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ABSTRACT 

 

Different statistical approaches have been implemented to overcome 

the limitations that typically and differently influence both 

randomized clinical trials and observational studies. Mendelian 

randomization studies, in which functional genetic variants serve as 

tools (“instrumental variables”) to approximate modifiable 

environmental exposures, have been developed and implemented in 

the context of observational epidemiological studies to strengthen 

causal inferential estimates in non-experimental situations. Since 

genetic variants are randomly transferred from parents to offspring 

at the time of gamete formation, they can realistically mimic the 

random allocation process of treatment in a randomized clinical trial, 

offering a strategy to eliminate, or at least reduce, the residual 

confounding typically affecting observational studies, thus allowing 

to obtain generalizable results for the entire population. If correctly 

conducted and carefully interpreted, Mendelian randomization 

studies can provide useful scientific evidence to support or reject 

causal hypotheses that verify the association between modifiable 

exposures and diseases. This kind of evidence may provide useful 

information to identify new potential drug targets, with a higher 

probability of success than approaches based on animal models or in 

vitro studies. 

This thesis summarizes the history and context of Mendelian 

randomization, the main features of the study design, the 

assumptions for its correct use, and a brief discussion on the 

advantages and disadvantages of this approach. In addition, an 

overview of what the Mendelian randomization technique has 

contributed to date in the cardiovascular field has also been 

presented. 
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The methods and techniques discussed have been also practically 

applied on several studies conducted thanks to a collaboration 

established with Professor Brian A. Ference from the Cardiovascular 

Epidemiology Unit of the Department of Public Health and Primary 

Care (University of Cambridge). This agreement has allowed to 

access the UK Biobank, a prospective cohort study with deep genetic, 

physical, and health data, collected on about 500,000 volunteer 

participants recruited throughout the UK. The access to this large-

scale biomedical database has been fundamental to carried out the 

projects presented in this thesis, which have provided key evidence 

to improve our knowledge about cardiovascular disease. First, we 

found that the increase of measured body mass index is a much 

stronger risk factor for type 2 diabetes than polygenic predisposition 

that leads to reversible metabolic changes that do not accumulate 

over time. Therefore, most cases of diabetes potentially can be 

prevented or reversed, leading to a major reduction of the prevalence 

of one of the most impactful risk factors for the development of 

cardiovascular disease. Second, we found that parental family history 

of coronary heart disease provides independent, complementary and 

additive information to the individual polygenic predisposition in the 

definition of the inherited genetic variation as well as to LDL 

cholesterol exposure in the estimation of the lifetime cardiovascular 

risk. In order to develop a simple, but powerful, algorithm to 

contextualize the frame of who will need to be treated, it is essential 

to retrieve information about parental family history of heart disease 

and individual polygenic predisposition to coronary artery disease, in 

addition to the measurement of all the other well-known 

cardiovascular risk factors, especially LDL cholesterol levels. Finally, 

we discovered three important evidence regarding lipoprotein(a), an 

independent risk factor for the development of coronary and cerebral 
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atherosclerosis: (i) the cumulative lifetime risk of major coronary 

events is comparable considering genetically and clinically 

determined Lp(a) concentrations, meaning that, in terms of 

cardiovascular risk prediction, it is reasonable to rely on measured 

levels, regardless the genotype; (ii) there is no significant association 

between high Lp(a) concentrations and the occurrence of venous 

thromboembolism events; (iii) an extra reduction of LDL cholesterol 

can overcome the extra cardiovascular risk due to high Lp(a) levels, 

and we quantitatively defined the additional LDL cholesterol 

reduction needed to abolish this risk. 

At the end of this dissertation, the potential use of Mendelian 

randomization to inform the design of randomized controlled trials is 

also presented, as well as the possibility to use this approach to 

anticipate trials results in terms of predicting treatment efficacy and 

adverse effects, and to inform on potential repurposing of drugs. 
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RIASSUNTO 

 

Per superare i limiti metodologici che, tipicamente e in modo diverso, 

influenzano sia gli studi clinici randomizzati che gli studi 

osservazionali sono stati implementati diversi approcci statistici. Gli 

studi di randomizzazione Mendeliana, in cui varianti genetiche 

funzionali servono da strumenti (“variabili strumentali”) per 

approssimare esposizioni ambientali modificabili, sono stati sviluppati 

e implementati nell’ambito di studi epidemiologici osservazionali per 

rafforzare le stime inferenziali causali in situazioni non sperimentali. 

Poiché le varianti genetiche vengono trasferite casualmente dai 

genitori alla prole al momento della formazione del gamete, queste 

possono realisticamente riprodurre il processo di allocazione casuale 

del trattamento in uno studio clinico randomizzato, offrendo una 

strategia per eliminare, o comunque ridurre, il confondimento residuo 

tipico degli studi osservazionali, rendendo così possibile ottenere 

risultati statistici che siano generalizzabili dal campione all'intera 

popolazione di indagine. Se condotti correttamente e interpretati 

attentamente, gli studi di randomizzazione Mendeliana possono 

fornire evidenze scientifiche utili per supportare o rifiutare ipotesi di 

causalità che verificano l'associazione tra l’esposizione a fattori di 

rischio modificabili e outcome correlati al rischio di malattia, in 

assenza di confondimento. Queste evidenze possono rappresentare 

informazioni utili per identificare nuovi potenziali bersagli 

farmacologici, con una probabilità di successo superiore rispetto ad 

approcci basati su studi sugli animali o in vitro. 

Questa tesi riassume la storia e il contesto della randomizzazione 

Mendeliana, le caratteristiche principali del disegno di studio, gli 

assunti per un utilizzo corretto, e una breve discussione sui vantaggi 

e svantaggi di questo approccio. Viene, inoltre, presentata anche una 
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panoramica di quali sono state fino ad oggi le applicazioni della 

randomizzazione Mendeliana nell’ambito della malattia 

cardiovascolare. 

I metodi e le tecniche discussi sono stati applicati in diversi progetti 

condotti grazie ad una collaborazione instaurata con il professor Brian 

A. Ference della Cardiovascular Epidemiology Unit del Department of 

Public Health and Primary Care (Università di Cambridge). Questo 

accordo ha consentito l'accesso alla UK Biobank, uno studio 

prospettico di coorte con dati genetici, fisici e clinici approfonditi, 

raccolti su circa 500.000 partecipanti volontari reclutati in tutto il 

Regno Unito. L’accesso a questa banca dati è stato essenziale per la 

conduzione dei progetti oggetto di questa tesi, che hanno fornito 

evidenze importanti per migliorare le nostre conoscenze sulla 

malattia cardiovascolare. In primo luogo, abbiamo osservato che 

l'aumento dell'indice di massa corporea misurato è un fattore di 

rischio molto più forte per il diabete di tipo 2 rispetto alla 

predisposizione poligenica, aumento che porta a cambiamenti 

metabolici reversibili che non si accumulano nel tempo. Pertanto, la 

maggior parte dei casi di diabete può potenzialmente essere 

prevenuta o invertita, determinando una grande riduzione della 

prevalenza di uno dei fattori di rischio più impattanti per lo sviluppo 

della malattia cardiovascolare. In secondo luogo, abbiamo 

evidenziato che la storia familiare di malattia coronarica fornisce 

informazioni indipendenti, complementari e additive alla 

predisposizione poligenica individuale nella definizione della 

variabilità genetica ereditata, nonché all'esposizione al colesterolo 

LDL nella stima del rischio cardiovascolare nel corso della vita. 

Quindi, al fine di sviluppare un semplice, ma potente, algoritmo per 

contestualizzare il quadro di chi dovrà essere trattato, è essenziale 

recuperare le informazioni sulla storia familiare di malattia cardiaca 
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dei genitori e la predisposizione poligenica individuale alla malattia 

coronarica, oltre che alla misurazione di tutti gli altri ben noti fattori 

di rischio cardiovascolare, soprattutto i livelli di colesterolo LDL. 

Infine, abbiamo ottenuto tre evidenze importanti riguardanti la 

lipoproteina(a), un fattore di rischio indipendente per lo sviluppo 

dell'aterosclerosi coronarica e cerebrale: (i) il rischio cumulativo di 

eventi coronarici maggiori nel corso della vita è comparabile 

considerando le concentrazioni di Lp(a) determinate geneticamente 

e clinicamente, il che significa che, in termini di previsione del rischio 

cardiovascolare, è ragionevole fare affidamento sui livelli misurati, 

indipendentemente dal genotipo; (ii) non esiste un'associazione 

significativa tra alte concentrazioni di Lp(a) e il verificarsi di eventi di 

tromboembolismo venoso; (iii) una diminuzione aggiuntiva del 

colesterolo LDL può determinare la riduzione del rischio 

cardiovascolare causato dagli elevati livelli di Lp(a), e abbiamo 

definito quantitativamente la riduzione supplementare del colesterolo 

LDL necessaria per abolire questo rischio. 

Alla fine di questo elaborato, viene anche presentato l'uso potenziale 

della randomizzazione Mendeliana per informare il disegno di trial 

clinici controllati e randomizzati, così come la possibilità di usare 

questo approccio per anticipare i risultati di tali studi, in termini di 

previsione dell'efficacia del trattamento e degli effetti avversi, e per 

proporre il possibile riposizionamento di farmaci sul mercato. 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1 

Medical Research 
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1.1 Shortcomings of classical epidemiology 

 

Epidemiology is the study of patterns of health and disease at the 

population level. A fundamental problem in epidemiological research 

is the distinction between correlation and causation (1). If we want 

to address basic medical questions, such as to determine disease 

aetiology (what is the cause of a disease?), to assess the impact of 

a public health intervention (what would be the result of a change in 

treatment?), to inform public policy, to prioritize healthcare 

resources, to advise treatment practice, or to counsel on the impact 

of lifestyle choices, then we have to answer questions of cause and 

effect. 

The optimal way to address these questions is by appropriate study 

design, such as the use of randomized trials and prospective data 

(2). However, such designs are not always possible, and often causal 

questions must be answered using only observational data. 

Unfortunately, interpreting the association between a risk factor and 

a disease outcome in observational data as a causal association relies 

on untestable and often implausible assumptions, such as the 

absence of unmeasured confounding and of reverse causation. This 

has led to several high-profile cases where a risk factor has been 

widely advocated as an important factor in disease prevention from 

observational data, only to be later discredited when the evidence 

from randomized trials did not support a causal interpretation to the 

findings (3). 

Therefore, in the following paragraphs the main characteristics of 

randomized controlled trials (RCTs) and observational studies will be 

described, in order to explain why more robust approaches are 

needed for assessing causal relationship using observational data. 

This will lead to introduce a relatively new genetic approach to 
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epidemiology that offers opportunities to deal with some of the 

difficulties of conventional epidemiology and to estimate causal 

associations of modifiable (non-genetic) risk factors using 

observational data. 

 

1.2 Randomized controlled trials 

 

The “gold standard” for the empirical testing of a scientific hypothesis 

in clinical research is a RCT. This design involves the random 

allocation of different treatment regimens to experimental units 

(usually individuals) in a population (4). The researchers decide 

randomly as to which participants in the trial receive the new 

treatment and which receive placebo or a reference treatment 

(standard or best care). In its simplest form, one “active treatment” 

(for example, intervention on a risk factor) is compared against a 

“control treatment” (no intervention), and the average outcomes in 

each of the arms of the trial are contrasted (Figure 1). 

Here the risk factor (which we will often refer to as the “exposure” 

variable) is a putative causal risk factor. We seek to assess whether 

the risk factor is a cause of the outcome, and estimate (if 

appropriate) the magnitude of the causal effect. This is because the 

act of randomization balances participant characteristics (both 

observed and unobserved) between the groups. It makes groups 

comparable through the data collected during the research process, 

allowing attribution of any differences in outcome to the study 

intervention (5). 
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Figure 1. Randomized controlled trial design. 

 

It is important to ensure that, at the time of recruitment, there is no 

knowledge of which group the participant will be allocated to; this is 

known as concealment. This is often ensured by using automated 

randomization systems (e.g. computer generated). RCTs are often 

blinded, so that participants as well as doctors, nurses or researchers 

do not know what treatment each participant is receiving, further 

minimizing bias. This avoids confounding factors linked to subjective 

perception of therapeutic effects because patients and health-care 

providers managing the therapy administration are unaware of the 

treatment assigned. 

Trial results can support at least two of the causality criteria: the 

reversibility (if the cause is deleted, then the effect should disappear) 

and biological gradient (greater exposure generally leads to greater 

incidence of the effect). 
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Because of these conditions, it is then possible to confidently 

attribute cause and effect. That’s why a properly designed study is 

well-regarded as being a true measure of efficacy. RCTs are therefore 

described as having high internal validity (the experimental design 

ensures that strong cause and effect conclusions can be drawn from 

the results). 

While randomized trials are in principle the best way of determining 

the causal status of a particular risk factor, they are also 

characterized by limitations and are not always feasible, appropriate, 

or ethical (6). Indeed, although RCTs are precious tools, their 

applicability is restricted to ideal conditions, and this limits their 

ability to portray what happens in the real world (external validity). 

One of the more relevant limitations of RCTs is a direct consequence 

of rigorous patient selection based on strict inclusion and exclusion 

criteria. The reason behind such selective enrolment is to minimize 

the presence of confounding factors (7). Thus, a “trial” population 

differs from the unselected general population (8). As an example, 

RCTs do not consider a number of factors that potentially influence 

outcomes in real-life, such as tobacco smoking, concomitant 

diseases, adherence to treatment, and many others, thus results may 

not always mimic real-life treatment situation. 

Moreover, some specific categories, such as older individuals, are 

often underrepresented in RCTs. They are frequently excluded as a 

result of direct and indirect exclusion criteria based on the presence 

of comorbidities and polypharmacy. The consequence is that 

participants enrolled in clinical trials often do not represent the older 

patients in general practice setting (9). 

RCTs are expensive and time-consuming, especially when the 

outcome is rare or requires a long follow-up period to be observed. 

Even if the randomized controlled trial only uses one baseline group 
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and a single treatment demographic, the length of the research 

requires a significant investment. It is one of the most expensive 

methods of collecting data in terms of time and money (10). 

Timing is another constraint with RCTs, which frequently have 

duration of weeks or few months or rarely few years. Such a 

timeframe minimizes problems with management, costs, and patient 

withdraws (11), but is significantly shorter than the usual treatment 

period for chronic diseases. This limits the ability to provide reliable 

information on long-term treatment, especially regarding the safety 

of the therapy (12). 

Additionally, in some cases, a targeted treatment which has an effect 

only on the risk factor of interest may not be available. Moreover, 

many “treatments” cannot be randomly allocated for practical or 

ethical reasons (classically, RCTs of the effects of parachutes on the 

survival of sky-divers). 

Although RCTs have immensely contributed to development of health 

services in the last 50 years, other methods with greater external 

validity (or greater potential for generalizability) should also be 

considered for determining impact of interventions. 

This is not intending to undermine the value of RCTs, but rather to 

point out some of its limitations and recognize the benefits of other 

alternative methodologies for establishing intervention impact (13). 

As there is an urgent need for clinical information beyond that 

obtainable from classical RCTs, it is not surprising that there has been 

an impressive increase in the number of real-life studies. 

 

1.3 Observational epidemiology 

 

Scientific hypotheses are often assessed using observational data 

(14). Real-life studies have been defined by the European Working 
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Group on Relative Effectiveness as a way to analyse medical data 

collected under real-life conditions (15). In essence, they are 

conducted in everyday settings, and for this reason, they provide 

insights into the effectiveness of a medical condition/intervention. 

They can be observational or descriptive, i.e. non-interventional, or 

they can evaluate therapeutic interventions in usual care settings 

(15). Numerous strategies have been described for collecting data to 

inform real world clinical decisions. Examples include databases, 

patient and population surveys, chart reviews, registries, and 

observational studies (Table 1). 

 

Table 1. Main types of real-life studies, their features, including the source 

of data, and their applications. 

Type Characteristics Application 

Databases 

Cross-sectional or 

longitudinal analysis of 

previously collected data. 

Retrospective data analysis 

on various topics. 

Population 

surveys 

Questionnaires, patient 

health status and opinion 

assessment. 

Epidemiological studies. 

Patient chart 

reviews 

In depth evaluation of 

previously collected data, 

particularly focusing on 

diagnosis and treatment. 

Assessment of disease 

management for planning 

guidelines. 

Registries 

A medical institute record of 

all patients treated for a 

specific disease. 

Analysis of a medical 

centre 

experience/management/c

hanges in the treatment of 

a disease. 

Observational 

data 

Prospective or retrospective 

data collection, usually on 

population cohorts, over a 

long follow-up period. 

Examination of medical 

intervention effectiveness, 

including safety and 

tolerability 
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Observational studies are the most widely used. In particular, 

observational studies are designed to monitor and describe real-life 

management/treatment of clinical conditions, without interference 

from the strict rules that limit the generalizability of RCTs. They can 

be both prospective and retrospective and consist of cohort, case-

control, and cross-sectional studies (12). By nature, they can assess 

large populations over long follow-up periods. In prospective cohort 

studies a group of people without the outcome of interest is selected. 

The investigator then measures a variety of variables that might be 

relevant to the development of the condition. Over a period of time, 

the people in the sample are observed to see whether they develop 

the outcome of interest. In single cohort studies, those people who 

do not develop the outcome of interest are used as internal controls. 

Where two cohorts are used, one group has been exposed to or 

treated with the agent of interest and the other has not, thereby 

acting as an external control (16). Conversely, retrospective cohort 

studies are based on data regarding exposures and events occurred 

in the past. The methodology is the same, but the study is performed 

post hoc. The cohort is “followed up” retrospectively (16). 

Real-life studies reflect how treatments/interventions are 

administered in everyday clinical practice. They do not use inclusion 

and exclusion criteria to allocate a treatment: being nonselective, 

they can include all the variables that can influence outcomes under 

real-life conditions. This qualifying characteristic may lead to 

discrepancies with the results obtained by RCTs for a given outcome. 

Real-life studies are less affected by logistical and ethical constraints 

that limit the feasibility of RCTs. The absence of these limitations 

endows observational studies with the power to assess outcomes 

such as hospitalization and mortality (17), and enables pragmatic 

trials to estimate cost-effectiveness under real-life conditions (18). 
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The characteristics of real-life studies make them useful tools for 

evaluating complex therapies, and policies for prescribing and 

management (19). In addition, at variance with RCTs, which usually 

compare treatments and placebo, real-life studies are able to 

integrate alternative health care options, providing information on 

the management of complex interventions, which are very common 

in the routine health care setting and influence the clinical decision 

process (20). In addition, also the nature and characteristics of real-

life studies make them the appropriate setting to assess safety. Their 

large scale and long duration in non-selected populations favour the 

identification of rare adverse events or interactions with other 

treatments. An additional advantage of real-life studies is their 

natural practice setting, e.g. physicians’ offices or clinics, which 

ensures a high external validity (20). Involvement of patients from 

different settings increases the variability of the results, but also 

reproduces the complexity of the health care system more reliably 

than the controlled conditions in RCTs (20). Finally, real-life studies 

have the benefit of longer durations than RCTs. This timing permits 

a more appropriate assessment of the long-term effects of medical 

interventions, and the identification of late side effects, by following 

the natural course of a disease (20). Thus, real-life studies have 

many positive features and play a key role in the investigation of 

clinical conditions and interventional opportunities. These intrinsic 

values explain the increasing importance of such studies in clinical 

research. 

Despite the fact that observational studies offer the opportunity to 

study a "real-life situation", they can only create new hypotheses 

rather than infer a causal relationship between an exposure and a 

disease outcome. The limitations of real-life studies are often 

intrinsically associated with their characteristic design. The proximity 
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to the real world, with all its complexity, including different disease 

manifestations, comorbidities, variable treatment adherence, and 

multiple therapies, often dilutes the magnitude of a treatment effect 

(7). The lack of patient selection, one of the most distinctive 

characteristics of real-life studies, makes it impossible to avoid 

unmeasured confounding factors (21), while the absence of blinding 

and randomization does not always allow factors potentially 

influencing the outcomes to be properly balanced (Figure 2) (12). 

 

 

Figure 2. Observational study design. 

 

Under real-life conditions, in the absence of randomization, severity 

of the underlying disease influences treatment decisions (22). This 

results in “confounding by indication”, meaning that the perception 

of a different prognosis leads the physician to preferentially prescribe 

one of the available treatments. As a result, prognostic factors are 
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not equally distributed among the patients treated with different 

therapies and the comparison is affected by disease severity, when 

patients treated with one medication are systematically different 

from the other groups in terms of illness stage (23). In addition, as 

it is common clinical practice to follow severe patients more closely, 

this difference in monitoring influences the results of real-life studies. 

Finally, in observational studies, the choice to treat is not strictly 

regulated and can be made at any time during the disease 

history/evolution. 

Although differences between groups can be minimized with 

statistical effective methods, the absence of randomization clearly 

limits the reliability of conclusions from real-life studies anyway. 

In many cases, differences between the average outcomes in the two 

groups have been interpreted as evidence for the causal role of the 

risk factor. However, such a conclusion could confuse correlation with 

causation. Interpreting an association between an exposure and a 

disease outcome in observational data as a causal relationship relies 

on untestable and usually implausible assumptions, such as the 

absence of unmeasured confounding and of reverse causation (24), 

as mentioned before. Hence, more robust approaches are needed for 

assessing the causal relationship using observational data. 

 

1.4 The rise of genetic epidemiology 

 

The concept of inherited characteristics goes back to the dawn of 

time, although the mechanism for inheritance was long unknown. 

When Charles Darwin proposed his theory of evolution in 1859, one 

of its major problems was the lack of an underlying mechanism for 

heredity. Gregor Mendel in 1866 proposed two laws of inheritance: 

the law of segregation, that when any individual produces gametes 
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(sex cells), the copies of a gene separate so that each gamete 

receives only one copy; and the law of independent assortment, that 

“unlinked or distantly linked segregating gene pairs assort 

independently at meiosis”. These laws are summarized by the term 

“Mendelian inheritance” (which gives Mendelian randomization its 

name), specifically due to the second law, the law of independent 

assortment (25). The two areas of evolution and Mendelian 

inheritance were brought together through the 1910s-30s in the 

“modern evolutionary synthesis”, by amongst others Ronald Fisher, 

who helped to develop population genetics. The link between 

genetics and disease was established by Linus Pauling in 1949, who 

linked a specific genetic mutation in patients with sickle-cell anaemia 

to a demonstrated change in the haemoglobin of the red-blood cells 

of affected individuals (26). The discovery of the structure of 

deoxyribonucleic acid (DNA) in 1953 gave rise to the birth of 

molecular biology, which led to greater understanding of the genetic 

code. The Human Genome Project was established in 1990, leading 

to the publication of the entirety of the human genetic code by 2003 

(27, 28). Recently, technological advances have reduced the cost of 

DNA sequencing, so that it is now economically viable to measure 

genetic information for a large number of individuals. 

As the knowledge of the human genome developed, the search for 

genetic determinants of disease expanded from monogenetic 

disorders (that is, disorders which are due to a single mutated gene), 

to polygenic and multifactorial disorders, where the burden of disease 

risk is not due to a single gene, but to multiple genes combined with 

lifestyle and environmental factors. These diseases, such as cancers, 

diabetes, and coronary heart disease (CHD), tend to cluster within 

families, but also depend on other factors, such as diet or blood 

pressure. Several genetic factors have been found which relate to 
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diseases, especially through the increased use of whole-genome 

scans known as genome wide association studies (GWAS). GWAS is 

an approach used in genetics research to associate specific genetic 

variations with particular diseases. The method involves scanning the 

genomes from many different people and looking for genetic markers 

that can be used to predict the presence of a disease. Once such 

genetic markers are identified, they can be used to understand how 

genes contribute to the disease and to develop better prevention and 

treatment strategies, increasing public and professional awareness 

of the genetic contribution to some diseases. 

Genetic epidemiology (which is the study of the role of genetic factors 

in health and disease) is a relatively new science. It has the potential 

to improve the understanding of environmental as well as genetic 

determinants of disease, using biochemical markers —and in 

particular, genomic and epigenomic information— to increase the 

resolving power of traditional epidemiologic methods (29). Genetics 

has advanced by using epidemiological methods, and this new field 

of epidemiology has also advanced by drawing on genetic principles. 

Genetic epidemiology studies can be grouped into those that seek to 

identify new genetic variants that cause disease (gene discovery 

studies) or those that aim to understand the importance of these 

variants in terms of the frequency or size of effect (gene 

characterisation studies). The former studies are often conducted in 

special groups of people or populations with particularly high disease 

incidence or risk, whereas the latter are typically conducted in 

representative groups with careful sampling so that results are 

generalizable to the wider population. 

The clinical outcomes of genetic epidemiology are (30): 

 improved understanding of the aetiological gene–environment 

interactions for many of the major conditions (for example, 
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CHD, diabetes and cancers); 

 increased genetic testing, from pre-conception onwards; 

 describing new taxonomies of pathophysiology and disease, 

based on molecular classifications rather than signs and 

symptoms, with distinct information about prognosis and 

treatment; 

 leading to targeted prevention and prognosis based on genetic 

or molecular factors; 

 linking with pharmacogenetics, towards targeted therapeutic 

drug strategies; 

 determining the heritability and familial aggregation of 

diseases or intermediate phenotypes, and thus directing 

further gene discovery studies. 

All these aspects link to the ultimate goal of developing specific 

intervention strategies for genetic primary care conditions 

(“personalised medicine”). 

Genetic epidemiological studies require the enrolment of large 

population, mainly for three main reasons. First, association studies 

based on small, highly selected samples, which attempt to identify 

genes associated with specific traits, can often be underpowered, 

resulting in false negative results (31). This is partly because the 

linkage between gene markers and specific genes may be relatively 

weak, partly because the prevalence of a gene polymorphism may 

be relatively rare or variable, and partly because the genetic 

contribution to the trait may be complex or weak. Secondly, in order 

to examine the interaction between genetic and environmental 

factors, very large samples are required for most phenotypes to 

compensate for the background “noise” produced by other, non-

genetic factors (32). Thirdly, the risk of a disease or trait associated 

with a particular genetic variant calculated from an unrepresentative 
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population, selected perhaps for its high incidence or risk of this trait, 

cannot be extrapolated to the general population. Large, population-

based samples are therefore required to calculate the absolute risks 

associated with any genetic variant. 

Starting from this, the next chapter will present an introduction to 

Mendelian randomization: a method for using genetic data to 

estimate causal associations of modifiable (non-genetic) risk factors 

using observational data. 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

Mendelian randomization study 
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2.1 What is Mendelian randomization? 

 

Mendelian randomization (MR) is commonly defined as the use of 

non-experimental studies to determine the causal effect of a 

phenotype on an outcome by making use of genetic variation. The 

word “phenotype” refers to the putative causal risk factor, which can 

be thought of as an exposure, a biomarker, or any other risk factor 

which may affect the outcome (33). Usually, the outcome is a 

disease, although there is no methodological restriction as to what 

outcomes can be considered. Non-experimental studies encompass 

all observational studies, including cross-sectional, cohort, and case-

control designs, where there is no intervention imposed by the 

researcher. These are contrasted with clinical trials. 

 

2.1.1 Motivation 

A foundational aim of epidemiological studies is the estimation of the 

effect of changing one risk factor on an outcome (25). This is known 

as the causal effect of the phenotype on the outcome and typically 

differs from the observational association between phenotype and 

outcome, due to endogeneity of the phenotype. Endogeneity, literally 

“coming from within”, of a variable in an equation means that there 

is a correlation between the variable and the error term, and occurs 

when the variable is predicted by the terms in the model in which it 

appears (34). For example, those who regularly take headache 

tablets are likely to have more headaches than those who do not, but 

taking headache tablets is unlikely to be a cause of the increased 

incidence of headaches. Taking tablets is an endogenous variable in 

this context, and so the causal effect of taking tablets on headaches 

cannot be estimated from this observational setting. The opposite of 

endogenous is exogenous; an exogenous variable comes from 
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outside of the model and is not explained by the terms in the model. 

The idea of MR is to find an exogenous genetic variant (or variants) 

which is associated with the phenotype, but is not associated with 

any other risk factor which affects the outcome, and is not directly 

associated with the outcome, in that any impact of the genetic variant 

on the outcome must come via its association with the phenotype 

(35). These assumptions define an instrumental variable (IV) (36, 

37). 

 

2.1.2 Instrumental variables 

An alternative definition of MR is “instrumental variable analysis 

using genetic instruments” (38). The use of genetic variants as IVs 

is at the core of MR. An IV is an exogenous variable associated with 

an endogenous exposure which is used to estimate the causal effect 

of changing the exposure while keeping all other factors equal (39). 

The choice of the genetic IV is essential to a successful MR study. To 

allow unbiased estimation of the causal effect of the exposure on the 

outcome, a valid genetic IV fulfils three core assumptions (Figure 3 

panel A) (36, 40): 

1) it must be reproducibly and strongly associated with the 

exposure (Figure 3 panel B); 

2) it must not be associated with confounders, i.e., factors that 

confound the relationship between exposure and outcome 

(Figure 3 panel C); 

3) it is only associated with the outcome through the exposure, 

i.e., it is independent of the outcome given the exposure 

(Figure 3 panel D). 
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Figure 3. Conceptual illustration of the MR method and its three 

underlying core assumptions as directed acyclic graphs. (A) Conceptual 

model; (B) Assumption 1; (C) Assumption 2; (D) Assumption 3. 
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Although MR analyses often involve a single genetic variant, multiple 

variants can be used either as separate IVs or combined into a single 

IV. The first assumption guarantees that genetic subgroups defined 

by the variant will have different average levels of the exposure. This 

ensures that there is a systematic difference between the subgroups. 

If the genetic variant is not strongly associated with the exposure (in 

the sense of its statistical strength of association), then it is referred 

to as a weak instrument. A weak instrument differs from an invalid 

instrument in that a weak instrument can be made stronger by 

collecting more data. If a single genetic variant is a weak instrument, 

then it will still give a valid test of the null hypothesis of no causal 

effect, but the power to detect a true causal effect may be low. 

However, combining multiple weak instruments in an analysis model 

to obtain a single effect estimate can lead to misleading inferences. 

The second assumption can be understood as ensuring that the 

comparison between the genetic subgroups is a fair test, that is, all 

other variables are distributed equally between the subgroups. The 

third assumption is often expressed using the concept of conditional 

independence as “the genetic variant is not associated with the 

outcome conditional on the value of the exposure and confounders 

of the exposure–outcome association”. It ensures that the only 

causal pathway(s) from the genetic variant to the outcome are via 

the exposure. This means that the genetic variant is not directly 

associated with the outcome, nor is there any alternative pathway by 

which the variant is associated with the outcome other than through 

the exposure. 

