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Abstract: Transcript sequencing is a crucial tool for gaining a deep understanding of biological
processes in diagnostic and clinical medicine. Given their potential to study novel complex eukaryotic
transcriptomes, long-read sequencing technologies are able to overcome some limitations of short-
read RNA-Seq approaches. Oxford Nanopore Technologies (ONT) offers the ability to generate
long-read sequencing data in real time via portable protein nanopore USB devices. This work aimed
to provide the user with the number of reads that should be sequenced, through the ONT MinION
platform, to reach the desired accuracy level for a human cell RNA study. We sequenced three
cDNA libraries prepared from poly-adenosine RNA of human primary cardiac fibroblasts. Since the
runs were comparable, they were combined in a total dataset of 48 million reads. Synthetic datasets
with different sizes were generated starting from the total and analyzed in terms of the number of
identified genes and their expression levels. As expected, an improved sensitivity was obtained,
increasing the sequencing depth, particularly for the non-coding genes. The reliability of expression
levels was assayed by (i) comparison with PCR quantifications of selected genes and (ii) by the
implementation of a user-friendly multiplexing method in a single run.

Keywords: nanopore technology; RNA-seq; MinION; sequencing depth; multiplexed samples;
barcoding; SQK-PCS109

1. Introduction

Knowledge about the human genome plays a crucial role in modern medicine [1,2].
In-depth analysis of tissue transcriptomes, leveraging the power of genome-wide gene
expression investigation, is increasingly used for clinical decisions in the new era of
precision medicine [3]. RNA sequencing (RNA-Seq), based on next-generation sequencing
technologies, is the current method of choice for quantifying gene expression at the genomic
level with higher depth and accuracy than probe-based microarray approaches [4].

Recently, third-generation sequencing (TGS) approaches have been designed to over-
come some of the limitations of the second-generation sequencing (SGS) technologies,
which rely on short-read length analysis [5]. Despite massive throughput, the use of SGS
for de novo transcriptome assembly and analysis of large structural variations remains
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challenging [6,7]. TGS technologies have the advantage of capturing many full-length
single-molecule transcripts, avoiding the problematic errors of assembly processes, and
reducing the time-to-results window [8].

The MinION sequencer, released by Oxford Nanopore Technologies (ONT), is a new,
low-cost, handheld device that processes thousands of long reads in parallel, using 50 ng
starting material [9,10]. The process is based on the passage of DNA/RNA strands through
a biological nanopore, generating base-specific changes in electrical conductivity and lead-
ing to the identification of specific sequences using a neural network. Although Nanopore
long-read sequencing suffers from some limitations compared to short-read methods, such
as the high error rate during the base-calling step and the sensitivity to RNA degrada-
tion, significant advantages in identifying novel RNA molecules and complex isoforms
have been widely demonstrated in previous works [6,11–15]. In particular, the long-read
sequencing technology was more efficient in quantifying long non-coding RNAs [16].
Moreover, thanks to its ability to perform rapid long-read sequencing analysis requiring
minimal supporting laboratory infrastructure or technical expertise, MinION has been
widely used for the diagnosis of viral disease [17–19]. It played a crucial role in supporting
the COVID-19 pandemic, particularly in isolated or resource-poor settings [20–22].

The turnaround time and cost for ONT RNA-Seq can be further reduced by sequencing
multiple samples on a single run [19,23–25]. Wick et al. [23] sequenced 12 bacterial DNA
isolates simultaneously on a single MinION flow cell using the ONT native barcoding
kit. The long reads were then combined in a hybrid assembly with Illumina data to fully
resolve the bacterial genome. Recently, King et al. [24] proposed a rapid workflow for
multiplexed sequencing of influenza A viruses using the ONT technology for real-time
analysis, in combination with a one-step RT-PCR and the Rapid Barcoding Kit.

