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Effects of dietary restriction on neuroinflammation
in neurodegenerative diseases
Luigi Fontana1,2,3, Laura Ghezzi4,5, Anne H. Cross4, and Laura Piccio4,6

Recent and accumulating work in experimental animal models and humans shows that diet has a much more pervasive and
prominent role than previously thought in modulating neuroinflammatory and neurodegenerative mechanisms leading to some
of the most common chronic central nervous system (CNS) diseases. Chronic or intermittent food restriction has profound
effects in shaping brain and peripheral metabolism, immunity, and gut microbiome biology. Interactions among calorie intake,
meal frequency, diet quality, and the gut microbiome modulate specific metabolic and molecular pathways that regulate
cellular, tissue, and organ homeostasis as well as inflammation during normal brain aging and CNS neurodegenerative
diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, among
others. This review discusses these findings and their potential application to the prevention and treatment of CNS
neuroinflammatory diseases and the promotion of healthy brain aging.

Introduction
Dietary restriction (DR) is defined as a chronic or intermittent
reduction of food intake without malnutrition. It is the most
robust experimental intervention to delay the onset of a wide
range of age-associated pathologies and to extend lifespan, as
shown in a variety of species (Fontana and Partridge, 2015).
Evidence from experimental studies indicates that age-associated
accumulation of molecular and cellular damage can be prevented
or greatly delayed by dietary, genetic, and pharmacological ma-
nipulations that down-regulate key cellular nutrient-sensing and
inflammatory pathways (Fontana et al., 2010b). Health-promoting
actions of DR include metabolic, antioxidant, and immunomodu-
latory adaptations that could potentially influence the initiation,
progression, and prognosis of a range of neurological and neuro-
inflammatory disorders.

Neuroinflammation is a coordinated response of the central
nervous system (CNS) to harmful stimuli and injuries, including
those occurring during infections, traumatic brain injury, or
other neurological diseases. It is characterized by activation and
proliferation of the two major CNS glial cells, microglia and
astrocytes, which undergo morphological changes and release
proinflammatory mediators (cytokines, chemokines, and com-
plement proteins; Matias et al., 2019; Wolf et al., 2017). Often,
neuroinflammation is associated with increased blood–brain
barrier permeability, allowing immune cell trafficking and

soluble proinflammatory factors to enter the CNS, where they
can directly interact with glial and neuronal cells and contribute
to the inflammatory process. The goal of inflammatory and im-
mune responses is to clear the hazard. When this is achieved,
activation of anti-inflammatory pathways then offsets the in-
flammatory process to restore tissue integrity and function. If
the precipitating factors are persistent (as in some neurode-
generative diseases), chronic neuroinflammation may ensue.
Chronic neuroinflammation has been proposed as a potential
deleterious mediator of aging, as well as other pathological
conditions (Di Benedetto et al., 2017). Increasing evidence sup-
ports the involvement of chronic neuroinflammation in the
pathogenesis of neurological disorders, including Alzheimer’s
disease (AD), Parkinson’s disease (PD), and amyotrophic lateral
sclerosis (ALS), as well as in multiple sclerosis (MS), a more
classic neuroinflammatory disease (Stephenson et al., 2018).

Recent advances are highlighting the complex relationship
between nutrient metabolism and the activation of inflamma-
tory pathways in different tissues including the brain. Notably,
disruption of brain energy metabolism with reduced glucose
consumption, increased central insulin resistance, and impaired
mitochondrial function have been linked to the mechanisms
leading to neuroinflammatory and age-related neurodegenerative
diseases (Cunnane et al., 2020; Zilberter and Zilberter, 2017). This
evidence prompted the hypothesis that reestablishing metabolic
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balance could be a key intervention to counteract underlying
disease processes. DR could potentially serve this purpose by ex-
erting its effects on metabolic and anti-inflammatory pathways.
This review article aims to summarize current evidence regarding
the effects of DR on neuroinflammation and the potential central
and systemic underlying mechanisms. Major studies that tested
the effects of DR in experimental models, epidemiological studies,
and clinical trials for various neurodegenerative disorders in
which neuroinflammation may play a role are discussed.

Methods of DR
DR can be achieved by chronically reducing food intake or by
changingmeal frequency and timing (Fig. 1). In chronic DR, daily
food intake is reduced by 20–50%, but meal frequency is un-
changed. In contrast, with intermittent fasting (IF), food intake
is completely eliminated or greatly reduced intermittently, for
example, every other day. In humans, moderate 20–30% chronic
DR has been tested long-term in clinical trials and observational
studies (Most et al., 2017) or during episodes of involuntary
energy intake reduction (Hindhede, 1920; Strom and Jensen,
1951). IF in experimental models usually refers to every-other-
day 24-h complete fasting, while in humans it refers to a variety
of approaches including fasting or calorie restriction (e.g., 500
calories per day) on alternate days or 2 d per week (5:2 diet), or
skipping breakfast and lunch ≥2 d each week (Patterson et al.,
2015). Another form of intermittent DR is time-restricted feed-
ing, which involves consuming all daily food in a 4- to 6-h time
window and fasting for the remainder of the day (Cienfuegos
et al., 2020; Fig. 1). Evidence from clinical and animal studies
suggests that chronic DR and IF affect lifespan and age-associated
diseases via similar metabolic and molecular mechanisms (Hadem
et al., 2019; Mattson et al., 2014).