 

2.1.3 Analogy with randomized controlled trials 

MR has been defined as analogous to a RCT. As reported before, a 

RCT, considered the “gold standard” of medical evidence, involves 
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dividing a target population into two or more subgroups in a random 

way. These subgroups are each given different treatment 

programmes. Randomization is preferred over any other assignment 

to subgroups as all possible confounders, known and unknown, are 

on average balanced. However, in many situations, for ethical or 

practical reasons, it is not possible to intervene on the factor of 

interest to estimate the causal effect by direct experiment. In MR, we 

use the IV to form subgroups analogous to those in a RCT, as shown 

in Figure 4. 

 

 

Figure 4. Comparison of randomized controlled trial 

and Mendelian randomization design. 

 

From the IV assumptions, these subgroups differ systematically in 

the exposure, but not in any other factor except for those causally 

“downstream” of the exposure. A difference in outcomes between 

these subgroups would therefore indicate a causal effect of the 

exposure on the outcome (41). Inferring a causal effect of the 

exposure on the outcome from an association between the genetic 

variant and the outcome is analogous to inferring an intention-to-
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treat effect from an association between randomization and the 

outcome in an RCT (that is, assignment to the treatment group 

affects the outcome). Genetic variants for an individual are inherited 

from their parents, and so are not randomly assigned. For example, 

if neither of an individual’s parents carry a particular genetic 

mutation, there is no way that the individual will carry that mutation. 

Nonetheless, under fairly realistic conditions, the distribution of 

genetic variants in the population can be thought of as random with 

respect to environmental and social factors which may be important 

confounders. The necessary assumptions for a variant to be randomly 

distributed are random mating and lack of selection effects relating 

to the variant of interest. Considerable departures from the random 

mating assumptions which may invalidate the use of a genetic variant 

can be assessed by performing a test of Hardy–Weinberg equilibrium, 

to see if the frequency of heterozygotes and homozygotes in the 

population is in line with what is expected. A variable which is 

distributed as if being randomly assigned despite the lack of true 

randomness in the assignment is known as quasi-randomized. Most 

natural experiments rely on quasi-randomization rather than the 

strict randomization of experimental units. 

However, MR differs from a RCT in another respect. The aim of MR is 

not to estimate the size of a genetic effect, but the causal effect of 

the exposure on the outcome. The average change in the outcome 

associated with a genetic variant may differ in magnitude from that 

resulting from an intervention in the exposure. When the proportion 

of variation in the phenotype associated with the genetic variant is 

not large or is imprecisely estimated, studies will require large 

sample sizes, such as 10,000 or even 30,000 cases (42), as the risk 

ratio from the difference in phenotype due to the genetic variant may 

be low. However, the population attributable risk of the phenotype is 
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not necessarily low. Although the variation in phenotype attributable 

to the gene may be small, it can be similar to that attributable to 

treatment in a RCT (43). 

 

2.1.4 Violations of IV assumptions 

Sometimes, the use of a particular genetic variant as an IV is 

controversial as the assumptions presented above cannot be fully 

tested and may be violated for various epidemiological and biological 

reasons. Overall, justification of the assumptions relies on biological 

knowledge about the genetic markers in question. Among reasons 

why a genetic variant may not be a valid IV there are issues of 

biological mechanism, genetic coinheritance, and population effects 

(44). Invalid IVs lead to unreliable inferences for the causal effect of 

an exposure. 

The first category of issues resulting in violations of the IV 

assumptions is the underlying biological mechanism. 

 Pleiotropy. Pleiotropy refers to a genetic variant being 

associated with multiple risk factors. If a genetic variant used 

as an IV is also associated with another risk factor for the same 

outcome, then either the second or the third IV assumption is 

violated (depending on whether the risk factor is a confounder 

of the exposure–outcome association or not), and the variant 

is not a valid IV (45). If the genetic variant is associated with 

an additional variable solely due to mediation of the genetic 

association via the exposure of interest (sometimes called 

vertical pleiotropy), this is not regarded as pleiotropy. Concerns 

about pleiotropy can be alleviated by using genetic variants 

located in genes, the biological function of which are well-

understood (Figure 5). 
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Figure 5. Explanations for the pleiotropy. An example of vertical 

pleiotropy (A), and an example of horizontal pleiotropy (B). 

 

 Canalization. Canalization, or developmental compensation, 

is the phenomenon by which an individual adapts in response 

to genetic change in such a way that the expected effect of the 

change is reduced or absent (46). Often the organism develops 

a compensatory mechanism to allow for the missing gene such 

that the functionality of the gene is expressed via a different 

biological pathway. This buffering of the genetic effect may 

have downstream effects on other variables. Canalization may 

be a problem in MR if groups with different levels of the genetic 

variants differ with respect not only to the exposure of interest, 

but also to other risk factors via a canalization mechanism. In 

a sense, canalization is not a violation of the IV assumptions, 

but merely an (often unwanted) consequence. Canalization is 

the same process as that assessed by MR, as any change in 

other risk factors from canalization occurs as a causal effect of 

the genetic variant. However, the aim of MR is not simply to 

describe the effects of genetic change, but to assess the causal 
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effect of the (non-genetic) exposure. If there is substantial 

canalization, MR estimates may be unrepresentative of clinical 

interventions on the exposure performed in a cohort. 

The second category of issues resulting in violations of the IV 

assumptions is the non-Mendelian inheritance. Although Mendelian 

principles state that separate characteristics are inherited separately, 

this is not always true. Non-Mendelian inheritance refers to patterns 

of inheritance which do not correspond to Mendel’s laws, specifically 

the law of independent assortment. 

 Linkage disequilibrium. One particular reason for genetic 

variants to be inherited together is the physical proximity of 

the variants on the same chromosome (47). Variants whose 

distributions are correlated are said to be in linkage 

disequilibrium (LD). LD has both desirable and undesirable 

consequences. If genetic variants were truly independently 

distributed, then only the genetic variant which was causally 

responsible for variation in the exposure could be used as an 

IV, as all other genetic variants would not be associated with 

the exposure. An undesirable consequence of LD is that genetic 

variants correlated with the variant used in the analysis may 

have effects on competing risk factors (Figure 6). This would 

lead to the violation of the second or the third IV assumption 

(similar to violations due to pleiotropy). Concerns about invalid 

inferences due to LD can be alleviated by empirical testing of 

the association of known potential confounders with the 

measured variant. 
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Figure 6. Explanations for linkage disequilibrium. 

 

 Effect modification. Unlike confounding, effect modification 

relates to a statistical interaction between the effect of a 

variable (usually an effect of the exposure) and the value of a 

covariate, leading to the causal effect of the exposure varying 

across strata defined by the covariate. Factors that may lead 

to effect modification include issues of non-Mendelian 

inheritance, such epigenetic variation (48) and parent-of-origin 

effects (49). Effect modification alone is unlikely to represent a 

violation of the IV assumptions; however, it may lead to 

difficulties in interpreting MR investigations. 

The third category of issues resulting in violations of the IV 

assumptions is about population effects. 

 Population stratification. Population stratification occurs 

when the population under investigation can be divided into 

distinct subpopulations (50). This may occur, for example, 

when the population is a mixture of individuals of different 

ethnic origins. If the frequency of the genetic variant and the 

distribution of the exposure are different in the different 

subpopulations, a spurious association between the variant and 

the exposure will be induced which is due to subpopulation 

differences, not the effect of the genetic variant. Concerns 
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about population stratification can be alleviated by restricting 

the study population to those with the same ethnic background 

(although there may still be differences associated with 

ancestry in broadly-defined ethnic groups). In a GWAS, 

genomic control approaches, such as adjustment for genetic 

principal components, are possible. 

 Ascertainment effects. If the genetic variant is associated 

with recruitment into the study, then the relative proportions 

of individuals in each genetic subgroup are not the same as 

those in the population, and so a genetic association with the 

outcome in the sample may not be present in the original 

population (51). If the study cohort is taken from the general 

population, ascertainment effects are unlikely to be a major 

problem in practice. However, if, for example, the study cohort 

is composed by pregnant mothers, and the genetic variant is 

associated with fertility, then the distributions of the covariates 

in the genetic subgroups will differ and not be the same as 

those in the general population. This may introduce bias in the 

estimation of causal effects, as there is a pathway opened up 

from the genetic variant to the outcome by conditioning on a 

common cause of the variant and the outcome (sometimes 

called collider bias). This would also be a problem in studies 

looking at genetic associations in populations of individuals 

with pathological conditions, such as clinical trials of secondary 

disease prevention. Individuals with greater genetically 

determined disease risk are less likely to survive to study 

recruitment, and so the randomization of individuals into 

genetic subgroups at conception would not hold in the study 

population, leading to biased genetic associations. 

Although it is not possible to demonstrate conclusively the validity of 
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the IV assumptions, several tests and assessments are possible to 

increase or decrease confidence in the use of genetic variants as IVs. 

The simplest assessment of instrument validity is to test the 

association between the genetic variant and known confounders. 

Association of the variant with a covariate associated with the 

outcome which is not on the causal pathway between the exposure 

and outcome would violate the second IV assumption. However, 

there is no definitive way to tell whether the association with the 

covariate is due to violation of the IV assumptions (such as by 

pleiotropy or linkage disequilibrium) or due to mediation through the 

exposure of interest. Additionally, there is no way of testing whether 

or not the variant is associated with an unmeasured confounder. 

Other mathematical results for testing IV validity are available (52), 

but these are only likely to detect gross violations of the IV 

assumptions. Biological knowledge rather than statistical testing 

should form the backbone of any justification of the use of a 

particular genetic variant as an IV in MR. 

 

2.2 Genetic markers 

 

Generally, in MR, genetic markers used as IVs are single nucleotide 

polymorphisms (SNPs) (53). A SNP is defined as a modification in the 

DNA of an individual compared to the population at a single point (or 

locus), where one nucleotide, either A, C, G or T, has been replaced 

with another. These different variants in the genetic code are called 

alleles. Where there are two possible alleles at a particular locus (a 

diallelic SNP), the more common allele (the major allele or wild type) 

is reported as “A” and the less common allele (the minor allele or 

variant) as “a”. The proportion of minor alleles in a population is 

called the “minor allele frequency”. An arbitrary threshold of the 
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minor allele frequency is set at 1%, below which a SNP is considered 

a mutation rather than a polymorphism. As people have two copies 

of each DNA sequence, individuals can be categorized for each 

diallelic SNP into three possible subgroups corresponding to three 

combinations of alleles. These subgroups are named major 

homozygotes (AA), heterozygotes (Aa) and minor homozygotes (aa). 

We shall denote these subgroups as 0, 1 and 2, corresponding to the 

number of minor alleles for that SNP. For this reason, a diallelic SNP 

is usually considered to be a discrete random variable taking values 

from 0, 1, 2. 

 

2.3 Multiple instruments 

 

Although IV methods give estimates which are consistent for the 

causal effect, their variance is typically much larger than the variance 

of the estimate from an observational analysis (42). This is because 

the variation in the exposure explained by the IV is usually small. If 

there are multiple IVs available, a more precise causal effect estimate 

can be obtained by incorporating data on all the IVs simultaneously 

to estimate a single causal effect (54). However, a problem arising 

from including multiple IVs in an analysis is weak instruments. When 

there are large numbers of genetic variants, several IV methods give 

estimates which are biased in the direction of the observational 

estimate with incorrectly sized confidence intervals. Allele scores are 

a convenient way of summarizing a large number of genetic variants 

associated with an exposure. Using a univariate allele score as a 

single IV rather than each genetic variant as a separate IV helps 

resolve problems in IV estimation resulting from weak instruments. 

Using IVs which explain a greater proportion of the variance in the 

exposure (which can be achieved by including more genetic variants 
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in an analysis) leads to the gain in statistical power. 

More specifically, an allele score (also called a genetic risk score, 

gene score, or genotype score) is a single variable summarizing 

multiple genetic variants in a univariate score. An unweighted allele 

score is constructed as the total number of exposure-increasing 

alleles present in the genotype of an individual. A weighted allele 

score can also be considered, where each allele contributes a weight 

reflecting the effect of the corresponding genetic variant on the 

exposure. These weights can be derived internally from the data 

under analysis, or externally from prior knowledge or an independent 

data source (55). The use of an allele score in MR requires the score 

to satisfy the assumptions for being an IV. This means that each 

variant which contributes to the allele score must satisfy the 

assumptions, except that it is not necessary for all the variants to be 

associated with the exposure (a variant not strongly associated with 

the exposure but satisfying the second and third IV assumptions will 

not invalidate the score, but neither will it add any information to the 

score) (36). 

The choice of variants to be included in an allele score should be 

made prior to analysis, or on the basis of external (independent) 

data. This is particularly important if there are several candidate 

variants with similar magnitudes of association with the exposure. 

Additionally, the inclusion of variants which are highly correlated with 

each other (in high linkage disequilibrium) will not give extra 

information compared to including any one of these variants, and 

may lead to inefficiency if the correlation is not taken into account in 

determining the weights. 
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2.4 Types of Mendelian randomization studies 

 

MR studies can be performed using several different strategies, with 

combinations of either one or two study samples to gain information 

on gene-risk factor and gene-outcome associations and level of detail 

on study participants with individual-level, study-level, and 

summary-level data (56). 

The standard study design is a one-sample MR study using individual-

level data. This corresponds to the study design shown in Figure 7 

(black arrows) and is often carried out using data from one 

population study. Advantages of this design are that (i) detailed 

information on potential confounding and mediating factors may be 

available and can be examined and accounted for; (ii) the 

assumptions necessary for the validity of the genetic variants can be 

tested, including testing for potential pleiotropy; (iii) the use of a 

population with known ethnicity reduces the risk of population 

stratification; (iv) it can be tested whether an additive or 

multiplicative per allele model fits the data best, resulting in more 

precise causal estimates; and (v) valuable information on the 

observational association between the risk factor and the outcome 

may be included (Figure 7, black arrow #1). Two variants of the 

classic one-sample MR study using individual-level data are the two-

step MR study, testing whether the effect of the biomarker or lifestyle 

factor under examination is mediated through other measured 

factors on a causal pathway, and the bi-directional MR, aimed to 

assess the direction of causation (57, 58). It is often claimed that a 

potential limitation of the classic design is that the genotype-risk 

factor and genotype-outcome associations are correlated since they 

are obtained using the same individuals, and that this may bias a 

causal effect of the biomarker in the same direction as the 
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observational estimate (Figure 7, arrows #2 and #3). However, use 

of the classic design in a large homogenous study cohort with its 

many other advantages, including low risk of chance findings, will out 

weight this minor issue. 

 

 

Figure 7. Types of Mendelian randomization designs. 

 

MR can also be performed using study-level data where causal 

estimates from several studies are meta-analysed, increasing the 

statistical power of the combined study. Potential limitations are 

similar to the limitations of conventional meta-analyses, which are 

publication bias, inclusion of small studies which tend to show larger 

causal effects, and heterogeneity among studies included. Also, 

variation in the risk factor or lifestyle factor under examination and 

in the definition of endpoints between studies and affecting the causal 

estimate should be taken into account. Another study design is a two 
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sample MR study using two independent samples (Figure 7, grey 

arrows #2 and #3). This design can be used on individual level data, 

but is often carried out using summary level data, with a beta-

coefficient and the standard error of the mean from the regression of 

the risk factor on the genotype from one study, and similar data for 

the regression of the outcome on the genotype from another study. 

Advantages of this study design are that (i) that causality can be 

inferred without information on the observational association (Figure 

7, #1), (ii) the genotype-risk factor and genotype-outcome 

associations are not correlated and a bias will be in the direction of 

the null hypothesis, and (iii) data may be collected from very large 

GWAS where information on the genotype-outcome association 

comes from case–control studies with more cases than population 

studies, and thus a high statistical power. However, genetic variants 

identified in GWAS are common and often have small phenotypic 

effects, thus potentially introducing bias because of weak 

instruments. Requirements for the two-sample MR are that the 

samples included must not be overlapping, should be of similar age 

and gender distribution and ethnicity; and genetic variants should be 

completely independent and thus not in linkage disequilibrium (58). 

Limitations of the two sample MR study are that data from GWAS 

often use a case–control design, where selection of cases and 

controls may have introduced ascertainment bias, and inclusion of 

individuals from several populations may introduce population 

stratification. 

Ideally, publications should present information both from individual-

level data of own studies and if available, combined with summary-

level data. This combination may provide information on confounding 

factors and mediating factors in biological pathways, with a high 

statistical power. 
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2.5 Why use Mendelian randomization? 

 

Although the main reason to use MR is to avoid the problem of 

residual confounding, there are additional reasons for using MR in 

specific contexts: with case-control data and with exposures that are 

difficult to measure. 

Reverse causation occurs when an association between the exposure 

and the outcome is not due to the exposure causing a change in the 

outcome, but the outcome causing a change in the exposure (42). 

This could happen if the exposure increased in response to pre-

clinical disease, for example from cancer before it becomes clinically 

apparent or from atherosclerosis prior to clinical manifestations of 

CHD. As the genotype of an individual is determined at conception 

and cannot be changed, there is no possibility of reverse causation 

being responsible for an association between genotype and disease 

(59). For this reason, MR has great strengths in a retrospective 

setting where genetic variants are measured after the disease 

outcome, such as in a case-control study. Many exposures of interest 

cannot be reliably measured in cases, that is in individuals who have 

already experienced an outcome event, as the event may distort the 

measurement. In this case, the genetic variant can be used as a 

proxy for the exposure, and the genetic association with the outcome 

can be assessed retrospectively. As the genotype of an individual can 

be measured in diseased individuals, causal inferences can be 

obtained using MR in a case-control setting. MR can be also a useful 

technique when the exposure of interest is expensive or difficult to 

measure. For example, gold standard assays for biomarkers such as 

water-soluble vitamins may cost too much to be affordable for a large 

sample, or measurement of fasting blood glucose, which requires 

overnight fasting, may be impractical. If the genetic variant is 
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associated with the exposure and is a valid IV for the exposure, a 

causal relationship between the exposure and outcome can be 

inferred from an association between the genetic variant and the 

outcome even in the absence of measurement of the exposure. 

Additionally, instrumental variable estimates do not attenuate due to 

classical measurement error (including within-individual variation) in 

the exposure (60). This contrasts with observational studies, in which 

measurement error in the exposure usually leads to the attenuation 

of regression coefficients towards the null (known as regression 

dilution bias) (61). A further example is where the risk factor is not 

only difficult to measure, but also difficult to define. For example, a 

variant in the IL6R gene region that is associated with serum 

interleukin-6 (IL-6) concentrations (as well as levels of downstream 

inflammatory markers, including C-reactive protein [CRP] and 

fibrinogen) was shown to be associated with CHD risk (62). However, 

from knowledge about the functional role of the variant, the causal 

effect assessed is not thought to operate through elevated serum 

interleukin-6 concentrations, but rather through changes in signalling 

in interleukin-6 receptor pathways. This is a cellular phenotype which 

varies over time, and so a representative measurement for an 

individual is not straightforward to define. However, as the genetic 

variant can be measured, the causal role of interleukin-6 receptor-

related pathways on CHD risk can be assessed by MR (63). 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

Cardiovascular disease 

 

 

  



 

- 37 - 

3.1 A brief overview 

 

Despite significant advances in the treatment of Cardiovascular 

Disease (CVD), it continues to be the leading cause of mortality and 

morbidity globally (Figure 8) (64). Typically, CVD represents a 

cluster of disorders that are associated with the heart, the 

vasculature of the brain, or blood vessels, and predominantly 

includes coronary and ischemic heart disease, deep vein or arterial 

thrombosis and cerebrovascular disease (65). 

 

 

Figure 8. Cardiovascular disease burden across 

time, location, and cause. (66). 
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According to the World Health Organization (WHO), 17.9 million 

people die each year from CVDs, which accounts for an estimated 

31% of all deaths worldwide. It has also been projected that 

approximately 23.3 million people will die annually from CVDs by 

2030 (67). Additionally, in contrast to developed countries, where 

CVD mortality has decreased in the past few decades, the incidence 

of CVD mortality is on rise in low and middle-income countries, with 

an estimated account of more than 75% of the world’s deaths. This 

is mainly attributed to the lack of preventive and treatment measures 

in these countries (68). Therefore, developing newer and better 

strategies to combat CVDs is of global importance and should be 

regarded as a priority by health care investigators. An improved and 

early diagnosis of CVDs may effectively shift the focus of the therapy 

from treatment to prevention and improve the overall survival. 

Most of the CVDs are primarily of atherosclerotic origin (69). 

Atherosclerosis is a lipoprotein-driven disease that leads to plaque 

formation at specific sites of the arterial tree through intimal 

inflammation, necrosis, fibrosis, and calcification. After decades of 

indolent progression, such plaques may suddenly cause life-

threatening coronary thrombosis presenting as an acute coronary 

syndrome. Atherosclerosis alone may obstruct coronary blood flow 

and cause stable angina pectoris, but this is rarely fatal in the 

absence of scarring of the myocardium, which can elicit an 

arrhythmia presenting as sudden cardiac death. Acute coronary 

syndrome is nearly always caused by a luminal thrombus or a sudden 

plaque haemorrhage imposed on an atherosclerotic plaque with or 

without concomitant vasospasm. Plaque rupture is the most frequent 

cause of thrombosis. In plaque rupture, a structural defect -a gap- in 

the fibrous cap exposes the highly thrombogenic core to the blood 

(70). In addition, a range of other factors also contributes towards 
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the progression of atherosclerosis, classified into non-modifiable and 

modifiable risk factors. The non-modifiable risk factors include age, 

sex and genetic causes, whereas, hypertension, diabetes, 

dyslipidaemia, smoking, poor diet, and obesity are important 

modifiable risk factors (71, 72). 

 

3.1.1 Risk factors for cardiovascular disease 

Traditional risk factors for CVD are well known (Table 2). 

 

Table 2. Summary of risk factors for cardiovascular disease. 

Category Factors 

Non-modifiable risk factors 

Advancing age 

Sex 

Family history 

Genetic predisposition 

Metabolic risk factors 

Hypertension 

Hyperlipidaemia 

Diabetes mellitus 

Metabolic syndrome 

Obesity/overweight 

Lifestyle risk factors 

Diet 

Smoking 

Physical activity 

Novel risk factors 

Elevated homocysteine level 

Elevated lipoprotein(a) level 

Small dense LDL-C 

Elevated inflammatory markers levels 

Elevated haemostatic factors levels 

 

Aging is the single most important factor that affects cardiovascular 

health. Its impact on CVD can be assessed from the fact that the risk 
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for cardiovascular morbidity increases by about 10-fold, between the 

age of 50 and 80 (73). Moreover, according to an estimate by the 

National Institute of Aging, by 2030, approximately 20% of the world 

population will be aged 65 or older, 40% of which would die as a 

consequence of CVD (74). Aging results in an increase in oxidative 

stress and a reduction in telomere length, causing DNA damage, 

along with impaired cell division and senescence of cardiovascular 

tissues (75). These factors greatly affect metabolic processes, the 

integrity of the vasculature, and cardiovascular repair mechanisms 

that render cardiovascular tissues vulnerable towards damage. In 

addition to this, aging has a remarkable effect on the arterial system 

and the heart, both of which play an important role in the 

development of CVDs. Aging results in thickening and stiffness of the 

arteries, which markedly affects their elasticity. It also causes 

endothelium dysfunction, which arises due to an imbalance between 

the production of vasodilators (such as nitric oxide, acetylcholine, 

and prostacyclin) and vasoconstrictors (such as angiotensin, nitric 

oxide synthases, leukotrienes, and thromboxanes). There is also a 

decrease in the affinity of vascular smooth muscle cells towards these 

regulators (76). Besides these, the heart also undergoes a series of 

aging-mediated changes in the structure and cellular composition. 

There is a substantial increase in oxidative stress, apoptosis, and 

necrosis that considerably reduce the absolute number of 

cardiomyocytes (77). It is now known that aging also affects the 

division and regeneration capability of cardiomyocytes, which 

prevents maintenance of an adequate number upon loss of these 

cells (78). Moreover, cardiomyocyte senescence, defined by the 

increased expression of senescence markers and decreased telomere 

length, also increases with age (74). Collectively, these outcomes of 

aging influences other cardiovascular risk factors that includes 
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atherosclerosis, hypertension, diabetes, which may lead to heart 

failure or stroke (79, 80). 

Although CVD is the leading cause of death in both men and women 

it has been well established that men are more prone towards CVDs, 

while there is a delayed onset of CVDs in women (81, 82). The 

Framingham Study comprehensively investigated CVDs for over five 

decades in a mixed-gender general population sample and concluded 

that women demonstrate delayed inception of atherosclerosis 

associated CVD events by 10-20 years in comparison to men (83). 

This is primarily due to sex-based differences in hormones that 

regulate cardiovascular functions in both women and men. It has 

been studied that endogenous oestrogens in women exert diverse 

cardio-protective effects such as defending blood vessels from 

atherosclerotic lesion formation, reducing the levels of low-Density 

Lipoprotein cholesterol (LDL-C) while augmenting high-Density 

Lipoprotein  cholesterol (HDL-C) concentration in plasma (84). 

Premenopausal women with normal oestrogenic levels are less prone 

to developing CVDs in comparison to men, while early menopause or 

bilateral oophorectomy increases lifetime cardiovascular risk (85). 

Additionally, other biological distinctions, such as a smaller artery 

dimension and different plaque composition in women, retard the 

progression of CVDs in comparison to men (86, 87). Diabetes 

mellitus, hypertension, smoking, hypercholesterolemia, and obesity 

are conventional risk factors that have a more profound contribution 

in women than men towards the development of CVDs (88). In 

contrast, men are generally more exposed to deleterious cardiac risk 

factors, such as the increased propensity of smoking and higher 

alcohol consumption, low-fibre diet, low vitamin C levels, and high 

blood viscosity (89). However, as discussed previously, all these risk 

factors affect women more vigorously after the age of 55 or 65, in 



 

- 42 - 

contrast to men, so that in women younger than 50 years, smoking 

is the leading cause of CVDs (87, 90). It is also important to note 

that diabetes reverses the protective effects of oestrogens in women 

and can result in a 3 to 7 fold increased CVD risk in women compared 

with men (91). CHD affects both men and women; however, it has 

been found that it is 2 to 5 times more prominent in men in 

comparison to women of the younger age group (92). Moreover, 

women are widely susceptible to dying from stroke and heart failure 

in contrast to men (93). 

High blood pressure is regarded as one of the major underlying 

causes for the onset of almost all the CVDs, which include CHD, left 

ventricular hypertrophy, valvular heart diseases, atrial fibrillation, 

atherosclerosis, and cerebral stroke. Hypertension is an outcome of 

dysfunction in blood vessels that may be due to calcification or loss 

of elastin (causing reduced elasticity), in addition to the inability of 

smooth muscle cells to contract or relax. The incidence of high blood 

pressure increases with age and it has been estimated to affect 65% 

of the people aging more than 60 years (94). It is also estimated that 

globally 54% of strokes and 47% of CHDs are an outcome of 

hypertension (95). According to the Framingham Heart Study, an 

elevation of 20 mmHg systolic blood pressure can enhance the risk 

of heart failure by 50% (96). Numerous RCTs have shown that 

antihypertensive treatment reduces the risk of stroke and CHD by 

40% and 16% respectively (97). Hypertension is also associated with 

the modification in the blood vessels, myocardial structure, coronary 

vasculature, and conduction system of the heart. This is referred to 

as remodelling and is regarded as an adaptive response against 

prolonged hemodynamic changes. These alterations subsequently 

impair myocardial performance and can lead to ventricular 

hypertrophy, CAD, cardiac arrhythmias (especially atrial fibrillation) 
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(98). Hypertension is also a major independent risk factor that can 

accelerate the progression of atherosclerotic CVD (99). The exact 

mechanism by which hypertension regulates the pathogenesis of 

atherosclerosis is not clearly understood. However, it is believed that 

high blood pressure exerts proinflammatory effects in the arteries 

through vasoactive peptides, such as angiotensin and endothelin-1, 

leading to the recruitment of monocytes into the intima, which is a 

prerequisite for the development of atherosclerosis (100). 

Furthermore, in comparison to normotensive people, the extent of 

fatty streaks and fibrous plaque build-up is heightened in the 

coronary arteries and aorta of hypertensive people. It has also been 

reported that plaques rarely develop solely on account of 

hypertension, which only promotes the progression of 

atherosclerosis, in the presence of hypercholesterolemia that has 

much more pronounced effect on atherosclerosis itself (101). It is 

also worth noting that hypertension generally co-exist with other risk 

factors such as obesity, dyslipidaemia and dysglycaemia, and only a 

small fraction of the population has hypertension as an isolated cause 

of CVDs. Moreover, when present concurrently, hypertension and 

other risk factors can substantially lead to a cardiovascular risk, 

which is higher than the sum of risk conferred by the individual 

factors (102). 

Presence of an abnormally high level of lipids (such as cholesterol 

and triglycerides) in the blood is referred to as hyperlipidaemia. It 

can be an outcome of a sedentary lifestyle, smoking, or consumption 

of a diet rich in saturated fats and cholesterol. Diabetes, 

hypothyroidism, and obesity are also important causative factors. 

Furthermore, patients with familial hypercholesterolemia (a genetic 

disorder) are more prone to developing hyperlipidaemia at an early 

age (103). People with high cholesterol have approximately twice the 
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risk of heart disease as people with lower levels, but many are 

unaware of their condition because there are no symptoms (104). 

Physiologically desirable total cholesterol levels are up to 200 mg/dL 

and it has been estimated that a rise in total cholesterol in men from 

200 to 240 mg/dL results in a 3-fold increase in deaths from cardiac 

diseases (105). Lipids are not soluble in plasma and are transported 

by specific kind of transporter proteins known as lipoproteins, which 

are classified, in order of increasing density, as: chylomicrons, Very-

Low-Density Lipoprotein (VLDL), Low-Density Lipoprotein (LDL), and 

High-Density Lipoprotein (HDL). Of these, LDL and HDL are regarded 

as important markers of determining dyslipidaemia and have a 

profound contribution to the development of CVDs. LDL transport 

cholesterol from the liver to the cells, whereas HDL participates in 

the removal of excess cholesterol from different tissues and 

transferring it back to the liver (106). Up to 100 mg/dl for LDL and 

not less than 50 mg/dl of HDL is regarded to be a physiologically 

normal concentration (107). Elevated levels of LDL lipids in plasma 

tend to settle on the arterial walls, leading to their progressive 

hardening, along with the formation of an atherosclerotic plaque that 

can significantly affect the supply of oxygenated blood to the tissues, 

leading to ischemia (108). Besides this, hyperlipidaemia has also 

been shown to promote platelet activation through a variety of 

mechanisms, increasing the risk of thrombosis (109, 110). Such an 

event occurring in the heart or brain may lead to myocardial 

infarction or stroke respectively, which is life-threatening. Therefore, 

given the severity and level of threat associated with 

hyperlipidaemia, its early detection and treatment are imperative to 

prevent atherosclerotic and other related cardiovascular risks. 