As with any RNA-Seq study, the read depth is one of the most important factors to
reach the desired level of accuracy and sensitivity, in addition to the number of biological
replicates. Indeed, the read depth changes in accordance with the purpose of the study,
requiring a significant increase when low-expression genes are to be evaluated. Numerous
investigations regarding the performance of short-read RNA-Seq with varying reads depth
have been published [26–30]. Conversely, a very limited number of studies focusing on the
real capabilities of the MinION sequencing platform are available [6,15,31–35]. In particular,
an RNA-Seq evaluation with the latest PCR-cDNA sequencing kit (i.e., SQK-PCS109) is
missing. This kit is highly recommended for users who have a limited amount of input ma-
terial, want to optimize their sequencing experiment for throughput, would like to identify
and quantify full-length transcripts, and are interested in differential gene expression.

Here, we have qualitatively and quantitatively analyzed the performance of MinION
through the sequencing of human primary cardiac fibroblasts, both in terms of the number
of detected genes and corresponding quantifications, by sequentially changing the number
of reads, employing the SQK-PCS109 kit. Our goal was to estimate, according to the target
accuracy of a given study, a suitable sequencing depth to obtain a reliable number of
detected genes as well as their expression levels from human primary cells.

2. Results

The workflow diagram of the study is reported in Figure 1.

2.1. Sequencing Performance Changing the Number of Reads

Three cDNA libraries, prepared from poly-adenosine (poly-A) RNA of three human
primary cardiac fibroblast samples, were sequenced by an ONT MinION sequencer using
R9.4 flow cells. The comparison of the gene expression levels, expressed as log2(CPM),
showed a strong correlation among these three independent replicates (Pearson’s correla-
tion coefficient (rp) equal to 0.98; Figure 2).
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Figure 2. Correlation analysis comparing the three libraries. (A) Scatter plot of log2(CPM) values from
run1 vs. run2. (B) Scatter plot of log2(CPM) values from run1 vs. run3. (C) Scatter plot of log2(CPM)
values quantified from run2 vs. run3. (D) Correlation matrix with Pearson correlation coefficients.

Thus, data obtained from these runs were combined to obtain a large dataset (here-
inafter DS100) for the evaluation of ONT performance as a function of read number. DS100
was composed of more than 48 million reads (about 23 gigabases), with an average length
of 483.2 base pairs (bp) that passed the quality filter. We used this total dataset to generate
progressively fractional synthetic subsets (90% to 5%, i.e., DS90 to DS5). The total and
mapped reads are reported in Table 1 for each dataset.
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Table 1. The numbers of total and mapped reads are reported for each subset (DS90–DS5) and
the total dataset (DS100). The numbers of mapped reads for the subsets are the average among 10
randomly picked replicated subsets with the same size (CV < 0.8%).

Dataset Avg. Total Reads Avg. Mapped Reads

DS100 48,495,343 28,239,507
DS90 43,645,809 25,415,207
DS80 38,796,274 22,592,768
DS70 33,946,740 19,768,060
DS60 29,097,206 16,943,277
DS50 24,247,672 14,098,354
DS40 19,398,137 11,302,374
DS30 14,548,603 8,461,139
DS20 9,699,069 5,368,370
DS10 4,849,534 2,676,107
DS5 2,424,767 1,340,245

We obtained similar length distributions of reads among the different subsets (Supple-
mentary Figure S1 and Supplementary Table S1). Moreover, a strong agreement was found
between the average gene expression levels obtained from the eleven datasets (DS100–DS5),
even when comparing the two extreme datasets, DS5 and DS100 (rp = 0.97 and p < 10−5;
Supplementary Figure S2). The reliability of the results was evaluated by comparing the
quantifications obtained from DS5, DS30, and DS100 with the dCt values of ten selected
genes (IL4, MALAT1, COL1A1, DCN, MMP2, H19, CAT, SOD3, BCL2, and BMP2) detected
by qPCR. There was a significant correlation between each dataset quantification and the
qPCR values (rp ≥ 0.8 and p < 0.01; Figure 3). Of note, the DS30 subset (about 14 million
reads) is equivalent to a single flow-cell run. Indeed, the SQK-PCS109 kit can generate
10–15 million reads in 48 h per flow cell.
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Figure 3. Correlation analysis of gene expression levels obtained from qRT-PCR and ONT sequencing
using (A) DS100, (B) DS30, and (C) DS5. Interleukin 4 (IL4), metastasis associated lung adenocar-
cinoma transcript 1 (MALAT1), collagen type I alpha 1 chain (COL1A1), decorin (DCN), matrix
metallopeptidase 2 (MMP2), h19 imprinted maternally expressed transcript (H19), catalase (CAT), su-
peroxide dismutase 3 (SOD3), BCL2 apoptosis regulator (BCL2), and bone morpho-genetic protein 2
(BMP2) genes were selected, and qPCR experiments were performed. Pearson correlation coefficients
(rp) between log2(CPM) and dCt were computed and reported with the respective p-value (p).