Mechanisms mediating anti-inflammatory effects of DR
Central and systemic effector mechanisms contribute to CNS
neuroinflammation. Central mechanisms are driven by primary
CNS insults (e.g., brain injury, protein deposition, or accumulation

of senescent cells), inducing inflammatory responses involving
resident or infiltrating immune cells. CNS inflammation can also
be induced or potentiated by peripheral factors such as systemic
inflammatory mediators reaching the CNS, insulin resistance, and
other metabolic conditions (e.g., obesity or dyslipidemia), leading
to activated microglia and astrocytes (Lee and Mattson, 2014;
Mattson and Arumugam, 2018). Environmental factors (e.g., diet,
physical inactivity, smoke/pollution, or mental stress) can play a
key role in triggering central or systemic mechanisms leading to
CNS inflammation. Recent advances have recognized a prominent
role in the connections between the periphery and the brain of the
gut–brain axis, which is the bidirectional communication between
the central and the enteric nervous systems linking gut functions
with emotional and cognitive centers in the brain. A primary role
in this complex cross-talk is played by the gut microbiota through
neural, endocrine, immune, and humoral mechanisms partially
mediated by the vagus nerve and the parasympathetic nervous
system (Fig. 2). In this scenario, DR elicits protective changes in
the gut microbiota composition, with metabolic and molecular
adaptations in nearly all tissues and organs including the brain.
Thus, DR can potentially modulate both central and peripheral
factors contributing to neuroinflammation. The main adaptations
induced by DR onmetabolic and neuroinflammatory pathways are
discussed in this section and summarized in Fig. 3.

Reduced adiposity
Adipose tissue is a major source of cytokines and hormones,
collectively known as “adipokines,” which can modulate multi-
ple immune and metabolic responses (Fontana et al., 2007; Lee
et al., 2019). DR powerfully reduces adiposity, especially visceral
adiposity (Das et al., 2017; Racette et al., 2006), resulting in
diminution of fat-derived cytokines and other proinflammatory
mediators and increase of anti-inflammatory molecules such as
IL-10 (Ma et al., 2020; Willette et al., 2013). In experimental
models, DR reduces the proinflammatory adipokine leptin and
increases adiponectin, which has insulin-sensitizing and anti-
inflammatory effects (Higami et al., 2004). In humans, DR

Figure 1. Types of DR in preclinical and clin-
ical studies. Description of the main character-
istics of chronic and intermittent DR regimens
used in preclinical animal studies and clinical
studies in humans.
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induces similar changes in serum adipokines (Fontana et al.,
2010a). Reduction of abdominal fat in humans was associated
with lower levels of C-reactive protein, TNF-α, and F2-isoprostanes,
markers of systemic inflammation and oxidative stress (Il’yasova
et al., 2018; Meydani et al., 2016). Mechanistically, adipokines are
important nodes integrating immunometabolic pathways and
controlling T cell effector functions. Leptin, as well as insulin
signaling, supports T cell metabolic (nutrient uptake and glyco-
lytic and respiratory capacities) and immune responses leading to
the production of proinflammatory cytokines IFN-γ and TNF-α
(Saucillo et al., 2014; Tsai et al., 2018) and the response to patho-
gens (Ganeshan and Chawla, 2014).

Improved insulin sensitivity and reduced advanced glycation end-
product (AGE) formation
Brain aging, AD, and other neuroinflammatory diseases are as-
sociated with insulin resistance, microgliosis, and elevated in-
flammatory markers (IL-6, TNF-α, and IL-1β) in the brain,
cerebrospinal fluid, and plasma (Akiyama et al., 2000; Craft and
Watson, 2004; Pekkala et al., 2020). In the Rotterdam study, a
twofold increase in baseline insulin or insulin resistance cor-
responded to a 40% greater likelihood of AD conversion among
participants without type 2 diabetes and doubling of the risk in
diabetic patients (Schrijvers et al., 2010). Chronic DR in rodents

and humans improves insulin sensitivity and glucose tolerance
(Kraus et al., 2019; Weiss et al., 2006; Yoshino et al., 2020), thus
reducing formation of AGEs that interfere with normal cell
function (Cefalu et al., 1995; Fontana et al., 2010a; Kraus et al.,
2019; Masoro et al., 1989; Weiss et al., 2006). AGEs exert their
detrimental actions by binding specific receptors called RAGEs
(receptors for AGEs), widely expressed on many cells including
neural and immune cells. RAGE activation elicits up-regulation
of proinflammatory cytokines (e.g., TNF-α and IL-1) and rapid
generation of reactive oxygen species (Jiang et al., 2018; Vlassara
et al., 2002), and it has been implicated in the pathogenesis of
diabetes, atherosclerosis, and neuroinflammation and poten-
tially in many CNS diseases (Ashraf et al., 2015; Basta, 2008;
Wang et al., 2020).

Increased glucocorticoid production and antistress pathways
In rodents, chronic DR and IF have been consistently associated
with increased circulating levels of endogenous corticosteroids,
hormones with potent anti-inflammatory and immunomodula-
tory activities. As in animals, long-term DR in humans is asso-
ciated with sustained rises in serum cortisol (Fontana et al.,
2016). In people strictly practicing 30% DR for 3–15 yr, serum
cortisol was ∼30% higher than in age-matched sedentary con-
trols and endurance athletes, and inversely correlated with

Figure 2. Central and peripheral mechanisms leading to neuroinflammation. (A and B) Neuroinflammation with activation of microglia and astrocytes in
the CNS could be induced by peripheral (A) or central (B) effector mechanisms. Environmental factors (diet, infections, pollution, etc.) can have effects on the
gut microbiota (e.g., gut dysbiosis or increased permeability) or other epithelial barriers, and then cause peripheral metabolic and immune-inflammatory
responses (e.g., metabolic syndrome or atherosclerosis) responsible for systemic inflammation. This contributes to CNS inflammation, which could also be
evoked by central processes (e.g., chronic trauma, autoimmune attacks, or infections). The parasympathetic system through the vagus nerve mediates the
cross-talk between the periphery and the CNS and may modulate neuroinflammation.

