~noz-Garcia et al., 2012), but drinking
is definitely the principal way bats cope with dehydration, as much as they even arouse from
hibernation to drink (Speakman and Racey, 1989; Boyles et al., 2006). Factors such as the
disappearance of ephemeral water sites in response to climate change (Korine et al., 2016) or the
influence of artificial illumination at drinking sites (Russo et al., 2017b, 2018a) are therefore seen as
considerable threats to bats. Bats also take key minerals from drinking water, such as the calcium
needed by lactating females to replete the amount mobilised to allow skeletal development in pups
(e.g. Bernard and Davison, 1996), or sodium, especially in tropical climates, where this element is
limiting (Bravo et al., 2010). Frugivorous bats may also exploit some water minerals to neutralise the
otherwise adverse effects of certain secondary plant metabolites occurring in the fruits they feed upon
when large amounts of the latter are taken at times of great energy demand (Voigt et al., 2008).

Drinking water constitutes one of the potential routes of bat exposure to pesticides. In fact, bats
drink at a range of water sites (Korine et al., 2016), including those found in farmland such as
irrigation canals or small ponds which are potentially contaminated with pesticides.

A.5.5. Other behavioural aspects relevant to pesticide contamination

Bats are highly social mammals and exhibit a complex social behaviour, a multifaceted
communication and an array of social systems, the description of which are outside the scope of this
work. While some aspects have been covered elsewhere in this document, comprehensive reviews on
bat social behaviour are provided by Kerth (2008), Altringham (2011), Carter and Wilkinson (2013) and
Chaverri et al. (2018). Here, the focus is on clustering behaviour and social grooming, which may have
implications for contamination by pesticides.

Bats often form very numerous colonies both during hibernation and reproduction, which may often
comprise thousands and up to several million individuals (Betke et al., 2008). In such situations, it is
common to observe many individuals associated in clusters. When bats are normothermic, such as
reproductive females in summer, clustering is needed to accomplish social thermoregulation and helps
reduce the costs of homeothermy by protecting the individual roosting environment from changes in
ambient temperature (e.g. Willis and Brigham, 2007; Russo et al., 2017a,b). Several bat species also
cluster in hibernation, in which cases they maintain higher body temperatures than solitary hibernators
and tend to select cooler caves to hibernate (Altringham, 2011). Clusters may be formed by one or
more species, and the tight contact between individuals provides a tremendous opportunity for intra-
and interspecific social interactions (Ancillotto et al., 2012, 2014). Newborns often cling to the mother’s
fur or form tight aggregations within the cluster of adults (Ancillotto et al., 2014).

When roosting, bats spend a substantial amount of time self-grooming, i.e. scratching and licking
their fur and wing membrane to keep their bodies clean and reduce parasite load (Ter Hofstede and
Fenton, 2005). Moreover, social grooming – the cleaning of an individual’s fur by a conspecific – is also
frequent, and its role is likely that of strengthening social bonds within colonies and pacifying the
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subject groomed. Although this behaviour is especially frequent in vampire bats Desmodus rotundus,
probably in relation to their unique habit of sharing food among colony members (Wilkinson, 1986;
Carter and Leffer, 2015), it is also commonly observed in European insectivorous bats (Kerth et al.,
2003b; Ancillotto et al., 2012, 2014). At their activity peak within the roost, Pipistrellus kuhlii and
Hypsugo savii may self-groom considerably (mean% time spent self-grooming, respectively, 22.8% and
18.5%) and social grooming is also frequent (7.8% and 6.9%, respectively) (L. Ancillotto and
D. Russo, unpublished). Both self- and social grooming represent a way through which pesticide
residues collected on the fur and the wing membranes may be ingested. Hairless juveniles in clusters
or clinging to their mother’s fur might also be affected by the tight contact with adults whose fur has
been exposed to pesticide residues during foraging.

In vampire bats, social grooming has been largely used to cull them in regions where they carry
diseases to livestock such as rabies and represent a cause of economic loss and a health hazard. One
of the techniques used to cull them relies on coating some individuals with anticoagulants and
releasing them so that, once returned to the roost, they will contaminate others through mutual
contact in clusters and social grooming (Linhart et al., 1972; Johnson et al., 2014). Vampire bats form
multi-specific colonies, so this culling approach has brought about adverse consequences for bat
conservation, also killing non-target species besides the focal one (Johnson et al., 2014). The topical
treatment of vampire bats for culling demonstrates that contaminants, including pesticides, may easily
spread to most or all colony members from just a few contaminated subjects.

A.6. Conservation

Conservation

Although recent estimates of positive population trends in European bat populations have led to
some optimism (Van der Meij et al., 2015), the situation of many bat species is still concerning, and at
the national scale, bats are still on the decline in several EU countries.

Bats are adversely affected by many pressures associated with human action on the environment.
Bats depend on roost availability, so detrimental effects are linked to human disturbance at
underground (Mitchell-Jones et al., 2007) or aboveground (Marnell and Presetnik, 2010) roosts,
destruction or renovation of roost buildings (Voigt et al., 2016), deliberate exclusion of colonies from
human-made structures (Stone et al., 2015a), or intensive forest management, which reduces the
availability of dead or veteran trees bearing cavities suitable for roosting (Russo et al., 2016a,b).

Foraging habitats are often destroyed, fragmented or polluted. Bats are highly sensitive to the
quality of riverine systems, where many species forage, and pollution and destruction of riparian
vegetation may alter food availability (De Conno et al., 2018). Forests are also important for foraging,
so deforestation, habitat fragmentation (Russo et al., 2016a,b) and large-scale wildfires (Bosso et al.,
2018) all affect bats negatively. Loss of structural and temporal heterogeneity in farmland and the
spread of pesticides are seen as main factors threatening the bat species that occur in agricultural land
(Park, 2015). Light pollution also poses a significant threat: while artificial lighting may favour a few
opportunistic species that take advantage of insects concentrating near street lamps, it is repulsive to
many others, excluding them from roosting, foraging and drinking sites or severing their commuting
routes (Stone et al., 2015b). Invasive species and domestic cats also put bats at risk and locally kill
them by large numbers (Ancillotto et al., 2013; Welch and Leppanen, 2017).

Finally, although wind energy development is seen as one of the actions needed to mitigate the
negative consequences of climate change on the planet and its biodiversity, wind turbines located
along commuting routes, at foraging sites or near roosts may kill impressive numbers of bats (Arnett
et al., 2016).