Type-2 Diabetes Mellitus (DM) is a metabolic disorder, characterized 

by insulin resistance and beta-cell impairment that leads to 
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hyperglycaemia (high blood glucose level). It is one of the most 

dominantly existing chronic diseases globally and its incidence is on 

a rapid and progressive rise. In the past three decades, the global 

burden of diabetes has increased markedly from 30 million to over 

400 million presently (111). According to a recent estimate by 

international diabetes federation, there will be 592 million people 

suffering from type-2 DM by 2035, which is closely 1 in every 10 

people (112). It has been widely reported that in contrast to non-

diabetic patients, adults with diabetes exhibit a 2 to 4 times higher 

risk of developing CHD, making type-2 DM an important and 

independent risk factor for the development of CVDs (113). Mortality 

from stroke is also increased by almost 3-folds when patients with 

diabetes are compared with those without diabetes (114). Moreover, 

CVDs in diabetic patients exhibit a considerably poor prognosis for 

survival in comparison with CVD patients without diabetes (114). In 

general, patients with type-2 DM are also prone to other exiting 

classical cardiovascular risk factors such as hyperlipidaemia, 

hypertension, and obesity that can significantly augment the risk of 

developing CVDs. 

Accumulating evidence suggests a strong connection between 

hyperglycaemia and atherosclerosis. For instance, diabetes can 

significantly enhance the likelihood of severe carotid atherosclerosis 

(115). This is because of several reasons. Firstly, diabetic blood is 

more likely to be rich in triglycerides due to impaired lipid flux, a 

function which is regulated by insulin (116). In addition to a high 

level of triglycerides and decreased HDL-C in the plasma, 

abnormalities have also been noticed in the structure of LDL particles 

of diabetic patients. There exists a smaller and dense form of LDL in 

diabetic blood, which is more atherogenic given its increased ability 

to penetrate the arterial wall along with higher susceptibility to 
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oxidation (117). Apart from oxidation, increased glycation of LDL 

particles has also been observed in patients with diabetes, which 

considerably lengthens their half-life (118). Besides these factors, 

high glucose levels also result in hypercoagulability of the blood and 

endothelial dysfunction, leading to platelet activation, leukocyte 

adhesion, thrombogenesis, and inflammation, which concomitantly 

accelerates atherosclerosis, making diabetic patient vulnerable to the 

risk of heart failure (119, 120). Diabetes also features a state of 

chronic and low-level inflammation (120). Numerous studies have 

confirmed a reduction in the secretion of potent vasodilator, nitric 

oxide, coupled with increased secretion of the vasoconstrictor and 

growth factor endothelin-1, in patients with diabetes. This condition 

not only leads to vasoconstriction but is also associated with the 

release of pro-inflammatory cytokines that arbitrates a strong 

relationship between diabetes, inflammation, and CVD (121). 

Furthermore, numerous other pathological factors such as increased 

oxidative stress and autonomic neuropathy have been observed in 

type-2 DM patients that may directly contribute towards the 

progression of CVDs (122). 

Obesity is a chronic metabolic disorder, which has reached epidemic 

proportions globally not only in adults but in the paediatric population 

as well, in the past two decades. According to the WHO, 39% of the 

global population above 18 years of age are overweight, of which 

13% are obese (123). Body mass index (BMI) is widely used to 

measure obesity and overweight. It is calculated by dividing the 

weight of an individual (Kg) by square of height (m2). BMI between 

18.5 to 25 kg/m2 is considered as normal weight, overweight if the 

BMI ranges between 25.0 to 29.9 kg/m2, and obese if the BMI is 

≥30.0 kg/m2 (124). Additionally, the waist circumference is regarded 

as a more accurate predictor of abdominal obesity in contrast to BMI. 
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Waist size over 40 inches (102 cm) in men and over 35 inches (88 

cm) in women are at risk of heart disease (125). A broad range of 

clinical and epidemiological studies have identified obesity as an 

independent risk factor for a range of CVDs that include CHD, 

hypertension, cerebrovascular disease, atrial fibrillation, 

atherosclerosis, and sudden cardiac arrest (126). McGill et al. 

reported that excess body weight, especially fat accumulation in the 

abdominal region, can accelerate the progression of atherosclerosis 

that can go unnoticed for decades before the first clinical 

manifestation of CHD appears (127). Chief factors that contribute to 

obesity include dietary habits, physical inactivity, certain medical 

conditions, and medications. It is important to identify the 

contributing factors of weight gain as the intervention generally 

involves treatment plans that are tailored to the individual patient. 

Diet or caloric modification, physical activity, and behavioural 

therapy are three vital steps that form the basis to effectively 

manage obesity. Additionally, pharmacotherapy and bariatric surgery 

are often used as a resort in patients who are unable to achieve 

targeted weight loss with lifestyle interventions (128). 

 

3.1.2 Current therapies for the treatment of CVD 

Despite the high prevalence of CVDs, its progression can be reversed 

by modifying or reducing these associated risks. Management of 

CVDs can be categorized broadly into three stages. Primary stage 

involves maintaining a healthy lifestyle by the individual, which 

includes consumption of a balanced diet, regular exercise, and 

smoking cessation, when present. Secondary stage majorly 

emphasizes on an early diagnosis of the disease, which would 

enhance the chances for a successful treatment and prevent any 

serious or long-term health effects associated with the CVD. Tertiary 
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stage mainly deals with the treatment of the CVD in a chronic state 

that has resulted in long term health effects. It majorly aims at 

managing pain, increasing life expectancy and the quality of life 

(129). 

Identification of the risk factors and their subsequent control forms 

the foundation of the treatment strategy against CVDs. 

Unfortunately, therapies administered against CVDs does not offer a 

complete cure from the cardiovascular conditions. Its effectiveness is 

limited to an extent, which only prevents or reduces any further 

progression of an already persisting condition. Still, these therapies 

have principally resulted in an overall decrease in the mortality and 

morbidity caused by numerous CVDs, such as atherosclerosis, stroke, 

and heart failure. According to the current international guidelines, 

LDL-C is the primary target, while HDL-C and triglycerides constitute 

the secondary targets of lipid-lowering drugs. Important lipid-

lowering drugs presently available or under investigation includes 

statins, fibrates, bile acid sequestrants, niacin, PCSK9 inhibitors, 

ezetimibe and omega-3 fatty acids (130). A summary of lipid-

lowering drugs is reported in Table 3. 

 

Table 3. Lipid-lowering drugs. 

Class Mechanism 
LDL-C 

reduction 

HDL-C 

increase 

TG 

reduction 

Statins 

Inhibition of HMG-

CoA reductase 

activity 

20-55% 0-15% 0-30% 

Fibrates 

Stimulates β-

oxidation of fatty 

acids via PPARα 

0-15% 5-20% 10-50% 
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Bile Acid 

Sequestrants 

Binding to bile 

acids in the 

intestine 

12-20% 3-5% 0-25% 

Nicotinic Acid Still unclear 10-15% 15-25% 10-35% 

PCSK9 

Inhibitors 

Blocking PCSK9 

and therefore 

reducing 

intracellular 

degradation of LDL 

receptors 

50-60% 4-7% 6-20% 

Ezetimibe 

Down-regulation 

of intestinal 

absorption of 

cholesterol via 

NPC1L1 inhibition 

14-18% 1-4% 9% 

Omega-3 fatty 

acids 

Still unclear; 

hypothesis: 

upregulation of 

lipoprotein lipase 

activity 

6-25% 5-7% 25-35% 

LDL-C: low density lipoprotein cholesterol; HDL-C: high density lipoprotein 

cholesterol; TG: triglycerides 

 

As reported before, beside LDL-lowering strategy, the treatment of 

CVDs is based on the modification of one or more of the risk factors. 

Depending on the identification of the risk factor underlying the 

development of CVDs, appropriate therapy can be administered. This 

might include also the use of antihypertensives, antiplatelet, and 

anticoagulants. 

 

3.2 Use of MR in cardiovascular disease 

 

Multiple GWAS on cardiovascular disease have identified common 

genetic variants in very large case–control studies. GWAS have also 
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examined genetic determinants of conventional risk factors for 

cardiovascular disease, including lipids and lipoproteins, markers of 

inflammation, haemostasis and thrombosis, arterial wall function, 

metabolism, antioxidants, and lifestyle factors. MR have provided 

novel information in cardiovascular medicine over the past more than 

10 years, adding to our understanding of cardiovascular disease 

pathogenesis and disease pathways. 

MR studies have the potential to reshape cardiovascular medicine by 

generating robust naturally randomized evidence that can help to fill 

evidence gaps when a RCT would be either impossible or impractical 

to conduct. Results from some of the MR studies are summarized 

below. 

 

3.2.1 Lipids and lipoproteins 

MR has been extensively used to examine the causal role of lipids 

and lipoproteins. LDL-C (131-133), triglyceride-rich lipoproteins 

(134, 135), and lipoprotein(a) (136, 137) concentrations have been 

shown to be causally associated with higher CVD risk, while MR 

studies on HDL-C have failed to show a causal role for HDL-C in CVD 

risk (138, 139). High HDL-C concentration is associated with reduced 

risk of CVD in observational studies, but this may be due to 

confounding by other factors (i.e. physical activity, obesity, or 

diabetes) or due to low concentration of triglyceride-rich lipoproteins 

inversely correlated with HDL-C concentration. This have contributed 

to discard this lipoprotein fraction as a therapeutic target. The MR 

study design has also been used to predict potential effects of 

pharmacological intervention on other lipid and lipoprotein on CVD 

risk (for example, MR did predict the effect of inhibiting the PCSK9 

protein), to examine side effects of LDL-lowering therapies, such as 

increased risk of new onset diabetes (140, 141), and to rebut other 
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potential side effects of LDL lowering, like cancer development (142), 

Alzheimer’s disease, dementia, or Parkinson’s disease. 

More recently, MR studies revealed some of the most important 

scientific evidence in the cardiovascular field. In 2015, a large 

individual-level MR study found that the effect of lowering LDL-C with 

ezetimibe, a statin, or combination therapy with both ezetimibe and 

a statin should each reduce the risk of CHD by approximately the 

same amount per unit lower LDL-C, and the magnitude of the 

observed clinical benefit should be proportional to the absolute 

magnitude of the reduction in LDL-C, regardless of which treatment 

is used (143). More generally, these results suggest that the effect 

of lower LDL-C on the risk of CHD appears to be determined by the 

absolute magnitude of exposure to lower LDL-C, independently of the 

mechanism by which LDL-C is lowered. Therefore, it may be time to 

consider changing the notion of “lower is better” to “lower is better, 

and earlier is better” to maximize the potential lifetime benefit of 

exposure to lower LDL-C; and to reconsider the focus on “high 

intensity statins” and instead focus on “high intensity LDL-C 

lowering” as the preferred strategy to reduce the risk of 

cardiovascular events, while at the same time minimize the potential 

for dose-dependent statin-induced side-effects. In addition, very 

recently, MR analyses evaluating the associations of genetic scores 

composed of triglyceride-lowering variants in the LPL gene and LDL-

C–lowering variants in the LDLR gene, respectively, with the risk of 

cardiovascular events among participants enrolled in 63 cohort or 

case-control studies, showed that triglyceride-lowering LPL variants 

and LDL-C–lowering LDLR variants were associated with similar lower 

CHD risk per unit lower level of apolipoprotein B (ApoB)-containing 

lipoproteins (144). The associations between lower triglyceride level 

and lower LDL-C level with risk of CHD due to these variants 
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appeared to be independent, additive, and proportional to the 

absolute change in ApoB. These results suggest that the clinical 

benefit of lowering triglyceride levels is similar to the clinical benefit 

of lowering LDL cholesterol levels per unit change in ApoB and is 

proportional to the net absolute reduction in ApoB-containing 

lipoproteins. 

 

3.2.2 Inflammation 

Recent advances in basic science have established a fundamental 

role for low degree chronic inflammation in mediating all stages of 

atherosclerosis, from initiation through progression and, ultimately, 

to the rupture of plaque and ensuing thrombotic complications of 

atherosclerosis. Interestingly, cholesterol accumulation in cells 

triggers the inflammasome response and results in the production of 

inflammatory mediators. High CRP concentration is associated with 

increased risk of cardiovascular disease in observational studies 

(145, 146), and treating high-risk patients with statins reduces CRP 

concentrations. However, several very large MR studies have failed 

to show a causal effect of CRP on CVD risk (146, 147), suggesting 

that pharmacological reduction of CPR may not results in a reduced 

cardiovascular risk. Thus, recent clinical investigations have 

sequentially moved upstream, first to IL-6 and then to interleukin-1, 

seeking more promising targets for anti-inflammatory 

atheroprotection. The recent CANTOS trial (148) showed that 

reducing vascular inflammation, through the inhibition of interleukin-

1β (IL-1B), in the absence of concomitant lipid-lowering effect, 

reduces the rates of cardiovascular events, and also that individuals 

with a reduction of plasma IL-6 level on anti-IL-1B therapy 

experienced a greater cardiovascular risk reduction. The stimulation 

of the downstream IL-6-receptor signalling pathway, mediated by IL-
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1B, represents only one of many potential anti-inflammatory 

pathways that might serve as targets for atheroprotection. In the 

blood plasma, a soluble fraction of the IL-6 receptor (sIL6R) is able 

to form an inhibitory complex that acts as a decoy receptor and 

negatively regulates IL-6 signalling. Since a clinical investigation of 

sIL6R pathways can be difficult because they are prone to fluctuation 

in the circulation, a study of the genetic determinants of these factors 

might be informative to evaluate the relevance of proximal 

inflammatory mediators to coronary heart disease. 

 

3.2.3 Other risk factors 

Several GWAS have identified genetic variants associated with both 

systolic and diastolic blood pressure (149). The variants identified 

only explain a small proportion of the variation in blood pressure, but 

despite this, they have shown large effects on cardiovascular disease 

risk (150). Type 2 diabetes has consistently been associated with 

cardiovascular disease in observational and in MR studies (151), and 

plasma glucose concentrations have also been shown to causally 

contribute to this risk (152, 153). MR studies have confirmed that 

genetic variation increasing smoking amount and extent is a cause 

of cardiovascular disease risk (154) and that genetically low alcohol 

intake is causally associated with less coronary heart events (155). 

Despite very strong epidemiological evidence for an association 

between low plasma vitamin D levels and increased cardiovascular 

disease risk, MR studies of genetically low vitamin D could not 

support a causal relationship (156). Interestingly, however, 

genetically low vitamin D did appear to be causally related to 

hypertension (157, 158) and to high all-cause mortality including 

cancer and other mortality, but not cardiovascular mortality (159). 

Also, shorter telomeres were associated with higher risk of ischaemic 
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heart disease, both observationally and genetically in MR studies 

(160, 161). In Figure 9 more detailed information of biomarkers and 

lifestyle factors examined for a causal effect on risk of CVD using the 

MR design are represented. Biomarkers marked with a red “+” have 

been shown to have a causal effect with higher cardiovascular 

disease risk; biomarkers marked with a green “-” have been 

examined, but did not show causal effects on risk; and biomarkers 

marked with yellow “×” have been examined, but results have been 

conflicting. 

 

 

Figure 9. Overview of biomarkers and lifestyle factors examined for a 

causal effect on the risk of cardiovascular disease (56). 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

Overview of dissertation 
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4.1 Aim 

 

Having discussed several of the statistical issues regarding Mendelian 

randomization analyses, in the following chapter, many studies 

carried out using Mendelian randomization design will be presented 

in order to clarify the methodology and improve our knowledge about 

cardiovascular disease. 

Thanks to an important collaboration established with Professor Brian 

A. Ference from the Cardiovascular Epidemiology Unit of the 

Department of Public Health and Primary Care (University of 

Cambridge, UK), many projects have been conducted through the 

access to the UK Biobank (see Appendix I for further details): 

  “Body mass index, polygenic predisposition, and risk of type 2 

diabetes” 

This project aimed at assessing whether measurements of 

body mass index and polygenic predisposition to have high 

values of this factor can be combined to better estimate the 

risk of developing type 2 diabetes. In addition, we also 

evaluated whether body mass index has a cumulative effect 

over time to make inference about the optimal timing of 

interventions to prevent diabetes. 

 “Combining family history of coronary heart disease and 

individual polygenic predisposition to provide risk estimation 

and guide therapy decision making” 

This project aimed at understanding both the role of parental 

family history of coronary heart disease in predicting the 

individual lifetime risk of major coronary events in combination 

with the polygenic predisposition and lifetime exposure to LDL 

cholesterol, and whether these factors can be evaluated jointly 

to identify people who may benefit the most from lowering 
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cholesterol early in life. 

 “Does the risk of atherosclerotic cardiovascular disease vary 

based on measured or genetically determined lipoprotein(a)?” 

This project aimed at comparing the cumulative lifetime risk of 

major coronary event among subjects with different Lp(a) 

genotype and Lp(a) measured concentrations. 

 “Does Lipoprotein(a) have a prothrombotic effect?” 

This project aimed at clarifying the relation between Lp(a) 

levels and venous thromboembolism events, addressing 

whether Lp(a) has a genetically and clinically meaningful 

prothrombotic effect. 

 “A practical strategy to use measured lipoprotein(a) levels to 

guide clinical management” 

This project aimed at addressing the amount of extra LDL 

cholesterol reduction needed to abolish the extra 

cardiovascular risk due to increased levels of Lp(a), specifically 

for different Lp(a) levels at baseline and depending on what 

age the treatment is started. 

 

Details and analyses are reported in the following chapter, where 

each project is presented independently of each other and with the 

standard setting of a scientific article (introduction, methods, results, 

discussion, conclusions). 
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5.1 Body mass index, polygenic predisposition, and 

risk of type 2 diabetes 

 

Background 

Type 2 diabetes (T2D) is chronic metabolic disorder characterized by 

dysglycemia leading to microvascular and macrovascular 

complications. It is a major cause of morbidity, mortality, and 

increased health care costs throughout the world (162). The world-

wide prevalence of T2D has been rapidly increasing over the past 

decades and the International Diabetes Federation estimated that the 

number of people living with diabetes will rise to 700 million by 2045, 

if adequate prevention measures are not taken. 

T2D mostly results from the interaction among genetic, 

environmental and other risk factors (including some unmodifiable 

factors such as family history, increasing age, or ethnicity). While 

people may have a strong genetic disposition towards T2D, the risk 

is greatly increased if people display a number of modifiable lifestyle 

factors including high blood pressure, overweight or obesity, 

insufficient physical activity, poor diet and if extra weight is carried 

around the waist (163). 

Among those, certainly obesity plays a key role. Most patients with 

type 2 diabetes are obese, and the global epidemic of obesity largely 

explains the dramatic increase in the incidence and prevalence of T2D 

over the past 20 years (164). Taking into account also the inherited 

polygenic risk, these two elements are the two strongest risk factors 

for developing T2D (165). 

As a result, there is an urgent public health need to develop better 

ways to identify persons who are at risk for developing T2D and more 

effective ways to prevent the development of diabetes among at-risk 

persons. 
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Whether information about obesity, as measured by increased body 

mass index (BMI), and a polygenic score (PGS) estimating inherited 

risk (polygenic form of obesity) can be combined to better identify 

persons at risk for developing diabetes or provide information about 

the optimal timing of interventions to prevent the development of 

diabetes among at-risk persons is unknown. 

To address this issue, we sought to evaluate the separate and 

combined effects of BMI and a PGS on the risk of developing type 2 

diabetes. In addition, we sought to compare the effect of lifelong 

exposure to increased BMI as compared to BMI changes later in life 

on plasma glycated haemoglobin (HbA1c) levels and the risk of T2D 

to assess whether BMI has a cumulative effect on the risk of diabetes 

over time and thus make inferences about the optimal timing of 

interventions to prevent diabetes. 

 

Methods 

Study population 

A total of 445,765 participants enrolled in the UK Biobank with 

complete genetic and principal component data who self-identified as 

being of white ancestry were included in the study. Participants 

underwent genotyping with one of two closely related custom arrays 

(UK BiLEVE Axiom Array or the UK Biobank Axiom Array) consisting 

of over 800,000 genetic markers, with additional genotypes imputed 

using the Haplotype Reference Consortium resource, the UK10K 

panel, and the 1000 Genomes panel (more details in Appendix I). 

 

Study outcomes 

The primary outcome was type 2 diabetes, defined as the diagnosis 

of diabetes after the age of 35 years. Prevalent cases of T2D were 

defined as participants who reported a history of diabetes diagnosed 
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by a doctor at an age greater than or equal to age 35 years at the 

initial assessment visit (2006-2010) upon enrolment into UK Biobank 

(excluding women who reported gestational diabetes only). Incident 

cases of T2D were defined as participants who reported being 

diagnosed by a doctor with diabetes after the age of enrolment into 

UK biobank during one of three follow-up sub-study examinations 

and who reported no history of diabetes at the initial assessment 

visit, or participants who had other evidence of being diagnosed with 

“non-insulin dependent diabetes” after the age of enrolment into UK 

biobank and who reported no history of diabetes at the initial 

assessment visit. 

 

Construction of PGS and Mendelian randomization instruments 

The PGS for T2D was constructed using external weights for 

6,917,436 variants evaluated by the DIAbetes Genetics Replication 

And Meta-analysis (DIAGRAM) consortium that had an INFO score 

>0.3 in the UK Biobank. A PGS was calculated for each participant by 

summing the number risk-increasing alleles inherited at each variant 

weighted by the T2D effect size for each allele as reported in 

DIAGRAM. To optimize the PGS, variants in high linkage 

disequilibrium were progressively pruned using the clumping 

procedure in PLINK2 until there was no further improvement in the 

magnitude of the association between the PGS and the risk of 

diabetes per standard deviation (SD) change in the PGS. 

A BMI instrumental variable genetic score for Mendelian 

randomization analysis was constructed by combining 96 

independently inherited (linkage disequilibrium r2<0.001) variants 

associated with BMI at genome-wide level of significance (p<5x10-8) 

as reported in Genetic Investigation of ANthropometric Traits 

(GIANT) consortium (see Appendix II for the list of the single 
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nucleotide polymorphisms included in the score). The BMI genetic 

score was calculated for each participant by summing the number of 

BMI-increasing alleles inherited at each variant included in the BMI 

instrumental variable genetic score weighted by the BMI effect size 

of each allele. 

 

Statistical analysis 

Logistic regression was used to evaluate the associations between 

type 2 diabetes and the PGS (lifelong exposure to BMI using the BMI 

instrumental variable genetic score) and measured BMI in separate 

analyses. All analyses were adjusted for age at baseline, sex, and the 

first 10 principal components of ancestry. In sensitivity analyses, Cox 

proportional hazards models with age as the time scale were used to 

evaluate the associations with risk of being diagnosed with T2D. In 

these analyses, each participant was censored at the age they were 

first diagnosed with diabetes, died (treated as a competing risk), or 

the age at last reported follow-up. Cumulative lifetime risk of T2D 

was estimated using Kaplan-Meier curves with age as the time scale 

for participants within each quintile of PGS, and within each quintile 

of measured BMI. To evaluate the combined effect of measured BMI 

and polygenic predisposition to have high values of BMI on the risk 

of T2D, the proportion of participants diagnosed with diabetes was 

compared after ordering participants by quintiles of BMI and PGS, 

respectively. To assess whether BMI increases plasma HbA1c levels 

and the risk of diabetes with increasing duration of exposure, the 

effect of a one-unit increase in BMI measured in middle life in 

observational analyses was compared with the effect of a one-unit 

increase in genetically determined lifelong exposure to BMI using the 

BMI instrumental variable genetic score in Mendelian randomization 

analyses for both plasma HbA1c levels and the risk of type 2 diabetes. 
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In a test of external replication, 2-sample Mendelian randomization 

analyses were performed to assess the effect of lifelong exposure to 

a one unit increase in BMI instrumented by a genetic score consisting 

of 494 independently inherited (r2<0.001) variants associated with 

BMI at GWAS level of significance in a combined analysis including 

681,275 participants of European descent enrolled in either the 

GIANT consortium or UK Biobank and plasma HbA1c levels measured 

among 123,665 participants of European descent without diabetes as 

reported by the MAGIC (the Meta-Analyses of Glucose and Insulin-

related traits Consortium) investigators; and the risk of type 2 

diabetes among 159,208 participants of European descent (26,676 

cases of type 2 diabetes) as reported by the DIAGRAM (DIAbetes 

Genetics Replication and Meta-analysis) consortium. 

All analyses were performed using Stata (version 16; StataCorp), R 

(version 3.3.3). A 2-tailed p-value less than 0.05 was considered 

statistically significant. 

 

Results 

Participant characteristics 

Baseline characteristics are presented as means and SD for normally 

distributed variables, median and interquartile ranges (IQR) for non-

normally distributed variables (triglycerides and C-reactive protein), 

or percentages for dichotomous variables. The mean age of 

participants at enrolment was 57.3 years (range: 38.9-73.7), the 

median follow-up time was 8.1 years; and 54.3% were women 

(Table 1). A total of 28,563 participants (6.4%) were diagnosed with 

T2D after the age of 35 years, including 10,711 (4.4%) women and 

17,852 (8.8%) men. A total of 18,278 cases of T2D were prevalent 

at the time of enrolment, and 10,285 incident cases were diagnosed 

during follow-up. 
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Associations of polygenic score and BMI with diabetes 

A one standard deviation increase in the PGS containing 2,037,596 

variants was associated with an odds ratio (OR) of 1.50 (95%CI: 

1.49-1.52). A one SD increase in the BMI (4.77 units) measured at 

the time of enrolment into UK Biobank was associated with an OR for 

diabetes of 2.26 (95%CI: 2.23-2.28). Both increasing quintiles of 

PGS, and increasing quintiles of BMI, were associated with 

increasingly steeper trajectories of lifetime risk for diabetes (Figure 

1). There was a step wise increase in the risk of diabetes with each 

increasing quintile of PGS (Table 1). Participants in the highest PGS 

quintile had an OR for diabetes of 3.09 (95%CI: 2.96-3.22) as 

compared to participants in the lowest PGS quintile. Similarly, there 

was a step wise increase in the risk of diabetes with each increasing 

quintile of BMI (Table 1). Participants in the highest quintile of BMI 

(mean BMI 34.7 kg/m2) had an OR of 12.57 (95%CI: 11.83-13.34) 

as compared to participants in the lowest BMI quintile (mean BMI 

21.8 kg/m2). 
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Figure 1. Trajectories of lifetime risk for type 2 diabetes by polygenic 

score (panel A) and BMI (panel B) quintiles.

(A) 

(B) 

1st 

5th 

5th 

1st 



 

 

Table 1. Baseline characteristics by quintiles of polygenic score and body mass index. *Odds ratio (OR) per standard 

deviation (SD) increase in polygenic score (PGS) for diabetes, or per SD change in body mass index. 

 

  Polygenic Score (PGS) for Type 2 Diabetes 

Characteristic All PGS Q1 PGS Q2 PGS Q3 PGS Q4 PGS Q5 

Age, y (SD) 65.3 (8.0) 65.4 (8.0) 65.3 (8.0) 65.3 (8.0) 65.2 (8.0) 65.1 (8.0) 

Women (%) 54.3 54.3 53.8 54.4 54.1 54.9 

LDL-C, mg/dL (SD) 138.0 (33.6) 137.9 (33.1) 138.0 (33.2) 138.1 (33.5) 138.0 (33.9) 138.0 (34.4) 

HDL-C, mg/dL (SD) 56.2 (14.8) 57.4 (14.9) 56.7 (14.9) 56.2 (14.8) 55.7 (14.7) 55.0 (14.6) 

Triglycerides, mg/dL (IQR) 
131.9 

(93.1-190.7) 

125.1 

(88.8-179.8) 

129.5 

(91.7-187.1) 

132.0 

(93.4-190.4) 

134.6 

(94.9-195.3) 

138.5 

(97.6-200.5) 

SBP, mmHg (SD) 137.8 (18.6) 136.9 (18.6) 137.5 (18.5) 137.9 (18.6) 138.1 (18.9) 138.6 (18.6) 

Current smoker (%) 7.2 6.7 7.1 7.2 7.4 7.7 

CRP, mg/L (IQR) 1.3 (0.7-2.8) 1.2 (0.6-2.6) 1.3 (0.6-2.7) 1.3 (0.7-2.8) 1.4 (0.7-2.9) 1.4 (0.7-3.0) 

BMI (SD) 27.4 (4.8) 26.9 (4.5) 27.2 (4.7) 27.4 (4.7) 27.6 (4.8) 27.9 (4.9) 

No. with diabetes (%) 28,563 (6.4) 3,372 (3.8) 4,542 (5.1) 5,361 (6.0) 6,569 (7.4) 8,719 (9.8) 

OR (95%CI) 1.50 (1.49-1.52)* reference 1.40 (1.33-1.46) 1.71 (1.63-1.79) 2.16 (2.07-2.26) 3.09 (2.96-3.22) 

  Body Mass Index (BMI) 

 All BMI Q1 BMI Q2 BMI Q3 BMI Q4 BMI Q5 

BMI (range) 27.4 (17.5-50.0) 21.8 (17.5-23.5) 24.6 (23.5-25.7) 26.7 (25.7-27.8) 29.2 (27.8-30.8) 34.7 (30.8-50.0) 

No. with diabetes (%) 28,563 (6.4) 1,193 (1.3) 2,089 (2.4) 3,679 (4.1) 6,638 (7.5) 14,776 (16.6) 

OR (95%CI) 
2.26 

(2.23-2.28)* 
reference 

1.50 

(1.39-1.61) 

2.48 

(2.32–2.66) 

4.58 

(4.30–4.88) 

12.57 

(11.83-13.34) 



 

- 67 - 

In stratified analyses, the risk of diabetes varied by at least 10-fold 

within each quintile of PGS depending on differences in BMI (panel 

A). By contrast, ordering by BMI quintile stratified by PGS quintile 

(panel B) appeared to separate participants into distinct categories 

of risk without similar overlapping risk (Figure 2). 