Fontana et al. Journal of Experimental Medicine 3 of 14

Diet, neuroinflammation, and neurodegeneration https://doi.org/10.1084/jem.20190086

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/218/2/e20190086/1407692/jem
_20190086.pdf by W

ashington U
niversity In St. Louis Libraries user on 29 M

arch 2022

https://doi.org/10.1084/jem.20190086


serum levels of TNF-α (Yang et al., 2016). In the latter study, DR
was associated with reduced transcripts of several inflammatory
mediators in skeletal muscle, including NF-κB, STAT5, inducible
nitric oxide synthase, TNF-α, IL-6, and IL-8. Furthermore, DR
was associated with a significant increase in key stress-related
molecular chaperones (HSP-70 and Grp78) and autophagic (LC3
and beclin-1) mediators involved in cellular protein quality
control and removal of dysfunctional proteins and organelles
(Yang et al., 2016).

Reduction of senescent cells and senescence-associated secretory
phenotype (SASP)
Another mechanism through which DR may inhibit inflamma-
tion is by reducing the accumulation of senescent cells during
aging (Fontana et al., 2010a). Cellular senescence is a potent
tumor-suppressive mechanism that inhibits the proliferation
of cells at risk for malignant transformation, but at the same
time induces the secretion of a range of growth factors, met-
alloproteinases, proinflammatory cytokines, and chemokines,
collectively named SASPs (Chinta et al., 2015; Coppé et al., 2010).
Cell senescence can be prematurely induced by several insults,
including cellular damage caused by metabolic dysfunction, ox-
idative stress, genotoxic stress, and overactivation of oncogenes
or loss of some tumor suppressor genes (Borghesan et al., 2020;
McHugh and Gil, 2018). Accumulating evidence suggests that the
chronic inflammatory SASP environment contributes to brain
aging and to the development of age-associated diseases, in-
cluding AD (Ovadya and Krizhanovsky, 2014). Recent studies

have linked tau-dependent pathology to cellular senescence and
failure to clear senescent glial cells (Bussian et al., 2018; Musi
et al., 2018). Astrocytes help to maintain glutamate homeostasis
in the brain by removing extracellular glutamate via excitatory
amino acid transporters. Astrocyte senescence may provoke
glutamate toxicity in cortical neurons, which causes and enhan-
ces neurodegeneration and neuroinflammation (Limbad et al.,
2020). Several DR animal studies as well as long-term DR in
humans have shown that DR was associated with reduced se-
nescent cell markers in multiple tissues (Fontana et al., 2010a).

Activation of the parasympathetic anti-inflammatory pathway
The autonomic nervous system regulates important body func-
tions such as heart rate, blood pressure, and gastrointestinal
motility, but it also modulates systemic inflammation (Pavlov
and Tracey, 2012; Salama et al., 2020). Stimulation of the
parasympathetic nervous system (efferent vagus nerve) inhibits
TNF-α synthesis by macrophages, reduces serum TNF-α during
endotoxemia, and prevents development of shock (Borovikova
et al., 2000). In contrast, vagotomy intensifies TNF-α activity
and amplifies the response to endotoxemia. By binding to the
macrophage α7 nicotinic acetylcholine receptor, the neuro-
transmitter acetylcholine (released by the efferent vagus nerve
endings) is responsible for the reduced secretion of TNF-α by
human macrophages (Wang et al., 2003). Rodent studies have
shown that DR increases the high-frequency component of the
heart rate variability spectrum, a marker of parasympathetic
activity (Mager et al., 2006). Similarly, long-term DR without
malnutrition in humans increased parasympathetic activity as
measured by heart rate variability (Stein et al., 2012).

Enhanced gut microbiota–dependent anti-inflammatory pathways
Another mechanism through which DR may induce beneficial
metabolic and anti-inflammatory effects involves alterations
of gut microbiota composition and function (Estrada and
Contreras, 2019). The gut microbiota plays a crucial role in
maintaining a symbiotic relationship with the host and reg-
ulates several important functions, including host metabolism
and intestinal and systemic immune inflammatory responses
(Rooks and Garrett, 2016). Life-long DR in mice is known to
change the gut microbiota structure with enrichment of anti-
inflammatory bacteria strains such as the genus Lactobacillus,
accompanied by reduced serum proinflammatory endotoxin
load from the gut (Zhang et al., 2013). In a different study in
naive mice, every-other-day fasting altered the gut microbiota
composition by increasing levels of Firmicutes and the pro-
duction of short-chain fatty acids, which are known to have
immunomodulatory and anti-inflammatory effects (Li et al.,
2017). We showed that 1 mo of IF led to increased gut bacteria
diversity, with enrichment of the Lactobacillaceae, Bacteroi-
daceae, and Prevotellaceae families and associated enhance-
ment of several antioxidative microbial metabolic pathways.
These changes were associated with increased frequencies of
gut-associated regulatory T cells and decrease of IL-17–producing
T cells (Th17; Cignarella et al., 2018).