The sequencing performance, when changing the number of reads, was assessed by
evaluating the number of detected genes as well as the corresponding quantification levels
based on different read depths. Moreover, we investigated coding and non-coding genes
considering the Ensembl 97 database (GRCh38.p12). A total of 21,816 expressed genes
were detected using DS100, and the detection sensitivity decreased after reducing the size
of the subsets (from DS90 to DS5; Figure 4A, black line, and Supplementary Table S2).
In particular, we identified 17,633 genes in DS30 and 12,114 in DS5. The detection trend
revealed a significant improvement from DS5 up to DS30. Indeed, the number of expressed
genes detected by DS30 was about 50% higher than that for DS5. Instead, compared with



Int. J. Mol. Sci. 2021, 22, 6317 5 of 12

DS30, an increase of about 25% was reached using the largest dataset, DS100. As expected,
the genes with low expression levels were challenging to detect (Supplementary Figure S3).
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(A) Number of total, coding, and non-coding genes in each dataset (black, red, and green lines,
respectively). Distributions of gene expression variation of (B) total, (C) coding, and (D) non-coding
genes in each subset.

Focusing on the biotype classification, we observed that >60% of the genes were
annotated as protein-coding (Figure 4A, red line, and Supplementary Table S2) and the
remaining part was composed of non-coding genes (Figure 4A, green line, and Supple-
mentary Table S2). The improvement in the detection of coding genes reached a plateau
after DS20. In particular, from DS5 to DS20, we observed an increment of about 22% in
the number of coding genes. As for the non-coding genes, an increment of >100% was
achieved in DS30 compared with DS5, and 53% going from DS30 to DS100.

The gene quantifications obtained from each subset (from DS90 to DS5) were compared
to the results of DS100 (as reference) to compute the gene expression variation (%GEV). A
substantial reduction in the %GEV was shown considering the subsets larger than DS20
(Figure 4B and Supplementary Table S3). The %GEV values obtained for coding and non-
coding genes had similar characteristics (Figure 4C,D; Supplementary Tables S4 and S5).
However, in the latter, we observed a slightly higher %GEV.

Finally, the %GEV values at different ranges were investigated in the two biotypes. In
particular, coding and non-coding genes were grouped into high, mid-high, mid-low, and low
expression subsets and analyzed. An overall negative correlation between the %GEV and the
expression class was observed for all the subsets (Supplementary Figures S4 and S5).

2.2. Multiplex Sequencing

To further validate the results obtained from the synthetic subsets, we sequenced
one sample with six different barcodes in a single run and compared it to DS5 (about two
million reads). More than 10 million reads passed the quality filter (99.9% of the overall
passed reads). These reads were then assigned to each barcode and six different datasets
were generated. An average of 1.7 million high-quality reads made up each dataset, of
which about 60% were mapped to the reference genome, and more than 10,000 genes were
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identified in each barcoded sample (5.26% CV; Table 2 and Figure 5), similar to the DS5
synthetic subset.

Table 2. Sequencing data of each barcoded sample.