 

 

 

Figure 2. Combined effect of BMI and polygenic score on lifetime risk of 

diabetes by quintiles of polygenic score (panel A) and BMI (panel B) 

(A) 

(B) 
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Indeed, participants in the lowest PGS quintile with BMI >30 had a 

6-fold greater risk of type 2 diabetes (OR: 6.14, 95%CI: 5.43-6.95) 

as compared to participants in the highest PGS quintile with BMI <25 

(Figure 3). 

 

 

 

Figure 3. Kaplan Meier estimates of lifetime risk of being diagnosed with 

T2D after the age of 35 years up to age 80 years for participants in the 

lowest PGS quintile with obesity (BMI >30), and participants in the 

highest PGS quintile with normal body weight (BMI <25). PGS is 

polygenic score, BMI is body mass index. 

 

Comparison of lifelong and middle life changes in BMI on T2D 

In observational analyses (Figure 4), a one-unit increase in BMI 

measured in middle life was associated with an OR for diabetes of 

1.21 (95%CI: 1.21-1.22), corrected for regression dilution bias. In 

Mendelian randomization analyses, a one-unit increase in genetically 
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determined lifetime exposure to BMI was associated with an OR of 

1.25 (95%CI: 1.23-1.28). In external replication analyses using data 

from the DIAGRAM consortium, a one-unit increase in lifetime 

exposure to BMI was associated with an OR of 1.20 (95%CI: 1.17-

1.23). In a combined analysis including a total of 604,973 

participants and 55,239 cases of type 2 diabetes, a one-unit increase 

in genetically determined lifetime exposure to BMI was associated 

with an OR of 1.22 (95%CI: 1.21-1.25). Similarly, in observational 

analyses, a one-unit increase in BMI measured in middle life was 

associated with a 0.013% change in plasma HbA1c (95%CI:0.013-

0.014). In Mendelian randomization analyses, a one-unit increase in 

genetically determined lifetime exposure to BMI was associated with 

a 0.011% change plasma HbA1c (95%CI: 0.008-0.013). In external 

replication analyses using data from the MAGIC consortium, a one-

unit increase in lifetime exposure to BMI was associated with a similar 

0.011% change in HbA1c (95%CI: 0.009-0.014). 

 

 

Figure 4. Comparison of the effect lifelong exposure and shorter-term 

exposure to increased BMI on the risk of type 2 diabetes 

  



 

- 70 - 

In sensitivity analyses, the results of all analyses were similar among 

men and women, in analyses restricted to prevalent or incident cases 

of diabetes, and when using proportional hazard regression rather 

than logistic regression. 

 

Discussion 

We found that BMI is a much stronger risk factor for type 2 diabetes 

than polygenic predisposition. The risk of T2D was high among 

participants with high BMI and low among participants with low BMI 

regardless of PGS. By contrast, the risk of T2D varied by at least 10-

fold among persons with the same PGS depending on differences in 

BMI. In addition, we found that lifelong exposure to increased BMI 

and increases in BMI that occur later in life appear to have similar 

effects on both plasma HbA1c levels and the risk of T2D, thus 

suggesting that the effect of BMI on dysglycemia and the risk of T2D 

does not increase with increasing duration of exposure. These 

findings may have practice changing implications for screening, 

preventing, and treating T2D. 

The finding that BMI is a much stronger risk factor for T2D than 

inherited polygenic predisposition implies that the risk of type 2 

diabetes is largely modifiable if clinical interventions are put in place 

in the early stages of the disease. Furthermore, the finding that the 

effect of BMI does not increase with increasing duration of exposure 

suggests that increased BMI does not cause irreversible structural 

changes but instead leads to reversible metabolic changes. Together, 

these two findings suggest that most cases of T2D can be either 

prevented or reversed, acting in the early stages of the disease. 

Specifically, increasing BMI appears to lead to a corresponding 

increase in HbA1c levels. At a certain BMI level, the corresponding 

HbA1c level will exceed the threshold for the diagnosis of 
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prediabetes. This BMI is the BMI threshold for prediabetes for that 

person. Further increases in BMI will lead to further increases in 

HbA1c. The BMI at which the corresponding HbA1c level exceeds the 

threshold for the diagnosis of T2D is that person’s BMI threshold for 

diabetes. The results of this study suggest that most cases of T2D 

can be prevented by keeping BMI below each person’s BMI threshold 

for diabetes. Furthermore, because BMI does not appear to lead to 

irreversible structural changes, the results of this study suggest that 

if a person’s BMI exceeds his/her diabetes threshold, then losing 

weight to reduce BMI below the threshold for diabetes (or 

prediabetes) should lead to a corresponding reduction in HbA1c large 

enough to potentially “reverse” the diagnosis of diabetes. 

These conclusions are consistent with the results of several 

randomized trials. In the Diabetes Prevention Program trial (166), 

both an intensive lifestyle intervention program and treatment with 

metformin led to weight loss and a lower risk of incident T2D as 

compared to placebo among persons with impaired fasting glucose. 

The intensive lifestyle intervention program led to greater weight loss 

than treatment with metformin, and a corresponding greater 

reduction in the incidence of diabetes. Similarly, in the randomized 

Finnish Diabetes Prevention Study, weight loss led to a lower 

incidence of T2D among overweight persons with impaired glucose 

tolerance (167). Furthermore, in the DiRECT trial (168), an 

aggressive weight-loss program with whole diet replacement resulted 

in remission of diabetes in almost one-half of participants allocated 

to the active intervention group as compared to the best practices 

control group. In addition, several trials evaluating mechanical 

interventions have demonstrated that substantial weight loss can 

reverse the diagnosis of T2D by re-establishing more normal 

glycaemic control (169). 
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Importantly, the BMI threshold for T2D is likely to be different for 

each person. Indeed, the effect of BMI on HbA1c may be modified by 

the distribution of fat (waist-to-hip ratio), adipocyte activity, or 

ancestral background. This may explain why some persons with 

normal BMI develop T2D while most persons with morbid obesity do 

not. It may also explain why some ethnic groups develop diabetes at 

lower BMI thresholds than others (170). Therefore, perhaps the best 

way to screen for T2D currently would be to serially measure each 

person’s BMI and HbA1c over time. The slope of the change in HbA1c 

with increasing BMI can be plotted for each person to estimate 

his/her individual BMI threshold for both prediabetes and diabetes. 

Finally, the results of this study combined with the results of 

randomized trials suggests that the treatment of diabetes should be 

refocused to have dual primary goals. First, consistent with current 

practice, plasma glucose should be controlled to prevent 

complications caused by elevated glucose levels. Second, however, 

greater emphasis should be placed on therapeutic weight loss as a 

strategy to lower BMI below a person’s threshold for diabetes (or 

prediabetes), in an explicit attempt to reverse diabetes. Both goals 

can potentially be accomplished using newer hypoglycemic agents 

including GLP1 receptor antagonists which control plasma glucose 

and lead to substantial weight loss (171). 

 

Limitations 

This study has limitations. The analysis was restricted to participants 

who self-identified as being of white European ancestry, and 

therefore may not apply to persons of other ethnicities. As a result, 

this study should be repeated in other populations, particularly those 

that include participants who may be more vulnerable to developing 

diabetes at lower BMI thresholds. In addition, BMI was measured at 
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the time of enrolment into UK biobank and therefore may not reflect 

each participant’s BMI at the time diabetes was diagnosed. However, 

the effect of a one-unit increase in BMI on the risk of diabetes was 

broadly similar for both prevalent cases of diabetes that occurred 

prior to the measurement of BMI and for incident cases that occurred 

after BMI was measured at enrolment. Additional research is needed 

to identify factors that influence each person’s change in HbA1c in 

response to increasing BMI. 

 

Conclusion 

In conclusion, we found that BMI is a much stronger risk factor for 

type 2 diabetes than polygenic predisposition which leads to 

reversible metabolic changes that do not appear to accumulate over 

time. Therefore, most cases of diabetes can potentially be prevented 

or reversed if preventive interventions are taken promptly. 
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5.2 Combining family history of coronary heart 

disease and individual polygenic predisposition to 

provide risk estimation and guide therapy decision 

making 

 

Background 

Despite remarkable successes in the treatment and prevention in the 

past decades, coronary heart disease (CHD) is still the leading cause 

of death and premature disability in developed countries (172). 

Understanding the genetic basis of CHD can improve management 

and prevention. Family and twin studies, animal models, and gene 

association studies suggest a genetic basis for CHD, supporting the 

hypothesis that genes contribute to CHD development and 

progression, and response to risk factor modification and lifestyle 

choices (173). For this reason, individuals with genetic predisposition 

to atherosclerosis are at the greatest risk for developing CHD, 

especially at early ages, and they have the most to gain from timely 

preventive interventions. 

There are mainly two ways to conceptualize inherited risk of CHD: 

family history and polygenic predisposition. In the cardiovascular 

field, a positive family history is associated with a significant doubling 

in cardiovascular risk (174). Researchers from the Framingham 

Study reported that having cardiovascular disease in at least one 

parent doubled the 8-year risk among men, and increased the risk 

among women by 70% (174), independently from the other risk 

factors. Family history captures inherited genetic predisposition as 

well as shared environments and behaviours. Despite this, it has 

been shown to be partially independent from genome-wide polygenic 

scores (PGSs) in diseases such as heart disease (175, 176). Other 
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studies have also shown that genome-wide PGSs associated with 

incident coronary artery disease (CAD) are independent of family 

history (177). 

The systematic collection and interpretation of family history 

information is the most appropriate initial screening approach to 

identify individuals with genetic susceptibility to CHD. Indeed, the 

simplicity of data collection about family history, which can be easily 

and systematically queried in the clinical setting, grants for 

inexpensive and easy-to-obtain predictive information, potentially 

allowing for intervention before prolonged exposure to clinical risk 

factors, such as smoking or elevated lipid levels. On the other hand, 

despite PGSs are more expensive and onerous to obtain than a 

standard lipid panel or family history, they can provide important 

information regarding an exposure present from birth that could be 

ascertained early in life as part of a broad set of risk evaluations. 

Together, family history and PGSs have the potential to enhance risk 

prediction in cardiovascular diseases. 

Several studies have evaluated the inclusion of self-reported family 

history alongside genetics in risk-prediction models for complex 

diseases such as CAD (178, 179). For example, the use of six 

conventional risk factors for CAD, including family history of heart 

disease, was shown to improve the prediction of incident CAD when 

used in combination with PGS compared to prediction based on PGS 

alone or conventional risk factors alone (180). Current prevention 

guidelines recommend that premature family history should be 

incorporated into the risk estimation process that guides treatment 

decisions. However, family history is incorporated in some, but not 

all, short-term risk prediction equations. This probably because it is 

not fully understood whether family history of heart disease provides 

independent and/or additional information to the prediction of 
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individual cardiovascular risk beyond classical cardiovascular risk 

factors and genetic predisposition. 

Given this background, we aimed at clarifying the role of family 

history in predicting the individual lifetime risk of CHD in combination 

with polygenic predisposition and lifetime exposure to high LDL 

cholesterol (LDL-C) level, and understanding whether the use of 

these factors jointly can identify people with the highest lifetime risk 

who may benefit the most from lowering LDL-C early in life. 

 

Methods 

Study population 

A total of 445,744 participants enrolled in the UK Biobank with 

complete genetic and principal component data who self-identified as 

being of white ancestry were included in the study. The UK Biobank 

is a prospective observational study of approximately 500,000 

volunteer adults aged 40 to 69 years recruited from 22 sites across 

the United Kingdom between 2006 and 2010, with follow-up ongoing. 

Biochemical measurements, physical examination measurements, 

and medical histories were assessed at the time of study enrolment. 

Participants underwent genotyping with one of two closely related 

custom arrays (UK BiLEVE Axiom Array or the UK Biobank Axiom 

Array) consisting of over 800,000 genetic markers, with additional 

genotypes imputed using the Haplotype Reference Consortium 

resource, the UK10K panel, and the 1000 Genomes panel. The KING 

toolset was used to identify up to third-degree relatedness based on 

kinship coefficients >0.044 (more details in Appendix I). 

 

Construction of the LDL instrumental variable 

To construct the LDL instrumental variable, all variants associated 

with LDL-C at genome-wide level of significance (p<5x10-8) as 
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reported in external consortia were included in the polygenic score 

(181). The LDL variants were then pruned by excluding all variants 

with a linkage disequilibrium (LD) r2>0.1 to select independently 

inherited variants for inclusion in the instrumental variable genetic 

scores. An LDL score was calculated for each participant by summing 

the number of LDL-increasing alleles inherited at each variant 

included in the LDL score weighted by the LDL effect size of each 

allele (Appendix III). 

 

Construction of the PGS score for CAD 

Polygenic risk scores were created following an additive model for 

CAD, atrial fibrillation (AF), stroke, hypertension, and diabetes 

separately, as described elsewhere (182). Briefly, the number of 

alleles (0, 1 or 2) for each individual was summed after multiplication 

with the effect size between the single nucleotide polymorphism 

(SNP) and disease of interest. Effect sizes of SNP–disease 

associations were based on previously published genome-wide 

association studies. For CAD, 169 SNPs were used; for AF, 25 SNPs; 

for stroke, 11 SNPs; for hypertension, 107 SNPs; and for diabetes, 

38 SNPs. If multiple effect sizes were reported in a study, those 

estimated in the largest sample size were used. Effect sizes were not 

considered for the polygenic score if estimated with UK Biobank data 

to avoid potential overestimation. SNPs were excluded if they were 

missing in UK Biobank data. As some studies reported multiple 

correlated variants in the same locus, independent SNPs were 

selected based on the highest reported p-value by using the LD 

clumping procedure (at r2< 0.01). 

 

Definition of family history 

Self-reported information on family history of cardiovascular disease 
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was collected at the time of the enrolment in the UK Biobank. For 

family history of CHD, we considered history in any first-degree 

relative (father or mother; fields #20107, and 20110, respectively). 

 

Study outcomes and statistical analysis  

The primary outcome was major coronary events (MCE), defined as 

the first occurrence of either a fatal or non-fatal myocardial infarction 

(MI), or coronary revascularization. The analysis used Cox 

proportional hazards models adjusted for age and the first 10 

principal components of ancestry, with age as the time scale. Each 

participant was censored either at the age primary outcome event 

was experienced, death due to a cause other than MI (treated as a 

competing risk), or at the age of last reported follow-up. The dates 

of all incident events were recorded from hospital episode statistics, 

while the dates of events that were prevalent at the time of 

enrolment into UK Biobank were recorded either from hospital 

episode statistics or self-reported. Lifetime risk of MCE was plotted 

using Kaplan-Meier curves by the presence of parental family history 

of CHD, and by polygenic predisposition (deciles of the PGS). The 

combined effect of parental family history, polygenic predisposition 

and the lifetime exposure to high LDL-C in predicting the individual 

lifetime risk of MCE was estimated carrying out adjusted Cox models. 

Since the events rate disease for heart attack, stroke or coronary 

revascularization among women enrolled in the UK Biobank is only 

one third of the events rate in the UK general practice database 

(while the events rate among men is more equivalent), all the 

analyses were focused on male cohort to make reliable conclusions. 

All analyses were performed using Stata (version 16; StataCorp). A 

2-tailed p-value less than 0.05 was considered statistically 

significant. 
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Results 

Participant characteristics 

The mean age of participants at enrolment was similar between 

subjects with and without family history of CAD (approximately 58 

vs 57 years, respectively) (Table 1). In addition, no remarkable 

differences were observed for the lipid profile based on family history 

of CHD, neither for the distribution of obesity indicators, such as body 

mass index and waist-to-hip ratio. However, the percentage of 

patients on lipid-lowering or anti-hypertensive therapies was greater 

among subjects with a positive family history (17.9% vs 27.2% vs 

37.2, and 20.7% vs 27.4% vs 35.1, for subjects with no family 

history of CHD, and with one parent or both parents with a history of 

heart disease, respectively). Same distributions were observed 

among individuals with different polygenic predisposition (Table 2). 

 

Table 1. Baseline characteristics, measured at the time of enrolment in the 

UK Biobank, are presented by presence of family history of coronary heart 

disease. 

 Family history 

Characteristics No One parent Both parents 

No. participants 108,677 60,613 11,592 

Age, y (SD) 56.6 (8.4) 57.8 (7.7) 58.8 (7.0) 

TC, mg/dL (SD) 222.2 (39.6) 224.4 (39.2) 224.8 (39.7) 

LDL-C, mg/dL (SD) 142.4 (30.3) 144.4 (30.0) 145.0 (30.3) 

ApoB, mg/dL (SD) 106.9 (22.7) 108.5 (22.6) 109.4 (22.7) 

HDL-C, mg/dL (SD) 50.7 (12.0) 50.4 (12.0) 49.7 (11.9) 

TG, mg/dL (IQR) 
147.1 

(102.3-213.1) 

150.4 

(105.1-216.9) 

153.0 

(105.9-222.1) 

SBP, mmHg (SD) 138.8 (16.9) 140.1 (17.2) 140.8 (17.5) 

CRP, mg/L (IQR) 1.3 (0.6-2.5) 1.3 (0.7-2.5) 1.3 (0.7-2.6) 

BMI, Kg/m2 (SD) 27.7 (4.2) 27.9 (4.3) 28.3 (4.4) 



 

- 80 - 

WHR (SD) 0.9 (0.1) 0.9 (0.1) 0.9 (0.1) 

Lipid-lowering 

therapy, % 
17.9 27.2 37.2 

Anti-hypertensive 

therapy, %  
20.7 27.4 35.1 

Diabetes,% 5.3 6.6 8.5 

Hypertension, % 55.5 61.7 67.0 

Ever smoker (%) 34.4 35.1 36.6 

Characteristics are presented as means and standard deviations (SD) for normally 

distributed variables, median and interquartile ranges (IQR) for non-normally 

distributed variables (TG and CRP), or percentages for dichotomous variables. TC: 

total cholesterol; LDL-C: low-density lipoprotein cholesterol; ApoB: apolipoprotein 

B; HDL-C: high-density lipoprotein cholesterol; TG: triglycerides; SBP: systolic 

blood pressure; CRP: c-reactive protein; BMI: body mass index; WHR: waist to hip 

ratio. 

 

Table 2. Baseline characteristics, measured at the time of enrolment in the 

UK Biobank, are presented by levels of the polygenic risk score (PGS) for 

coronary artery disease. 

 PGS 

Characteristics Low level Average level High level 

No. participants 20,132 122,653 20,235 

Age, y (SD) 57.6 (8.1) 57.5 (8.1) 57.3 (8.1) 

TC, mg/dL (SD) 220.9 (38.7) 223.1 (39.5) 224.4 (40.6) 

LDL-C, mg/dL (SD) 141.2 (29.6) 143.2 (30.2) 144.6 (31.0) 

ApoB, mg/dL (SD) 105.9 (22.2) 107.6 (22.7) 109.0 (23.1) 

HDL-C, mg/dL (SD) 51.2 (12.2) 50.5 (12.0) 49.6 (12.0) 

TG, mg/dL (IQR) 
142.8 

(98.9-207.1) 

149.3 

(103.7-215.8) 

154.8 

(108.0-222.8) 

SBP, mmHg (SD) 138.0 (16.8) 139.7 (17.2) 140.8 (17.3) 

CRP, mg/L (IQR) 1.2 (0.6-2.4) 1.3 (0.7-2.5) 1.4 (0.7-2.7) 

BMI, Kg/m2 (SD) 27.4 (4.1) 27.9 (4.2) 28.4 (4.4) 

WHR (SD) 0.9 (0.1) 0.9 (0.1) 0.9 (0.1) 

Lipid-lowering 

therapy, % 
17.3 22.6 29.3 
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Anti-hypertensive 

therapy, %  
18.9 24.3 31.0 

Diabetes,% 4.6 6.0 8.4 

Hypertension, % 53.1 59.1 64.7 

Ever smoker (%) 32.3 35.6 38.6 

Characteristics are presented as means and standard deviations (SD) for normally 

distributed variables, median and interquartile ranges (IQR) for non-normally 

distributed variables (TG and CRP), or percentages for dichotomous variables. TC: 

total cholesterol; LDL-C: low-density lipoprotein cholesterol; ApoB: apolipoprotein 

B; HDL-C: high-density lipoprotein cholesterol; TG: triglycerides; SBP: systolic 

blood pressure; CRP: c-reactive protein; BMI: body mass index; WHR: waist to hip 

ratio. Low PGS level is defined as the lowest decile. Average PGS is defined as the 

combination of deciles 3,4,5,6,7, and 8; high PGS level is defined as the highest 

decile. 
 

Family history of heart disease and lifetime risk of MCE 

In Figure 1 panel A, the blue line (reference) represents people with 

no family history of CHD, while the red line and the green lines 

represent people with paternal or maternal family history of CHD, 

respectively. Either having the mother or the father with a history of 

heart disease increases the lifetime risk of MCE by about the same 

amount (comparable absolute rate of the disease, 20%), suggesting 

that maternal and paternal family history of CHD contributes roughly 

the same in term of risk prediction. In Figure 1 panel B, is tested 

the hypothesis of a dose response relationship between parental 

family history of heart disease and lifetime risk of MCE. The blue line 

(reference) still represents people with no parental family history of 

CHD, while the red and the green lines represent people with one 

parent (either the mother or the father) or both parents with a history 

of heart disease, respectively. A dose dependent response in the 

association with MCE appears to be present: having both parents with 

a history of CHD roughly double the risk (hazard ratio [HR]: 2.78, 

95%CI: 2.64-2.92), compared to having only one parent with a 

history of heart disease (HR: 1.75, 95%CI: 1.70-1.82). 
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(A) Comparing maternal and paternal family history 

 

 

(B) Family history dose response 

 

Figure 1. Association between family history of heart disease and lifetime 

risk of major coronary event (MCE) 
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Polygenic predisposition and lifetime risk of MCE 

In Figure 2, the blue line represents people in the lowest decile of 

the polygenic score, the red curve individuals in the second lowest 

PGS decile, the green line (reference) subjects with an average PGS 

(defined as the combination of deciles 3, 4, 5, 6, 7, and 8), the 

orange curve individuals in the second highest PGS decile, while the 

grey-blue line represents people in the highest PGS decile. This 

analysis confirmed that the inherited risk that has captured by the 

polygenic score has an impact on the lifetime risk of coronary heart 

disease. As it has been observed for family history, also polygenic 

predisposition has an impact on the lifetime risk of MCE with a dose 

dependent response. 

 

 

Figure 2. Association between polygenic risk score 

and lifetime risk of major coronary event (MCE) 
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Evaluating the combined effect of family history and polygenic 

predisposition on the lifetime risk of MCE 

In Figure 3 panel A, the blue line (reference) represents people with 

no family history of CHD with an average PGS, the red curve 

represents subjects with one or more parents with a history of heart 

disease and with an average PGS, while the green line represents 

people with no family history of CHD but belonging to the highest 

decile of the polygenic score. It appears clear that having a parental 

history of CHD (either or both parents) is equivalent, in term of 

lifetime risk of MCE, as having a very high polygenic predisposition 

(belonging to the highest PGS decile). Figure 3 panel B tried to 

explore whether these effects are independent and additive or largely 

redundant. The blue (reference) and the red lines represent people 

with no family history of CHD with an average PGS, and subjects with 

one or two parents with a history of heart disease and with an 

average PGS, respectively, while, the green line represents people 

with parental family history of CHD and belonging to the highest 

decile of the polygenic score. Having one or two parents with a 

history of heart disease determined a risk of MCE of 90%, (HR: 1.90, 

95%CI: 1.82-1.98), but if in addition it is present also a very high 

polygenic predisposition, the risk is almost doubled (HR: 3.54, 

95%CI: 3.34-3.75). This result shows a clear dose response 

relationship among this independent information, which is confirmed 

also evaluating the impact of family history in the lowest decile of the 

polygenic score (Figure 3 panel C). The blue (reference) and the red 

lines still represent people with no family history of CHD with an 

average PGS, and subjects with one or more parents with a history 

of heart disease and with an average PGS, respectively, while, the 

green line represents people with parental family history of CHD and 

belonging to the lowest decile of the polygenic score. Again, if a 
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subject has a family history of CHD is exposed to an increased risk; 

however, if in the same condition the subject belongs also to the 

lowest decile of the polygenic score, its contribution to the risk 

disappears. This further implies that parental family history and PGS 

really provide additional and complementary information. 

In summary: (i) the effect of parental family history of CHD and of 

having very high polygenic predisposition is essentially the same; (ii) 

the combined effect on lifetime risk of MCE of these two factors is 

additive; (iii) however, in subjects with a positive family history of 

CHD (one or two parents) the lifetime risk of MCE is comparable to 

that of the average population, if they are characterized by a very 

low polygenic predisposition. This evidence emphasizes that inherited 

risk has to be characterized jointly by both family history and 

polygenic predisposition, because they contribute with independent 

and additive information to the characterization of the lifetime risk. 

 

(A) Comparing the effect of parental family history and highest decile of 

PGS on lifetime risk of MCE 
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(B) Combined effect of family history and highest decile of PGS on lifetime 

risk of MCE 

 

(C) Combined effect of family history and lowest decile of PGS on lifetime 

risk of MCE 

 

Figure 3. Combined effect of family history and PGS on 

lifetime risk of major coronary event (MCE). 
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Effect of PGS on lifetime risk of MCE by family history 

Regardless the presence of family history (Figure 4), the lifetime 

risk of MCE depends on the polygenic predisposition (the risk across 

PGS classes varied by roughly the same amount in each scenario). 

 

(A) No family history of heart disease 

 

(B) One parent with a history of heart disease 
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(C) Both parents with a history of heart disease 

 

Figure 4. Effect of PGS on lifetime risk of major coronary event (MCE) 

by parental family history 

 

Effect of LDL-C on lifetime risk of MCE by family history, PGS or both 

Before trying to use these two factors together to identify people at 

the highest risk who may benefit the most from lowering LDL-C early 

in life, we first assessed if the lifetime exposure to half mmol higher 

LDL-C has the same effect depending on whether or not the family 

history is present, on PGS level, or both. In Figure 5 panel A, both 

the blue (reference) and red lines represent people with no family 

history of CHD with an average PGS, but the second group is also 

characterized by half mmol higher LDL-C compared to the reference 

group. In this scenario each half mmol LDL-C increases the risk of 

50%. In panel B, the same analysis was performed but in this case 

only among people with one or two parents with heart disease. Again, 

LDL-C increases the risk by roughly the same amount (adjusting by 

the observed difference in cholesterol between the groups). The 

same was observed also among people with the highest decile of the 
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polygenic score as compared with the average decile. In Figure 5 

panel C, both the blue (reference) and red lines represent people with 

no family history of CHD in the highest PGS decile, but the second 

group is also characterized by half mmol higher LDL-C compared to 

the reference group. As previously, the estimates are roughly the 

same: the effect of LDL-C increases the risk of MCE regardless the 

presence of both parental family history or high polygenic 

predisposition. In panel C it is addressed what happens if both these 

conditions are present. The blue (reference) and red lines represent 

people with family history of CHD in the highest PGS decile, but the 

second group is also characterized by half mmol higher LDL-C 

compared to the reference group. LDL-C increases the risk again by 

roughly the same amount, adjusting by the observed difference in 

cholesterol between the groups. 

 

(A) Effect of LDL-C on lifetime risk among participants with no family history 

of heart disease and average PGS 
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(B) Effect of LDL-C on lifetime risk among participants with family history 

of heart disease and average PGS 

 

(C) Effect of LDL-C on lifetime risk among participants with no family history 

of heart disease and highest decile of PGS 
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(D) Effect of LDL-C on lifetime risk among participants with a family history 

of heart disease and highest decile PGS 

 

Figure 5. Effect of LDL-C on lifetime risk of major coronary event (MCE) 

by family history, polygenic predisposition (PGS) or both. 

 

Identifying people who may benefit from an early intervention 

Table 3 identifies individuals in the population who have the most to 

gain from preventive interventions based not only on the evaluation 

of LDL-C levels but also on the presence of parental family history of 

CHD and on polygenic predisposition. Overall, the lifetime risk of MCE 

associated with the average LDL-C level in the population is 16% 

(estimated carried out a survival model). Increasing or decreasing 

LDL-C of half and one mmol compared with the median, determines 

the increase or decrease of the lifetime risk accordingly (23%, 33%, 

11%, 7%, respectively). If we assume to treat everybody with a 

lifetime risk equal or greater than 25%, in this scenario, only subjects 

with very high LDL-C would be treated. The scenarios presented in 

the second and third part of the table illustrate what would happen if 
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the assessment of who should be treated is made not only 

considering the value of LDL-C but also the parental family history of 

CHD and the individual polygenic predisposition. 

Considering LDL-C lifetime exposure and family history, everybody 

who has LDL-C one mmol higher than the median is still treated. 

However, in this case, even subjects with median LDL-C level but 

with two parents with a history of heart disease are eligible for 

treatment (lifetime risk of MCE equal to 29% that is higher than the 

established threshold), and they would have been completely missed 

just relying on LDL-C. Similarly, those people who have half mmol 

higher LDL-C than the average, they now need to be treated if they 

have either or both parents with a history of CHD. In this case, 

parental family history information has been useful to identify 

additional people with high lifetime risk of CHD who deserved to be 

selected for treatment that they would have been missed just relying 

on cholesterol. 

Considering LDL-C lifetime exposure and polygenic predisposition, 

everybody who has LDL-C one mmol higher than the median is still 

treated, except people in the lowest PGS group, because they have 

such a low genetic predisposition which probably overcome the risk 

due to high LDL-C. In addition to that, even subjects with half nmol 

higher and either the highest nine or ten deciles are now eligible for 

treatment because their lifetime risk of MCE exceeds the established 

threshold, as well as individuals in the highest PGS decile even if they 

have average LDL-C level. Once again, this analysis proved that 

family history and polygenic predisposition can capture few additional 

groups of patients with high lifetime risk (and not only people with 

very high LDL-C) that they would have been missed otherwise. 

Table 4 presents what happen if lifetime exposure to LDL-C, parental 

family history, and polygenic predisposition are considered jointly to 
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identify subjects at higher risk instead of using only cholesterol level 

evaluation alone. 

 

Table 3. Lifetime risk (%) of major coronary events by exposure to LDL 

cholesterol, parental family history, and polygenic predisposition (PGS). A 

lifetime risk greater than 25% is assumed as the threshold to identify 

people to treat. 