In humans, long-term DR was shown to increase gut micro-
biota richness and diversity, characteristics referring to the

Figure 3. Mechanisms mediating DR anti-inflammatory effects. Main
adaptations induced by DR on metabolic, hormonal, gut microbiota, and
immune/inflammatory pathways. AGEs, advanced glycation end products;
CRP, C-reactive protein; iNOS, inducible nitric oxide synthase; ROS, reactive
oxygen species; SASP, senescence-associated secretory phenotype; SOD2,
superoxide dismutase 2.
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number of bacterial species (based on total bacterial gene
counts) in the gut and of individual bacteria within each species,
respectively. High microbiota richness is associated with
improved metabolic health (reduced adiposity; lower leptin,
insulin, and triglycerides; and higher adiponectin and HDL
cholesterol levels) and reduced inflammation (lower C-reactive
protein and white blood cell counts; Le Chatelier et al., 2013).
One study showed that the gut microbiota of individuals
practicing chronic DR were significantly more diverse when
compared with individuals on a typical Western diet (Griffin
et al., 2017). Another study showed that an energy-restricted
diet increased gut bacteria richness in individuals classified as
having “low gene counts” and was associated with reduced
adiposity and improved insulin sensitivity, as well as a trend
toward a reduction of systemic inflammation, as evidenced by
decreased C-reactive protein levels (Cotillard et al., 2013).

Effects of DR on normal aging and neurodegenerative diseases
Numerous studies have explored DR effects in normal brain
aging as well as chronic neuroinflammatory and neurodegen-
erative diseases. Most of the long-term studies were conducted
in rodents and monkeys. Human studies have mainly been rel-
atively short-term trials testing the effects of the diet primarily
on systemic metabolic conditions. In the following section, we
review the main published studies on the effects of DR on nor-
mal aging and neurodegenerative diseases (summarized in
Table 1) in which systemic and brain inflammation plays a
prominent role.

Normal aging
Aging is associated with systemic low-grade chronic inflam-
mation (called “inflammaging”) that also involves the brain
(Franceschi et al., 2018). Neuroinflammation accompanies the
age-related decline of brain function (Di Benedetto et al., 2017)
and involves activated brain glial cells. Upon aging, MHCII ex-
pression by microglia and glial fibrillary acidic protein (GFAP)
expression by astrocytes are increased (Morgan et al., 1999;
Wong, 2013). Acquisition of a senescent phenotype by microglia
may also contribute to the development of age-associated neu-
rodegenerative diseases (Streit, 2004; Wong, 2013).

Several lines of evidence have shown that DR exerts benefi-
cial effects against age-driven neuroinflammation. In rodents,
DR attenuated age-dependent astrocyte and microglia activation
in the brain (Kaur et al., 2008; Morgan et al., 1999; Yin et al.,
2018). Long-term DR in aged mice inhibited a number of in-
flammatory genes in the neocortex and cerebellum by inducing
a type I interferon response and suppressing NF-κB signaling
and oxidative stress pathways (Lee et al., 2000). Similarly,
short-term IF ameliorated age-associated decrease in motor and
cognitive performance in rats by enhancing mitochondrial
complex IV activity and reducing oxidative molecular damage
(Singh et al., 2012). The effects of DR on brain aging in rodents
are discussed in more detail in a recent review by Hadem et al.
(2019).

Data on DR effects on neuroinflammation in nonhuman
primates are accumulating. Most published reports have ex-
amined DR neuroprotective effects on neuroimaging biomarkers

or brain pathology. Results from theWisconsin National Primate
Research Center (WNPRC) study showed that moderate chronic
DR (30% reduced intake from individualized baseline), initiated
in young adulthood, reduces age-associated gray matter brain
atrophy in several key cerebral regions of rhesus macaques
compared with animals fed ad libitum (Colman et al., 2009). In
the same WNPRC study, chronic DR led to a significant reduc-
tion of astrogliosis (measured as levels of GFAP expression) in
the hippocampus and iron accumulation (measured by brain
magnetic resonance imaging [MRI]) in the basal ganglia and
cortical areas (Kastman et al., 2012; Sridharan et al., 2013); these
changes were associated with improved performance on exec-
utive and motor function tests in the DR, but not in the control
group (Sridharan et al., 2012). Moreover, chronic DR in non-
human primates improved insulin sensitivity and lowered blood
proinflammatory cytokine concentrations, which were associ-
ated with more gray matter volume in the hippocampus and
more white matter volume primarily in visual areas and the
dorsal prefrontal cortex (Willette et al., 2010, 2012). Another
lifelong study in squirrel monkeys found that 30% DR reduced
levels of amyloid β (Aβ)1–40 and Aβ1–42 peptides in the temporal
cortex in association with elevation of α-secretase activity (Qin
et al., 2006).

Chronic metabolic disorders (e.g., obesity, dyslipidemia, and
insulin resistance) associated with systemic inflammation
accelerate brain aging (Cunnane et al., 2020; Mattson and
Arumugam, 2018). Cognitive performance of metabolically
morbid individuals is poorer than their age-matched healthy
counterparts (Kullmann et al., 2016). Several epidemiological
studies have reported that obesity and metabolic syndrome in
midlife are associated with impaired cognitive function (Debette
et al., 2011). A population-based cohort study of cognitively
healthy participants suggested that high visceral adiposity and
systemic inflammation were associated with deep white matter
brain hyperintensities, reduced gray matter volume (measured
by MRI), and potentially with reduced executive functions
(Lampe et al., 2019).