Ecosystem services

Bats are important providers of ecosystem services worldwide, including pollination, seed dispersal,
and insect consumption (Kunz et al., 2011). While the first two services are restricted to tropical
regions, arthropod consumption also occurs in temperate regions, including Europe. Insect consumed
by bats often comprise agricultural or forest pests, and modern molecular approaches to assessing bat
diet have revealed that even species that were not suspected to play this role, in fact, eat considerable
numbers of pest species (Russo et al., 2018a,b,c). Schreiber’s bat Miniopterus schreibersii is, from this
viewpoint, a good example: this cave-dwelling species was often thought to be associated with natural
habitats, but in fact, feeds opportunistically on over 20 major agricultural pests across Europe
(Aizpurua et al., 2018). Insect pests increase considerably in plots from which bats are experimentally
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excluded (Maine and Boyles, 2015), and bat boxes set in agricultural land may help suppress large
numbers of pest insects, see e.g. P. pygmaeus roosting in bat boxes in the Ebre Delta, where this bat
acts as an important consumer of the rice borer moth Chilo suppressalis (Puig-Montserrat et al., 2015).
The effects of bat foraging on pests are only partly understood, and it is thought that besides direct
pest suppression, bats might also exert indirect effects on ultrasound-sensitive prey such as tympanate
moths. The latter perform evasive manoeuvres when they detect bat echolocation calls, which may
imply a decrease in the pest’s success in key vital activities such as foraging, mating or egg laying,
thus reducing crop damage (Russo et al., 2018a,b,c).

The economic benefit provided by bat insectivory to agriculture is overwhelming: in North America
alone, this accounts for 3.7 billion USD per year (Boyles et al., 2011). In South Africa, bat predation
services avoid costs between 9% and 23% of the current estimated cost of damage that stinkbugs
cause every year to macadamia orchards, i.e. 613 USD/ha (Taylor et al., 2018). Although no economic
assessment is available for Europe, there is consensus over the fact that its magnitude must be similar
to, if not greater than the benefits brought about by bat predation in the regions for which estimates
are available.

In Europe, bats also make an outstanding contribution to vertebrate diversity, so they are strictly
protected across the EU. The main legal framework under which all EU bat species and their habitats
are protected is the 92/43/EEC ‘Habitats’ Directive. The Directive, enforced in all EU countries,
establishes that all bat species are of ‘community importance’ and that protection of 13 of them
requires the designation of Special Areas of Conservation.

Besides prohibiting the killing of bats, the Directive states that disturbing them is also forbidden,
particularly during the period of breeding, rearing, hibernation and migration, and that their roosts are
also strictly protected since it is illegal to deteriorate or destroy breeding sites or resting places (Art.
12). The Directive also puts special emphasis on the conservation of many natural and semi-natural
habitats across Europe that are also important for bats for roosting and foraging. Another main
conservation framework for European bats is offered by EUROBATS, the Agreement on the
Conservation of Populations of European Bats, which came into force in 1994 and to date includes 36
out of 63 range states. Its aims are conserving all European species by promoting appropriate
legislation, raising awareness about the importance of preserving bats, and favouring the promotion of
conservation measures and international cooperation. Due to the migratory habits of several bat
species and the necessity to adopt a broad geographic scope to achieve sound conservation,
EUROBATS strongly encourages cooperation of parties and non-party range states not only across
Europe but also in Northern Africa and the Middle East.
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Appendix B – Literature review

A literature review was undertaken following a structured, stepwise process to retrieve information
to investigate whether bat species are already sufficiently covered by the current risk assessment
schemes for birds and mammals. Information was retrieved on topics as laid down in the Terms of
Reference.

The literature searches were performed in the following databases: Web of Science (platform
encompassing many databases), PubMed and Scopus. Furthermore, the EFSA library was used to
obtain additional sources such as reports on specific topics related to bats. All searches were limited to
studies published in English, French, German and Dutch, which are in concordance with the languages
spoken by the reviewers. No further limits to study design and year of publication were applied due to
the small amount of sources available on bats.

For all topics covered in the literature review, relevant sources were selected from the databases
using the keywords listed in Table B.1, which cover the topics of the Terms of Reference. For every
search that was run, a keyword was combined with the following search string:

(Chiroptera OR Bat OR Bats OR Pteropodidae OR Rousettus OR Rhinolophidae OR Rhinolophus OR
Vespertilionidae OR Myotis OR Nyctalus OR Eptesicus OR Vespertilio OR Pipistrellus OR Plecotus OR
Barbastella OR Miniopteridae OR Miniopterus OR Molossidae OR Tadarida OR Megabat OR Megabats
OR Serotine OR Pipistrelle OR Barbastelle)

The searches were run between June and September 2018. The total amount of hits for every
search for all databases used (this is including duplicates), as well as the number of relevant articles
after the first screening are summarised below in Table B.1.

As a first step, the title and abstracts of papers were scanned for relevance to exclude obviously
irrelevant sources. Articles were considered relevant when the keywords were mentioned in the title
and/or abstract and the source related to bats. Relevant articles after first screening were further
analysed with a full-text screening. Articles were considered relevant in the full-text screening when
they related to the topics of the Terms of Reference. In this step, additional relevant papers were
retrieved from the reference lists of the screened articles. Articles identified in searches on ecological

Table B.1: Overview on the number of hits in the literature search and the number of articles
included after first screening

Keywords
Date on which the

search was
conducted

Total amount of hits
in all three databases

Total amount of included
articles after first

screening

Population trends/colony size/
population ecology

23/8/2018 3,475 33*

Biocides/timber treatment/wood
treatment

30/7/2018 17 0

Dermal/skin 10/8/2018 107 11

Energy 25/6/2018 328 14
Food/Feed/Diet 14/8/2018 224 74

Gas exchange/Air exchange 30/8/2018 214 15
Grooming 10/8/2018 228 29

Habitat 06/6/2018 610 57
Metabolism 25/9/2018 1,149 97

Metals 30/7/2018 1,501 60
Pesticides 30/7/2018 1,249 90

Physiology 6/6/2018 429 80
Risk assessment 30/7/2018 354 30

Veterinary drugs/veterinary
medicines/veterinary
pharmaceuticals

30/7/2018 9,394 0

*: Relevant sources on these topics were identified by using the EFSA library in order to obtain reports on general information on
population trends and ecology. Articles identified in the Web of Science, PubMed and Scopus databases were not included for
the data extraction as these articles did not provide relevant information.
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parameters (e.g. diet and habitat) were only classified as relevant if they concerned European bat
species. For all other topics, studies on non-European bats were considered relevant as well.