 LDL cholesterol level 

 
-1.0 

mmol/L 

-0.5 

mmol/L 

median 

mmol/L 

+0.5 

mmol/L 

+1.0 

mmol/L 

      

All 7 11 16 23 33 

      

Both parents 13 19.7 29 41 57 

One parents 10 14.3 20 28 37 

None 6 8.2 12 17 25 

      

PGS decile 10 11 18 28 42 60 

PGS decile 9 10 15 23 34 48 

PGS average 8 11 16 23 31 

PGS decile 2 5 7 11 17 25 

PGS decile 1 5 6 8 11 14 

 

The lifetime risk of CHD is now evaluated using both the information 

of LDL-C lifetime exposure and polygenic predisposition among 

people without a parental family history of CHD (Table 4 panel A), 

and people with one (panel B) or both (panel C) parents with heart 

disease. If a subject has no parents with heart disease but very high 

LDL-C, he/she appears to be at higher risk of MCE only if is present 

also a very high polygenic predisposition (9th or 10th deciles). The 

high polygenic predisposition is responsible for the increased lifetime 

risk (>25%) even among subjects without a parental history of CHD 
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and having half mmol higher LDL-C than the median in the 

population. Amon people with just one parent with heart disease we 

would treat almost everybody with high LDL-C, except people in the 

very lowest decile of the polygenic score. In addition to that, with 

this new evaluation, we can capture also almost half of the people 

with one parent with heart disease and having also only half mmol 

higher LDL-C, but surprisingly also those with average LDL-C level 

who are in the highest deciles of the polygenic score. Finally, 

everyone with both parents with heart disease and very high LDL-C 

are at higher lifetime risk, and eligible for treatment, exactly how it 

would have been. However, a further selection can be made among 

subjects having only half mmol higher LDL-C or average LDL-C level 

based on PGS level. Remarkably, even an individual with both 

parents with heart disease who has half mmol lower LDL-C than the 

average cholesterol level in the population would be selected for 

treatment if exposed to a very high polygenic predisposition. 

 

Table 4. Lifetime risk (%) of major coronary events by exposure to LDL 

cholesterol and polygenic predisposition (PGS) stratified by parental family 

history. A lifetime risk greater than 25% is assumed as the threshold to 

identify people to treat. 

 

(A) No family history of heart disease 

 LDL cholesterol level 

 
-1.0 

mmol/L 

-0.5 

mmol/L 

median 

mmol/L 

+0.5 

mmol/L 

+1.0 

mmol/L 

      

All 7 11 16 23 33 

      

PGS decile 10 9 15 22 33 47 

PGS decile 9 7 11 18 28 42 
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PGS average 6 9 12 17 23 

PGS decile 2 3 5 8 12 19 

PGS decile 1 3 4 6 9 14 

 

(B) One parent with heart disease 

 LDL cholesterol level 

 
-1.0 

mmol/L 

-0.5 

mmol/L 

median 

mmol/L 

+0.5 

mmol/L 

+1.0 

mmol/L 

      

All 7 11 16 23 33 

      

PGS decile 10 15 22 33 47 64 

PGS decile 9 16 21 28 37 47 

PGS average 10 14 19 26 36 

PGS decile 2 7 10 14 20 27 

PGS decile 1 7 9 12 16 21 

 

(C) Both parents with heart disease 

 LDL cholesterol level 

 
-1.0 

mmol/L 

-0.5 

mmol/L 

median 

mmol/L 

+0.5 

mmol/L 

+1.0 

mmol/L 

      

All 7 11 16 23 33 

      

PGS decile 10 12 25 46 74 95 

PGS decile 9 12 21 37 59 82 

PGS average 14 20 28 38 51 

PGS decile 2 13 17 23 30 39 

PGS decile 1 8 10 14 19 25 

 

Discussion 

Based on these results, it appears clear that: (i) maternal and 

paternal family history of CHD have the same effect on the lifetime 
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risk of MCE, but if both the parents were affected by heart disease 

then the risk doubles (dose response relationship); (ii) also the 

polygenic predisposition affects the lifetime risk of MCE, in a dose 

response way; (iii) parental family history not only captures inherited 

genetic variation, but likely represents also lifestyle and social 

determinants of health, and therefore, providing independent, 

complementary and additive information to the polygenic 

predisposition, but also to the lifetime exposure to LDL-C. 

Consequently, in order to more accurately identify those who are at 

risk of having an event early in life, is essential to evaluate LDL-C 

exposure, parental family history of CHD, and the individual 

polygenic predisposition jointly. If it is true that LDL-C level (because 

it is the target of the therapy) mainly drives the definition of the 

lifetime cardiovascular risk, a further improvement in the estimation 

of the risk can be obtained evaluating this exposure among subjects 

with a family history of CHD and taking into account the level of the 

genetic predisposition (even individuals with low level of LDL-C may 

benefit from lowering cholesterol). 

Atherosclerotic cardiovascular disease (ASCVD) has many risk 

factors, some of which cannot be changed, and some of which are 

more easily modifiable. One of the major non-modifiable risk factors 

for ASCVD is family history (183). Several studies in the past have 

suggested that, especially when other important risk factors are 

accounted for, even a history of a single first-degree relative of any 

age with a history of CHD identifies the patient as having an 

increased risk of CHD (184). Nevertheless, family history is not part 

of all CHD risk assessment algorithms or calculators. This may have 

occurred for several reasons, such as bias in recalling family history, 

as well as its variable predictive value, depending on whether the 

prediction is for premature or later-onset events (183). Despite this, 



 

- 97 - 

family history (especially if it includes premature ASCVD), in 

combination with the evaluation of LDL-C exposure and polygenic 

predisposition, represents a key factor in risk stratification for ASCVD 

in general and specifically in identifying subjects eligible for lipid-

lowering therapy. Before embracing family history as a public health 

screening strategy, a number of critical issues should be addressed. 

First, family history must be consistently recorded in the electronic 

health record to be impactful in advanced risk estimation algorithms. 

For example, a binary predictor describing the presence or absence 

of family history is less informative than more precise family history 

records such as: age at time of family history report, the number of 

affected relatives, relationship to relatives with disease, severity of 

disease in the family member, or age of disease onset/diagnosis in 

these relatives. Differentiating between first-degree relative (mother, 

father, sibling) and second-degree relative (sisters and brothers, 

grandparents, aunts, uncles) will yield specificity as to the degree of 

shared genetic liability. Even more useful is a grid of diseases and 

relationships to allow for higher resolution family history variables. 

The age at time of reporting family history should be recorded and 

regular updates to family history information will improve prediction 

based on family history (185). 

 

Limitations 

This study has several limitations. First, participants in the UK 

biobank are a self-selected group who tend to be at lower risk of 

cardiovascular events than members of other populations. As a 

result, all analyses should be repeated in populations at higher risk. 

Second, we conducted the analysis just among men, because in the 

UK Biobank the events rate in this cohort is 3-4-fold time higher than 

those in women. In addition, the analysis was restricted to 
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participants who self-identified as being of white European ancestry, 

and therefore results may not apply to persons of other ethnicities. 

Therefore, this study should be repeated in other populations. 

 

Conclusion 

Parental family history of CHD provides complementary and additive 

information to the individual polygenic predisposition in the definition 

of the inherited genetic variation as well as to LDL-C levels exposure 

in the estimation of the lifetime cardiovascular risk. In order to 

develop a simple, but powerful, algorithm to really identify subjects 

at higher risk of having an early event, especially if they are young, 

it is essential to retrieve information about parental family history of 

heart disease and individual polygenic predisposition to CAD, in 

addition to the measurement of all the other well-known 

cardiovascular risk factors, especially LDL-C levels. Only considered 

together, these three factors are able to contextualize the frame of 

who will need to be treated. 
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5.3 Does the risk of atherosclerotic cardiovascular 

disease vary based on measured or genetically 

determined lipoprotein(a)? 

 

Background 

Apolipoprotein(a), which is encoded by the LPA gene, covalently 

binds to a cholesterol-rich low-density lipoprotein (LDL) particle to 

form lipoprotein(a) [Lp(a)]. 

Meta-analyses of prospective observational studies have reported 

that higher plasma Lp(a) concentration is associated with dose-

dependent higher risk of atherosclerotic cardiovascular disease 

(ASCVD) (186). These findings are confirmed by Mendelian 

randomization analyses which have provided strong evidence that 

Lp(a) is a causal contributor to ASCVD (187, 188). 

Lp(a) levels are 75% to 95% heritable and predominately determined 

by single-nucleotide variants at the LPA gene and copy number 

variants specifically in the kringle IV type 2 domain (189, 190). 

Genetic association studies have identified genetic variants 

explaining approximately 60% of the variability in Lp(a) levels in 

European populations (191). Elevated Lp(a), defined as Lp(a) levels 

of more than 120 nmol/L or approximately 50 mg/dL, is relatively 

common, though its prevalence varies in prevalence by ancestry 

(affects 1 in 5 European individuals) (186). 

Both the diagnostic yield and clinical value of genetic testing of LPA 

are not well understood. Specifically, it remains unclear whether 

genetic factors related to Lp(a) that provide information regarding 

lifetime exposure relevant to ASCVD risk prediction may provide 

different or additional features compared with the measurement of 

Lp(a) concentrations in clinical practice. 
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Therefore, we aimed at comparing the cumulative lifetime risk of 

major coronary events (MCE) among subjects with different Lp(a) 

genotype and measured Lp(a) concentrations. 

 

Methods 

Study population 

The UK Biobank is a prospective observational study of approximately 

500,000 volunteer adults aged 40 to 69 years recruited from 22 sites 

across the United Kingdom between 2006 and 2010, with follow-up 

ongoing. Biochemical measurements, physical examination 

measurements, and medical histories were assessed at the time of 

study enrolment. Participants underwent genotyping with one of two 

closely related custom arrays (UK BiLEVE Axiom Array or the UK 

Biobank Axiom Array) consisting of over 800,000 genetic markers, 

with additional genotypes imputed using the Haplotype Reference 

Consortium resource, the UK10K panel, and the 1000 Genomes 

panel. The KING toolset was used to identify up to third-degree 

relatedness based on kinship coefficients >0.044. 

The UK Biobank protocol was approved by the Northwest Multi-

Center Research Ethics Committee, and all study participants 

provided written informed consent (more details in Appendix I). 

 

Lipoprotein(a) measurement 

Lp(a) was measured in nanomoles per litre at study enrolment using 

an immunoturbidimetric method on the Beckman Coulter AU5800 

platform (Randox Bioscience, UK), which is isoform insensitive (192). 

To convert Lp(a) values to milligrams per decilitre, divide by 2.15. 

 

Lp(a) polygenic score 

An Lp(a) polygenic score was calculated for each UK Biobank 
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participant by summing the number risk-increasing alleles inherited 

at rs3798220 and rs10455872 variants, accounting for at least 40% 

of Lp(a) concentrations variation, weighted by the effect size for each 

allele (Appendix IV). Because these two variants are strongly 

associated with plasma Lp(a) concentrations, they can serve as 

surrogate markers for Lp(a) levels. 

 

Study outcomes and statistical analysis  

The primary outcome was MCE, defined as the first occurrence of 

either a fatal or non-fatal myocardial infarction (MI), or coronary 

revascularization. The analysis used Cox proportional hazards models 

adjusted for age, sex, and the first 10 principal components of 

ancestry, with age as the time scale. Each participant was censored 

at the age he/she experienced either a primary outcome event, death 

due to a cause other than MI (treated as a competing risk), or at the 

age of last reported follow-up. The dates of all incident events were 

recorded from hospital episode statistics, while the dates of events 

that were prevalent at the time of enrolment into UK Biobank were 

recorded either from hospital episode statistics or self-reported. 

Cumulative lifetime risk of MCE was plotted, using Kaplan-Meier 

curves, for participants within each class of the Lp(a) genetic score. 

All analyses were performed using Stata (version 16; StataCorp). A 

2-tailed p-value less than 0.05 was considered statistically 

significant. 

 

Results 

Participant characteristics 

A total of 445,744 participants enrolled in the UK Biobank with 

complete genetic and principal component data who self-identified as 

being of white ancestry were included in the study. 
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The median (SD) age at study enrolment was about 57 (8) years, 

with no difference observed among Lp(a) genetic score genotype 

(Table 1). No differences were also observed in the distribution of 

all the other covariates evaluated, across the different classes, 

confirming a random allocation of subjects. The median [IQR] level 

of Lp(a) [nmol/L] increased with increasing number of the genetic 

score copies (13.6 [6.2-35.0], 146.3 [104.8-200.2], 261.8 [190.2-

336.0]), as expected. Descriptive analyses stratified by rs10455872 

and rs3798220 variants confirmed the same evidence (Appendix V). 

 

Table 1. Baseline characteristics, measured at the time of enrolment in the 

UK Biobank, are presented for the entire cohort and by Lp(a) instrument 

variable (IV) genetic score copies. 

Characteristics Overall 
Lp(a) IV genetic score copies 

0 1 2 

No. participants 445,774 358,469 77,658 4,250 

Age, y (SD) 57.3 (8.0) 57.2 (8.0) 57.3 (8.0) 57.2 (8.0) 

Female Sex (%) 54.3 54.2 54.3 54.3 

LDL-C, mg/dL 

(SD) 
138.0 (33.6) 137.4 (33.5) 140.4 (34.1) 142.7 (34.7) 

ApoB, mg/L (SD) 103.4 (23.8) 103.0 (23.8) 105.2 (23.9) 106.8 (24.2) 

TG, mg/dL (IQR) 
131.9 

[93.1-190.7] 

132.7 

[93.7-191.8] 

128.5 

[91-186.9] 

124 

[87.7-180.7] 

HDL-C, mg/dL 

(SD) 
56.2 (14.8) 56.1 (14.8) 56.4 (14.9) 56.5 (15.3) 

Lp(a), nmol/L 

(IQR) 

18.7 

[7.4-72.9] 

13.6 

[6.2-35.0] 

146.3 

[104.8-200.2] 

261.8 

[190.2-336] 

CRP, mg/L (IQR) 
1.33 

[0.66-2.75] 

1.3 

[0.7-2.8] 

1.3 

[0.7-2.8] 

1.3 

[0.7-2.7] 

SBP, mmHg (SD) 137.8 (18.6) 137.8 (18.6) 137.9 (18.6) 137.8 (18.6) 

BMI, kg/m2 (SD) 27.4 (4.8) 27.4 (4.8) 27.4 (4.8) 27.4 (4.9) 

No. MCE 23,032 17,110 5,313 365 
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Characteristics are presented as means and standard deviations (SD) for normally 

distributed variables, median and interquartile ranges (IQR) for non-normally 

distributed variables (triglycerides, Lp(a), and CRP), or percentages for 

dichotomous variables. LDL-C: low-density lipoprotein cholesterol; ApoB: 

apolipoprotein B; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; 

Lp(a): lipoprotein(a); SBP: systolic blood pressure; CRP: c-reactive protein; BMI: 

body mass index; MCE: major coronary events. 

 

Among subjects with the same genotype, the distribution of 

measured Lp(a) was characterized by high variability, as shown in 

Figure 1 (panel A for individuals with zero copies of the score, panel 

B for subjects with one copy of either rs10455872 or rs3798220, and 

panel C for individuals with two copies of either rs10455872 or 

rs3798220). 

 

(A) Lp(a) score equal to 0 
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(B) Lp(a) score equal to 1 

 

 

(C) Lp(a) score equal to 2 

 

Figure 1. Distribution of measured Lp(a) concentrations 

by Lp(a) genetic score.  
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Association of Lp(a) genetic score with MCE 

In Figure 2, it can be observed that the increased number of copies 

of the Lp(a) score was associated with raising trajectories of lifetime 

risk of MCE (panel A). Accordingly, we found similar rate of incident 

MCE with increasing number of copies of rs10455872 and rs3798220 

variants (panel B and C, respectively). 

 

(A) 
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(B) 

 

(C) 

 

Figure 2. Event curves for lifetime risk of major coronary events (MCE) 

by Lp(a) genetic score, rs10455872, and rs3798220 copies. Effects of 

genetically predicted Lp(a) on MCE are reported as Hazard ratios (HR) 

and 95% confidence intervals (95%CI).  
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Even among subjects with the same genotype (Lp(a) genetic score 

equal to 1 or 2 vs 0; rs10455872 equal to 1 or 2 vs 0; rs3798220 

equal to 1 or 2 vs 0), the risk is driven by genetically predicted Lp(a) 

levels (Figure 3). Increasing quintiles of Lp(a) concentrations, were 

associated with a step-wise increase in the risk of MCE in all the 

scenarios: participants in the highest Lp(a) range had a hazard ratio 

(HR) for MCE of 2.20 (95%CI: 1.95-2.49), 2.46 (95%CI: 2.07-2.92), 

and of 1.96 (95%CI: 1.64-2.34), respectively, as compared to 

participants in the lowest range. This analysis also suggests that the 

risk of ASCVD is proportional to the absolute change in Lp(a) 

concentrations. 

 

(A) Lp(a) score equal to 1 

 

(B) rs10455872 equal to 1 
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(C) rs3798220 equal to 1 

 

Figure 3. Cumulative hazard estimates of major coronary events by 

defined ranges of measured Lp(a) values among people with the same 

genotype of the Lp(a) score, and of the two variants evaluated, 

separately. 

 

In addition, even among individuals with different genotype, the 

lifetime risk of MCE was comparable regardless the number of Lp(a) 

genetic score copies, when subjects have been selecting for having 

similar median Lp(a) concentrations (Figure 4), suggesting that the 

lifetime risk can be accurately predicted using measured values when 

the genotype is unknown. 
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(A) Lp(a) score equal to 0 and 1 

 

 

(B) Lp(a) score equal to 0 and 2 

 

Figure 3. Event curves for lifetime risk of major coronary events by Lp(a) 

score among participants with comparable median Lp(a). 
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Discussion 

The results of this study highlighted that profiling the genetic 

determinants of plasma Lp(a) provides comparable value to 

measured levels of Lp(a) for ASCVD risk prediction. However, since 

even among individuals with the same genotype the risk changed 

accordingly with measured Lp(a) concentrations, our data 

emphasizes the importance of measuring Lp(a) level in clinical 

practice, even on top of the genetic background, to better identify 

patients at risk. 

Our findings are in accordance with a very recent observational 

study, published in 2020 and using a cohort of 283,540 adults 

recruited by the UK Biobank, demonstrating that an LPA genetic risk 

score offered comparable ASCVD risk prediction to directly measured 

lipoprotein(a) (193). 

An isolated Lp(a) measurement could be potentially an easier and 

cost saving approach to quantify the exposure to Lp(a) than the Lp(a) 

score. This can be explained by two key factors: (1) Lp(a) displays 

higher heritability than LDL cholesterol levels, and (2) Lp(a) levels 

are generally much more stable throughout life compared with other 

circulating lipoproteins (ie, minimal influence of age, sex, genetic 

factors outside the LPA gene, environmental factors, or currently 

available medicines) (194). Despite that, in some cases, the genetic 

determinants of elevated Lp(a) may help discern the familial risk of 

lipoprotein(a)-associated ASCVD that is not always conclusive from 

Lp(a) measurement alone. For instance, a single copy of the 

rs10455872-G allele, which is common in European populations, is 

known to associate with extremely elevated Lp(a) that can result in 

a phenotype similar to familial hypercholesteremia and thus may be 

amenable to cascade screening (195, 196). 

While some guidelines support broad population-based screening 
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with Lp(a) (197), the small improvement in powerful clinical risk 

scores has led to think that measured Lp(a) or genetic score could 

be an inefficient approach for refinement of ASCVD risk among 

asymptomatic middle-aged adults broadly. However, because Lp(a) 

levels display an extremely right-skewed distribution in the general 

population (potentially varying more than 1000-fold between 

individuals, approximately 0.2 to ≥200 mg/dL), only individuals with 

extreme Lp(a) levels greater than 200 mg/dL could have a 3- to 4-

fold increased lifetime risk of ASCVD (198, 199). In such cases, the 

modest improvement in ASCVD risk discrimination that was observed 

in this study, when continuous levels of measured Lp(a) or Lp(a) 

genetic score were added to clinical risk scores, may underestimate 

cardiovascular risk. This is probably the main reason for the limited 

predictive power of all the reclassification models that included the 

entire range of Lp(a) levels in ASCVD risk discrimination and failed 

to accurately quantify the cardiovascular risk associated with the 

extremes of elevated Lp(a). 

Overall, evidence seems to suggest a role for Lp(a) 

genotype/measurement in refining cardiovascular risk prediction, 

although limitedly to specific circumstances. 

 

Limitations 

First, participants in the UK biobank are a self-selected group who 

tend to be at lower risk of cardiovascular events than members of 

other populations. As a result, all analyses should be repeated in 

populations at higher risk. In addition, our analysis was restricted to 

participants who self-identified as being of white European ancestry, 

and therefore results may not apply to persons of other ethnicities. 

As a result, this study should be repeated in other populations. 
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Conclusion 

Lp(a) genetic score provides comparable risk prediction for incident 

ASCVD compared with measured Lp(a). Since the distribution of 

measured Lp(a) is quite wide even among people with the same 

genotype, it may be preferable to rely on measured values for the 

management of patients in clinical practice. Our evidence supports 

the role of Lp(a) as a risk-enhancing factor, but further researches 

are needed to improve guideline-supported risk scores.  
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5.4 Does Lipoprotein(a) have a prothrombotic effect? 

 

Background 

Since its discovery, lipoprotein(a) [Lp(a)] has been the subject of 

controversy and debate about its physiological functions and roles in 

atherogenesis, thrombogenesis and development of cardiovascular 

diseases. 

In recent years, a number of prospective epidemiological and clinical 

studies have shown that elevated Lp(a) is an independent risk factor 

for development of coronary and cerebral atherosclerosis (200). This 

has been also confirmed by Mendelian randomization studies, 

showing a causal dose-response effect of exposure to alleles 

associated with higher Lp(a) on the risk of coronary disease (188). 

The exact physiological role of Lp(a) has not been fully elucidated, 

however it has been speculated a possible implication of Lp(a) in 

inhibiting the activation of transforming growth factor and 

contributing to the progress of arterial atherosclerotic lesions by 

promoting proliferation of vascular smooth muscle cells and 

migration of smooth muscle cells to endothelial cells, or by acting as 

a proinflammatory mediator, increasing the lesion formation in 

atherosclerotic plaques (201). 

Due to structural homology with plasminogen, Lp(a) may also 

compete with plasminogen for its receptors on endothelial cells, thus 

leading to diminished plasmin formation, delaying clot lysis, and 

favouring venous thrombosis (202). However, evidence on its role as 

a risk factor for venous thromboembolic events (VTE) remains 

controversial. Indeed, although convincing epidemiological evidences 

were brought forward to propose a causal role of Lp(a) in the 

development, progression, and complication of occlusive arterial 

disease, data supporting a positive association between elevated 
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Lp(a) values and VTE are less consistent. A previous systematic 

review and meta-analysis of the literature, conducted a decade ago 

and including a limited number of studies, found a statistically 

significant, albeit modest, association between high Lp(a) (>300 

mg/L) and VTE (odds ratio [OR]: 1.87, 95%CI: 1.51–2.30) (203). 

On the other hand, a more recent study reported an association 

between the two variants of the LPA gene (rs10455872 and 

rs3798220 polymorphisms) and systemic and coronary 

atherosclerosis, but not with VTE (204). 

Therefore, to better clarify the relation between Lp(a) levels and VTE, 

we conducted a study to address whether Lp(a) has a genetically and 

clinically meaningful venous or arterial prothrombotic effect. 

 

Methods 

Study population 

A total of 445,744 participants enrolled in the UK Biobank with 

complete genetic and principal component data who self-identified as 

being of white ancestry were included in the study. Participants 

underwent genotyping with one of two closely related custom arrays 

(UK BiLEVE Axiom Array or the UK Biobank Axiom Array) consisting 

of over 800,000 genetic markers, with additional genotypes imputed 

using the Haplotype Reference Consortium resource, the UK10K 

panel, and the 1000 Genomes panel. The KING toolset was used to 

identify up to third-degree relatedness based on kinship coefficients 

>0.044 (more details in Appendix I). 

 

Construction of Lp(a) polygenic score 

It has been recognized that more than 90% of variation of plasma 

Lp(a) concentration is genetically regulated, with Lp(a) gene (LPA) 

being a major determinant. To date, several genetic variants in the 
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LPA gene have been shown to influence Lp(a) plasma values, with 

rs3798220 (Ile4399→Met) and rs10455872 (intronic A/G 

polymorphism) polymorphisms accounting in particular for at least 

40% of such variation (136). Because these two variants are strongly 

associated with plasma Lp(a) concentrations, they can serve as 

surrogate markers for Lp(a) levels, reflecting also lifelong elevation 

in plasma Lp(a) and eliminating the artefact of “reverse causality”. 

In this study, an Lp(a) polygenic score was calculated for each UK 

Biobank participant by summing the number of risk-increasing alleles 

inherited at rs3798220 and rs10455872 variants weighted by the 

effect size for each allele (Appendix IV). 

 

Lipoprotein(a) measurement 

Lipoprotein(a) was measured in nanomoles per litre at study 

enrolment using an immunoturbidimetric method on the Beckman 

Coulter AU5800 platform (Randox Bioscience, UK). 

 

Study outcomes and statistical analysis  

The primary outcome was VTE (data Fields: #20002, #4012, #4022, 

#131308, #131308), a composite of deep vein thrombosis (DVT) and 

pulmonary embolism (PE). 

First, we evaluated the effect of increase Lp(a) on major coronary 

events (MCE), defined as the first occurrence of either a fatal or non-

fatal myocardial infarction, or coronary revascularization, for a 

positive control. The analysis used Cox proportional hazards models 

adjusted for age, sex, and the first 10 principal components of 

ancestry, with age as the time scale. The risk was estimated using 

the Lp(a) genetic score and concentrations of measured Lp(a) (both 

in continuous [each 100 nmol/L increase in measured level] and 

dividing the distribution into deciles [where the first six deciles were 
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grouped together and used as reference]) in sensitivity analyses. 

Then, adjusted logistic regressions were used to estimate the effect 

of measured and genetically determined Lp(a) (as defined above) on 

VTE, DVT, and PE. For further validation, the effect of 100 nmol/L 

increase in genetically determined Lp(a) level on MCE were also 

assessed stratifying by GUCY1A3 score and by Factor II and V score 

(Appendix VI), that mimic the effect of antiplatelet and 

antithrombin (anticoagulant) therapies respectively, to assess 

whether these treatments are likely to influence cardiovascular risk 

associated with high Lp(a) levels. 

All analyses were performed using Stata (version 16; StataCorp). A 

2-tailed p-value less than 0.05 was considered statistically 

significant. 

 

Results 

A total of 445,744 participants were included in the study. The 

median (SD) age at study enrolment was about 57 (8) years, with 

no difference observed among Lp(a) genetic score genotype (Table 

1). No differences were also observed in the distribution of all the 

other covariates evaluated, across the different classes, confirming a 

random allocation of subjects. The median [IQR] level of Lp(a) 

[nmol/L] increased with increasing number of the genetic score 

copies (13.6 [6.2-35.0], 146.3 [104.8-200.2], 261.8 [190.2-336.0]). 

 

Table 1. Baseline characteristics, measured at the time of enrolment in the 

UK Biobank, are presented for the entire cohort and by Lp(a) instrument 

variable (IV) genetic score copies. 

Characteristics Overall 
Lp(a) IV genetic score copies 

0 1 2 

No. participants 445,774 358,469 77,658 4,250 
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Age, y (SD) 57.3 (8.0) 57.2 (8.0) 57.3 (8.0) 57.2 (8.0) 

Female Sex (%) 54.3 54.2 54.3 54.3 

LDL-C, mg/dL 

(SD) 
138.0 (33.6) 137.4 (33.5) 140.4 (34.1) 142.7 (34.7) 

ApoB, mg/L (SD) 103.4 (23.8) 103.0 (23.8) 105.2 (23.9) 106.8 (24.2) 

TG, mg/dL (IQR) 
131.9 

[93.1-190.7] 

132.7 

[93.7-191.8] 

128.5 

[91-186.9] 

124 

[87.7-180.7] 

HDL-C, mg/dL 

(SD) 
56.2 (14.8) 56.1 (14.8) 56.4 (14.9) 56.5 (15.3) 

Lp(a), nmol/L 

(IQR) 

18.7 

[7.4-72.9] 

13.6 

[6.2-35.0] 

146.3 

[104.8-200.2] 

261.8 

[190.2-336] 

CRP, mg/L (IQR) 
1.3 

[0.7-2.8] 

1.3 

[0.7-2.8] 

1.3 

[0.7-2.8] 

1.3 

[0.7-2.7] 

SBP, mmHg (SD) 137.8 (18.6) 137.8 (18.6) 137.9 (18.6) 137.8 (18.6) 

BMI, kg/m2 (SD) 27.4 (4.8) 27.4 (4.8) 27.4 (4.8) 27.4 (4.9) 

Current smoker 

(%) 
7.2 7.2 7.2 6.8 

No. MCE 23,032 17,110 5,313 365 

No. VTE events 15,974 12,866 2,762 153 

No. DVT events 11,079 8,934 1,906 106 

No. PE events 6,602 5,320 1,144 58 

Characteristics are presented as means and standard deviations (SD) for normally 

distributed variables, median and interquartile ranges (IQR) for non-normally 

distributed variables (triglycerides, Lp(a), and CRP), or percentages for 

dichotomous variables. LDL-C: low-density lipoprotein cholesterol; ApoB: 

apolipoprotein B; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; 

Lp(a): lipoprotein(a); SBP: systolic blood pressure; CRP: c-reactive protein; BMI: 

body mass index; WHR: waist to hip ratio. MCE: major coronary events; VTE: 

venous thromboembolism; DVT: deep vein thrombosis, PE: pulmonary embolism. 

 

Associations of lipoprotein(a) levels with major coronary events 

Each 100 nmol/L increase in genetically predicted Lp(a) levels was 

associated with a 35% higher risk of MCE (hazard ratio [HR]: 1.35, 

95%CI: 1.32-1.38). There was also a step-wise increase in the risk 

of MCE with increasing number of copies of the genetic score (Figure 

1): participants with both copies of rs10455872 and rs3798220 
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variants had a HR for MCE of 1.89 (95%CI: 1.70-2.10), while the risk 

of MCE was 47% higher (HR: 1.47, 95%CI: 1.43-1.52) for subjects 

with one copies, compared with the reference group (delta in median 

Lp(a) equal to 262 nmol/L and about 146 nmol/L, respectively). 