In humans, studies of chronic DR have reported beneficial
effects on metabolic factors and cognitive functioning in healthy
volunteers and obese and hypertensive patients. A 3-mo inter-
ventional study of 30% DR in healthy, normal-weight to over-
weight elderly subjects showed significant improvement in
memory performance, with concomitant reductions in fasting
insulin and C-reactive protein levels (Witte et al., 2009). Similar
results have been reported for a younger population of nonobese
(body mass index [BMI] 22–28 kg/m2) men and women enrolled
in the large National Institute on Aging–funded multicenter
randomized trial Comprehensive Assessment of Long-Term Ef-
fects of Reducing Intake of Energy (CALERIE). At the end of the
second year, the volunteers randomized to 25% DR experienced
a better performance in working memory tests than the control
group (Leclerc et al., 2020). In the Exercise and Nutrition In-
tervention for Cardiovascular Health (ENCORE) trial, 3 mo of
exercise training coupled with an energy-restricted Dietary
Approaches to Stop Hypertension (DASH) diet (high in low-fat
dairy products, fruits, vegetables, and fiber and low in fats;
Appel et al., 1997) resulted in a significant improvement of
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Table 1. Preclinical and clinical studies on DR in aging and neurodegenerative diseases

Model Reference Type of DR DR effects on
inflammatory or other
brain pathology markers

DR effects on cognitive
or motor functions

DR effects on imaging
measures

Aging

Rodents Morgan et al., 1999; Lee
et al., 2000

30–40% DR ↓ Age-related increased of
activation markers on
microglia (e.g., MHCII) or
astrocytes (e.g., GFAP); ↓
inflammatory genes

Kaur et al., 2008 IF ↓ Age-related changes in
brain expression of NCAM,
PSA-NCAM, and GFAP

Singh et al., 2012 IF ↓ Protein oxidative damage;
↑ markers of synaptic
plasticity in the
hippocampus

Ameliorates motor
coordination, cognitive
skills

Nonhuman
primates

Qin et al., 2006 30% DR ↓ Aβ deposition

Willette et al., 2010 30% DR Attenuates the relation
between IL-6 and brain
volume loss

Attenuates the relation
between IL-6 and brain
volume loss

Willette et al., 2012 30% DR Attenuates the negative
correlation between
homocysteine and global
gray matter volume

Attenuates the negative
correlation between
homocysteine and global
gray matter volume

Colman et al., 2009;
Kastman et al., 2012;
Sridharan et al., 2012;
Sridharan et al., 2013

30% DR (University of
Wisconsin study)

↓ Age-related astrogliosis (↓
GFAP in hippocampus and
entorhinal cortex)

Preserves motor
performance

No effect on corpus
callosum integrity; ↑ FA in
several white matter
regions; ↓ GM volume loss;
↓ brain iron accumulation

Humans Leclerc et al., 2020;
Witte et al., 2009

25–30% DR Ameliorates memory
performance

↓ C reactive protein and
insulin levels

Blumenthal et al., 2010;
Smith et al., 2010

DASH diet (Appel et al.,
1997) and DR

Improves cognitive
function

AD

Rodents Patel et al., 2005; Wang
et al., 2005; Wu et al.,
2008; Schafer et al.,
2015

30–40% DR ↓ Aβ and phospho-tau
deposition; ↓ astrocyte
activation

Improved performance in
cognitive tests

Halagappa et al., 2007;
Brownlow et al., 2014

Different DR regimens
based on individual calorie
consumption; 35–40% DR

No effects Improved age-related
behavioral impairments;
rescued associative
memory deficits

Humans Horie et al., 2016 DASH diet + DR 500 kcal/d
or 25% DR

Improvement in cognitive
functions

PD

Rodents Duan and Mattson, 1999 IF ↓ Damage to SN neurons ↓ Motor deficits

Maswood et al., 2004 30% DR ↑ Levels of dopamine and
dopamine metabolites in
the striatal region

↑ Locomotor activity No differences in
presynaptic dopaminergic
activity in vivo

Armentero et al., 2008 IF No effect on nigrostriatal
degeneration

Griffioen et al., 2013 IF NA Ameliorates autonomic
function

NA
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cognitive function in hypertensive individuals (Blumenthal et al.,
2010; Smith et al., 2010).

AD
AD brain pathology is characterized by abnormal accumulation
of Aβ plaques, aggregated hyperphosphorylated tau in neurofi-
brillary tangles, and neuroinflammation. These pathological
hallmarks are also observed in normal brain aging, but in AD
they progress much faster and to a greater extent. Systemic
inflammation and insulin resistance are emerging as important
drivers of AD progression (Heneka et al., 2015; Heppner et al.,
2015).

Several studies have demonstrated beneficial effects of DR or
IF on brain pathology and functional outcomes in AD transgenic

rodent models (Table 1). Short- and long-term DR decreased or
prevented Aβ accumulation in the hippocampus and cerebral
cortex of transgenic mice carrying familial AD amyloid-
precursor protein mutations (Patel et al., 2005; Schafer et al.,
2015; Wang et al., 2005) and attenuated Aβ plaque–associated
astrogliosis (Patel et al., 2005; Wu et al., 2008). In mouse models
with tau deposition (alone or combined with Aβ), long-term DR
improved cognitive and behavioral performance, with incon-
sistent effects on Aβ and phospho-tau levels in the hippocampus
(Brownlow et al., 2014; Halagappa et al., 2007). In triple-
transgenic mouse models of AD, an IF regimen has been associ-
ated with increased neuronal differentiation in the hippocampus
(Li et al., 2020). A comprehensive review of these studies has
been recently published (Bok et al., 2019).

