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1. Introduction

Let

Bk,n(x) :=

(
n

k

)
xk(1−x)n−k

denote the k, n Bernstein’s polynomial, and let

Mn,s(x) :=

n∑
k=0

∣∣∣k
n
−x

∣∣∣sBk,n(x)

be its absolute moment of order s > 0. Lorentz [2, p. 15, Eq. (9)] described an easy argument proving
that Mn,s(x) ≤ Asn

−s/2 for a suitable constant As, uniformly for x ∈ [0, 1]. This argument does not
provide an explicit value for the constant As. Adell, Bustamante and Quesada [1, Thm. 1] proved an
explicit inequality for moments, namely that

sup
x∈[0,1]

Mn,s(x) ≤ 2Γ
(s
2
+1

)
n−s/2

for every n ∈ N and all s > 0. This is a strong improvement on previous result, but the authors note
that the constant is not optimal in its dependence on s.
Recently, Jim Xiang [5, Thm. 5] gave an asymptotic expansion in powers of n−1, which starts as

(1) Mn,s(x) =
(2x(1−x)

n

)s/2 1√
π
Γ
(s+1

2

)
+ lower order terms.

In this paper we prove that the sup in x of the leading term of the expansion is sufficient to bound
the moment when its order is an even integer, under a mild restriction for the minimum value of n which
is allowed for each choice of s. This fact is not transparent from the asymptotic expansion, whose lower
orders are expressed as certain suitable integrals giving the constants multiplying the terms n−s/2−j for
j = 1, . . . , ⌈s/2⌉ plus a tail which is only estimated as O(n−s−1/2).

In detail, our result states the following.

Theorem. Let r ∈ N, cr := (2r)!
r!8r and c′r := cr

r(r−1)
3 . Let ω := 1.05308 . . . be a certain absolute constant

which is defined in next section. Pick any η ∈ [0, 3/4) and assume that n ≥ 260·ωr/(1−4η/3), then

(2) sup
x∈[0,1]

Mn,2r(x) ≤
1

nr

(
cr−η

c′r
n

)
.

On the other hands, assume that n ≥ r2, then

(3) sup
x∈[0,1]

Mn,2r(x) ≥
1

nr

(
cr−

c′r
n

)
.
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Note that the constant cr matches the value of the main constant appearing in (1) for s = 2r, once the
factor x(1−x) appearing there is estimated with 1/4.

The upper and lower bounds are essentially optimal, at least in the common validity range for n, apart
the fact that η in (2) is restricted to [0, 3/4). However, the theorem has some room for improvement
as regards the range of allowed values for n. For example, we strongly believe that the case η = 0
in (2) holds actually also when n < 260·ωr, i.e., without any restriction for n in terms of r. We have
two main arguments supporting this idea: first, a variation of our proof already reaches the conclusion
with η = 0 under the weaker assumption n ≫ (r2ωr)1/3. Secondly, a different and direct argument we
have tested with every r ≤ 22 proves the claim with η = 0 without any restriction for n. For η > 0
the computations show that the range of n has to be restricted in some way in order to have a valid
inequality, but probably also in this case the assumption n ≥ 260·ωr/(1−4η/3) is more stringent than
what is necessary. Also the range n ≥ r2 for (3) should be improved, but it is already very close to its
best which is n > r(r−1)/3, being the claim trivial when n ≤ r(r−1)/3. We pospone a deeper discussion
about these possible improvements to the end of the next section.

Our proof of the theorem is based essentially on Faà di Bruno’s formula to decompose the moment as
sum of certain terms which we estimate with some care but using essentially only elementary ideas. This
is a considerable simplification with respect to the deep tools which are needed to prove the asymptotic
formula (1), but this is made possible by the circumstance that Mn,s is actually a polynomial both in x
and 1/n when s is an even integer. In particular, there is no simple way to adapt these arguments to get
the analogous result for the non-even moments, in spite of our believe that at least the case η = 0 of (2)
should be true for every positive s when formulated as

ns/2 sup
x∈[0,1]

Mn,s(x) ≤ 2−s/2 1√
π
Γ
(s+1

2

)
∀n.