Dataset Total Reads Mapped Reads Number of Total Genes

Barcode1 1,293,001 878,970 10,869
Barcode2 2,029,051 1,382,710 12,006
Barcode3 1,401,956 909,050 10,917
Barcode4 2,640,182 1,331,922 11,690
Barcode5 1,871,851 784,207 11,442
Barcode6 1,196,100 821,091 10,418
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Furthermore, the expression levels of the barcoded samples were compared to the
values quantified in the DS5 subset (Figure 6). The high correlation (rp ≥ 0.9 and p < 10−5)
between each barcoded sample and the DS5 subset revealed the reproducibility and high
quality of the obtained results.
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3. Discussion

The ability to sequence long DNA fragments provided by the ONT MinION sys-
tem offers easier assembly of complex genomes than short-read methods do, but its high
error rate is still an obstacle [6,7]. Thanks to the decreased turnaround time at a low
cost compared to short-read sequencing, and the continuous performance improvements,
also including the option to sequence multiple samples in a single run [19,23,24], this
pocket-sized device is widely used both for scientific research and clinical applications [36].
Different transcriptomic studies exploited the ability of this technology to uncover the
diversity of alternative splicing isoforms and their expression levels [12,14,15]. Using
MinION sequencing, Bolisetty et al. [37] identified over 7000 isoforms for Dscam1, the
most complicated alternatively spliced gene known in nature, with an average identity of
full-length alignments > 90%, by MinION sequencing. Moreover, thanks to its long-read
capability, de novo sequencing of microbial, viral, and eukaryotic whole genomes is more
easily obtainable [18,38,39]. For these reasons, MinION has proven to be a valuable support
for the ongoing worldwide pandemic caused by severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) [20]. Its capability to perform rapid long-read sequencing analysis,
with flexible scalability and accurate consensus-level sequence determination [21], offered
key knowledge of virus transmission and evolution as well as for vaccine development [22].

Focusing on RNA studies, to date, ONT sequencing has achieved relevant results
in terms of uncovered transcripts, quantification of expression levels, and differential
expression analysis, comparable with Illumina technology [6,40]. One of the most important
factors for the proper design of RNA-Seq experiments is the sequencing depth. This
parameter represents the number of reads collected during each run for a given sample,
and in general, its increment leads to an improvement of the sequencing results. However, a
unique optimal number of required reads cannot be claimed, and a high depth is normally
required to study novel or less abundant transcripts. Nonetheless, a higher depth of
sequencing inevitably involves an increment in costs.

Identification of the optimal read depth in function of the aim of the experiments
and the complexity of the target transcriptome is a crucial aspect [41]. Indeed, several
studies on RNA-Seq performance that involved changing the depth were carried out for
short-read technologies [26–30]. Conversely, few references only for the earlier versions of
ONT technology are present in the literature, leaving the experimental design somewhat
sketchy [6,15,34,35]. Furthermore, these studies were not focused on the evaluation of
the optimal read depth, but they were performed to compare this new technology with
Illumina platforms. Thus, using the latest available PCR-cDNA kit (i.e., SQK-PCS109), we
assessed the ability of the ONT MinION sequencing platform to identify and accurately
quantify annotated genes by changing the number of reads, in human primary cells.

With our approach (i.e., poly-A RNA-Seq), more than 12,000 genes were detected with
about two million reads, where about 22% belonged to the non-coding biotype. Signs of
saturation were obtained at about 14 million reads, representing the typical amount of
data achieved in a single run. Similar outcomes were achieved in terms of quantifications,
where all the evaluated synthetic datasets had a comparable gene expression. Taking into
account the biotype classification, we confirmed that an accurate sequencing of non-coding
genes is particularly challenging, since they are typically expressed in low levels [42].

In conclusion, our study is the first, to the best of our knowledge, to show how
many genes can be accurately identified and quantified as a function of sequencing depth
employing the latest PCR-cDNA ONT kit. We intended to provide new users approaching
ONT RNA-Seq a guideline on the optimal read depth to be reached, obtaining a good
compromise between accuracy of results, costs, and processing time.