Information was retrieved from 254 articles and 33 additional sources (such as reports and book
chapters obtained from the EFSA library) and collected in excel data collection sheets. These sheets
were designed to summarise all information on the desired topics. Different sheets were developed for
the extraction on different topics:

Chemical exposure

In which information was summarised for every article on the bat species studied, the country
where the study was conducted, study type (field or laboratory study), the chemical tested, exposure
route (only for laboratory studies, e.g. dermal or dietary), exposure time (only for laboratory studies),
measured endpoints and main findings.

Biological and ecological traits

In which information was collected on the following parameters: diet (foraging habitat, foraging
behaviour/strategy, diet composition, time of emergence), body size, body weight, roosting sites, life
history traits, energy requirements, metabolism, reproduction (lactation, pups, gestation/birth).

Coverage of bats in pesticide risk assessment
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Appendix C – Evidence of bat foraging in farmland across Europe

Table C.1: Evidence of bat foraging in farmland across Europe classified according to species,
agricultural type and management

Species Country
Agricultural
type

Degree of intensification/description
of sites

Reference

Rhinolophus
euryale

Italy Olive groves Patches of olive groves managed traditionally
interspersed with broadleaf forest

Russo et al.
(2002)

Rhinolophus
ferrumequinum

Greece Organic and
conventional olive
groves

Organic: Olive (Olea europea) plantations,
not chemically treated. Two of six sites
practice ‘organic’ pest control (scent and
sticky traps)

Conventional: O. europea plantations
comparable to the organic groves in age,
density of trees and altitude, but treated
yearly with an insecticide spray

Davy et al.
(2007)

Italy Olive groves Olive groves: Olive Olea europea L. groves Russo and Jones
(2003)

Rhinolophus
hipposideros

Greece Organic and
conventional olive
groves

Organic: Olive (O. europea) plantations, not
chemically treated. Two of six sites practice
‘organic’ pest control (scent and sticky traps)

Conventional: O. europea plantations
comparable to the organic groves in age,
density of trees and altitude, but treated
yearly with an insecticide spray

Davy et al.
(2007)

Rhinolophus
mehelyi

Spain Traditional
‘dehesas’

Open oak forest managed traditionally for
agriculture and livestock breeding

Russo et al.
(2005a,b)

Rhinolophus
total

UK Conifer plantation Not described Vaughan et al.
(1997)

Greece Organic and
conventional olive
groves

Organic: Olive (O. europea) plantations, not
chemically treated. Two of six sites practice
‘organic’ pest control (scent and sticky traps)

Davy et al.
(2007)

Conventional: O. europea plantations
comparable to the organic groves in age,
density of trees and altitude, but treated
yearly with an insecticide spray

Davy et al.
(2007)

Barbastella
barbastellus

Germany Meadow, forest
edge (species was
only observed 39
in total in the
study)

Meadow: agricultural grasslands with
differing management intensities

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Eptesicus
nilssonii

Germany Forest edge,
meadow,
vineyard, orchard,
vegetable fields,
cereal fields

Meadow: agricultural grasslands with
differing management intensities

Orchard: Apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Sweden Farmland Not described Rydell (1986)

Finland Grassland
(grouped data;
including
meadows, arable
land and pasture)

Agricultural land covered approximately 8%
of the total study site. Intensification degree
not described

Wermundsen
and Siivonen
(2008)
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Species Country
Agricultural
type

Degree of intensification/description
of sites

Reference

Eptesicus
serotinus

Germany Forest edge,
meadow,
vineyard, orchard,
vegetable fields,
cereal fields

Meadow: agricultural grasslands with
differing management intensities

Orchard: Apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Germany Orchard Orchard: mature commercial apple orchard
(Braeburn variety). With approximate size of
4 ha. The entire 4 ha of the orchard were
sprayed with Reldan (Dow AgroSciences) at
a rate of 337 g a.i./ha against on one
occasion (20 May 2009) and with Insegar
(Syngenta Agro) at 150 g a.i./ha on two
occasions (1 and 15 July 2009)

Stahlschmidt and
Br€uhl (2012)

UK Arable land Not described Vaughan et al.
(1997)

UK Pasture (organic
and
conventional),
Arable land
(conventional)

Organic fields according to Soil Association
and UK Register of Organic Food Standard

Wickramasinghe
et al. (2003)

The
Netherlands

Agricultural fields
(only type of land
assessed in the
study)

Old agricultural landscape type with many
linear elements. Meadows and fields are
separated by a network of hedgerows and
tree lanes. Agricultural intensification not
specified

Verboom and
Huitema (1997)

Italy Arable land Arable land: generally characterised by a
relatively complex mosaic of fields separated
by tree lines, hedges, canals, etc.

Russo and Jones
(2003)

Italy Organic and
conventional rice
farms

Organic rice farms covered an overall surface
of 310 ha and are characterised by rice
paddies not treated with synthetic pesticides
and certified as organic according to the
Italian law

Conventional rice farms covered a surface of
272 ha and rice paddies are regularly treated
with pesticides (i.e. alpha-cypermethrin,
oxadiazon, glyphosate, triciclazol)

Toffoli and
Rughetti (2017)

Poland Arable land Arable fields: large-scale arable fields as a
main land use type. Degree of intensification
is not described

Pluci�nski et al.
(2015)

Poland Arable land,
meadows/
pastures,
Orchards

Arable land: Land outside settlements, used
for growing any crop including rye, barley,
wheat, rapeseed, maize, beet, potatoes,
cucumbers or carrots (including fallows)

Ciechanowski
(2015)

Meadow/Pasture: Grassland outside
settlements used for hay production
(mowed) or livestock grazing
Orchards: Area used for growing vegetables,
flowers or fruit, with at least 50% planted by
fruit trees or bushes
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Species Country
Agricultural
type

Degree of intensification/description
of sites

Reference

Eptesicus/
Nyctalus total

Germany Forest edge,
meadow,
vineyard, orchard,
vegetable fields,
cereal fields

Meadow: agricultural grasslands with
differing management intensities

Orchard: Apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest.

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Hypsugo savii Greece Organic and
conventional olive
groves

Organic: Olive (O. europea) plantations, not
chemically treated. Two of six sites practice
‘organic’ pest control (scent and sticky traps)

Conventional: O. europea plantations
comparable to the organic groves in age,
density of trees and altitude, but treated
yearly with an insecticide spray

Davy et al.
(2007)

Italy Chestnut
woodlands, arable
land, olive grove,
conifer
plantations

Chestnut woodlands: Sweet chestnut
Castanea sativa Miller woodlands managed
for chestnut production; traditional form of
chestnut woodland management, often
characterised by mature trees

Arable land: generally characterised by a
relatively complex mosaic of fields separated
by tree lines, hedges, canals, etc.