However, explicit, thought non-optimal, bounds for ns/2Mn,s can still be obtained also for not even
integer values of s by exploiting its convex dependence on the order s. The resulting upper bound is a
suitable convex combination of n⌊s/2⌋Mn,2⌊s/2⌋ and n⌈s/2⌉Mn,2⌈s/2⌉, that we can bound with our theorem.
For example, with this procedure we get the following result.

Corollary. Let s ∈ (0,+∞), s ̸∈ 2N, and n ≥ 260·ω⌈s/2⌉. Then

sup
x∈[0,1]

Mn,s(x) ≤
( ⌈s/2⌉−s/2

⌈s/2⌉−⌊s/2⌋
c⌊s/2⌋+

s/2−⌊s/2⌋
⌈s/2⌉−⌊s/2⌋

c⌈s/2⌉

)
n−s/2.
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he is member of the INdAM group GNSAGA and wishes to thank this institution for its support.

2. Proof of the theorem

The polynomial Gr(n;x) :=
∑n

k=0(k−nx)2rBk,n(x) shows the symmetry Gr(n; 1−x) = Gr(n;x), hence
its maximum in [0, 1] is already in [0, 1/2] and the point x = 1/2 is an extremal point forGr. Computations
indicate that this is the point where the polynomial attains its maximum as soon as n is large enough
with respect to r, and that n ≥ r2 suffices for this. It would be useful to have a proof for this claim,
because it would simplify the general argument. Lacking this point, our proof needs a detour. Firstly we
note that

n∑
k=0

(k−nx)2rBk,n(x) =
[
∂2r
y

( n∑
k=0

e(k−nx)yBk,n(x)
)]

y=0
=

[
∂2r
y

(
e−nxy

n∑
k=0

(
n

k

)
ekyxk(1−x)n−k

)]
y=0

=
[
∂2r
y

(
e−nxy(xey+1−x)n

)]
y=0

=
[
∂2r
y

(
g(x, y)n

)]
y=0

where

g(x, y) := xe(1−x)y+(1−x)e−xy.
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The derivative may be computed via Faà di Bruno’s formula, yielding the equality

Gr(n;x) =

n∑
k=0

(k−nx)2rBk,n(x)

= (2r)!
∑

a1,a2,...≥0
a1+2a2+3a3+···=2r

h(a1+a2+a3+··· )(g(x, 0))

a1!a2!a3! · · ·

(∂yg(x, 0)
1!

)a1
(∂2

yg(x, 0)

2!

)a2
(∂3

yg(x, 0)

3!

)a3

· · · ,

where h(w) := wn and h(k) denotes its k derivative. Induction on k shows that

∂k
yg(x, 0) = x(1−x)k+(−x)k(1−x) ∀k ≥ 0.

In particular g(x, 0) = 1 and ∂yg(x, 0) = 0 for every x, hence no contribution comes in previous formula
from terms with a1 ̸= 0. Moreover, the polynomial x(1−x) factors ∂k

yg(x, 0) when k ≥ 1, and in order to
simplify the computations it is useful to introduce z := 1−2x (so that z ranges in [0, 1] when x ranges in
[0, 1/2]). In this way we get

∂k
yg

(1
2
(1−z), 0

)
=

1

2k+1
(1−z2)[(z+1)k−1−(z−1)k−1] =:

1

4
(1−z2)Pk(z)

where Pk(z) :=
1

2k−1 [(z+1)k−1−(z−1)k−1]. In particular P2(z) = 1, P3(z) = z, P4(z) = (1+3z2)/4. This

formula makes evident the symmetry Pk(−z) = (−1)kPk(z) and that Pk(z) ∈ [0, 1] when z ∈ [0, 1]. These
computations show that

(4) Gr(n;x) = (2r)!

r∑
ℓ=1

bℓ(z)n[ℓ]

where

(5) bℓ(z) :=
(1−z2

4

)ℓ ∑
a2,...≥0

2a2+3a3+···=2r
a2+a3+···=ℓ

1

a2!a3! · · ·

(P2(z)

2!

)a2
(P3(z)

3!