In the sensitivity analysis, using measured Lp(a), increasing deciles 

of Lp(a) concentration were still associated with a step-wise increase 

in the risk of MCE (Appendix VII): participants in the highest decile 

had a HR for MCE of 2.14 (95%CI: 2.06-2.22) as compared to 

participants in the reference group (delta in median Lp(a) level equal 

to 212 nmol/L). 

 

 

Figure 1. Effect of Lp(a) on major coronary events. 

*IV: instrumental variable; CI: confidence interval. 

 

Associations of Lp(a) with venous thromboembolism, deep vein 

thrombosis, and pulmonary embolism 

There was no statistically significant evidence of an association of 

genetically predicted Lp(a) concentrations (both for 100 nmol/L 
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higher level and increasing numbers of genetic score copies) with 

VTE (Figure 2, panel A), DVT (Figure 2, panel B), and PE (Figure 

2, panel C). Same evidence was observed using measured Lp(a) as 

exposure (Appendix VIII). 

 

(A) 

 

(B) 
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(C) 

 

Figure 2. Effect of Lp(a) on venous thromboembolism (VTE, panel A), 

deep vein thrombosis (DVT, panel B), and 

pulmonary embolism (PE, panel C). * CI: confidence interval. 

 

Stratified analyses by GUCY1A3 and Factor II and V scores 

Despite the increase of the number of copies of GUCY1A3 score 

produced an increase in antiplatelet inhibition that corresponds to a 

step-wise clinically significant reduction of cardiovascular events 

(Figure 3, panel A), no effect was observed for increasing Lp(a) 

levels. In fact, no differences were observed in the association 

between genetically predicted Lp(a) concentrations (each 100 nmol/L 

increase concentrations) and the risk of MCE stratifying by GUCY1A3 

score copies (Figure 3, panel B). Similarly, in Figure 4 (panel A) 

there is a clear step-wise increase in greater antithrombotic 

(anticoagulant) effect that produced a significant step-wise decrease 

in the risk of VTE, which in turn does not impact the effect of Lp(a) 

on MCE, as can be observed in Figure 4 panel B. This evidence 

suggests that platelet inhibition and anticoagulant effect are not 
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mediating the association between Lp(a) levels and MCE risk, since 

the trend persisted in the cohort regardless of whether they carried 

gene variants for platelet activation, or for Factor II and Factor V 

genes for prothrombin disorders. 

 

(A) Effect of GUCY1A3 instrumental variable score on MCE 

 

 

(B) Effect of Lp(a) on MCE stratified by GUCY1A3 score 

 

 

Figure 3. Effect of Lp(a) and GUCY1A3 score on major coronary events 

(MCE). * CI: confidence interval.  
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(A) Effect of Factor II and V instrumental variable score on VTE 

 

 

(B) Effect of Lp(a) on MCE stratified by Factor II and V score 

 

Figure 4. Effect of Lp(a) and Factor II and V score on major coronary 

events (MCE) and venous thromboembolism (VTE), respectively. 

* CI: confidence interval. 

 

Discussion 

We found that Lp(a) does not appear to have a clinically significant 

venous or arterial prothrombotic effect. Indeed, genetically predicted 

and measured Lp(a) concentrations were not associated with 

clinically significant thrombotic events, neither the effect of increased 
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Lp(a) levels on MCE was attenuated by either genetically determined 

lifelong platelet or thrombin inhibition. This is extremely important 

for designing trials enrolling people with a previous cardiovascular 

event, and accordingly are on antiplatelet or anticoagulant therapy, 

because this means that the benefit obtainable from the reduction of 

high Lp(a) levels is not attenuate by these therapies (an elevated 

Lp(a) value is still leading to high cardiovascular risk, despite patients 

are taking these medications). Likewise, high Lp(a) concentrations in 

individuals in primary prevention cannot probably be significantly 

reduced with these therapies. 

Apolipoprotein (a) moiety has sequence homology to plasminogen by 

the presence of kringle IV and kringle V domains as well as a protease 

domain, which however is catalytically inactive. The similarity to 

plasminogen as well as the presence of oxidized phospholipids have 

been made responsible for the thrombogenic properties of Lp(a) 

which include the inhibition of fibrinolysis, the induction of 

plasminogen activator inhibitor type 1 (PAI-1) expression in 

endothelial cells, as well as the increasing of activity of tissue factor 

pathway inhibitor and platelet responsiveness (205). These 

properties have led to the hypothesis that elevated plasma 

concentrations of Lp(a) are a risk factor for purely thrombotic 

disorders, such as venous thromboembolism. 

In the past literature, the majority of studies which investigated the 

association of Lp(a) with VTE were cross-sectional rather than 

prospective, resulting in the inability to make causal inference. The 

most recent meta-analysis analysed the data of ten case-control and 

cohort studies encompassing 13,541 subjects of whom 5660 had a 

history of deep vein thrombosis and/or pulmonary embolism (206). 

As the cut-off defining elevated Lp(a), the authors used the upper 

limit of the manufacturer’s product reference range (usually 
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30 mg/dL) in nine studies and the 75th percentile of Lp(a) value in 

the control group in one study. With these definitions, elevated Lp(a) 

was associated with the presence of VTE at a significant odds ratio of 

1.56 (95%CI: 1.36-1.79). Much stronger risk associations were 

found in patients who have a very high risk of VTE, for example 

patients immobilized due to paraplegia. 

In contrast to case–control studies, the data of prospective studies 

are more controversial. Among 8960 participants of the Copenhagen 

City Heart Study, of whom 735 experienced a VTE event during 15 

to 18 years of follow-up, Kamstrup et al. did not find any significant 

association of Lp(a) levels with the incidence of VTE. Adjusted hazard 

ratios for second (median, IQR: 17, 12–27 mg/dL) and third tertiles 

(median, IQR: 59, 40–94 mg/dL) vs. first tertile of Lp(a) (median, 

IQR: 3,1–5 mg/dL) were 1.1 (95%CI 0.8–1.4) and 0.8 (95%CI 0.6–

1.1), respectively (207). Likewise, in a 12-center study of 510 

patients with first unprovoked VTE treated for 5–7 months with 

anticoagulants and followed up for 16.9 ± 11.2 months, Rodgers et 

al. did not find any significant association of Lp(a) levels >300 mg/L 

with risk of recurrent VTE events (relative risk 1.4; 95%CI 0.7–2.6) 

(208). Conversely, in a study of 467 patients with first VTE followed 

up for one year, Marcucci et al. found a 5-fold increased risk of 

recurrent VTE for Lp(a) >30 mg/dL (OR 5.1; 95%CI 3.1–8.4) which 

was similar to that for hyperhomocysteinemia and even higher than 

that for factor V Leiden or the factor II 20210GA polymorphism 

(209). 

Mendelian randomization studies also made controversial findings on 

the association of LPA polymorphisms with risk of VTE. Kamstrup et 

al. (207) excluded any contribution of the kringle IV repeat 

polymorphism to VTE in the Copenhagen City Heart Study (N = 9190, 

443 events) and the Copenhagen General Population study 
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(N = 28,538; 926 with history of VTE). Of note, in the same study, 

the authors found genetically causal associations of Lp(a) levels and 

kringle IV repeats with coronary, carotid and femoral atherosclerosis 

as well as of factor V Leiden with VTE. A more recent but smaller 

study of 516 patients with a history of VTE and 1117 controls found 

significant inverse and dose-dependent associations of kringle IV 

repeat numbers with venous thrombosis (210). More recently, 

however, genetic approaches have provided strong evidence against 

a role for Lp(a) in venous thrombosis. When rs3798220 and 

rs10455872 variants have been used as proxy to assess associations 

between genetically elevated Lp(a) levels and different forms of 

venous thrombosis, the results have been consistently negative (207, 

211). These findings, together with our analysis, quite definitely rule 

out a role for elevated Lp(a) in the aetiology of venous thrombosis 

and a pro-coagulant effect of the latter. 

 

Limitations 

Participants in the UK biobank are a self-selected group who tend to 

be at lower risk of cardiovascular events than members of other 

populations. Thus, all analyses should be repeated in populations at 

higher risk. In addition, the analysis was restricted to participants 

who self-identified as being of white European ancestry, and 

therefore results may not apply to persons of other ethnicities. 

 

Conclusion 

Taken together the results of this study seem to argue against a 

clinically significant venous or arterial prothrombotic effect for Lp(a). 

Moreover, the increased risk of MCE caused by elevated Lp(a) is 

unlikely to be reduced by either an antiplatelet or antithrombin 

therapy.  
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5.5 A practical strategy to use measured 

lipoprotein(a) levels to guide clinical management 

 

Background 

Despite significant advances in the diagnosis and therapy of 

cardiovascular disease (CVD), patients continue to experience 

myocardial infarction, stroke, peripheral arterial disease, and need 

for revascularization. The advances in identifying modifiable risk 

factors for CVD, including smoking, hypertension, dyslipidemias, 

diabetes mellitus, and obesity, have allowed the development of 

practice patterns and evidence-based guidelines in medical therapy 

and revascularization that have contributed to the reduction of CVD 

mortality. However, ∼40% of all deaths can be still attributed to CVD 

(212). These observations suggest that probably the presence of 

additional modifiable risk factors contributes to CVD risk. 

Lipid disorders can be broadly divided into 4 “clinical” categories: 

elevated low-density lipoprotein cholesterol (LDL-C), low high-

density lipoprotein cholesterol (HDL-C), elevated triglycerides, and 

elevated lipoprotein(a) [Lp(a)]. In the current genetic era, it has 

become apparent that only elevated levels of apolipoprotein B-100 

(apoB)−containing lipoproteins (intermediate-density lipoprotein, 

LDL, Lp(a), very low-density lipoprotein) are causally associated with 

increased cardiovascular risk. 

At the clinical level, elevated Lp(a) has been the least studied of these 

disorders. However, this is rapidly changing with the growing 

awareness of its role in CVD and calcific aortic valve stenosis, and 

the potential of novel therapies to substantially lower Lp(a) levels. 

Mendelian randomization studies indeed showed a dose-response 

effect of exposure to alleles associated with higher Lp(a) on the risk 

of coronary disease, suggesting a causal relation. The main issue 
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remains to understand and estimate how much Lp(a) should be 

decreased to achieve a clinically meaningful effect. 

Lp(a) levels show a highly skewed distribution in the population, such 

that the vast majority of people (about 80%) have levels below 50 

mg/dL. If it is true that only very large reductions of Lp(a) are likely 

to yield clinically meaningful risk reductions, this means that when 

looking at the distribution of Lp(a) levels in the population, only a 

small minority of patients have the potential to benefit from lowering 

Lp(a) concentration: specifically, only those with very high levels 

(191). 

This finding likely explains why therapies that reduce Lp(a) 

concentration by 20% to 35% have failed to provide clear evidence 

that decreasing Lp(a) concentration reduces the risk of 

cardiovascular events in previous randomized trials. The median 

Lp(a) concentration among participants enrolled in these trials was 

approximately 12 to 20 mg/dL (213, 214). Therefore, a 30% 

reduction in Lp(a) concentrations would translate into only a 3- to 6-

mg/dL absolute reduction in circulating plasma Lp(a) concentrations, 

a small absolute reduction that was likely far too modest to 

appreciably reduce the risk of cardiovascular events in a short-term 

randomized trial. To date, since evidence from randomized trials are 

inconsistent, guideline suggests to focus on reducing LDL-C and other 

apoB-containing lipoproteins as first line to most effectively reduce 

cardiovascular risk, even in case of elevated Lp(a). However, if it has 

been estimated how much Lp(a) concentration must be lowered 

pharmacologically to produce the same change as lowering LDL-C 

level by 38.67 mg/dL (i.e., 1 mmol/L) (191), it is unknown how much 

LDL-C must be further lowered in order to overcome the extra 

cardiovascular risk due to increased levels of Lp(a). 

Thus, we sought to evaluate the amount of further LDL-C reduction 
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needed to abolish the extra risk due to increased levels of Lp(a), in 

order to provide specific clinical guideline that may help the therapy 

management in clinical practice. 

 

Methods 

Study population 

A total of 445,744 participants enrolled in the UK Biobank with 

complete genetic and principal component data who self-identified as 

being of white ancestry were included in the study. Participants 

underwent genotyping with one of two closely related custom arrays 

(UK BiLEVE Axiom Array or the UK Biobank Axiom Array) consisting 

of over 800,000 genetic markers, with additional genotypes imputed 

using the Haplotype Reference Consortium resource, the UK10K 

panel, and the 1000 Genomes panel. The KING toolset was used to 

identify up to third-degree relatedness based on kinship coefficients 

>0.044 (more details in Appendix I). 

 

Lipoprotein(a) measurement 

Lipoprotein(a) was measured in nanomoles per litre at study 

enrolment using an immunoturbidimetric method on the Beckman 

Coulter AU5800 platform (Randox Bioscience, UK). 

 

Construction of Lp(a) polygenic score 

To date, two specific genetic variants in the LPA gene have been 

shown to influence Lp(a) plasma values: rs3798220 (Ile4399→Met) 

and rs10455872 (intronic A/G polymorphism) (136). An Lp(a) 

polygenic score was calculated for each UK Biobank participants by 

summing the number risk-increasing alleles inherited at rs3798220 

and rs10455872 variants weighted by the effect size for each allele 

(Appendix IV). 
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Construction of the LDL instrumental variable 

To construct the LDL instrumental variable, all variants associated 

with LDL at genome-wide level of significance (p<5x10-8) as reported 

in external consortia were included in the polygenic score (181). The 

LDL variants were then pruned by excluding all variants with a 

linkage disequilibrium (LD) r2>0.1 to select independently inherited 

variants for inclusion in the instrumental variable genetic score. An 

LDL score was calculated for each participant by summing the 

number of LDL-increasing alleles inherited at each variant included 

in the LDL score weighted by the LDL effect size of each allele 

(Appendix III). 

 

Study outcomes and statistical analysis  

The primary outcome was major coronary events (MCE), defined as 

the first occurrence of either a fatal or non-fatal myocardial infarction 

(MI), or coronary revascularization. The analysis used Cox 

proportional hazards models adjusted for age, sex, and the first 10 

principal components of ancestry, with age as the time scale. Each 

participant was censored at the age they experienced either a 

primary outcome event, death due to a cause other than MI (treated 

as a competing risk), or at the age of last reported follow-up. The 

dates of all incident events were recorded from hospital episode 

statistics, while the dates of events that were prevalent at the time 

of enrolment into UK Biobank were recorded either from hospital 

episode statistics or self-reported. Cumulative lifetime risk of MCE 

was plotted using Kaplan-Meier curves. 

All analyses were performed using Stata (version 16; StataCorp). A 

2-tailed p-value less than 0.05 was considered statistically 

significant. 
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Results 

Participants characteristics 

A total of 445,744 participants were included in the study. The 

median (SD) age at study enrolment was about 57 (8) years, with 

no difference observed among Lp(a) genetic score genotype (Table 

1). No differences were also observed in the distribution of all the 

other covariates, across different classes, confirming a random 

allocation of subjects. The median [IQR] level of Lp(a) [nmol/L] 

increased with increasing number of the genetic score copies (13.6 

[6.2-35.0], 146.3 [104.8-200.2], 261.8 [190.2-336.0]). Baseline 

characteristics stratified by sex are presented in Appendix IX. 

 

Table 1. Baseline characteristics, measured at the time of enrolment in the 

UK Biobank, are presented for the entire cohort and by Lp(a) instrument 

variable (IV) genetic score copies. 

Characteristics Overall 
Lp(a) IV genetic score copies 

0 1 2 

No. participants 445,774 358,469 77,658 4,250 

Age, y (SD) 57.3 (8.0) 57.2 (8.0) 57.3 (8.0) 57.2 (8.0) 

Female Sex (%) 54.3 54.2 54.3 54.3 

LDL-C, mg/dL 

(SD) 
138.0 (33.6) 137.4 (33.5) 140.4 (34.1) 142.7 (34.7) 

ApoB, mg/L (SD) 103.4 (23.8) 103.0 (23.8) 105.2 (23.9) 106.8 (24.2) 

TG, mg/dL (IQR) 
131.9 

[93.1-190.7] 

132.7 

[93.7-191.8] 

128.5 

[91-186.9] 

124 

[87.7-180.7] 

HDL-C, mg/dL 

(SD) 
56.2 (14.8) 56.1 (14.8) 56.4 (14.9) 56.5 (15.3) 

Lp(a), nmol/L 

(IQR) 

18.7 

[7.4-72.9] 

13.6 

[6.2-35.0] 

146.3 

[104.8-200.2] 

261.8 

[190.2-336] 

CRP, mg/L (IQR) 
1.33 

[0.66-2.75] 

1.3 

[0.7-2.8] 

1.3 

[0.7-2.8] 

1.3 

[0.7-2.7] 
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SBP, mmHg (SD) 137.8 (18.6) 137.8 (18.6) 137.9 (18.6) 137.8 (18.6) 

BMI, kg/m2 (SD) 27.4 (4.8) 27.4 (4.8) 27.4 (4.8) 27.4 (4.9) 

Current smoker 

(%) 
7.2 7.2 7.2 6.8 

No. MCE 23,032 17,110 5,313 365 

Characteristics are presented as means and standard deviations (SD) for normally 

distributed variables, median and interquartile ranges (IQR) for non-normally 

distributed variables (triglycerides, Lp(a), and CRP), or percentages for 

dichotomous variables. LDL-C: low-density lipoprotein cholesterol; ApoB: 

apolipoprotein B; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; 

Lp(a): lipoprotein(a); SBP: systolic blood pressure; CRP: c-reactive protein; BMI: 

body mass index; WHR: waist to hip ratio. MCE: major coronary events. 

 

Association of Lp(a) with major coronary events 

Participants with one copy of either rs10455872 or rs3798220 had a 

hazard ratio (HR) for MCE of 1.47 (95%CI: 1.42-1.51), compared 

with the reference group (no copies), respectively, attributable to a 

difference in Lp(a) levels of 132 nmol/L (Figure 1 panel A). The 

lifetime risk of MCE was constant over time, considering different 

enter time in the survival analysis (Figure 1 panel B and C). 

 

(A) 
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(B) 

 

(C) 

 

Figure 1. Event curves for lifetime risk of major coronary events (MCE) 

by Lp(a) genetic score copies (one or zero) at different enter time (40 

years panel A, 50 years panel B, 60 years panel C). Effects of genetically 

predicted Lp(a) on MCE are reported as Hazard ratios (HR) and 95% 

confidence intervals (95%CI). 
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In the same way, increasing median concentrations of measured 

Lp(a) levels, were associated with increasingly steeper trajectories of 

lifetime risk for MCE, with the risk remaining stable even considering 

different enter time (Figure 2). 

 

(A) 

 

(B) 
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(C) 

 

Figure 2. Event curves for lifetime risk of major coronary events by 

measured Lp(a) groups at different enter time (40 years panel A, 

50 years panel B, 60 years panel C). 

 

Overcoming the risk caused by high Lp(a) by reducing LDL 

cholesterol levels 

In Figure 3 (panel A) the trajectories of the lifetime risk of major 

coronary events are plotted for subjects with one copy of either 

rs10455872 or rs3798220 variant (red line) and for individuals 

belonging to the reference group (no copies, blue line). In both 

groups subjects are characterized by relatively high and comparable 

LDL-C values (selected from the third tertile of the LDL instrumental 

variable genetic score; median values around 147 mg/dL), while they 

mainly differ for median Lp(a) concentrations (about 148 nmol/L vs 

14 nmol/L, respectively), which are responsible for the observed 

increase MCE risk in the first group. The green curve, added to the 

graph, represents subjects having similar median Lp(a) value 
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compared with those in the red curve (not statistically significant 

difference) but exposed to 19 mg/dL lower LDL-C lifetime. In other 

words, the lifetime exposure to about half mmol/L lower LDL-C, 

without a clinically significant change in Lp(a) concentration, is able 

to abolish the extra risk caused by high Lp(a) levels, reducing the 

risk to exactly the same level observed in subjects belonging to the 

reference group and characterized by low Lp(a) concentration (the 

green curve is superimposable at every single age with the blue one). 

This extra reduction of LDL-C, is able to overcome the risk caused by 

elevated Lp(a) level, also considering different enter time (panel B 

and C). In sensitivity analyses stratified by sex, we confirmed all 

these results both in male and female sex cohorts (Appendix X and 

Appendix XI), and also using measured Lp(a) concentrations as 

exposure (Appendix XII). 

 

(A) 
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(B) 

 

(C) 

 

Figure 3. Event curves for lifetime risk of major coronary events by Lp(a) 

genetic score, LDL instrumental variable, at different enter time 

(40 years panel A, 50 years panel B, 60 years panel C). 
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Extra LDL-C reduction needed to abolish the risk due to high Lp(a) 

Table 2 reports the amount of extra LDL-C reduction (in mmol/L) 

needed to abolish the risk due to increased levels of Lp(a), specifically 

for different Lp(a) values at baseline (expressed in nmol/L) and 

depending on what age the treatment is started. 

To obtain the amount of extra LDL-C reduction needed to overcome 

the risk (Y), the following formula was applied: 

 

𝑌 = ln(𝑅𝑅) / [𝑋 ∗ (−0.0126) − 0.1601 ] 

 

For example, if a subject is in the 90th percentile and has an Lp(a) 

level of 170 nmol/L (150 nmol higher than the median level in the 

population, approximated to 20 nmol/L), which increases the lifetime 

risk of MCE of 60% (for each 100 nmol/L increment), in order to 

overcome this extra risk, he/she has to lower LDL-C by an extra 

amount of 0.71 mmol/L (27.46 mg/dL) starting at age 40. However, 

if this subject, instead of starting the treatment at 40 years, decides 

to start reducing cholesterol at 60 years, LDL-C has to be additionally 

lowered by more than 1 mmol in order to abolish the same risk to 

which the subject is exposed due to elevate levels of Lp(a). Same 

interpretation can be made for different starting points of Lp(a) 

concentration or age at which the treatment is initiated. 

Overall, for people below the 90th percentile, the LDL-C has to be 

lowered just by a quarter of a 1 mmol if the lipid-lowering treatment 

is started at age 30, to overcome the risk caused by high Lp(a). If 

they survive to 40, 50, 60 years, and the risk is still high, each decade 

the treatment is started later, a less relative risk reduction is 

produced. Since LDL-C has a cumulative effect over time, the longer 

is waited to start the treatment, the more aggressive the LDL-C has 

to be decreased to reduce the risk due to high Lp(a) concentrations. 
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Table 2. Extra LDL cholesterol reduction needed to abolish the risk due to 

high Lp(a), compared with the median value in the population. 

    Age initiate treatment (years) 

Lp(a) 

nmol/L 
Percentile 

∆ 

nmol/L 

HR for 

MCE 
30 40 50 60 

320 99 300 2.56 1.19 1.41 1.74 2.28 

270 97.5 250 2.19 0.99 1.18 1.45 1.90 

220 93.5 200 1.87 0.79 0.94 1.16 1.52 

170 90 150 1.60 0.59 0.71 0.87 1.14 

120 82.5 100 1.37 0.40 0.47 0.58 0.76 

70 75 50 1.17 0.20 0.24 0.29 0.38 

20 50 ref ref ref ref ref ref 

HR: hazard ratio. Estimates have been standardized for 100 nmol/L increment in 

Lp(a) level; MCE: major coronary events; the extra LDL-C reduction needed to 

abolish the risk due to high Lp(a) is reported in grey stratified by different enter 

time and by different Lp(a) concentrations. LDL cholesterol is expressed as 

mmol/L, to covert LDL cholesterol to milligrams per decilitre, multiply by 38.67. A 

step by step example of how to calculate the extra LDL cholesterol reduction 

needed to abolish the risk due to high Lp(a), compared with the median value in 

the population, if the treatment is started at 40 years, is presented in Appendix 

XIII. 

 

Discussion 

The results of this study show how to use Lp(a) clinically. Specifically, 

we quantify how much LDL-C has to be lowered to further reduce the 

risk and overcame the increased risk caused by high Lp(a) 

concentrations. However, because LDL-C has a cumulative effect 

over time, the earlier we start treating patients, the less LDL-C has 

to be reduced in order to overcome that risk. By contrast, the later 

we start the lipid-lowering treatment, the more aggressive LDL-C has 

to be lowered in order to abolish the risk. This hepatizes that it is 

important to screen for Lp(a) level earlier, so LDL-C can be lowered 

by a modest amount to overcome the risk, but also that it is 

important to screen for Lp(a) also later in life, because people with 

high Lp(a) concentrations are exposed to a really high risk and to 
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overcome it the LDL-C has to be decreased more aggressively. 

Although genetic and epidemiological data strongly support the 

prognostic causality of Lp(a), patients with elevated Lp(a) are 

significantly under-diagnosed and the screening is frequently 

opportunistic rather than systematic. Lp(a) concentrations remain 

quite stable through the life course; this means that it is possible to 

measure Lp(a) once in a person’s lifetime to ascertain risk. 

Because most patients are not aware of their Lp(a)-mediated risk, 

there is a rationale to add Lp(a) measurement to the lipid panel of a 

patient in whom lipids are measured for the first time. If Lp(a) is in 

the normal range, then subsequent measurements are not needed, 

irrespective of any change in the patient’s medical therapy. If Lp(a) 

level is elevated, we offered a strategy to estimate the cardiovascular 

risk to which the subject is exposed and a solution to overcome this 

risk, quantifying the additional amount of LDL-C that has to be 

lowered in order to abolish this risk, without acting through Lp(a)-

lowering drugs. 

So far, it was still unclear if Lp(a) remains a risk factor when LDL-C 

is controlled. Previous data from angiographic progression studies 

suggested that Lp(a) is no longer a risk factor when LDL-C is under 

control. For this reason, many clinicians have practiced with the 

assumption that when an elevated Lp(a) level is discovered, the most 

appropriate course of action was to treat the LDL-C and not the Lp(a). 

Recent studies have suggested that this is a false assumption, and 

that elevated Lp(a) remains a risk factor even in patients who achieve 

LDL-C <70 mg/dL (215-217). Furthermore, the concept of 

diminishing returns is now apparent in outcomes trials of LDL-C 

lowering, in which the starting LDL-C is often <100 mg/dL, but the 

absolute risk reduction is small. For example, in IMPROVE-IT 

(Improved Reduction of Outcomes: Vytorin Efficacy International 
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Trial) (218), after a median follow-up of 6 years, the major adverse 

cardiac event (MACE) rate was 32.7% in the simvastatin/ezetimibe 

group, which achieved LDL-C of 54 mg/dL, and 34.7% in the 

simvastatin-alone arm, which achieved LDL-C of 70 mg/dL. Although 

this was a laudatory achievement, a 32.7% recurrent hard MACE rate 

in the setting of an LDL-C of 54 mg/dL suggests that LDL-C–directed 

risk reduction might not reduce events optimally, even with very 

effective therapies such as PCSK9 inhibitors. Recent reports from the 

AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome 

with Low HDL/High Triglyceride and Impact on Global Health 

Outcomes) (215), JUPITER (Justification for the Use of Statins in 

Prevention: an Intervention Trial Evaluating Rosuvastatin) (216), and 

LIPID (Long-Term Intervention with Pravastatin in Ischaemic 

Disease) (217) trials have suggested that a portion of this “residual 

risk” is due to highly elevated Lp(a) in the setting of controlled LDL-

C levels. For example, in AIM-HIGH, patients who achieved LDL-C 

levels of 65.2 mg/dL and had Lp(a) >125 nmol/L (∼50 mg/dL), which 

was ≥75th percentile of Lp(a) levels, had an 89% higher risk of 

MACEs compared with those who had a similar LDL-C, but low Lp(a) 

level. In JUPITER, patients who achieved LDL-C of 55.0 mg/dL and 

Lp(a) >54 nmol/L (∼21 mg/dL) had a 71% higher risk of MACEs. In 

LIPID, in patients who achieved LDL-C of ∼112 mg/dL and Lp(a) 

>73.7 mg/dL, a 23% increase in MACEs was found. The overall data 

encompassing 13,167 statin-treated patients shows a weighed 

hazard ratio of 1.61 in the setting of LDL-C of 89.1 mg/dL and Lp(a) 

of 54.9 mg/dL. These data strongly support the independent role of 

Lp(a) in mediating CVD events that may explain some of the residual 

risk in patients on well-established statin therapy. Our results offer a 

practical strategy to reduce, at list in part, this residual risk when 

Lp(a) concentrations are high, even if LDL-C level are controlled. 
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Limitations 

First, participants in the UK biobank are a self-selected group who 

tend to be at lower risk of cardiovascular events than members of 

other populations. As a result, all analyses should be repeated in 

populations at higher risk. In addition, the analysis was restricted to 

participants who self-identified as being of white European ancestry, 

and therefore results may not apply to persons of other ethnicities. 

 

Conclusion 

Based on different starting points of Lp(a) levels, we quantitatively 

estimated the amount of additional LDL-C reduction needed to 

overcome the extra risk due to increased levels of Lp(a). This 

evidence encourages even more to add Lp(a) measurement to the 

lipid panel in clinical practice in order to accurately assess individuals’ 

cardiovascular risk and establish the most appropriate therapy. 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 

Discussion and conclusions 
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6.1 New insights into improving CVD management 

 

The methodology of Mendelian randomization presented in this 

dissertation have been applied to several studies. This investigation 

has shed light on new important evidence, has improved our 

knowledge about cardiovascular disease, and has showed how 

Mendelian randomization can be used to inform clinical practice. 

In particular, we found that: 

 body mass index is a much stronger risk factor for type 2 

diabetes compared to genetic predisposition to have high 

values of body mass index and that the effect of body mass 

index does not increase with increasing duration of exposure 

suggesting that increased body mass index leads to reversible 

metabolic changes. From a clinical point of view this implies 

that the risk of type 2 diabetes is largely modifiable if clinical 

interventions are put in place in the early stages of the disease, 

not only through the pharmacological control of plasma glucose 

but also suggesting weight loss as a strategy to lower body 

mass index. A graphical summary is presented in Figure 10. 

 both parental family history of coronary heart disease and 

individual polygenic predisposition affect the lifetime risk of 

major coronary events through a dose response relationship, 

and that these two factors provide complementary and additive 

information to the definition of the inherited genetic variation 

as well as to LDL cholesterol exposure in the estimation of the 

lifetime cardiovascular risk. Consequently, only considered 

together, they are able to identify people who will need to be 

treated because exposed to a very high cardiovascular risk. A 

graphical summary is presented in Figure 11. 

 profiling the genetic determinants of plasma lipoprotein(a) 
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provides comparable value to measured levels in terms of 

atherosclerotic cardiovascular disease risk prediction. 