That being said, our study has some limitations to be pointed out. The aim of our
study was to analyze the performance of MinION RNA-Seq when varying the number of
reads; thus, we did not compare our results with any short-read technologies. Additionally,
our data were generated employing human primary cardiac fibroblasts; thus, the number
of genes related to the identified depth may not be applicable to other cell types.
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4. Materials and Methods
4.1. Sample and Library Preparation

Valve interstitial cells (VICs) were isolated from three human stenotic valves, and
RNA was extracted using the Total RNA Purification Plus Kit (Norgen Biotek, Thorold, ON,
Canada), according to the manufacturer’s instructions. We pooled samples and prepared
three cDNA libraries following the recommendations of the Nanopore cDNA-Seq protocol
for the SQK-PCS109 kit. Briefly, we employed RT primers to convert only poly-adenylated
RNA into cDNA. For the multiplex run, we used six different ad hoc designed barcoded
sequences (Supplementary Table S6). cDNA synthesis was performed using 50 ng of
total RNA per sample. RT and strand-switching primers were provided by ONT with the
SQK-PCS109 kit. Following RT, PCR amplification was performed using the LongAmp
Taq 2X Master Mix (New England Biolabs, Ipswich, MA, USA) and the following cycling
conditions: 1 cycle (95 ◦C for 30 s), 18 cycles (95 ◦C for 15 s, 62 ◦C for 15 s, and 65 ◦C for
3 min), and 1 last cycle (65 ◦C for 15 min). PCR products were purified using Agencourt
AMPure XP beads (Beckman Coulter, Brea, CA, USA). The cDNA sequencing libraries
were prepared using a total of 200 fmol of cDNA each.

4.2. MinION Sequencing

Nanopore libraries were sequenced using a MinION Mk1B sequencing device with
R9.4 flow cells. Sequencing was controlled and data were generated using ONT MinKNOW
software (v3.4.12). Runs were terminated after 48 h and FAST5 files were generated.

4.3. Data Processing

DNA bases were called from FAST5 files using ONT Guppy GPU (v3.4.5) in high
accuracy mode [43]. Reads with an average Phred quality score, which measures the
confidence based on the estimated error rate, lower than 7 were discarded. The first
three runs were combined in a single dataset, named DS100, and used as the reference
for studying the sequencing performance. Then, 10 additional datasets were generated
by randomly sampling 90% (DS90), 80% (DS80), 70% (DS70), 60% (DS60), 50% (DS50),
40% (DS40), 30% (DS30), 20% (DS20), 10% (DS10), and 5% (DS5) of DS100. To assess the
reliability of the sampling, this procedure was implemented 10 times for each dataset.

4.4. Bioinformatic Analysis

Reads were aligned to the 22 diploid chromosomes of the GRCh38 human genome
reference with minimap2 (v2.1, default parameters except for -ax splice) [44]. SAM-to-BAM
format conversion as well as an assessment of the alignment quality were performed using
Samtools (v 1.10) [45]. The FeatureCounts software (v2.0.0) [46], included in the Subread
package, was used to count the mapped reads. Finally, the expression of each gene was
reported as counts per million transformed in logarithmic scale (log2(CPM)) [47]. For the
multiplex run, the quality-checked reads were de-multiplexed and trimmed for barcodes
using the Cutadapt function (v1.15) [48], before the alignment and counting procedures.
Genes with a read count greater than 3 were deemed as expressed.

4.5. Performance Evaluation

Computational analyses were implemented using the R software environment (v 3.6.0) [49].
Pearson’s correlation coefficients (rp) were computed to check the reproducibility of the quan-
tifications. The average number of genes detected and the coefficient of variation (CV) between
the replicates across each subset were computed to evaluate the dispersion generated by subset-
ting. Correlations between each of the subsets and with the entire dataset were assessed. The
biotype was assigned based on the Ensembl 97 database (GRCh38.p12). Genes were grouped
into protein-coding and non-coding, the latter including long non-coding RNA (lncRNA),
non-coding RNA (ncRNA), and pseudogenes, following the Ensembl Genome Browser an-
notation (https://www.ensembl.org/info/genome/genebuild/biotypes.html, accessed date
28 January 2021).

https://www.ensembl.org/info/genome/genebuild/biotypes.html
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To evaluate the results as a function of read depth, we compared the number and
expression level of genes detected among each subset with respect to DS100. These analyses
were repeated for coding and non-coding genes separately.