)a3

· · ·

and n[ℓ] is the falling Pochhammer symbol (i.e., n[0] := 1, n[ℓ] =
∏ℓ−1

j=0(n−j) when ℓ ≥ 1). Note that the
condition 2a2+3a3+· · · = 2r forces the inequality a2+a3+· · · ≤ r. Thus, only terms with ℓ ≤ r appear
in (4). We estimate separately br, br−1 and bℓ with ℓ ≤ r−2.
The sum a2+a3+· · · equals r only for a2 = r and a3 = a4 = · · · = 0. Hence

(6) br(z) =
(1−z2)r

r!8r
≤ 1

r!8r
∀z ∈ [0, 1].

The sum producing br−1 contains only terms coming from solutions of 2a2+3a3+· · · = 2r with a2+a3+
· · · = r−1. This happens only when (a2, a3, a4) is (r−3, 2, 0) or (r−2, 0, 1), and every other aj is zero.
Hence

br−1(z) =
(1−z2

4

)r−1[ 1

(r−3)!2!

( 1

2!

)r−3( z

3!

)2

+
1

(r−2)!1!

( 1

2!

)r−2(1+3z2

4·4!

)]
=

(1−z2)r−1

(r−3)!8r

[4
9
z2+

1+3z2

6(r−2)

]
.(7)

The following lemma gives a bound for this quantity.

Lemma 1. Let r ≥ 3. Then

(8) br−1(z) ≤
0.25

(r−2)!8r
∀z ∈ [0, 1].

Proof. According to (7), we have to prove that

Rr(z
2) :=

1

18
(1−z2)r−1

[
z2(8r−7)+3

]
≤ 0.25 ∀z ∈ [0, 1].

Function Rr is positive in [0, 1), equal to 1/6 for z = 0 and to zero for z2 = 1. Its derivative (with respect
to z2) is 1

18 (11r−10) > 0 at 0, hence the maximum for Rr is attained at the unique zero in (0, 1) of the

derivative. This point is z2r := 5r−4
8r2−7r , and the maximum is Rr(z

2
r ) = 4

9 (1−
5r−4

8r2−7r )
r−1(1− 1

2r ). When
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r = 3 we use directly this formula to prove that R3(z
2
3) ≤ 0.25. Assume r ≥ 4. Since 1− 5r−4

8r2−7r ≤ 1− 5
8r

for every r ≥ 1 and (1−1/y)y ≤ e−1 for every y ≥ 1, we have (1− 5r−4
8r2−7 )

r−1 ≤ (1− 5
8r )

r−1 ≤ e−5/8/(1− 5
8r ),

so that

Rr(z
2
r ) ≤

4

9
e−5/8 1−

1
2r

1− 5
8r

.

The constant appearing to the right is smaller than 0.25 as soon as r ≥ 4. □

We now need a bound for bℓ for all remaining ℓ = 1, . . . , r−2. In (5) we set a2 from equality a2+a3+
a4+· · · = ℓ. Recalling that P2(z) = 1, we get

bℓ(z) =
(1−z2

8

)ℓ ∑
a3,...≥0

a3+a4+···≤ℓ
a3+2a4+3a5+···=2r−2ℓ

1

(ℓ−a3−a4−· · · )!a3!a4! · · ·

(2P3(z)

3!

)a3
(2P4(z)

4!

)a4

· · · .

The inequality 1
(ℓ−A)! ≤

ℓA

ℓ! holds for every number 0 ≤ A ≤ ℓ, so that bℓ can be bounded as

bℓ(z) ≤
(1−z2

8

)ℓ 1

ℓ!

∑
a3,...≥0

a3+a4+···≤ℓ
a3+2a4+3a5+···=2r−2ℓ

ℓa3+a4+···

a3!a4! · · ·

(2P3(z)

3!

)a3
(2P4(z)

4!

)a4

· · · .

In this formula only aj with j ≤ 2r−2ℓ+2 may contribute; the right hand side may be estimated with

(1−z2

8

)ℓ 1

ℓ!

2r−2ℓ∑
w=1

∑
a3,...,a2r−2ℓ+2≥0

a3+···+a2r−2ℓ+2=w

ℓa3+a4+···+a2r−2ℓ+2

a3! · · · a2r−2ℓ+2!

(2P3(z)

3!

)a3

· · ·
(2P2r−2ℓ+2(z)

(2r−2ℓ+2)!