Olive groves: Olive O. europea L. groves

Conifer plantation: Conifer (Pinus spp.)
plantations

Russo and Jones
(2003)

Italy Organic and
conventional rice
farms

Organic rice farms covered an overall surface
of 310 ha and are characterised by rice
paddies not treated with synthetic pesticides
and certified as organic according to the
Italian law

Conventional rice farms covered a surface of
272 ha and rice paddies are regularly treated
with pesticides (i.e. alpha-cypermethrin,
oxadiazon, glyphosate, triciclazol)

Toffoli and
Rughetti (2017)

Myotis
bechsteinii

Germany Forest edge,
meadow,
vineyard,
vegetable field

Meadow: agricultural grasslands with
differing management intensities

Forest edge: cereal sampling site that were
situated 100 m away from a forest.

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

UK Pasture
(conventional)

Not described Wickramasinghe
et al. (2003)

Myotis blythii Switzerland Meadows, pasture
fields, orchards

Meadows: freshly cut, or among hedgerows
in meadows

Pasture: along hedgerows in pasture fields

Orchards: intensively cultivated

Arlettaz (1996)

Coverage of bats in pesticide risk assessment
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Species Country
Agricultural
type

Degree of intensification/description
of sites

Reference

Myotis brandtii/
mystacinus

Germany Forest edge,
meadows,
vineyards,
orchards,
vegetable fields,
cereal fields

Meadows: agricultural grasslands with
differing management intensities

Orchards: Apple orchard

Forest edges: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Finland Grassland
(grouped data;
including
meadows, arable
land and pasture)

Agricultural land covered approximately 8%
of the total study site. Intensification degree
not described.

Wermundsen
and Siivonen
(2008)

Myotis
capaccinii

Greece Organic and
conventional olive
groves

Organic: Olive (O. europea) plantations, not
chemically treated. Two of six sites practise
‘organic’ pest control (scent and sticky traps)

Conventional: O. europea plantations
comparable to the organic groves in age,
density of trees and altitude, but treated
yearly with an insecticide spray

Davy et al.
(2007)

Myotis
daubentonii

Germany Forest edge,
meadow,
vineyard, orchard,
vegetable fields,
cereal fields

Meadow: agricultural grasslands with
differing management intensities.

Orchard: apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

UK Arable land,
conifer plantation

Not described Vaughan et al.
(1997)

UK Pasture (organic
and
conventional),
Arable land
(conventional)

Organic fields according to Soil Association
and UK Register of Organic Food Standard

Wickramasinghe
et al. (2003)

Myotis
emarginatus

Greece Organic and
conventional olive
groves

Organic: Olive (O. europea) plantations, not
chemically treated. Two of six sites practice
‘organic’ pest control (scent and sticky traps)

Conventional: O. europea plantations
comparable to the organic groves in age,
density of trees and altitude, but treated
yearly with an insecticide spray

Davy et al.
(2007)

Myotis myotis Germany Forest edge,
meadow,
vineyard,
vegetable fields,
cereal fields

Meadow: agricultural grasslands with
differing management intensities

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Germany Meadows, fields Not described Zahn et al.
(2005)
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Species Country
Agricultural
type

Degree of intensification/description
of sites

Reference

Switzerland Meadows, pasture
fields, orchards

Meadows: freshly cut, or among hedgerows
in meadows.

Pasture: along hedgerows in pasture fields

Orchards: intensively cultivated

Arlettaz (1996)

Portugal Agricultural fields Agricultural field: sites with short ground
vegetation. Degree of intensification not
specified

Zahn et al.
(2007)

Italy (South
Tyrol)

Apple orchards Orchards: Intensively cultivated Drescher (2004)

Myotis
mystacinus

Germany Orchard Orchard: mature commercial apple orchard
(Braeburn variety). With approximate size of
4 ha. The entire 4 ha of the orchard were
sprayed with Reldan (Dow AgroSciences) at
a rate of 337 g a.i./ha against on one
occasion (20 May 2009) and with Insegar
(Syngenta Agro) at 150 g a.i./ha on two
occasions (1 and 15 July 2009)

Stahlschmidt and
Br€uhl (2012)

UK Pasture (organic
and
conventional),
arable land
(conventional)

Organic fields according to Soil Association
and UK Register of Organic Food Standard

Wickramasinghe
et al. (2003)

Myotis nattereri Germany Forest edge,
meadow,
vineyard, orchard,
vegetable fields,
cereal fields

Meadow: agricultural grasslands with
differing management intensities

Orchard: apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Germany Orchard Orchard: mature commercial apple orchard
(Braeburn variety). With approximate size of
4 ha. The entire 4 ha of the orchard were
sprayed with Reldan (Dow AgroSciences) at
a rate of 337 g a.i./ha against on one
occasion (20 May 2009) and with Insegar
(Syngenta Agro) at 150 g a.i./ha on two
occasions (1 and 15 July 2009)

Stahlschmidt and
Br€uhl (2012)

Greece Organic and
conventional olive
groves

Organic: Olive (O. europea) plantations, not
chemically treated. Two of six sites practice
‘organic’ pest control (scent and sticky traps)

Conventional: O. europea plantations
comparable to the organic groves in age,
density of trees and altitude, but treated
yearly with an insecticide spray

Davy et al.
(2007)

Myotis total Germany Forest edge,
meadow,
vineyard, orchard,
vegetable fields,
cereal fields

Meadow: agricultural grasslands with
differing management intensities

Orchard: apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)
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Species Country
Agricultural
type

Degree of intensification/description
of sites

Reference

Greece Organic and
conventional olive
groves

Organic: Olive (O. europea) plantations, not
chemically treated. Two of six sites practice
‘organic’ pest control (scent and sticky traps)

Conventional: O. europea plantations
comparable to the organic groves in age,
density of trees and altitude, but treated
yearly with an insecticide spray

Davy et al.
(2007)

Myotis and
Plecotus spp.