The gene expression variations (%GEV) of the log2(CPM) values obtained in the
subsets (from DS90 to DS5) were compared to that calculated in the total dataset (DS100)
as follows:

%GEVDSi,j = (log2(CPMTOT,j) − log2(CPMDSi,j)/log2(CPMTOT,j)) × 100 (1)

where %GEVDSi,j is the gene expression variation (expressed as a percentage) relative to
the i-th subset (from DS90 to DS5) and the j-th gene, log2(CPMTOT,j) is the expression value
obtained with the total dataset (DS100) for the j-th gene, and log2(CPMDSi,j) is the expression
value using the i-th subset (from DS90 to DS5) for the j-th gene. These values were computed
only for the genes identified at least from the 80% of replicates of the i-th subset.

The variation distribution was depicted by violin plots. In addition, we repeated
the same analysis after dividing the detected coding and non-coding genes into quartiles,
which represented high (Q4), medium-high (Q3), medium-low (Q2), and low expression
(Q1) transcripts.

4.6. Quantitative Real-Time PCR

We tested the robustness of our results correlating gene expression levels obtained
from the DS100, DS50, and DS5 datasets with values detected by qPCR, performed on an
ABI Prism 7900 HT (Applied Biosystems, Foster City, CA, USA) with SYBR Green dye
(New England BioLabs, Ipswich, MA, USA), according to the manufacturers’ instructions.
To consider expression levels spread over a broad range, we selected glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) as the reference gene and metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1), collagen type I alpha 1 chain (COL1A1), decorin
(DCN), matrix metallopeptidase 2 (MMP2), H19 imprinted maternally expressed transcript
(H19), catalase (CAT), superoxide dismutase 3 (SOD3), BCL2 apoptosis regulator (BCL2),
bone morphogenetic protein 2 (BMP2), and interleukin 4 (IL4) as the target genes to be
evaluated (Supplementary Table S7). For each gene, the cycle threshold (Ct) value was
determined and the dCt value was calculated (target Ct–GAPDH Ct).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22126317/s1. Table S1: Average length and the coefficient of variation (CV) among the
10 replicates are reported for each dataset. Table S2: Number of total, coding and, non-coding genes
identified from each dataset. Table S3: Quantile values of gene expression variations of each subset
respect to DS100 considering total genes. Table S4: Quantile values of gene expression variations of
each subset respect to DS100 considering coding genes. Table S5: Quantile values of gene expression
variations of each subset respect to DS100 considering non-coding genes. Table S6: Barcoded
sequences, Table S7: qPCR primers. Figure S1: Length distributions of sequenced reads composing
(A) the total dataset DS100 and (B) each replicate of DS5 (as an example). Figure S2: Correlation
analysis of the gene expression values obtained from the different datasets. Figure S3: Variation of
gene detection among the eleven datasets (DS5-DS100), in terms of percentage, in function of the
average expression levels (log2(CPM)). Figure S4: Distributions of gene expression variation for
coding genes with high, mid-high, mid-low, and low expression. Figure S5: Distributions of gene
expression variation for non-coding genes with high, mid-high, mid-low, and low expression.

Author Contributions: P.P. and Y.D. conceived the study. V.A.M. enrolled patients and collected
the informed consent and specimens. P.S., V.V., D.M., and V.A. isolated the human primary cells,
extracted the RNA, prepared the cDNA-Seq libraries, and performed qPCR analysis. I.M., Y.D., and
M.S. designed the barcoded sequences. I.M. performed the in silico analysis. M.C. supervised the
in silico analysis. I.M. and P.P. drafted the manuscript. P.S., M.C., V.V., D.M., V.A., V.A.M., M.S.,
L.C., G.I.C., and Y.D. substantially revised the manuscript. All authors have read and agreed to the
published version of the manuscript.

https://www.mdpi.com/article/10.3390/ijms22126317/s1
https://www.mdpi.com/article/10.3390/ijms22126317/s1


Int. J. Mol. Sci. 2021, 22, 6317 10 of 12

Funding: This work was supported by the Italian Ministry of Health funds (Ricerca Finalizzata:
GR-2018-12366423; ERA-CVD: PICASSO-JTC-2018-042) and by Fondazione Gigi e Pupa Ferrari
ONLUS (FPF-14).