Table 1. Preclinical and clinical studies on DR in aging and neurodegenerative diseases (Continued)

Model Reference Type of DR DR effects on
inflammatory or other
brain pathology markers

DR effects on cognitive
or motor functions

DR effects on imaging
measures

Nonhuman
primates

Maswood et al., 2004 30% DR ↑ Levels of dopamine and
dopamine metabolites in
the striatal region

↑ Locomotor activity No differences in
presynaptic dopaminergic
activity in vivo

ALS

Rodents Pedersen and Mattson,
1999

IF Accelerates disease onset
and shortens disease
duration

Hamadeh et al., 2005 40% DR Accelerates disease onset

MS

Rodents Esquifino et al., 2007 66% Alters lymphocytes
composition in lymphoid
organs, ↓ IFN-γ production

Prevents EAE

Piccio et al., 2008 40% DR ↑ Corticosterone and
adiponectin; ↓ leptin and IL-
6

Ameliorates EAE clinical
course

Kafami et al., 2010 IF Ameliorates EAE clinical
course and reduces
incidence of disease

Cignarella et al., 2018 IF ↓ Th17 cells, ↑ T regulatory
cells in small intestine
lamina propria, altered gut
microbiota

Ameliorates EAE clinical
course and reduces
incidence of disease

Jordan et al., 2019 IF ↓ Monocyte infiltration in
the spinal cord, ↓ TNFα, IL-
1β, CXCL2, and CXCL10

Ameliorates EAE clinical
course and reduces
incidence of disease

Humans Saadatnia et al., 2009 Ramadan fasting Well tolerated, no
differences in relapse rate

Etemadifar et al., 2016 Ramadan fasting Improves physical health
and mental health
composites of QOL

Choi et al., 2016 FMD + Mediterranean or
ketogenic diet

Improves QOL

Fitzgerald et al., 2018 22% DR or IF Improves mood

Cignarella et al., 2018 IF ↓ Leptin

Summary of the main studies on the effects of DR on aging and neurodegenerative and neuroinflammatory diseases. FA, fractional anisotropy. GM, gray
matter; NA, not applicable; NCAM, neural cell adhesion molecule; PSA, polysialylated; QOL, quality of life; SN, substantia nigra.
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Epidemiological data suggest a relationship between calorie
intake, obesity, and dementia risk. A prospective study of a large
cohort of elderly individuals free of dementia at baseline pro-
vided evidence that those with a lower calorie intake had a re-
duced risk of developing AD (Luchsinger et al., 2002). Obesity at
midlife increases the risk of AD, as shown in a population-based
cohort study with an average 21-yr follow-up. In this study,
clustering of vascular risk factors (high total cholesterol and
high blood pressure) increased the risk in an additive manner
(Kivipelto et al., 2005). Other epidemiological studies suggest a
strong association between high blood pressure and late-life
dementia (Ding et al., 2020), and the SPRINT MIND trial dem-
onstrated that reducing systolic blood pressure to <120 mm Hg
compared with <140 mm Hg significantly reduced the risk for
mild cognitive impairment (MCI) and dementia (Williamson
et al., 2019). In an 18-yr follow-up study of nondemented
women, being overweight at age 70 was associated with a higher
risk of developing dementia later in life; for every 1.0 unit of BMI
increment in women aged 70–75 yr, AD risk increased by 36% at
79–88 yr of age (Gustafson et al., 2003). Preliminary data from
randomized controlled trials are supportive of a cause–effect
relationship. In one small 12-mo trial of 80 obese patients with
MCI, aged ≥60 yr, weight loss was associated with improve-
ments in verbalmemory, verbal fluency, executive function, and
global cognition (Horie et al., 2016). In this study, improvements
in insulin resistance and inflammation were associated with
better cognitive tests. More randomized trials on the effects of
DR in individuals with subjective memory complaints and MCI
are currently ongoing.

PD
PD, the second most common human CNS neurodegenerative
disease, is characterized by progressive debilitating motor and
nonmotor symptoms. Accumulation of α-synuclein aggregates
within neurons causes neuronal loss primarily in the substantia
nigra (Braak et al., 2003; Mendoza-Velásquez et al., 2019).
Postmortem brain pathology of PD patients reveals inflamma-
tory changes in microglia (McGeer et al., 1988). Activation of
microglia by α-synuclein aggregates resulting in inflammatory
and oxidative damage of neurons is one of the main culprits in
PD pathogenesis (Hoenen et al., 2016; Hoffmann et al., 2016).
One novel compelling hypothesis is that α-synuclein pathology
originates in the gastrointestinal tract and is transmitted to the
brain via the vagus nerve (Braak et al., 2003; Kim et al., 2019;
Van Den Berge et al., 2019).

Preclinical data suggest a potential role of diet and DR in the
progression of PD. High-fat diet–induced obesity can increase
the vulnerability of dopaminergic neurons of the substantia
nigra in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)–
induced mouse model of PD (Choi et al., 2005), whereas IF and
30% DR attenuated MPTP-induced neurotoxicity in both mouse
and nonhuman primate models (Duan and Mattson, 1999;
Maswood et al., 2004). These results were not confirmed in a
6-hydroxydopamine model of PD, in which IF did not prevent
nigrostriatal degeneration (Armentero et al., 2008). IF can
ameliorate autonomic dysfunction in a PD transgenic mouse
model (Griffioen et al., 2013), and growing evidence suggests

that modifications of gut microbiota may be involved in the
development of motor symptoms and α-synuclein inclusions in
the CNS of PD mouse models. Remarkably, transplantation of mi-
crobiota fromPD-affected patients into α-synuclein–overexpressing
mice enhanced motor dysfunction, suggesting that dietary manip-
ulation of the human gut microbiome may play a role in the
treatment of PD (Sampson et al., 2016).