However, since the distribution of measured Lp(a) levels was 

quite wide even among people with the same genotype (with 

the risk being affected accordingly), our evidence emphasizes 

the importance of measuring Lp(a) levels in clinical practice to 

better identify patients at higher risk for a correct management 

of them. A graphical summary is presented in Figure 12. 

 Lp(a) does not appear to have a venous or arterial 

prothrombotic effect. Indeed, genetically predicted and 

measured Lp(a) concentrations were not associated with 

clinically significant thrombotic events, neither the effect of 

increased Lp(a) levels on major coronary events was 

attenuated by either an antiplatelet or antithrombin therapy, 

leading to an important evidence for the design of clinical trials 

enrolling patients in secondary prevention. A graphical 

summary is presented in Figure 13. 

 an extra reduction of LDL cholesterol can overcome the 

increased risk due to exposure to high Lp(a) levels. More 

precisely, we exactly quantify how much LDL cholesterol has to 

be lowered to abolish this risk. From a clinical point of view this 

evidence encourages even more to add Lp(a) measurement to 

the lipid panel in order to establish the most appropriate 

therapy. A graphical summary is presented in Figure 14. 
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6.2 Biomarkers and therapeutic targets 

 

Projects presented in this dissertation (chapter 5), are an example of 

how genetic evidence can be used to support causation, and to 

discover modifiable risk factors that are causal and amenable to 

therapeutic modification. Indeed, these biomarkers can potentially 

be modified pharmacologically by manipulating a drug target. 

Although important differences exist between genetic investigations 

of a quantitative trait and a drug target (219), MR has proven to be 

a valid approach to support both these types of research. 

The primary question and motivation of a MR study of a biomarker is 

typically whether the biomarker has a role in disease. This knowledge 

is of interest from a biological perspective (because it can highlight 

new aetiological pathways, which enriches our understanding of the 

biological processes that underlie a disease and can stimulate new 

avenues of investigation, permitting also the development of 

therapies that act on risk factors along the causal pathway to 

ameliorate the consequences of harmful exposures) and from a 

public health perspective (because lifestyle modification-mediated 

alterations in the biomarker might yield large benefits in public 

health). 

By contrast, the primary question and motivation of a MR study of a 

drug target is whether modifying the drug target alters the risk of 

disease and the primary goal is to estimate the likelihood that a 

specific therapeutic agent (typically designed to modify a complex 

biomarker, which might differ from the effects of a protein drug 

target that is under investigation on the basis that the protein 

modifies the same complex biomarker) will show efficacy in a final 

phase of a clinical trial. MR analysis of drug targets is useful because 

this approach uses genetic variants that closely mimic the action of 
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the therapeutic target of interest, and for this reason, this analysis 

can potentially provide some of the most reliable evidence of the 

effects of modifying the biomarker, via a specific therapeutic target, 

on long-term health outcomes. 

Anyway, in both scenarios, human genetics can provide an invaluable 

tool to elucidate the causal roles in disease aetiology and, through 

careful application, these studies can guide the design and 

interpretation of clinical trials of medicines. 

 

6.3 Potential use of MR to inform the design of RCTs 

 

To be licensed and available to patients, drugs must undergo rigorous 

investigations, including initial studies of tolerability, followed by 

phase I trials (typically dose-ranging in nature), phase II trials 

(exploring efficacy), and then randomized, controlled, phase III 

outcome trials, which investigate clinical efficacy for the intended 

outcome, while showing a lack of clinically meaningful adverse 

events. Phase III trials are typically the final hurdle before applying 

for marketing authorization. If the drug is found to be efficacious for 

the primary outcome and safe, the regulators are likely to grant the 

applicant a licence to market the drug. For interventions for CVD, the 

process from date of first testing in humans (clinical entry) through 

to marketing authorization takes a median of 10 years (220), and 

often the development process is interrupted due to lack of efficacy 

or safety issues. Indeed, one of the crucial issues in drug 

development is failure due to lack of efficacy (accounting for 52% of 

drug failures in phase II and phase III trials) (221), with therapies 

targeting risk factors that are probably non-causal being a major 

roadblock to innovation (222). Another major hurdle to the 

development of new drugs is safety (accounting for 24% of drug 
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failures (221)), with therapies abandoned owing to both dose-related 

and idiosyncratic adverse events. Mostly for these reasons, fewer 

than 10% of drugs move from phase I through to marketing 

authorization, with the success rate being disease-specific. It is here 

that MR can find one of its most valuable application. Beyond simply 

providing quantitative evidence of whether a therapy acting on a 

given drug target is likely to be efficacious and safe, MR studies of 

drug targets can provide a variety of additional information that can 

feed into multiple facets of clinical trial design. 

For example, in the trial design phase, MR can: 

 provide information when a trial might be unethical to conduct 

(for example, potentially harmful intervention, potential ethical 

issues of withholding treatment or placebo comparator); 

 inform on whether a trial should be conducted in particular 

phenotypically defined or genetically defined subgroups; 

 predict the outcome of a factorial trial design, for example, by 

predicting drug–drug interactions. 

In addition, MR can help to define the characteristics of the 

intervention when no therapies exist, or to deprioritize the 

development of therapies acting on non-causal targets, or to explore 

the nature of the causal relationship across the physiological 

distribution of the exposure. This genetic approach can be also useful 

to explain mechanisms of effect, or to clarify pleiotropic effects, such 

as the off-target effects of a drug class (for example, whether the 

drug has effects on an outcome beyond that which is considered to 

be the primary exposure) or the off-target effects of an individual 

drug, or to explore the full repertoire of target-mediated effects (both 

beneficial and potentially harmful) 

Finally, MR can be used to inform on potential alterations to eligibility 

criteria to enrol participants who will experience: 
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 greater benefit, which might allow the trial to recruit fewer 

participants or have a shorter duration and thereby lower the 

cost of drug development; 

 fewer adverse effects: although it might not be possible to 

separate out the mechanism-based adverse effects of a 

therapeutic using genetic variants if an adverse event arises 

owing to a mechanistic pathway that is separate from the 

mechanistic pathway leading to clinical benefit, it might be 

possible to identify genetic variants that modify the propensity 

of the pharmacological agent to modify the pathway leading to 

adverse events and, by doing so, disentangle benefit from 

harm. 

 

6.4 Potential use of MR to anticipate RCTs results 

 

MR studies have become more prevalent in the literature as they are 

quicker and cheaper to conduct and can utilise existing data from 

large genetic consortia to provide qualitative information of 

treatment efficacy, target-mediated adverse effects and 

opportunities for drug repurposing, which can be very informative to 

prioritise biomarkers to take forward into phase II/III clinical trials in 

humans. 

 

6.4.1 Predicting efficacy 

There is considerable interest in predicting the efficacy of potential 

therapeutic targets as early as possible in the drug development 

process, as genetic support for a drug target can substantially 

enhance the probability for a RCT of a therapy targeting such a drug 

target to have success (223). Very often a lot of moneys are spent 

on what then turn out to be failed clinical trials. While the negative 
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outcomes cannot be fully anticipated when the trials are set up, if 

genetic investigations are pursued prior to embarking on the phase 

III trials, the drug development could be sidelined with unpromising 

results, and more promising targets prioritised in its place. 

MR studies evaluate the effect of genetically determined lifelong 

changes in an exposure on an outcome, whereas randomized trials 

evaluate the effect of therapeutically induced short-term changes in 

the same exposure. The challenge when attempting to use MR to 

anticipate the results of randomized trials is therefore to translate 

the causal effect of lifelong changes in an exposure on an outcome 

to the effect that can be expected to occur in response to short-term 

therapeutically induced changes in that exposure on the outcome of 

interest. Unfortunately, the results of a MR study cannot be used to 

estimate directly the expected effect of a therapy in a short-term 

trial. This is because the effect of most causal exposures appears to 

have cumulative effects on the associated outcome over time, and 

the use of MR would lead to overestimate the expected effect size. 

Moreover, a common misconception is that a therapy directed 

against any causal exposure will probably improve the associated 

outcome. Unfortunately, finding that an exposure is causally 

associated with an outcome tells us almost nothing about whether a 

therapy directed against that exposure will improve the outcome in 

a randomized trial. To anticipate the results of a randomized trial, 

the critical question that must be answered is by how much the 

causal exposure must be changed to improve the associated outcome 

in a short-term randomized trial. Careful application of the algorithm 

presented in Figure 15 should help to answer this critical question 

(224). 

  



 

- 155 - 

 

Figure 15. Algorithm for using Mendelian randomization studies 

to anticipate results of randomized trials. 

 

6.4.2 Predicting target-mediated adverse effects 

MR studies could also be a valuable tool to suggest potential target-

mediated adverse events. Let's clarify with an example. Statins are 
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one of the most widely prescribed medications for lowering LDL-C for 

primary and secondary prevention of CVD, and several large-scale 

trials, and individual patient data meta-analyses of large-scale RCTs 

have clearly demonstrated that they are effective, compared with 

placebo, at lowering risk of CVD (225). Even though statins are very 

safe, they are not without side effects, and there is controversy about 

the frequency of these adverse effects and how they should be 

reliably investigated, such as long-term follow-up of trials or using 

observational data (226). One of the adverse effects of statins is type 

2 diabetes (T2D), and meta-analysis of RCTs and MR studies have 

shown this to be an on-target effect of hydroxymethylglutaryl 

coenzyme A (HMG-CoA) reductase (141). The question naturally 

arises whether other LDL-C lowering drugs (such as ezetimibe or 

PCSK9 inhibitors) will have the same diabetogenic effects. Lotta et 

al. (227) used data from a meta-analysis of 50 000 T2D cases and 

270 000 controls and found that the LDL-C SNPs in the NPC1L1 gene 

(a genetic proxy for ezetimibe) and HMGCR gene (a genetic proxy for 

statins) were associated with an OR of T2D of 2.42 (95%CI: 1.70 to 

−3.43) and 1.39 (1.12 to −1.73) per genetically predicted 1 mmol/L 

lower LDL-C, respectively. Two recent MR studies (140, 228) have 

provided orthogonal evidence that LDL-C lowering through PCSK9 

inhibition is, as with statins, likely to lead to increased risk of T2D, 

and more generally, a recent study using SNPs across the genome 

provides evidence that an increased risk of T2D may arise as a 

general consequence of LDL-C lowering (133). 

MR does not require the exposure of patients to the drug, this means 

it can be implemented at any point during the drug development 

process and beyond. This can allow pre-specification of likely adverse 

outcomes in trials; and reduce the possibility of exposing patients to 

unnecessary risks and harm. 
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6.4.3 Repurposing drugs 

MR can be used to inform on potential repurposing of drugs, for 

example through use of a “phenome-wide scan”, which is facilitated 

by the availability of large-scale prospective biobanks with incident 

diagnoses procured through electronic health records, such as the UK 

Biobank. MR can also be used to investigate for potential 

pharmacogenetic associations (whereby one or more genetic variants 

are used to identify patients more likely to respond to a drug and/or 

patients less likely to suffer an adverse drug reaction): by stratifying 

a MR analysis by these genetic variants, clarity can be provided as to 

whether subpopulations are likely to derive greater benefit from a 

drug. This may be helpful prior to embarking on de novo RCTs 

targeting such subgroups (229). 

Developments in genotyping and availability of large-scale genetic 

consortia with hypothesis-free reliable discovery of new genetic 

variants for biomarkers that may play causal roles in disease 

development and application of such genetic variants in MR analyses 

present a wide range of opportunities to identify potentially 

modifiable exposures that, if shown to be causal, may be tested in 

future intervention studies. 

 

6.5 Conclusions 

 

Studies based on MR are increasingly being used to distinguish causal 

relationships from observational associations in epidemiology and to 

prioritize potential targets for pharmaceutical intervention, especially 

in recent years, where -omics technologies, including genomics, 

transcriptomics, proteomics, metabolomics, and more recently 

epigenomics, have developed rapidly. The application of these 

technologies in observational studies has generated a very large 
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number of novel exposures/intermediate phenotypes that 

researchers can use to assess associations with clinical endpoints. 

These scans are so called “hypothesis free” approaches, because they 

do not rely on underlying biologic assumptions and are, therefore, 

suited to unravel unknown biology. The results of such association 

studies represent a vast amount of unbiased information on 

potentially (modifiable) exposures and instrumental variables, which 

can subsequently be used to assess novel causal relationships or 

verify those examined in RCTs. To address this new situation, several 

extensions to MR approaches have been developed in recent years 

to allow for more complex questions to be answered under a MR 

framework. 

Although MR appears to be a perfect epidemiological approach to 

directly estimating the causal effect, there are still limitations and 

assumptions in its application which must be taken into account. 

First, genetic association studies often investigate only common 

genetic variants or combine the effect of rare genetic variants. This 

results in a situation where individual genetic variants may explain 

very little of the observed variation. Careful consideration must 

therefore be given to the choice of genetic variant when conducting 

an MR study. Second, MR estimates indicate lifelong perturbations in 

an exposure, which may not be equivalent to interventions given at 

a specific point in time and for a shorter time period. Therefore, 

careful consideration of the exposure and its timing must be made to 

avoid misinterpretation of results. For example, some exposures are 

cumulative whereby repeated exposure, over a sustained period, 

results in the outcome. MR analyses of such exposures are likely to 

overestimate the effect observed in other study designs, including 

RCTs, as these designs consider much shorter periods of exposure 

with lower compliance. A further example is time-dependent 
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exposures. MR analyses of this type of exposure can provide 

misleading evidence about the effect of manipulating an exposure 

after the critical period. This is because the MR estimate will, by 

definition, include any critical periods in its assessment of lifelong 

exposure. Finally, a large proportion of the genetic variants that have 

been identified to date are concerned with the incidence of disease. 

In order to predict unintended drug effects that relate to the 

treatment of that disease, genetic variants relating to progression 

will need to be identified. Indeed, so far, only a small proportion of 

GWAS studies (about 8% of associations curated in the GWAS 

Catalog) have attempted to identify variants associated with disease 

progression or severity (230). All of these technical issues can 

strongly influence the conclusions of MR analyses and thus highlight 

the importance of cautious interpretation of findings. 

However, despite all these limitations, MR can still be used to 

evaluate whether a causality exists between an exposure and an 

outcome. MR uses germline genetic variants that are less likely to be 

confounded by environmental, lifestyle or disease-related factors 

operating later in life. Consequently, if a genetic variant is associated 

with an outcome only through its association with a drug effect, it is 

likely to be because the genetic variant causes the outcome. 

Moreover, as reported before, MR does not require the exposure of 

patients to the drug, this means it can be implemented at any point 

during the drug development process and beyond. This can increase 

the efficiency of drug development by identifying unsuitable targets, 

allow pre-specification of likely adverse outcomes in trials, reduce the 

possibility of exposing patients to unnecessary risks and harms, and 

can be highly useful to inform drug development and repurposing 

(230). 
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In conclusion, MR offers a novel and appealing approach to assess 

the causality of observed exposure-outcome associations through 

genetic instrumental variables, which can address some of the 

limitations associated with existing methods in this field. The use of 

Mendelian randomization will likely become increasingly popular in 

medical research in the development of drug profiles to help prevent 

adverse drug events and identify novel indications for existing drugs. 
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Appendix I. The UK Biobank resource 

 

The UK Biobank is a prospective cohort study with deep genetic, 

physical and health data collected on ~500,000 volunteer 

participants aged 40-69 years (with a roughly even number of men 

and women) recruited between 2006 and 2010 throughout the UK 

and followed for at least 10 years thereafter. 

Prospective participants were invited to visit an assessment centre, 

at which they completed an automated questionnaire and were 

interviewed about lifestyle, medical history and nutritional habits; 

basic variables such weight, height, blood pressure etc. were 

measured; and blood and urine samples were taken. These samples 

were preserved so that it was possible to later extract DNA and 

measure other biologically important substances. During the whole 

duration of the study, it was intended that all disease events, drug 

prescriptions and deaths of the participants are recorded in a 

database, taking advantage of the centralized UK National Health 

Service. 

The UK Biobank database is regularly augmented with additional data 

and is globally accessible to approved researchers undertaking vital 

research into the most common and life-threatening diseases. It is a 

major contributor to the advancement of modern medicine and 

treatment and has enabled several scientific discoveries that improve 

human health. 

The UK Biobank is a powerful example of the immense value that can 

be achieved from large population scale studies that combine 

genetics with extensive and deep phenotyping and linkage to health 

records coupled with a strong data sharing policy, to drive and 

enhance understanding of human biology and disease. Deep 

information can be found elsewhere (231). 
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Data on UK Biobank participants. 
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Appendix II. Variants included in the body mass index (BMI) 

instrumental variable genetic score. 

 

SNP beta se effect allele eaf 

rs1000940 0.0192 0.0034 G 0.225 

rs10132280 -0.023 0.0034 A 0.3333 

rs1016287 0.0229 0.0034 T 0.325 

rs10182181 -0.0307 0.0031 A 0.5 

rs10733682 0.0174 0.0031 A 0.425 

rs10938397 -0.0402 0.0031 A 0.5667 

rs10968576 0.0249 0.0033 G 0.2917 

rs11030104 0.0414 0.0038 A 0.8 

rs11057405 -0.0307 0.0055 A 0.0917 

rs11126666 -0.0207 0.0034 G 0.6917 

rs11165643 -0.0218 0.0031 C 0.425 

rs11191560 -0.0308 0.0053 T 0.9417 

rs11583200 0.0177 0.0031 C 0.375 

rs1167827 -0.0202 0.0033 A 0.4583 

rs11688816 -0.0172 0.0031 A 0.5417 

rs11727676 -0.0358 0.0064 C 0.075 

rs11847697 0.0492 0.0084 T 0.0417 

rs9581854 -0.0298 0.0047 C 0.7667 

rs12286929 0.0217 0.0031 G 0.4333 
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rs12401738 0.0211 0.0033 A 0.425 

rs12429545 -0.0334 0.0047 G 0.9 

rs12446632 -0.0403 0.0046 A 0.1333 

rs12566985 0.0242 0.0031 G 0.425 

rs12885454 0.0207 0.0033 C 0.6333 

rs12940622 -0.0182 0.0031 A 0.4583 

rs13021737 -0.0601 0.004 A 0.125 

rs13078960 -0.0297 0.0039 T 0.8167 

rs13107325 -0.0477 0.0068 C 0.8833 

rs13191362 0.0277 0.0048 A 0.8 

rs13201877 -0.0233 0.0045 A 0.9167 

rs1441264 0.0175 0.0032 A 0.55 

rs1460676 -0.0197 0.004 T 0.7833 

rs1516725 -0.0451 0.0046 T 0.0917 

rs1528435 0.0178 0.0031 T 0.5833 

rs1558902 0.0818 0.0031 A 0.45 

rs16851483 -0.0483 0.0077 G 0.9083 

rs16907751 0.035 0.0066 C 0.9583 

rs16951275 -0.0311 0.0037 C 0.225 

rs17001654 -0.0306 0.0053 C 0.8417 

rs17024393 0.0658 0.0088 C 0.04167 

rs17094222 0.0249 0.0038 C 0.2083 
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rs17203016 0.021 0.0039 G 0.2 

rs17405819 -0.0224 0.0033 C 0.3667 

rs17724992 0.0194 0.0035 A 0.6917 

rs1808579 -0.0167 0.0031 T 0.475 

rs1928295 -0.0188 0.0031 C 0.425 

rs2033529 0.019 0.0033 G 0.2583 

rs2033732 0.0192 0.0035 C 0.7583 

rs205262 -0.0221 0.0035 A 0.7333 

rs2075650 0.0258 0.0045 A 0.8583 

rs2080454 -0.0168 0.0031 A 0.6083 

rs2112347 -0.0261 0.0031 G 0.375 

rs2121279 0.0245 0.0044 T 0.1167 

rs2176040 -0.0141 0.0031 G 0.6083 

rs2176598 0.0198 0.0036 T 0.2 

rs2207139 0.0447 0.004 G 0.1 

rs2245368 -0.0317 0.0057 T 0.7583 

rs2287019 0.036 0.0042 C 0.85 

rs2365389 0.02 0.0031 C 0.6583 

rs2650492 0.0207 0.0035 A 0.3083 

rs2820292 -0.0195 0.0031 A 0.4917 

rs2836754 0.0164 0.0032 C 0.65 

rs29941 -0.0182 0.0033 A 0.3333 
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rs3101336 -0.0334 0.0031 T 0.3509 

rs3736485 0.0176 0.0031 A 0.425 

rs3810291 0.0283 0.0036 A 0.625 

rs3817334 -0.0262 0.0031 C 0.55 

rs3849570 0.0188 0.0034 A 0.3667 

rs3888190 0.0309 0.0031 A 0.3583 

rs4256980 0.0209 0.0031 G 0.725 

rs4740619 0.0179 0.0031 T 0.5333 

rs4787491 -0.0159 0.0034 A 0.386 

rs492400 -0.0158 0.0031 T 0.675 

rs543874 0.0482 0.0039 G 0.2667 

rs6091540 0.0188 0.0035 C 0.725 

rs6465468 -0.0166 0.0035 G 0.675 

rs6477694 0.0174 0.0031 C 0.3583 

rs6567160 0.0556 0.0036 C 0.2833 

rs657452 0.0227 0.0031 A 0.4167 

rs6804842 -0.0185 0.0031 A 0.425 

rs7138803 -0.0315 0.0031 G 0.5583 

rs7141420 0.0235 0.0031 T 0.6167 

rs7164727 0.018 0.0033 T 0.775 

rs7239883 0.0164 0.0031 G 0.3167 

rs7243357 -0.0217 0.004 G 0.1333 
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rs758747 -0.0225 0.0037 C 0.7333 

rs7599312 0.022 0.0034 G 0.7083 

rs7715256 0.0163 0.0031 G 0.45 

rs7899106 -0.0395 0.0071 A 0.95 

rs9374842 0.0187 0.0035 T 0.7417 

rs9400239 0.0188 0.0033 C 0.7 

rs9540493 -0.0172 0.0033 G 0.55 

rs9641123 -0.0191 0.0038 G 0.6083 

rs977747 0.0167 0.0031 T 0.4667 

rs9914578 0.0201 0.0038 G 0.1667 

rs9925964 -0.0192 0.0031 G 0.3917 

*SNP: single nucleotide polymorphism; eaf: expected allele frequency. 
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Appendix III. Variants included in the LDL cholesterol (LDL-C) 

instrumental variable genetic score. Effect allele and frequency 

referred to the allele that is associated with higher LDL-C. 

 

SNP beta se effect allele eaf 

rs646776 5.002 0.083 T 0.77 

rs267733 0.75 0.094 A 0.84 

rs20558 0.43 0.07 C 0.57 

rs2738755 0.574 0.073 C 0.67 

rs10903129 1.099 0.069 G 0.56 

rs12748152 1.021 0.128 T 0.08 

rs11206510 0.664 0.094 T 0.81 

rs2479409 0.992 0.075 G 0.35 

rs11591147 13.572 0.263 G 0.98 

rs505151 2.792 0.197 G 0.03 

rs10889353 1.81 0.072 A 0.65 

rs17526895 1.478 0.125 A 0.92 

rs1801702 2.408 0.25 C 0.98 

rs533617 4.979 0.179 T 0.96 

rs1367117 2.604 0.077 A 0.33 

rs541041 3.748 0.093 A 0.82 

rs887829 0.289 0.074 C 0.68 

rs1260326 1.467 0.071 T 0.39 
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rs11556157 0.605 0.081 T 0.24 

rs4245791 2.449 0.074 C 0.32 

rs11125936 1.073 0.119 T 0.91 

rs7640978 1.197 0.121 C 0.91 

rs2251219 0.313 0.071 C 0.39 

rs3816873 0.444 0.079 T 0.74 

rs976002 0.839 0.08 G 0.24 

rs4530754 0.684 0.069 A 0.54 

rs1016988 0.714 0.088 T 0.81 

rs6882076 1.523 0.072 C 0.63 

rs351855 0.214 0.076 G 0.7 

rs12654264 2.593 0.072 T 0.37 

rs1999930 0.529 0.075 C 0.7 

rs12208357 2.288 0.124 T 0.08 

rs1564348 1.896 0.093 C 0.17 

rs3798220 5.332 0.265 C 0.02 

rs7770628 1.165 0.07 C 0.47 

rs9370867 0.984 0.069 A 0.54 

rs1800562 2.246 0.129 G 0.92 

rs1051794 0.514 0.081 A 0.26 

rs13192471 1.462 0.102 C 0.14 

rs2239619 0.352 0.071 A 0.61 
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rs12670798 1.295 0.08 C 0.25 

rs4722551 1.068 0.095 C 0.16 

rs11550029 0.758 0.088 A 0.19 

rs2737229 0.824 0.075 A 0.7 

rs2954029 2.433 0.069 A 0.53 

rs11136343 0.823 0.071 G 0.38 

rs4921914 1.091 0.084 C 0.22 

rs10102164 0.938 0.085 A 0.21 

rs2081687 1.247 0.073 T 0.34 

rs4841132 1.883 0.12 G 0.91 

rs1883025 1.096 0.079 C 0.74 

rs635634 2.495 0.09 T 0.18 

rs3812594 0.562 0.077 G 0.73 

rs67710536 0.86 0.139 C 0.07 

rs3780181 1.202 0.138 A 0.93 

rs2255141 0.729 0.077 A 0.28 

rs1891110 0.662 0.07 A 0.55 

rs1935 0.328 0.069 G 0.47 

rs2068888 0.96 0.069 G 0.55 

rs964184 3.208 0.103 G 0.13 

rs10128711 0.783 0.079 C 0.74 

rs174550 1.558 0.073 T 0.65 
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rs3816492 0.656 0.081 C 0.76 

rs11057830 0.505 0.082 A 0.18 

rs4942486 0.813 0.069 T 0.48 

rs8017377 0.801 0.069 A 0.47 

rs9646133 0.56 0.075 G 0.69 

rs13379043 0.653 0.078 T 0.72 

rs28929474 0.657 0.247 T 0.02 

rs173539 1.232 0.076 C 0.67 

rs7499892 0.856 0.094 T 0.18 

rs2000999 2.176 0.089 A 0.19 

rs704 0.533 0.069 A 0.47 

rs11080150 0.494 0.075 A 0.7 

rs11871606 1.077 0.069 C 0.5 

rs1801689 2.742 0.202 C 0.03 

rs77542162 5.829 0.237 G 0.02 

rs314253 0.629 0.072 T 0.65 

rs2125345 0.561 0.076 T 0.7 

rs4129767 0.592 0.069 A 0.49 

rs77960347 2.829 0.303 G 0.01 

rs7241918 0.666 0.091 T 0.82 

rs6511720 7.171 0.107 G 0.88 

rs11669576 0.904 0.152 A 0.05 
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rs7188 1.266 0.075 C 0.33 

rs58542926 4.442 0.13 C 0.92 

rs28399654 0.704 0.204 G 0.97 

rs157580 1.357 0.075 A 0.6 

rs769449 5.598 0.111 A 0.12 

rs7412 16.891 0.134 C 0.92 

rs492602 1.423 0.069 G 0.51 

rs364585 0.537 0.071 G 0.61 

rs1132274 0.453 0.096 A 0.15 

rs7261862 0.912 0.096 T 0.85 

rs6016373 1.141 0.072 A 0.59 

rs6029526 1.266 0.069 A 0.48 

rs1800961 2.22 0.199 C 0.97 

rs2076674 0.504 0.073 C 0.34 

rs738409 0.336 0.084 C 0.78 

rs13268 1.271 0.219 A 0.97 

*SNP: single nucleotide polymorphism; eaf: expected allele frequency. 
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Appendix IV. Variants included in the LPA instrumental variable 

genetic score. Effect allele and frequency referred to the allele that 

is associated with higher Lp(a). 

 

SNP Gene Position Effect allele eaf 

rs10455872 LPA 6:161010118 G 0.0736 

rs3798220 LPA 6:160961137 C 0.0099 

*SNP: single nucleotide polymorphism; eaf: effect allele frequency. 
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Appendix V. Baseline characteristics, measured at the time of 

enrolment in the UK Biobank, by rs10455872 and rs3798220 

variants. 

 

 rs10455872 

Characteristics 0 

n=373,129 

1 

n=64,487 

2 

n=2,761 

Age, y (SD) 57.2 (8) 57.3 (8) 57.3 (7.9) 

Female sex (%) 54.2 54.2 54.6 

LDL-C, mg/dL 

(SD) 
137.5 (33.5) 140.4 (34.1) 142.4 (34.8) 

ApoB, mg/L (SD) 103.1 (23.8) 105.2 (23.9) 106.6 (24.1) 

TG, mg/dL (IQR) 132.4 

[93.4-191.5] 

129 

[91.5-187.1] 

125.1 

[88.3-181.9] 

HDL-C, mg/dL 

(SD) 
56.1 (14.8) 56.4 (14.9) 56.6 (15.7) 

Lp(a), nmol/L 

(IQR) 

14.1 

[6.3-38.6] 

141 

[105.6-183] 

250.3 

[190.4-312.3] 

CRP, mg/L (IQR) 1.3 [0.7-2.8] 1.3 [0.7-2.8] 1.3 [0.7-2.7] 

SBP, mmHg (SD) 137.8 (18.6) 137.8 (18.6) 137.7 (18.6) 

BMI, kg/m2 (SD) 27.4 (4.8) 27.4 (4.8) 27.4 (4.9) 

 rs3798220 

Characteristics 
0 

n=424,377 

1 

n=15,849 

2 

n=151 

Age, y (SD) 57.3 (8) 57.2 (8) 57.4 (7.4) 

Female sex (%) 54.2 54.6 45.0 

LDL-C, mg/dL 

(SD) 
137.9 (33.6) 140.7 (34.5) 146.3 (36.8) 

ApoB, mg/L (SD) 103.3 (23.8) 105.4 (24.2) 109.5 (25.1) 

TG, mg/dL (IQR) 132.4 

[93.4-191.5] 

129 

[91.5-187.1] 

125.1 

[88.3-181.9] 

HDL-C, mg/dL 

(SD) 
56.2 (14.8) 56.4 (14.9) 54.6 (13.1) 

Lp(a), nmol/L 

(IQR) 

14.1 

[6.3-38.6] 

141 

[105.6-183] 

250.3 

[190.4-312.3] 
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CRP, mg/L (IQR) 1.3 [0.7-2.8] 1.3 [0.7-2.8] 1.3 [0.7-2.7] 

SBP, mmHg (SD) 137.8 (18.6) 138.1 (18.7) 138.5 (16.6) 

BMI, kg/m2 (SD) 27.4 (4.8) 27.4 (4.8) 27.4 (4.5) 

Characteristics are presented as means and standard deviations (SD) for normally 

distributed variables, median and interquartile ranges (IQR) for non-normally 

distributed variables (triglycerides, Lp(a), and CRP), or percentages for 

dichotomous variables. LDL-C: low-density lipoprotein cholesterol; ApoB: 

apolipoprotein B; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; 

Lp(a): lipoprotein(a); SBP: systolic blood pressure; CRP: c-reactive protein; BMI: 

body mass index. 
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Appendix VI. Variants included in the antiplatelet instrumental 

variable genetic score (GUCY1A3 score, panel A), and in the 

anticoagulant/antithrombotic instrumental variable genetic score 

(Factor II + Factor V score, panel B). In the first case, effect allele 

and frequency referred to the allele that is associated with lower risk 

of major coronary events. In the second one, referred to the allele 

that is associated with lower risk of deep vein thrombosis. 