)a2r−2ℓ+2

=
(1−z2

8

)ℓ 1

ℓ!

2r−2ℓ∑
w=1

1

w!

(2ℓP3(z)

3!
+· · ·+2ℓP2r−2ℓ+2(z)

(2r−2ℓ+2)!

)w

,

because every set of a3, . . . , a2r−2ℓ+2 with a3+2a4+3a5+· · · = 2r−2ℓ satisfies also the equality a3+· · ·+
a2r−2ℓ+2 = w for some w ≤ 2r−2ℓ; for the second step we have used the multinomial formula. Each
Pk(z) equals

2
2k
[(z+1)k−1−(z−1)k−1] and is in [0, 1], hence we can extend the inner sum to all Pk’s. In

this way we get the bound

bℓ(z) ≤
(1−z2

8

)ℓ 1

ℓ!

2r−2ℓ∑
w=1

(2ℓ)w

w!

( ∞∑
k=3

1

k!

[(z+1

2

)k−1

−
(z−1

2

)k−1])w

=
(1−z2

8

)ℓ 1

ℓ!

2r−2ℓ∑
w=1

(2ℓ)w

w!

(
g
(z+1

2

)
−g

(z−1

2

))w

where g(y) := 1
y (e

y−1−y−y2/2) for y ∈ C (the singularity at 0 is removed by analyticity: g(0) = 0). Let

h(z) := g
(
z+1
2

)
−g

(
z−1
2

)
. Polynomials Pk(z) have nonnegative coefficients and g is a power series with

nonnegative coefficients, hence h does the same. Thus, 0 < h(0) ≤ h(z) ≤ h(1) = g(1) = e−5/2 = 0.21 . . .
for z ∈ [0, 1]. In particular, h(z) is always positive and quite small. Thus, extending the range of w to
all integers we get the bound

bℓ(z) ≤
(1−z2

8

)ℓ e2ℓh(z)

ℓ!
,

which should be quite close to the true value. In particular we get that

(9) bℓ(z) ≤
ωℓ

8ℓℓ!
∀ℓ = 1, . . . , r−2, ∀z ∈ [0, 1],

where ω := supz∈[0,1](1−z2) exp(2h(z)) = 1.053088 . . .. Note that the bound in (9) is proved for every

ℓ ≤ r, in particular also for ℓ = r and ℓ = r−1, but in these cases it is weaker than what we have in (6)
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and (8), as effect of the extra exponential factor ωℓ.
We plug (6), (8) and (9) into (4), getting the bound

(10)
1

(2r)!
Gr(n;x) ≤

n[r]

r!8r
+0.25

n[r−1]

(r−2)!8r
+

r−2∑
ℓ=1

ωℓ n[ℓ]

8ℓℓ!
x ∈ [0, 1],

and we conclude the proof of (2) showing that this quantity is bounded by nr

r!8r (1−η r(r−1)
3n ) when η < 3/4.

For this purpose we use a couple of lemmas involving Pochhammer symbols.

Lemma 2. Let ℓ ≥ 0 and n ≥ 1, then

n[ℓ] ≤ nℓ
[
1− 1

n

(
ℓ

2

)
+

1

2n2

(
ℓ

2

)2]
.

Let ℓ ≥ 0 and n ≥ ℓ2, then

n[ℓ] ≥ nℓ
[
1− 1

n

(
ℓ

2

)
+
3ℓ2−13ℓ+5

15n2

(
ℓ

2

)]
.

Proof. Both claims are evident for ℓ = 0, 1. Assume ℓ ≥ 2, and write

n[ℓ]

nℓ
=

ℓ−1∏
j=0

(1−j/n) = exp
( ℓ−1∑

j=0

log(1−j/n)
)
.