Little is known on the effects of diet and DR on PD devel-
opment and progression in humans. Some epidemiological
studies suggest a relationship between BMI and PD risk (Hu
et al., 2006), but others did not confirm this association (Roos
et al., 2018). Being underweight might even have a negative
effect by increasing the risk of PD, especially in patients with
diabetes mellitus (Jeong et al., 2020). No randomized clinical
trials of the effects of DR or fasting on PD progression have been
published so far. However, it is interesting to note that people
with PD display lower levels of ghrelin compared with healthy
controls, even when matched by BMI (Fiszer et al., 2010). In a
mouse model of PD, ghrelin exerted neuroprotective effects
during 30% DR through the attenuation of MPTP-induced ni-
grostriatal damage and loss of dopaminergic neurons (Bayliss
et al., 2016). Prolonged DR and fasting powerfully increases
plasma concentrations of ghrelin (Hoddy et al., 2016), a “hunger
hormone” with anti-inflammatory functions (Dixit et al., 2004).

ALS
ALS is a fatal neurodegenerative disease, causing motor neuron
death and progressive muscle paralysis. Approximately 85–90%
of cases are sporadic; the remaining 10–15% are classified as
familial, with Cu/Zn superoxide dismutase 1 (SOD1) mutations
accounting for ∼30% of them (Rosen et al., 1993). CNS pathology
has been extensively studied in SOD1 mutation carriers and
SOD1 mutant animal models. Although neuroinflammation may
accelerate neuronal death (Boillée et al., 2006), preclinical data
suggest a detrimental effect of DR on ALS. An early study from
the late 1990s reported that Cu/Zn SODmutant mice undergoing
IF experienced earlier disease onset and shorter disease duration
compared with mice fed ad libitum (Pedersen and Mattson,
1999). Another study found that 40% DR accelerates disease
onset and progression (Hamadeh et al., 2005). Although the
exact mechanism is not known, it seems that DR in the SOD1G93A

animal model of ALS increases lipid peroxidation, inflammation,
and apoptosis in the skeletal muscle, probably by decreasing
mitochondrial bioenergetic efficiency and impairing stress re-
sponse (Patel et al., 2010). To the best of our knowledge, no
human studies on the effects of DR on ALS exist.

MS
MS is an inflammatory demyelinating human disease, pre-
sumed to be autoimmune, with varying degrees of axonal and
neuronal damage (Wallin et al., 2019). Several studies have
shown that obesity during childhood/young adulthood is a risk
factor forMS development (Hedström et al., 2012; Langer-Gould
et al., 2013; Munger et al., 2009, 2013; Wesnes et al., 2015) and
could influence the response to therapy (Huppke et al., 2019). A
protective effect of DR in the main animal model of MS, ex-
perimental autoimmune encephalomyelitis (EAE), was reported
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in 2004. Severe DR, 66% below ad libitum intake, for 15 d before
immunization prevented clinical manifestations in the rat EAE
model. In this study, DR caused major reductions in circulating
growth hormone and increased prolactin levels; depressed
lymphocyte responses, such as to the mitogen concanavalin A
(Esquifino et al., 2004), and reduced IFN-γ production in
lymphoid tissues were also reported (Esquifino et al., 2007).
Similarly, our group has shown that 40% chronic DR greatly
reduced murine EAE severity, in concert with increased en-
dogenous serum corticosterone (the main glucocorticoid hor-
mone in mice) and adiponectin, and decreased serum leptin
levels (Piccio et al., 2008). An IF regimen started before disease
induction showed similar reductions of murine EAE incidence
and severity (Cignarella et al., 2018; Kafami et al., 2010). Ad-
ditional studies suggested a potential role of the gut micro-
biome in mediating some of these protective effects. We
observed Lactobacilli species enrichment, with reduced Th17
cells and increased regulatory T cells in the small intestine
lamina propria of mice undergoing IF (Cignarella et al., 2018).
Transfer of gut microbiota from these mice inhibited EAE in
recipients immunized to induce EAE (Cignarella et al., 2018).

Jordan et al. (2019) have independently confirmed a protec-
tive role of IF in the murine EAE model and demonstrated de-
creased mobilization of monocytes from bone marrow with
reduced CNS monocytes and expression of TNF-α, IL-1β, MMP9,
CXCL10, and CXCL2 inflammatorymediators. Notably, IF did not
inhibit the ability of monocytes to mobilize and function during
acute infection or wound healing, suggesting that this strategy
might not compromise responses to infection or tissue repair.
Indeed, a randomized clinical trial in nonobese men and women
demonstrated that prolonged DR markedly reduced inflamma-
tion without impairing cell-mediated immunity (Meydani et al.,
2016).

Preliminary data suggest that other forms of fasting might
have an effect in the EAE model. Three cycles of a fasting
mimicking diet (FMD), involving a very-low-calorie and protein
diet for 3 consecutive days per week, initiated after clinical EAE
onset, increased serum corticosterone levels, reduced proin-
flammatory cytokines, and improved the clinical course of the
disease. FMD also promoted oligodendrocyte differentiation and
remyelination in the cuprizone-induced model of CNS demye-
lination (Choi et al., 2016).