Institutional Review Board Statement: The study protocol was approved by the Institutional Review
Board and by the Ethical Committee of Centro Cardiologico Monzino IRCCS, following the principles
of the Declaration of Helsinki (1964).

Informed Consent Statement: Written informed consent to participate in this study was obtained
from patients undergoing aortic valve replacement due to aortic stenosis.

Data Availability Statement: The data presented in this study and R code are openly available in
Zenodoo at doi:10.5281/zenodo.4767610.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Collins, F.S. Implications of the Human Genome Project for Medical Science. JAMA 2001, 285, 540–544. [CrossRef] [PubMed]
2. Ashley, E.A. Towards precision medicine. Nat. Rev. Genet. 2016, 17, 507–522. [CrossRef]
3. Byron, S.A.; Van Keuren-Jensen, K.R.; Engelthaler, D.M.; Carpten, J.D.; Craig, D.W. Translating RNA sequencing into clinical

diagnostics: Opportunities and challenges. Nat. Rev. Genet. 2016, 17, 257–271. [CrossRef] [PubMed]
4. Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [CrossRef] [PubMed]
5. Rhoads, A.; Au, K.F. PacBio Sequencing and Its Applications. Genom. Proteom. Bioinform. 2015, 13, 278–289. [CrossRef]
6. Sessegolo, C.; Cruaud, C.; Da Silva, C.; Cologne, A.; Dubarry, M.; Derrien, T.; Lacroix, V.; Aury, J.-M. Transcriptome profiling of

mouse samples using nanopore sequencing of cDNA and RNA molecules. Sci. Rep. 2019, 9, 1–12. [CrossRef] [PubMed]
7. Lu, H.; Giordano, F.; Ning, Z. Oxford Nanopore MinION Sequencing and Genome Assembly. Genom. Proteom. Bioinform. 2016, 14,

265–279. [CrossRef]
8. Martin, J.A.; Wang, Z. Next-generation transcriptome assembly. Nat. Rev. Genet. 2011, 12, 671–682. [CrossRef] [PubMed]
9. Jain, M.; Olsen, H.E.; Paten, B.; Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics

community. Genome Biol. 2016, 17, 1–11. [CrossRef]
10. Oikonomopoulos, S.; Wang, Y.C.; Djambazian, H.; Badescu, D.; Ragoussis, J. Benchmarking of the Oxford Nanopore MinION

sequencing for quantitative and qualitative assessment of cDNA populations. Sci. Rep. 2016, 6, 31602. [CrossRef] [PubMed]
11. Workman, R.E.; Tang, A.D.; Tang, P.S.; Jain, M.; Tyson, J.R.; Razaghi, R.; Zuzarte, P.C.; Gilpatrick, T.; Payne, A.; Quick, J.; et al.

Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 2019, 16, 1297–1305. [CrossRef]
12. Byrne, A.; Beaudin, A.E.; Olsen, H.E.; Jain, M.; Cole, C.; Palmer, T.; Dubois, R.M.; Forsberg, E.C.; Akeson, M.; Vollmers, C.

Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat.
Commun. 2017, 8, 16027. [CrossRef]

13. Kim, D.; Lee, J.-Y.; Yang, J.-S.; Kim, J.W.; Kim, V.N.; Chang, H. The Architecture of SARS-CoV-2 Transcriptome. Cell 2020, 181,
914–921.e10. [CrossRef] [PubMed]
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Zhang, X.; et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 1–19. [CrossRef]

42. Cabili, M.N.; Trapnell, C.; Goff, L.; Koziol, M.J.; Tazon-Vega, B.; Regev, A.; Rinn, J.L. Integrative annotation of human large
intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011, 25, 1915–1927. [CrossRef]
[PubMed]