 

A) 

SNP Gene Position Effect allele eaf 

rs4691707 
RP13-

487K5.1 
4:156441314 A 0.6640 

rs7692387 GUCY1A3 4:156635309 A 0.2048 

*SNP: single nucleotide polymorphism; eaf: effect allele frequency. 

 

B) 

SNP Gene Position Effect allele eaf 

rs6025 F5 1:169519049 C 0.9881 

rs4524 F5 1:169511755 C 0.2535 

rs3136516 F2 11:46760756 A 0.5229 

rs1799963 F2 11:46761055 G 0.992 

*SNP: single nucleotide polymorphism; eaf: effect allele frequency. 
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Appendix VII. Effect of measured Lp(a) on major coronary events. 

* CI: confidence interval. 
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Appendix VIII. Effect of measured Lp(a) on venous 

thromboembolism (VTE, panel A), deep vein thrombosis (DVT, panel 

B), and pulmonary embolism (PE, panel C). * CI: confidence interval. 

 

(A) 

 

(B) 
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(C) 
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Appendix IX. Baseline characteristics, measured at the time of 

enrolment in the UK Biobank, are presented stratified by sex and by 

Lp(a) instrument variable genetic score copies. 

 

Characteristics 

male cohort 
Overall 

Lp(a) IV genetic score copies 

0 1 2 

No. participants 203,672 164,195 35,504 1,943 

Age, y (SD) 57.5 (8.1) 57.5 (8.1) 57.5 (8.1) 57.5 (7.9) 

Lp(a), nmol/L 

(IQR) 

16.6 
[2.4-6.7] 

12.2 
[2.3-5.7] 

139 
[9.1-99.9] 

248.1 
[95.5-181.5] 

LDL-C, mg/dL 

(SD) 
134.8 (33.3) 134.4 (33.2) 136.2 (33.6) 138.6 (34.3) 

ApoB, mg/L (SD) 102.8 (23.8) 102.5 (23.8) 103.9 (23.8) 106 (24.3) 

TG, mg/dL (IQR) 
150.6 

[65.8-105] 
151.5 

[66.3-105.8] 
146.2 

[64.2-101.9] 
141.8 

[65.4-98.3] 

HDL-C, mg/dL 

(SD) 
49.6 (12.1) 49.6 (12) 49.8 (12.2) 49.3 (11.8) 

CRP, mg/L (IQR) 1.3 [0.3-0.7] 1.3 [0.3-0.7] 1.3 [0.3-0.7] 1.3 [0.3-0.7] 

SBP, mmHg (SD) 140.9 (17.4) 140.9 (17.4) 140.9 (17.5) 140.5 (17.3) 

BMI, kg/m2 (SD) 27.8 (4.2) 27.8 (4.2) 27.9 (4.3) 28.1 (4.5) 

No. MCE 17,613 13,254 4,089 270 

Characteristics 

female cohort 
Overall 

Lp(a) IV genetic score copies 

0 1 2 

No. participants 242,102 194,274 42,154 2,307 

Age, y (SD) 57.1 (7.9) 57.1 (7.9) 57.1 (7.9) 57 (8) 

Lp(a), nmol/L 

(IQR) 

20.7 
[2.8-8] 

14.8 
[2.6-6.7] 

153.1 
[10.7-109.7] 

273.5 
[105.1-203.3] 

LDL-C, mg/dL 

(SD) 
140.7 (33.6) 139.9 (33.4) 144 (34.2) 146.1 (34.7) 

ApoB, mg/L (SD) 104 (23.8) 103.5 (23.7) 106.3 (24) 107.6 (24.1) 

TG, mg/dL (IQR) 
118.7 

[57.9-85.9] 
119.3 

[58.2-86.4] 
116.1 

[57.3-84.2] 
112.2 

[55.5-81.1] 
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HDL-C, mg/dL 

(SD) 
61.8 (14.6) 61.7 (14.6) 62.1 (14.7) 62.6 (15.2) 

CRP, mg/L (IQR) 1.4 [0.3-0.7] 1.4 [0.3-0.7] 1.4 [0.3-0.7] 1.3 [0.3-0.7] 

SBP, mmHg (SD) 135.2 (19.2) 135.1 (19.2) 135.3 (19.2) 135.6 (19.4) 

BMI, kg/m2 (SD) 27 (5.1) 27 (5.1) 27 (5.2) 26.9 (5.1) 

No. MCE 5,175 3,856 1,224 95 

Characteristics are presented as means and standard deviations (SD) for normally 

distributed variables, median and interquartile ranges (IQR) for non-normally 

distributed variables (triglycerides, Lp(a), and CRP), or percentages for 

dichotomous variables. LDL-C: low-density lipoprotein cholesterol; ApoB: 

apolipoprotein B; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; 

Lp(a): lipoprotein(a); SBP: systolic blood pressure; CRP: c-reactive protein; BMI: 

body mass index; MCE: major coronary events. 
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Appendix X. Event curves for lifetime risk of major coronary events 

in male cohort by Lp(a) genetic score, LDL instrumental variable, at 

different enter time (40 years panel A, 50 years panel B, 60 years 

panel C). 

 

(A) 

 

(B) 
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(C) 
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Appendix XI. Event curves for lifetime risk of major coronary events 

in female cohort by Lp(a) genetic score, LDL instrumental variable, 

at different enter time (40 years panel A, 50 years panel B, 60 years 

panel C). 

 

(A) 

 

(B) 
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(C) 
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Appendix XII. Event curves for lifetime risk of major coronary 

events by measured Lp(a) groups, LDL instrumental variable, at 

different enter time (40 years panel A, 50 years panel B, 60 years 

panel C). 

 

(A) 

 

(B) 
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(C) 
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Appendix XIII. 

 

Step 1: 

In the population, participants with one copy of either rs10455872 or 

rs3798220 had a hazard ratio (HR) for MCE of 1.47 (95%CI: 1.42-

1.51), compared with the reference group (no copies), attributable 

to a difference (∆) in Lp(a) levels of 122.7 nmol/L. The HR 

standardized by an incremental of 100 nmol/L of Lp(a) is given by: 

𝐻𝑅 𝑝𝑒𝑟 100 𝑛𝑚𝑜𝑙/𝐿 =  𝐻𝑅
100

∆ ⁄ =  1.47
100

122.7 ⁄ =  1.37  

Starting from this adjusted HR, all the estimate in the table (column 

“HR for MCE”) were calculated based on specific difference (∆) in 

Lp(a) levels in the population. 

 

Step 2: 

The relative risk reduction on log scale for each HR was calculated 

as: 

ln(𝑅𝑅) = ln(𝐻𝑅) ∗ (−1) 

 

Step 3: 

The duration of the treatment (X) was calculated as: 

X = 80 − 𝐴𝑔𝑒 𝑠𝑡𝑎𝑟𝑡 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 (𝑅𝑥) 

where 80 years was set as maximum age in the survival analysis. 

 

Step 4: 

With these assumptions the following formula was applied to 

calculate the extra LDL cholesterol reduction needed (Y) to abolish 

the risk due to high Lp(a): 

𝑌 = ln(𝑅𝑅) / [𝑋 ∗ (−0.0126) − 0.1601 ] 

where 
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- 0.0126 is the amount of each additional year LDL lowering reduce 

risk on log scale; 

- 0.1601 is given by the sum of the natural log of HR 0.80, which is 

the risk reduction produces by 1 mmol/L decrease over 5 years (-

0.2231), and the quantity described above multiply by 5 years of 

treatment (0.0126*5). 

 

The reference for the formula applied in this study is: 

Ference BA et al., Low-density lipoproteins cause atherosclerotic 

cardiovascular disease. Evidence from genetic, epidemiologic, and 

clinical studies. A consensus statement from the European 

Atherosclerosis Society Consensus Panel. Eur Heart J. 2017 Aug 

21;38(32):2459-2472. PMID: 28444290. 

 

Here an applied example of how to calculate the extra LDL-C 

reduction needed to abolish the risk due to high Lp(a), compared 

with the median value in the population, if the treatment is started 

at 40 years. 

∆ nmol/L 
HR for 

MCE 
ln(RR) 

Age start 

Rx 

Rx 

duration 

(X) 

Required 

LDL-C reduction 

(Y) 

300 2.56 -0.938 40 40 1.41 

250 2.19 -0.782 40 40 1.18 

200 1.87 -0.626 40 40 0.94 

150 1.60 -0.469 40 40 0.71 

100 1.37 -0.313 40 40 0.47 

50 1.17 -0.156 40 40 0.24 

ref ref ref ref ref ref 

HR: hazard ratio. Estimates have been standardized for 100 nmol/L increment in 

Lp(a) level; MCE: major coronary events; ln(RR): natural log of the relative risk 

reduction. It represents how much the risk has to be reduced in a log scale in order 

to overcome the extra risk due to high Lp(a) values; Rx: treatment; the extra LDL-

C reduction needed to abolish the risk due to high Lp(a) is expressed as mmol/L, 

to covert LDL cholesterol to milligrams per decilitre, multiply by 38.67. 
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During my PhD programme, conducted at the Epidemiology and 

Preventive Pharmacology Service (SEFAP) of the Department of 

Pharmacological and Biomolecular Sciences, I have gain experiences 

and acquired/improved skills related to: 

 integrate and use the pharmacological knowledge acquired in 

order to developing interdisciplinary pharmacoepidemiological 

studies in the field of health science; 

 bibliographic search, review of scientific literature (through 

PubMed, EMBASE and Web of Science databases) and 

interpretation of epidemiological data; 

 organization and management of large databases; 

 design, conduction and analysis of pharmacoepidemiology and 

pharmacoutilization (drug use profiles) studies, mainly through 

healthcare utilization databases; 

 evaluation of the risk/benefit profile of drugs in the context of 

real-world clinical practice, through the estimation of the 

association between their use and the reduction of the 

incidence of events (effectiveness) or the development of 

adverse events (safety), through both the use of databases 

(administrative, clinical or pharmacovigilance) and the 

application of meta-analytic methodologies based on the 

published results of clinical and/or experimental studies; 

 understand both simple and more complex statistical methods 

for causal inference in Mendelian randomization studies, 

gaining sufficient knowledge to undertake my own Mendelian 

randomization analyses, to understand the assumptions on 

which causal inferences are based, and to critically appraise 

published studies using Mendelian randomization; 

 mentoring activity for student theses. 
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I also acquired advanced knowledge of SPSS and STATA statistic 

software and improve even more my knowledge of R and SAS 

software. 

My research activity during the PhD mainly focused on examining 

biomarkers and lifestyle factors for a causal effect on the risk of 

cardiovascular disease using the Mendelian randomization design. To 

understand the statistical methods for causal inference in Mendelian 

randomization studies, and the instrumental variable assumptions on 

which they are based, I attended a two-days course by Stephen 

Burgess at the MRC Biostatistics Unit/Cardiovascular Epidemiology 

Unit of the University of Cambridge (United Kingdom) in March 2018. 

I have been also involved in several projects at the Cardiovascular 

Epidemiology Unit of the Department of Public Health and Primary 

Care (University of Cambridge, UK), where I have been accepted to 

carry out a training period (six months, January-June 2020) with the 

supervision of Professor Brian A. Ference, director of Research 

(Professor) in Translational Therapeutics Executive and director of 

the Centre for Naturally Randomised Trials. In this context, I have 

also enhanced my knowledge on genomic and pharmacogenomic 

topic related to the cardiovascular system, and experienced the 

conduction of studies based on the principles of Mendelian 

randomization in an attempt to identify targets for early intervention, 

and to model “naturally randomized trials” that attempt to frame and 

answer clinical questions to fill evidence gaps when an actual clinical 

trial would be impractical or impossible to conduct. For this 

traineeship, I also won a scholarship supplied by The Italian Society 

of Pharmacology (SIF), which was made available for young 

researchers, to facilitate the stay in foreign laboratories for the 

advancement of research programs. 



 

- 219 - 

Besides this project, during my PhD course, I have also collaborated 

with: 

 the research group of Professor Giovanni Corrao, at the 

Department of Statistics and Quantitative Methods (University 

of Milano‐Bicocca). In this context, I gained experience in the 

design and in the conduction of epidemiological studies aimed 

at evaluating the prevalence of risk factors and their 

correlation with cardiovascular diseases in the Italian 

population, through the analysis of healthcare data from 

regional administrative databases of the outpatient drug 

prescriptions; 

 the research group of Professor Enrica Menditto, director of 

the Center of Pharmacoeconomics and Drug Utilization 

Research (CIRFF) of the University of Naples Federico II. In 

this context, we designed and conducted a prospective, 

pragmatic, multicentre and open‐label trial (EDU.RE.DRUG 

study) aiming to deeply investigate the prescribing practice 

among general practitioners and the appropriate drug use by 

their patients in two Italian regions; 

 the research group of Francesco Barone Adesi, Professor of 

public health at the Università del Piemonte Orientale in 

Novara. In this context we collaborated to the following study: 

“Potentially inappropriate prescribing among elderly: 

evaluation of temporary trends 2012-2018 in Piedmont”; 

 the research group of Elisabetta Poluzzi, Professor at the 

department of Medical and Surgical Sciences of the University 

of Bologna. In this context we started a scientific collaboration 

to analyse the variation in drug consumption and/or use of 

health services in several cohorts of patients on chronic 
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treatments consequent to the severe acute respiratory 

syndrome coronavirus 2 and resultant COVID-19 pandemic. 

This project is still ongoing. 

During my PhD programme, I attended a number of congresses 

(outlined below), at national and international level, in the belief that 

sharing experiences with other research groups working on the same 

topic of interest is a valuable key point to broaden knowledge and 

develop and optimize research practices. 

Date Title of contribution Site 

28th-30th 

November 2021 

Separate and combined 

effects of body mass index 

and polygenic 

predisposition to high BMI 

on the risk of developing 

type 2 diabetes 

Oral presentation 

35° Congresso 

Nazionale SISA. 

Virtual Edition 

7th-9th 

October 2021 

Effetto individuale e 

combinato dell'indice di 

massa corporea e della 

predisposizione poligenica 

ad elevati livelli di BMI sul 

rischio di sviluppo del 

diabete di tipo 2 

Oral presentation 

XV Congresso 

regionale SITeCS 

/giornata studio SISA 

Lombardia. Milan, 

Italy 

30th May-2nd 

June 2021 

Evaluating the distribution 

of a 12 LDL-C raising 

variants score in patients 

with familial 

hypercholesterolemia 

Poster presentation 

The 89th European 

atherosclerosis society 

congress. Virtual 

Edition 
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21st-22nd      

May 2021 

Comparing the distribution 

of a 12 LDL-C raising 

single nucleotide 

polymorphisms score in 

patients with familial 

hypercholesterolemia 

enrolled in the LIPIGEN 

study 

Oral presentation 

Spring Meeting 

Giovani Ricercatori 

SIIA-SIMI-SIPREC-

SISA 2021. Virtual 

Edition 

9th -13th     

March 2021 

Effect of statins on 

Alzheimer’s disease and 

dementia risk: a meta-

analysis of observational 

studies 

Oral presentation 

40° Congresso 

nazionale della Società 

Italiana di 

Farmacologia. Virtual 

Edition 

22nd-24th 

November 2020 

Comparing the distribution 

of a 12 LDL-C raising 

single nucleotide 

polymorphisms score in 

patients with familial 

hypercholesterolemia 

enrolled in the LIPIGEN 

study 

Oral presentation 

34° Congresso 

Nazionale SISA. 

Virtual Edition 

15th-17th 

October 2020 

Individuazione di target 

terapeutici: 

randomizzazione 

mendeliana 

Invited speaker 

XIV Congresso 

nazionale SITeCS 

/giornata studio SISA 

Lombardia. Milan, 

Italy 

4th-7th October 

2020 

Cardiovascular outcomes 

with omega-3 

polyunsaturated fatty acids 

88° European 

atherosclerosis society 
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supplementation: An 

updated meta-analysis of 

randomized controlled 

trials 

Poster presentation 

congress. Virtual 

Edition 

16th-17th 

September 2020 

Cumulative exposure to 

bisphosphonates and risk 

of cardiovascular and 

cerebrovascular events 

Oral presentation 

ICPE ALL ACCESS – 35 

years of real-world 

science. Virtual Edition 

16th-17th 

September 2020 

Evaluation of the effect of 

omega-3 polyunsaturated 

fatty acids 

supplementation on 

cardiovascular outcomes: 

an updated meta-analysis 

of randomized controlled 

trials 

Oral presentation 

ICPE ALL ACCESS – 35 

years of real-world 

science. Virtual Edition 

9th-10th 

December 2019 

Prescrizione di farmaci 

interagenti e di duplicati 

terapeutici negli adulti 

Oral presentation 

XXVIII Seminario 

Nazionale di 

Farmacologia, Rome, 

Italy 

24th-26th 

November 2019 

Association between a 

cumulative exposure to 

bisphosphonates and risk 

of incident cardio-

cerebrovascular events: a 

retrospective cohort study 

Poster presentation 

33° Congresso 

Nazionale SISA, 

Rome, Italy 

20th -23rd 

November 2019 

Sex differences in factors 

associated with adherence 

39° Congresso 

Nazionale della 
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to statin therapy: a 

population-based study 

Poster presentation 

Società Italiana di 

Farmacologia. 

Florence, Italy 

24th-26th 

October 2019 

Cumulative exposure to 

bisphosphonates and risk 

of cardio-cerebrovascular 

events: a population-based 

retrospective cohort study 

Oral presentation 

Convegno Regionale 

SISA Lombardia, XIII 

Congresso Nazionale 

SITeCS. Milan, Italy 

18th     

September 2019 

Cumulative exposure to 

bisphosphonates and risk 

of cardio-cerebrovascular 

events: a population-based 

retrospective cohort study 

Oral presentation 

Next Step X. Milan, 

Italy 

26th-29th        

May 2019 

Sex-differences in 

adherence to statin 

therapy in a real-world 

population 

Science at a glance 

87th European 

atherosclerosis society 

congress. Maastricht, 

The Netherland 

28th February, 

1st-2nd March 

2019. 

Sex differences in 

adherence to statin 

therapy in the clinical 

practice 

Poster presentation 

Spring Meeting dei 

gruppi Giovani 

Ricercatori SIIA, SIMI 

e SISA. Rimini, Italy 

25th-27th 

November 2018 

Valutazione della 

performance del Dutch 

Lipid Clinic Network score 

utilizzando un database 

italiano di pazienti con 

ipercolesterolemia 

familiare 

32° Congresso 

Nazionale SISA. 

Bologna, Italy 
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Oral presentation 

4th-6th     

October 2018 

Valutazione della 

performance del Dutch 

Lipid Clinic Network score 

utilizzando un database 

italiano di pazienti con 

ipercolesterolemia 

familiare 

Oral presentation 

Convegno Regionale 

SISA Lombardia, XII 

Congresso Nazionale 

SITeCS. Milan, Italy 

 

Moreover, in the last three years, I followed a series of seminars, 

conferences and educational courses (listed below), in order to keep 

on training and updating my knowledge: 

 IV Giornata della Ricerca del Centro E. Grossi Paoletti - La 

prevenzione cardiovascolare nell’era post-COVID, Milan, Italy, 

26th November 2021. 

 ICPE ALL ACCESS. Skills Courses, September 2020 

 Spring Meeting Giovani Ricercatori SIIA-SIMI-SISA 2020 - 

Novità sulla prevenzione e cura della malattia cardiovascolare. 

18th, 25th June, 2nd July 2020. 

 XXVIII Seminario Nazionale di Farmaclogia, Istituto Superiore 

di Sanità - La valutazione dell’uso e della sicurezza dei farmaci: 

esperienze in Italia, 9th-10th December 201, Rome. 

 Mendelian Randomization Course, Cambridge, United 

Kingdom, 20th-21st March 2019. 

 “III Giornata del Centro E. Grossi Paoletti” Milan, Italy, 14th 

June 2019. 

 “HOT NUT 2 – MICROBIOTA REVOLUTION: dove siamo oggi e 

quali risposte ci aspettiamo in futuro”, Milan, Italy, 5th April 

2019. 
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 “Essere cittadini tra scienza, sapere e decisione pubblica”, 

Milan, Italy, 25th-26th March 2019. 

 "HDL–Beyond Atherosclerosis", Milan, Italy, 1st February 2019. 

 “Advance Course on Rare Dysplipidaemia and Atherosclerosis”, 

Milan, Italy, 19th October 2018. 

Finally, in the awareness that transferring scientific knowledge within 

the scientific community and, above all, to the public is one of the 

hardest challenges of the “research world” nowadays, I have carried 

out information and dissemination activities. In particular, I am a 

member of SEFAPnews editorial-board, that provides monthly 

newsletters published on SEFAP website (www.sefap.it), on the topic 

of pharmacovigilance, pharmacoepidemiology, pharmacoutilization 

and health policies. Furthermore, I was involving in dissemination 

activities through RicercaMix blog of the Department of 

Pharmacological and Biomolecular Sciences of the University of Milan 

(www.ricercamix.org). In addition, I published an article regarding 

Mendelian randomization in the Italian Journal of Atherosclerosis 

("Cos’è uno studio di randomizzazione Mendeliana e quali sono le 

applicazioni in ambito di dislipidemie. GIA 2020; 11(2):26-40") and 

a short informative article about adherence to statin therapy 

("Aderenza alla terapia con statine nella pratica clinica: differenze di 

genere. Medicina di Genere Newsletter, Ottobre 2020"). 

 

List of publications 

I am the author of nineteen papers in international peer reviewer 

journals (four as “First Author”, six as “Second Author”): 

- Baragetti A, Casula M, Scarinzi P, Ristè F, Scicali R, Biolo M, 

Lugari S, Dall'Agata M, Gazzotti M, Olmastroni E, Alieva AS, 
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Nascimbeni F. Achilles tendon ultrasonography in familial 

hypercholesterolemia: A sub-study of the LIpid transPort disorders 

Italian GEnetic Network (LIPIGEN). J Intern Med. 2021 Dec 7. doi: 

10.1111/joim.13421. Epub ahead of print. PMID: 34875114. 

- Olmastroni E, Molari G, De Beni N, Colpani O, Galimberti F, 

Gazzotti M, Zambon A, Catapano AL, Casula M. Statin use and risk 

of dementia or Alzheimer's disease: a systematic review and meta-

analysis of observational studies. Eur J Prev Cardiol. 2021 Dec 

6:zwab208. doi: 10.1093/eurjpc/zwab208. Epub ahead of print. 

PMID: 34871380. 

- EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). 

Global perspective of familial hypercholesterolaemia: a cross-

sectional study from the EAS Familial Hypercholesterolaemia 

Studies Collaboration (FHSC). Lancet. 2021 Sep 7:S0140-

6736(21)01122-3. doi: 10.1016/S0140-6736(21)01122-3. 

- Cicolari S, Pavanello C, Olmastroni E, Del Puppo M, Bertolotti M, 

Mombelli G, Catapano AL., Calabresi L, Magni P. Interactions of 

oxysterols with atherosclerosis biomarkers in subjects with 

moderate hypercholesterolemia and effects of a nutraceutical 

combination (Bifidobacterium longum BB536, red yeast rice extract) 

(randomized, double-blind, placebo-controlled study). Nutrients. 

2021 Jan 28;13(2):427. doi: 10.3390/nu13020427. 

- Baragetti A, Severgnini M, Olmastroni E, Dioguardi CC, Mattavelli 

E, Angius A, Rotta L, Cibella J, Consolandi C, Grigore L, Pellegatta F, 

Giavarini F, Caruso D, Norata GD, Catapano AL, Peano C. Gut 

Microbiota Functional Dysbiosis Relates to Individual Diet in 

Subclinical Carotid Atherosclerosis. Nutrients. 2021 Jan 

21;13(2):304. doi: 10.3390/nu13020304. 
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- Pirillo A, Casula M, Olmastroni E, Norata GD., Catapano AL.. 

Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 2021 Apr 8. 

doi: 10.1038/s41569-021-00541-4 

- Gazzotti M, Casula M, Olmastroni E, Averna M, Arca M, Catapano 

AL. How registers could enhance knowledge and characterization of 

genetic dyslipidaemias: the experience of the LIPIGEN in Italy and 

of other networks for familial hypercholesterolemia. Atheroscler 

Suppl. 2020 Dec; doi: 10.1016/j.atherosclerosissup.2021.01.007. 

- Alieva AS, Olmastroni E, Reutova OV, Rotar OP, Konradi AO, 

Shlyakhto EV, Baragetti A, Grigore L, Pellegatta F, Casula M, Tragni 

E, Catapano AL. Prevalence and relationship between metabolic 

syndrome and risk of cardiovascular disease: evidence from two 

population-based studies. Atheroscler Suppl. 2020 Dec;42:e41-e48. 

doi: 10.1016/j.atherosclerosissup.2021.01.008. 

- Casula M, Gazzotti M, Bonaiti F, Olmastroni E, Arca M, Averna M, 

Zambon A, Catapano AL, PROSISA Study Group. Reported muscle 

symptoms during statin treatment among Italian dyslipidemic 

patients in the real-life setting: The Prosisa Study. J Intern Med. 

2020 Dec 1. doi: 10.1111/joim.13219. PMID: 33259671. 

- Casula M, Olmastroni E, Gazzotti M, Galimberti F, Zambon A, 

Catapano AL. Omega-3 polyunsaturated fatty acids 

supplementation and cardiovascular outcomes: do formulation, 

dosage, and baseline cardiovascular risk matter? An updated meta-

analysis of randomized controlled trials. Pharmacol Res. 2020 Jul 

4;160:105060. doi: 10.1016/j.phrs.2020.105060. Epub ahead of 

print. PMID: 32634581. 

- Casula M, Menditto E, Galimberti F, Russo V, Olmastroni E, 

Orlando V, Catapano A.L, Tragni E, on behalf of EDU.RE.DRUG 



 

- 228 - 

Group. A pragmatic controlled trial to improve the appropriate 

prescription of drugs in adult outpatients: design and rationale of 

the EDU.RE.DRUG study. Primary Health Care journal 2020 June. 

- Russo V, Orlando V, Monetti VM, Galimberti F, Casula M, 

Olmastroni E, Tragni E, Menditto E; EDU.RE.DRUG Group. 

Geographical Variation in Medication Prescriptions: A Multiregional 

Drug-Utilization Study. Front Pharmacol. 2020 May 5;11:418. doi: 

10.3389/fphar.2020.00418. PMID: 32536861; PMCID: 

PMC7269055. 

- Casula M, Olmastroni E, Galimberti F, Tragni E, Corrao G, Scotti L, 

Catapano AL. Association between the cumulative exposure to 

bisphosphonates and hospitalization for atherosclerotic 

cardiovascular events: A population-based study. Atherosclerosis. 

2020 May;301:1-7. doi:10.1016/j.atherosclerosis.2020.03.021. 

Epub 2020 Apr 7. PMID: 32289617. 

- Olmastroni E, Boccalari MT, Tragni E, Rea F, Merlino L, Corrao G, 

Catapano AL, Casula M. Sex-differences in factors and outcomes 

associated with adherence to statin therapy in primary care: Need 

for customisation strategies. Pharmacol Res. 2020 

May;155:104514. doi: 10.1016/j.phrs.2019.104514. Epub 2019 

Oct 31. PMID: 31678211. 

- Olmastroni E, Baragetti A, Casula M, Grigore L, Pellegatta F, Pirillo 

A, Tragni E, Catapano AL. Multilevel Models to Estimate Carotid 

Intima-Media Thickness Curves for Individual Cardiovascular Risk 

Evaluation. Stroke. 2019 Jul;50(7):1758-1765. doi: 

10.1161/STROKEAHA.118.024692. Epub 2019 Jun 5. 

PMID:31164073. 
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- Casula M, Olmastroni E, Boccalari MT, Tragni E, Pirillo A, Catapano 

AL. Cardiovascular events with PCSK9 inhibitors: an updated meta-

analysis of randomised controlled trials. Pharmacol Res. 2019 

May;143:143-150. doi:10.1016/j.phrs.2019.03.021. Epub 2019 

Mar 26. PMID: 30926528. 

- Casula M, Olmastroni E, Pirillo A, Catapano AL; MEMBERS OF THE 

LIPIGEN STEERING COMMETTEE; PRINCIPAL INVESTIGATORS: 

Coordinator center; Participant Centers; Participant Laboratories; 

COLLABORATORS; STUDY CENTRAL LABORATORY AND ANALYSIS 

GROUP. Evaluation of the performance of Dutch Lipid Clinic Network 

score in an Italian FH population: The LIPIGEN study. 

Atherosclerosis. 2018 Oct;277:413-418. doi: 

10.1016/j.atherosclerosis.2018.08.013. PMID: 30270079. 

- Olmastroni E, Shlyakhto EV, Konradi AO, Rotar OP, Alieva AS, 

Boyarinova MA, Baragetti A, Grigore L, Pellegatta F, Tragni E, 

Catapano AL, Casula M. Epidemiology of cardiovascular risk factors 

in two population-based studies. Atheroscler Suppl. 2018 

Sep;35:e14-e20. doi: 10.1016/j.atherosclerosissup.2018.08.003. 

Epub 2018 Aug 25. PMID: 30177370. 

- Baragetti A, Grejtakova D, Casula M, Olmastroni E, Jotti GS, 

Norata GD, Catapano AL, Bellosta S. Proprotein Convertase 

Subtilisin-Kexin type-9 (PCSK9) and triglyceride-rich lipoprotein 

metabolism: Facts and gaps. Pharmacol Res. 2018 Apr;130:1-11. 

doi: 10.1016/j.phrs.2018.01.025. Epub 2018 Feb 8. 

PMID:29428206. 

 