UK Arable land,
conifer
plantations

Not described Vaughan et al.
(1997)

Nyctalus leisleri Germany Forest edge,
meadow,
vineyard, orchard,
vegetable fields,
cereal fields

Meadow: agricultural grasslands with
differing management intensities

Orchard: apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

UK Arable land,
conifer plantation

Not described Vaughan et al.
(1997)

UK Pasture (organic
and
conventional),
Arable land
(conventional)

Organic fields according to Soil Association
and UK Register of Organic Food Standard

Wickramasinghe
et al. (2003)

Italy Chestnut
woodlands, olive
grove (only 1
pass recorded)

Chestnut woodlands: Sweet chestnut
C. sativa Miller woodlands managed for
chestnut production; traditional form of
chestnut woodland management, often
characterised by mature trees

Russo and Jones
(2003)

Italy Organic and
conventional rice
farms

Organic rice farms covered an overall surface
of 310 ha and are characterised by rice
paddies not treated with synthetic pesticides
and certified as organic according to the
Italian law

Conventional rice farms covered a surface of
272 ha and rice paddies are regularly treated
with pesticides (i.e. alpha-cypermethrin,
oxadiazon, glyphosate, triciclazol)

Toffoli and
Rughetti (2017)

Nyctalus
noctula

Germany Forest edge,
meadow,
vineyard, orchard,
vegetable fields,
cereal fields

Meadow: agricultural grasslands with
differing management intensities

Orchard: apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Germany Orchard Orchard: mature commercial apple orchard
(Braeburn variety). With approximate size of
4 ha. The entire 4 ha of the orchard were
sprayed with Reldan (Dow AgroSciences) at
a rate of 337 g a.i./ha against on one
occasion (20 May 2009) and with Insegar
(Syngenta Agro) at 150 g a.i./ha on two
occasions (1 and 15 July 2009)

Stahlschmidt and
Br€uhl (2012)
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Species Country
Agricultural
type

Degree of intensification/description
of sites

Reference

Germany Arable fields Arable fields: cultivated with the locally
prevailing crop types corn (N = 27), canola
(N = 34) and wheat (N = 32)

Heim et al.
(2016)

UK Arable land,
conifer
plantations

Not described Vaughan et al.
(1997)

UK Pasture (organic
and
conventional),
Arable land
(conventional)

Organic fields according to Soil Association
and UK Register of Organic Food Standard

Wickramasinghe
et al. (2003)

Poland Arable land Arable fields: large-scale arable fields as a
main land use type. Degree of intensification
is not described

Pluci�nski et al.
(2015)

Poland Arable land,
meadows/
pastures,
Orchards

Arable land: land outside settlements, used
for growing any crop including rye, barley,
wheat, rapeseed, maize, beet, potatoes,
cucumbers or carrots (including fallows)

Meadow/Pasture: grassland outside
settlements used for hay production
(mowed) or livestock grazing

Orchards: area used for growing vegetables,
flowers or fruit, with at least 50% planted by
fruit trees or bushes

Ciechanowski
(2015)

Nyctalus sp. Greece Organic olive
groves

Organic: Olive (O. europea) plantations, not
chemically treated. Two of six sites practice
‘organic’ pest control (scent and sticky traps)

Davy et al.
(2007)

Pipistrellus
kuhlii

Greece Organic and
conventional olive
groves

Organic: Olive (O. europea) plantations, not
chemically treated. Two of six sites practice
‘organic’ pest control (scent and sticky traps)

Davy et al.
(2007)

Conventional: O. europea plantations
comparable to the organic groves in age,
density of trees and altitude, but treated
yearly with an insecticide spray

Italy Chestnut
woodlands, arable
land, olive grove,
conifer
plantations

Chestnut woodlands: sweet chestnut
C. sativa Miller woodlands managed for
chestnut production; traditional form of
chestnut woodland management, often
characterised by mature trees

Arable land: generally characterised by a
relatively complex mosaic of fields separated
by tree lines, hedges, canals, etc.

Olive groves: Olive Olea europea L. groves

Conifer plantation: Conifer (Pinus spp.)
plantations

Russo and Jones
(2003)

Italy Organic and
conventional rice
farms

Organic rice farms covered an overall surface
of 310 ha and are characterised by rice
paddies not treated with synthetic pesticides
and certified as organic according to the
Italian law

Conventional rice farms covered a surface of
272 ha and rice paddies are regularly treated
with pesticides (i.e. alpha-cypermethrin,
oxadiazon, glyphosate, triciclazol)

Toffoli and
Rughetti (2017)
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Species Country
Agricultural
type

Degree of intensification/description
of sites

Reference

Pipistrellus
nathusii

Germany Meadow,
vineyard, orchard,
vegetable fields,
cereal fields,
forest edge

Meadow: agricultural grasslands with
differing management intensities

Orchard: apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Germany Arable fields Arable fields: cultivated with the locally
prevailing crop types corn (N = 27), canola
(N = 34) and wheat (N = 32)

Heim et al.
(2016)

Poland Arable land Arable fields: large-scale arable fields as a
main land use type. Degree of intensification
is not described

Pluci�nski et al.
(2015)

UK Organic pasture Organic fields according to Soil Association
and UK Register of Organic Food Standard

Wickramasinghe
et al. (2003)

Italy Organic and
conventional rice
farms

Organic rice farms covered an overall surface
of 310 ha and are characterised by rice
paddies not treated with synthetic pesticides
and certified as organic according to the
Italian law

Conventional rice farms covered a surface of
272 ha and rice paddies are regularly treated
with pesticides (i.e. alpha-cypermethrin,
oxadiazon, glyphosate, triciclazol)

Toffoli and
Rughetti (2017)

Pipistrellus
kuhlii/nathusii

Italy Organic and
conventional rice
farms

Organic rice farms covered an overall surface
of 310 ha and are characterised by rice
paddies not treated with synthetic pesticides
and certified as organic according to the
Italian law

Conventional rice farms covered a surface of
272 ha and rice paddies are regularly treated
with pesticides (i.e. alpha-cypermethrin,
oxadiazon, glyphosate, triciclazol)

Toffoli and
Rughetti (2017)

Pipistrellus
pipistrellus

Germany Meadow,
vineyard, orchard,
vegetable fields,
cereal fields,
forest edge

Meadow: agricultural grasslands with
differing management intensities

Orchard: apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification of agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Germany Orchard Orchard: mature commercial apple orchard
(Braeburn variety). The approximate size of
the orchard was 4 ha. The entire 4 ha of the
orchard were sprayed with Reldan (Dow
AgroSciences) at a rate of 337 g a.i./ha
against the woolly apple aphid (Eriosoma
lanigerum) on one occasion (20 May 2009)
and with Insegar (Syngenta Agro) against
the codling moth (Cydia pomonella) at 150 g
a.i./ha on two occasions (1 and 15 July
2009)

Stahlschmidt and
Br€uhl (2012)
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Species Country
Agricultural
type

Degree of intensification/description
of sites

Reference

Germany Arable fields Arable fields: cultivated with the locally
prevailing crop types corn (N = 27), canola
(N = 34) and wheat (N = 32)

Heim et al.
(2016)

UK Arable land,
conifer
plantations

Not described Vaughan et al.
(1997)

Italy Chestnut
woodlands, arable
land, olive grove,
conifer
plantations

Chestnut woodlands: sweet chestnut
C. sativa Miller woodlands managed for
chestnut production; traditional form of
chestnut woodland management, often
characterised by mature trees

Arable land: generally characterised by a
relatively complex mosaic of fields separated
by tree lines, hedges, canals, etc.