43. Wick, R.R.; Judd, L.M.; Holt, K.E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol.
2019, 20, 1–10. [CrossRef]

44. Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [CrossRef]
45. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data

Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef]
46. Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic

features. Bioinformatics 2013, 30, 923–930. [CrossRef] [PubMed]
47. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene

expression data. Bioinformatics 2009, 26, 139–140. [CrossRef] [PubMed]

http://doi.org/10.3390/v12101164
http://www.ncbi.nlm.nih.gov/pubmed/33066701
http://doi.org/10.1099/mgen.0.000132
http://www.ncbi.nlm.nih.gov/pubmed/29177090
http://doi.org/10.1186/s12879-020-05367-y
http://doi.org/10.1038/s41598-018-29334-5
http://doi.org/10.1186/s12859-018-2445-2
http://www.ncbi.nlm.nih.gov/pubmed/30428853
http://doi.org/10.1371/journal.pone.0066883
http://www.ncbi.nlm.nih.gov/pubmed/23826166
http://doi.org/10.1371/journal.pone.0060204
http://www.ncbi.nlm.nih.gov/pubmed/23593174
http://doi.org/10.1038/nrg3642
http://doi.org/10.1101/gr.124321.111
http://doi.org/10.1038/s41598-018-30330-y
http://www.ncbi.nlm.nih.gov/pubmed/30087429
http://doi.org/10.1038/nbt.4060
http://www.ncbi.nlm.nih.gov/pubmed/29431738
http://doi.org/10.1038/s41467-019-09637-5
http://www.ncbi.nlm.nih.gov/pubmed/31015479
http://doi.org/10.1093/dnares/dsy038
http://www.ncbi.nlm.nih.gov/pubmed/30462165
http://doi.org/10.1098/rstb.2019.0097
http://www.ncbi.nlm.nih.gov/pubmed/31587638
http://doi.org/10.1111/dgd.12608
http://www.ncbi.nlm.nih.gov/pubmed/31037722
http://doi.org/10.1186/s13059-015-0777-z
http://www.ncbi.nlm.nih.gov/pubmed/26420219
http://doi.org/10.1038/nmeth.3444
http://doi.org/10.1093/gigascience/giw018
http://www.ncbi.nlm.nih.gov/pubmed/28369459
http://doi.org/10.1038/s41467-020-20340-8
http://doi.org/10.1186/s13059-016-0881-8
http://doi.org/10.1101/gad.17446611
http://www.ncbi.nlm.nih.gov/pubmed/21890647
http://doi.org/10.1186/s13059-019-1727-y
http://doi.org/10.1093/bioinformatics/bty191
http://doi.org/10.1093/bioinformatics/btp352
http://doi.org/10.1093/bioinformatics/btt656
http://www.ncbi.nlm.nih.gov/pubmed/24227677
http://doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308


Int. J. Mol. Sci. 2021, 22, 6317 12 of 12

48. Kechin, A.; Boyarskikh, U.; Kel, A.; Filipenko, M. cutPrimers: A New Tool for Accurate Cutting of Primers from Reads of Targeted
Next Generation Sequencing. J. Comput. Biol. 2017, 24, 1138–1143. [CrossRef] [PubMed]

49. Dean, C.B.; Nielsen, J.D. Generalized linear mixed models: A review and some extensions. Lifetime Data Anal. 2007, 13, 497–512.
[CrossRef] [PubMed]

http://doi.org/10.1089/cmb.2017.0096
http://www.ncbi.nlm.nih.gov/pubmed/28715235
http://doi.org/10.1007/s10985-007-9065-x
http://www.ncbi.nlm.nih.gov/pubmed/18000755

	Introduction 
	Results 
	Sequencing Performance Changing the Number of Reads 
	Multiplex Sequencing 

	Discussion 
	Materials and Methods 
	Sample and Library Preparation 
	MinION Sequencing 
	Data Processing 
	Bioinformatic Analysis 
	Performance Evaluation 
	Quantitative Real-Time PCR 

	References