Several studies have focused on potential beneficial effects of
DR in MS patients. DR was demonstrated to be safe in an ob-
servational study conducted in 40 adult MS patients with mild
disability who were followed for 6 mo after fasting during the
Ramadan month (Saadatnia et al., 2009). Another study of
>200 relapsing-remitting MS patients with mild disability re-
ported that Ramadan fasting improved mean physical and
mental health composites of quality of life (Etemadifar et al.,
2016).

In an 8-wk randomized feeding study, DR (22% daily calorie
reduction) and intermittent DR (75% caloric reduction 2 d/wk)
were each compared with a control diet and found to be safe and
feasible in people with MS. DR of either type improved mood, as
indicated by the Functional Assessment of MS Emotional Well-
being subcomponent, while not altering fatigue or sleep quality

(Fitzgerald et al., 2018). A study enrolling 60 relapsing-remitting
MS patients revealed that 1 wk of FMD followed by 6 mo of
Mediterranean diet or ketogenic diet improved some quality of
life measures (Choi et al., 2016).

Our group performed a randomized trial of 15 d of inter-
mittent DR versus normal diet in 16 MS patients being treated
with corticosteroids for acute MS relapse. IF was well tolerated
and reduced leptin without altering adiponectin levels. Enrich-
ment of specific gut bacteria similar to that observed in EAE
mice undergoing IF was seen (Cignarella et al., 2018). We are
currently performing a 12-wk randomized controlled pilot study
of intermittent DR (2 d/wk) compared with a Western diet in 40
MS patients (NCT03539094) to investigate its effects on pe-
ripheral blood inflammatory markers and gut microbiota. Also
currently underway is an 18-mo, three-arm study in 111 relaps-
ing MS patients comparing ketogenic diet versus IF (1 wk of
fasting every 6 mo, plus fasting ≥14 h per day) versus a
vegetarian-focused diet, and with new MRI lesions as the pri-
mary outcome measure (NCT03508414).

Conclusions and future directions
Neurodegenerative diseases, among many other chronic con-
ditions, are on the rise. The epidemic of obesity and unhealthy
aging that is rapidly spreading from industrialized to developing
countries likely has a role in this. Excessive calorie intake cou-
pled with a sedentary lifestyle are major players in this ex-
tremely costly, and soon unsustainable, pandemic of unhealthy
lifestyle–driven chronic diseases. People are living longer, but
not healthier. More than 65% of people >65 yr old have two or
more chronic diseases, such as heart disease, stroke, vascular
dementia, type 2 diabetes, fatty liver disease, cancer, and kidney
disease (Atella et al., 2019; Hung et al., 2011), which often share a
common metabolic and molecular substrate (Fontana, 2018). As
we have illustrated in this review, accumulating data suggest
that targeting well-characterized nutrient-sensing and inflam-
matory pathways can reduce the accumulation of cellular and
tissue damage and influence the clinical progression of neuro-
logical diseases such as PD, AD, and MS. Specific dietary manip-
ulations play a significant role in modulating pathophysiological
mechanisms leading to metabolic and inflammatory changes that
characterize several neurodegenerative disorders (Fig. 2). For
example, recent findings indicate that altering meal timing can
improve brain energy metabolism and function in the absence of
changes in overall energy intake. Lowered consumption of par-
ticular nutrients is also key inmediating some of the effects of DR,
with protein and specific amino acids and nutritional modulation
of the gut microbiome playing prominent roles (Fontana and
Partridge, 2015). For example ketogenic diets can alter neuronal
metabolic and electrical activities and are a proven effective
treatment for children with drug-resistant epilepsy (Neal et al.,
2008).

Based on our current knowledge, mechanism-based research
on interventions to change diet, exercise, and other lifestyle
patterns may be a safe and effective solution to slow brain aging
and multiple neurodegenerative diseases before the onset of
clinical symptoms (Cunnane et al., 2020). We base this comment
on the reports that peripheral and central insulin resistance,
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systemic inflammation, and disruption of brain energy metab-
olism are linked to the pathological processes of microglia acti-
vation, neurotoxic protein accumulation, axonal and synaptic
dysfunction, and neuronal death observed in neurodegeneration
(Aldana, 2019; Tups et al., 2017; Zilberter and Zilberter, 2017). As
outlined in this review, DR and other dietary manipulations
might be an effective approach to address metabolic and
immune-inflammatory responses associated with impaired
brain metabolism. Several clinical trials are underway to test
the effects, efficacy, and safety of intermittent or chronic DR in
subjects with AD or MS. The results of these trials will be ex-
tremely helpful to elucidate the importance of specific dietary
manipulations and their potential side effects and risks, such as
the potential long-term consequences of mild DR-induced hy-
percortisolism on learning and memory (Qiu et al., 2012), as
well as other DR side effects (e.g., on bone mass and sex hor-
mones), which will depend on the level of restriction (Most
et al., 2017). However, more animal and human studies are
warranted to understand the interactions among energy ex-
penditure and calorie intake, meal frequency and timing, diet
quality, and other factors such as the gut microbiome in
slowing molecular damage leading to brain aging and CNS
neurodegenerative diseases. Finally, an important practical
consideration in choosing different approaches for DR is also its
feasibility for the individual. Various types of intermittent DR
(e.g., 5:2 diet or time-restricted feeding) are relatively easy
ways to incorporate DR into the daily routine compared with
chronic calorie restriction. Thus, continued investigation of the
intersection of nutrition, metabolism, and neuroinflammation
holds immense promise to prevent and potentially treat several
chronic neurodegenerative diseases.
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