Olive groves: Olive Olea europea L. groves

Conifer plantation: Conifer (Pinus spp.)
plantations

Russo and Jones
(2003)

Italy Organic and
conventional rice
farms

Organic rice farms covered an overall surface
of 310 ha and are characterised by rice
paddies not treated with synthetic pesticides
and certified as organic according to the
Italian law

Conventional rice farms covered a surface of
272 ha and rice paddies are regularly treated
with pesticides (i.e. alpha-cypermethrin,
oxadiazon, glyphosate, triciclazol)

Toffoli and
Rughetti (2017)

Poland Arable land Arable fields: large-scale arable fields as a
main land use type. Degree of intensification
is not described

Pluci�nski et al.
(2015)

Poland Arable land
(although the
availability of this
habitat was very
high, only a few
bat passes
recorded),
meadows/
pastures,
Orchards

Arable land: Land outside settlements, used
for growing any crop including rye, barley,
wheat, rapeseed, maize, beet, potatoes,
cucumbers or carrots (including fallows)

Meadow/Pasture: grassland outside
settlements used for hay production
(mowed) or livestock grazing

Orchards: area used for growing vegetables,
flowers or fruit, with at least 50% planted by
fruit trees or bushes

Ciechanowski
(2015)

The
Netherlands

Agricultural fields
(only type of land
assessed in the
study)

Old agricultural landscape type with many
linear elements. Meadows and fields are
separated by a network of hedgerows and
tree lanes. Agricultural intensification not
specified

Verboom and
Huitema (1997)

UK Pasture (organic
and
conventional),
Arable land
(organic and
conventional)

Organic fields according to Soil Association
and UK Register of Organic Food Standard

Wickramasinghe
et al. (2003)
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Species Country
Agricultural
type

Degree of intensification/description
of sites

Reference

Pipistrellus
pygmaeus

Germany Meadow, orchard,
vegetable fields,
cereal fields

Meadow: agricultural grasslands with
differing management intensities

Orchard: apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest.

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Germany Cultivated and
managed land

Intensification not mentioned. Land cover of
cultivated and managed areas was 35.5% of
the whole area

Kusch and
Schmitz (2013)

Germany Arable fields Arable fields: cultivated with the locally
prevailing crop types corn (N = 27), canola
(N = 34) and wheat (N = 32)

Heim et al.
(2016)

Italy Chestnut
woodlands, arable
land, conifer
plantations

Chestnut woodlands: sweet chestnut
C. sativa Miller woodlands managed for
chestnut production; traditional form of
chestnut woodland management, often
characterised by mature trees

Arable land: generally characterised by a
relatively complex mosaic of fields separated
by tree lines, hedges, canals, etc.
Conifer plantation: Conifer (Pinus spp.)
plantations

Russo and Jones
(2003)

Italy Organic and
conventional rice
farms

Organic rice farms covered an overall surface
of 310 ha and are characterised by rice
paddies not treated with synthetic pesticides
and certified as organic according to the
Italian law

Conventional rice farms covered a surface of
272 ha and rice paddies are regularly treated
with pesticides (i.e. alpha-cypermethrin,
oxadiazon, glyphosate, triciclazol)

Toffoli and
Rughetti (2017)

Poland Arable land Arable fields: large-scale arable fields as a
main land use type. Degree of intensification
is not described

Pluci�nski et al.
(2015)

Poland Arable land
(although the
availability of this
habitat was very
high, only a few
bat passes
recorded),
meadows/
pastures,
orchards

Arable land: land outside settlements, used
for growing any crop including rye, barley,
wheat, rapeseed, maize, beet, potatoes,
cucumbers or carrots (including fallows)

Meadow/Pasture: grassland outside
settlements used for hay production
(mowed) or livestock grazing

Orchards: area used for growing vegetables,
flowers or fruit, with at least 50% planted by
fruit trees or bushes

Ciechanowski
(2015)

Czech
Republic

Pastures/
meadows

Not described Bartonicka and
Rehak (2010)

UK Pasture (organic
and
conventional),
arable land
(organic and
conventional)

Organic fields according to Soil Association
and UK Register of Organic Food Standard

Wickramasinghe
et al. (2003)
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Species Country
Agricultural
type

Degree of intensification/description
of sites

Reference

UK Arable land,
conifer
plantations

Not described Vaughan et al.
(1997)

Spain Rice paddies Large-scale rice cultivations at the Delta de
l’Ebro, where bats play a considerable role of
pest suppression of the rice borer moth
(Chilo suppressalis)

Flaquer et al.
(2006); Puig-
Montserrat et al.
(2015)

Pipistrellus
total

Germany Meadow,
vineyard, orchard,
vegetable fields,
cereal fields,
forest edge

Meadow: agricultural grasslands with
differing management intensities

Orchard: Apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Plecotus auritus Germany Forest edge,
meadow,
vineyard, orchard,
vegetable fields,
cereal fields

Meadow: agricultural grasslands with
differing management intensities

Orchard: Apple orchard

Forest edge: cereal sampling site that were
situated 100 m away from a forest

Degree of intensification for agricultural fields
is not mentioned

Stahlschmidt
et al. (2017)

Finland Grassland
(grouped data;
including
meadows, arable
land and pasture)

Agricultural land covered approximately 8%
of the total study site. Intensification degree
not described

Wermundsen
and Siivonen
(2008)

Plecotus sp. Italy Organic and
conventional rice
farms

Organic rice farms covered an overall surface
of 310 ha and are characterised by rice
paddies not treated with synthetic pesticides
and certified as organic according to the
Italian law

Conventional rice farms covered a surface of
272 ha and rice paddies are regularly treated
with pesticides (i.e. alpha-cypermethrin,
oxadiazon, glyphosate, triciclazol)

Toffoli and
Rughetti (2017)

Vespertilio
murinus

Switzerland/
Germany

Open
(agricultural)
fields

Not defined Safi et al.
(2007)

Vespertilionidae
total

Greece Organic and
conventional olive
groves

Organic: Olive (O. europea) plantations, not
chemically treated. Two of six sites practice
‘organic’ pest control (scent and sticky traps)

Conventional: O. europea plantations
comparable to the organic groves in age,
density of trees and altitude, but treated
yearly with an insecticide spray

Davy et al.
(2007)
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Species Country
Agricultural
type

Degree of intensification/description
of sites

Reference

Miniopterus
schreibersii

Greece Organic and
conventional olive
groves

Organic: Olive (O. europea) plantations, not
chemically treated. Two of six sites practice
‘organic’ pest control (scent and sticky traps)

Conventional: O. europea plantations
comparable to the organic groves in age,
density of trees and altitude, but treated
yearly with an insecticide spray

Davy et al.
(2007)

Italy Chestnut
woodland, olive
groves, conifer
plantation

Chestnut woodlands: Sweet chestnut
C. sativa Miller woodlands managed for
chestnut production; traditional form of
chestnut woodland management, often
characterised by mature trees

Olive groves: Olive Olea europea L. groves

Conifer plantation: Conifer (Pinus spp.)
plantations

Russo and Jones
(2003)

Southern
Europe, 16
sampling
sites along
a W-E
transect

Broad range of
agricultural
landscapes, also
including intensive
agriculture

Clear evidence that bats forage in farmland –
44 pest prey found it diet, 22 of which
categorised as major pests. Trophic spectrum
narrows along with an increase in intensive
agriculture within 30 km around each
sampling site

Aizpurua et al.
(2018)

Tadarida
teniotis

Greece Organic and
conventional olive
groves

Organic: Olive (O. europea) plantations, not
chemically treated. Two of six sites practice
‘organic’ pest control (scent and sticky traps)

Conventional: O. europea plantations
comparable to the organic groves in age,
density of trees and altitude, but treated
yearly with an insecticide spray

Davy et al.
(2007)

a.i.: active ingredient.
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Appendix D – Toxicity endpoint comparison

Table D.1: Overview on active substances for which toxicity endpoints are available for bats and standard mammalian test species (mouse, rats) and
birds. The numbers behind the endpoints refer to source of the endpoint listed below the table

Chemical

Bat Mouse Rat Bird

Species Exposure Endpoint
Toxic
value

Exposure Endpoint
Toxic
value

Exposure Endpoint
Toxic
value

Exposure Endpoint
Toxic
value

DDE Myotis
lucifugus

Dietary
(40 days)

NOEC1#

(behaviour)
150 mg/kg
diet

Dietary NOAEL2

(increased
liver
weight,
CYP450
induction)

35 mg/kg
bw per
day

Dietary NOAEL3

(reduced bw
gain)

28 mg/kg
bw per
day

NA NA NA

LOAEL2 62.5 mg/
kg bw
per day

LOAEL3

(death)
35 mg/kg
bw per
day

DDT Myotis
lucifugus

Acute
dermal

LD100
4 20 mg/bat

ca 680–
1,300 mg/
kg bw

Acute
dermal

LD50
5 250–

500 mg/
kg bw

Acute
dermal

LD50
6 2,500–

3,000 mg/
kg bw

NA NA NA

Eptesicus
fuscus

Acute oral LD50
7 26 mg/kg

bw
Acute oral LD50

5 150–
300 mg/
kg bw

Acute oral LD50
5 100 mg/kg

bw
Acute oral LD50

8 841 mg/kg
bw

Dieldrin Pipistrellus
pipistrellus

Dermal,
100 days

LD50
9* 0.05 mg/

cm2
Dermal,
100 days

LD50
9* 1.5 mg/

cm2
NA NA NA NA NA NA

Deltamethrin Artibeus
lituratus

Oral,
7 days

LOAEL10

(Muscular
and hepatic
toxicity,
reduced bw
and food
consumption)

0.02 mg/
kg diet ca
0.03 mg/
kg bw

Oral,
28 days

LOAEL11

(reduced
bw,
mortality)

28 mg/kg
bw per
day

Oral,
7 days

LOAEL11

(Reduced bw,
decreased
food
consumption)

13 mg/kg
bw per
day

Oral,
8 days

NOEC11 1,000 mg/
kg
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Chemical

Bat Mouse Rat Bird

Species Exposure Endpoint
Toxic
value

Exposure Endpoint
Toxic
value

Exposure Endpoint
Toxic
value

Exposure Endpoint
Toxic
value

Permethrin Myotis
sodalis

Acute oral LD50
12 38–45,502

–533 mg/
kg bw**

NA NA NA Acute oral LD50
12 806 mg/kg

bw
Acute oral LD5012 >

2,000 mg/
kg

Fenthion Myotis
lucifugus

Acute
dermal

LD50
4 > 28 mg/

bat ca >
3,500 mg/
kg bw

Acute
dermal

LD50
13 500 mg/

kg bw
NA NA NA Acute

dermal
LD50

13 44 mg/kg
bw

Chlorpyrifos Eptesicus
fuscus

Acute oral BMDL10
14 3.7 mg/kg

bw (ChE
inhibition)–
6.2 mg/kg
bw
(impaired
flight)

Acute oral LD50
15 64 mg/kg

bw
Acute oral LD50

14 66 mg/kg
bw

Acute oral LD50
15 13.3 mg/

kg bw

Methyl
parathion

Myotis
lucifugus

Acute oral LD50
16 372 mg/kg

bw
Acute oral LD50

16 44.4 mg/
kg bw

Acute oral LD5017 3 mg/kg
bw

Acute oral LD50
17 5.3 mg/kg

bw

LD50
17 26 mg/kg

bw
Imidacloprid Hipposideros

terasensis
Oral,
5 days

LOAEL21

(behaviour,
flight path)

20 mg/kg
bw per
day

Chronic
oral
(90 days)

NOAEL22 86 mg/kg
bw per
day

Chronic
oral
(2 years)

NOAEL22 17 mg/kg
bw per
day

Short-
term oral
(14 days)

NOAEL22 31 mg/kg
bw per
day

PCB (Aroclor
1254)

Myotis
lucifugus

Chronic
oral
(40 days)

NOEC1#

(behaviour)
15 mg/kg
per day
diet

Short–
term oral
(14 days)

NOEL 18 7.5 mg/
kg bw
per day

NA NA NA NA NA NA

Sodium
cyanide

Myotis
lucifugus

Acute oral LD50
19 8.4 mg/kg

bw
Acute oral LD5019 8.7 mg/

kg bw
NA NA NA NA NA NA

Zinc
phosphide

Myotis
lucifugus

Acute
dermal

LD50
4 >1,500

mg/bat ca
> 187,000
mg/kg

NA NA NA Acute
dermal

LD5020 1,000 mg/
kg bw

NA NA NA

bw: body weight; NOAEL: no-observed-adverse-effect-level; LOAEL: lowest-observed-adverse-effect level; LD100: lethal dose, 100%; LD50: lethal dose, 50%; CYP450: cytochrome 450;
ChE: Cholinesterase; NOEL: no observable effect level; NA: not available.
1: Clark, 1981.
2: Orberg and Lundberg, 1974.
3: NCI, 1978.
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4: Hurley and Fenton.
5: HSDB DDT.
6: Extoxnet.
7: Luckens and Davis.
8: Hudson et al.
9: Shore et al., 1996.
10: Oliveira et al., 2017.
11: EFSA deltamethrin.
12: McFarland.
13: NIOSH.
14: Eidels et al.
15: EFSA chlorpyrifos.
16: Clark, 1986.
17: EFSA Parathion.
18: Toxnet PCB.
19: Clark 1991.
20: EFSA zinc phosphide.
21: HSIAO et al., 2016.
22: EFSA Imidacloprid.
*: Dieldrin was applied on the wood in roosting boxes. The endpoint is given in mg Dieldrin applied per cm2.
**: Permethrin LD50 of 38–45 mg/kg bw was for the permethrin formulation and the LD50 of 502–533 mg/kg bw was for technical permethrin (ranges of LD50s are given because two different
methods were applied for calculating the LD50s).
#: NOEC values are based on behaviour.

References used in the Table D.1

Clark DR Jr, Hill EF, Henry PFP, 1991. Comparative sensitivity of little brown bats (Myotis lucifugus) to acute dosages of sodium cyanide. Bat Research News,
32, 68.

Clark DR, 1981. Effects of DDE and PCB (Aroclor 1260) on experimentally poisoned female little brown bats (Myotis lucifugus): Lethal brain concentrations.
Journal of Toxicology and Environmental Health, Part A Current Issues, 7, 925–934. https://doi.org/10.1080/15287398109530035

Clark DR, 1986. Toxicity of methyl parathion to bats: Mortality and coordination loss. Environmental Toxicology and Chemistry: An International Journal, 5,
191–195. https://doi.org/10.1002/etc.5620050210

EFSA conclusions: chlorpyrifos, deltamethrin, imidacloprid, parathion, zinc phosphide.
Eidels RR, Sparks DW, Whitaker JO and Sprague CA, 2016. Sub-lethal effects of chlorpyrifos on big brown bats (Eptesicus fuscus). Archives of environmental

contamination and toxicology, 71, 322. https://doi.org/10.1007/s00244-016-0307-3
Extoxnet: http://extoxnet.orst.edu/pips/ddt.htm
Hsiao C-J, Lin C-L, Lin T-Y, Wang S-E and Wu C-H, 2016. Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in

hippocampal CA1 and medial entorhinal cortex areas. NeuroReport, 27, 462–468. http://doi.org/10.1097/WNR.0000000000000562
Hudson RH, Tucker RK and Haegele K, 1984. Handbook of Acute Toxicity of Pesticides to Wildlife. Resource Publication 153. U.S. Dept. of Interior, Fish and

Wildlife Service, Washington, DC.
Hurley S and Fenton MB, 1980. Ineffectiveness of fenthion, zinc phosphide, DDT and two ultrasonic rodent repellers for control of populations of little brown

bats (Myotis lucifugus). Bulletin of environmental contamination and toxicology, 25, 503–507.
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https://doi.org/10.1080/15287398109530035
https://doi.org/10.1002/etc.5620050210
https://doi.org/10.1007/s00244-016-0307-3
http://extoxnet.orst.edu/pips/ddt.htm
http://doi.org/10.1097/WNR.0000000000000562


Luckens MM and Davis WH, 1964. Bats: sensitivity to DDT. Science, 146, 948–948.
McFarland CA, 1998. Potential agricultural insecticide exposure of Indiana bats (Myotis sodalis) in Missouri (Doctoral dissertation, University of Missouri-

Columbia). From O’Shea (2009).
McFarland, CA (1998). Potential agricultural insecticide exposure of Indiana bats (Myotis sodalis) in Missouri (Doctoral dissertation, University of Missouri-

Columbia).
NCI1978 from TOXICOLOGICAL PROFILE FOR DDT, DDE, and DDD made by U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service

Agency for Toxic Substances and Disease Registry.
NIOSH https://pubchem.ncbi.nlm.nih.gov/compound/fenthion#section=NIOSH-Toxicity-Data&fullscreen=true
Oliveira JM, Losano NF, Condessa SS, de Freitas RMP, Cardoso SA, Freitas MB, & de Oliveira LL, 2017. Exposure to deltamethrin induces oxidative stress and
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Appendix E – Overview on factors influencing the residues of pesticides in
insects

Overview on factors influencing the residues of pesticides in insects:

1) Sampling method

Bitertanol Malaise traps RUD: 1.6

Car netting RUD: 28.5

Less insects were caught in the malaise traps. The study authors considered the malaise traps as more
selective than the car netting. No details are provided in the study report on the malaise trap method.

2) Insect size

Fenoxycarb Large moths 10–20 mm RUD: 8.9
Small moths < 10 mm RUD: 32.8

Other small insects 3–10 mm RUD: 14.6

Insects were caught during the night with light traps in an apple orchard after treatment, treatment
took place in July 1 and 15 and lasted from 16:00 to 20:00

3) Variation in different plots

Fluopyram Plot 1 RUD: 0.78

Plot 2 RUD: 1.4

Plot 3 RUD: 4.85

Insects were caught in malaise traps on three different vineyards. Methodology and crop (grapes)
were identical.

4) Unknown substance related properties (different degradation or uptake by insects?)

Fluopyram vs Prothioconazole RUD: 7.4 vs 2.5

The combination product Propulse (Fluopyram + Prothioconazole) was applied in oilseed rape.
Insects were caught in malaise traps

5) Difference in crop

Fluopyram applied in grapes RUD: 0.78–1.4–4.85

in oilseed rape RUD: 7.4

Application of Fluopyram 500 SC in grape and application of Propulse in oilseed rape.
The same methodology was used in both studies. One explanation could be that there are different

crop interception values and the insects might be less exposed in vineyards than in oilseed rape.
However, the differences could also be explained by other factors such as insect size, variation in plots
and application methods.

6) Difference in toxicity

Fenoxycarb RUD: 8.9–14.6–32.8

Abamectin RUD: 0.99–3.39

Emamectin RUD: 1.4–1.8

Light trapping was applied in all three studies. The main difference was in the acute toxicity of
Fenoxycarb which is an insect growth regulator with very low acute toxicity to insects while Abamectin
and Emamectin are very acutely toxic and fast-acting insecticides. Therefore insects which were
exposed more and carried higher residues of Abamectin or Emamectin might not have been able to fly
anymore and thus only insects which were exposed less and carried only low residues levels could
have reached the light traps.
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