Let s1 :=
∑ℓ−1

j=0 j =
(
ℓ
2

)
and s2 :=

∑ℓ−1
j=0 j

2 =
(
ℓ
2

)
2ℓ−1
3 . Since log(1−w) ≤ −w for every w ∈ [0, 1) and

exp(−w) ≤ 1−w+w2/2 when w ≥ 0, we deduce that

n[ℓ]

nℓ
≤ exp

(
−s1

n

)
≤ 1−s1

n
+

s21
2n2

,

which is the first claim. For the second one we note that log(1−w) ≥ −w−w2 for every w ∈ [0, 0.68 . . . ],
and that exp(−w) ≥ 1−w+2w2/5 when w ∈ [0, 1/2]. Thus, assuming that n ≥ ℓ2 we get that

n[ℓ]

nℓ
≥ exp

(
−s1

n
− s2
n2

)
≥ 1−s1

n
− s2
n2

+
2

5

(s1
n
+
s2
n2

)2

,

since the assumption n ≥ ℓ2 assures that s1
n + s2

n2 ≤ 1
2 . To conclude it is sufficient to remark that the right

hand side is larger than 1− s1
n +

2s21−5s2
5n2 and that 2s21−5s2 =

(
ℓ
2

)
3ℓ2−13ℓ+5

3 . □

Lemma 3. Let r ≥ 21 and n ≥ r2. Then

r∑
ℓ=1

n[ℓ]ω
ℓ

8ℓℓ!
≤ nrωr

8rr!
.

The range for r cannot be extended: the claim is false when r ≤ 20. The proof will make clear that
the claim holds under the weaker assumption n ≥ cr for a certain c independent on r when r is large
enough, but we will apply this inequality for n ≫ ωr, so that the range n ≥ r2 suffices for this purpose
and allows us to have a result which excludes only a few values for r.

Proof. The claim is proved differently when r ≤ 32 and when r ≥ 33. Actually, the strategy we apply for
small r is general, but it needs the computation of the coefficients of a certain polynomial depending on
r, so that it can be used only for given r. In fact, let

Qr(n) := nr−
r∑

ℓ=1

n[ℓ]

(ω
8

)ℓ−r r!

ℓ!
.

We have to prove that this polynomial is positive when n ≥ r2. For this it is sufficient to prove that
the leading coefficient is positive and that the absolute value of each complex root is lower than r2.
Each polynomial Qr has degree r−1 and its leading coefficient is

(
r
2

)
− 8r

ω , which is positive when r ≥ 17.

Let Qr(n) =
∑r−1

j=0 djn
j be the standard presentation of this polynomial, and let n̄r denote any of its
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complex roots with maximum modulus. Then, isolating the leading term in Qr(n̄r) = 0 and dividing by
|dr−1||n̄r|r−2 we deduce that

|n̄r| ≤
r−2∑
j=0

|dj |
|dr−1|

1

|n̄r|r−2−j
.

Suppose that |n̄r| ≥ r2, then we have the double inequality

r2 ≤ |n̄r| ≤
r−2∑
j=0

|dj |
|dr−1|

1

r2(r−2−j)
.

Thus, we can prove that |n̄r| ≥ r2 is impossible by checking that
∑r−2

j=0
|dj |

|dr−1|
1

r2(r−2−j) is actually smaller

than r2. Table 1 collects all computations, and proves the inequality for r = 21, . . . , 32.

Table 1. Data for 21 ≤ r ≤ 32.

r r2
∑r−2

j=0
|dj |

|dr−1|
1

r2(r−2−j) r r2
∑r−2

j=0
|dj |

|dr−1|
1

r2(r−2−j)

21 441 348.617 27 729 232.430
22 484 302.935 28 784 236.604
23 529 273.033 29 841 242.388
24 576 252.996 30 900 249.554
25 625 239.595 31 961 257.935
26 676 230.922 32 1024 267.409

Assume r ≥ 33 and n ≥ r2. Lemma 2 shows that when n ≥
(
r
2

)
and ℓ ≤ r we get

n[ℓ] ≤ nℓ
[
1− 1

n

(
ℓ

2

)
+

1

2n2

(
ℓ

2

)2]
≤ nℓ

[
1− 1

2n

(
ℓ

2

)]
.

Hence

r∑
ℓ=1

n[ℓ]ω
ℓ

8ℓℓ!
≤

r∑
ℓ=1

nℓωℓ

8ℓℓ!

[
1− 1

2n

(
ℓ

2

)]
=

nrωr

8rr!
−

r−1∑
ℓ=1

nℓωℓ

8ℓℓ!

[ωℓ
32

−1
]
.

The contribution of terms ℓ ≥ 31 is negative (because ωℓ−32 is positive here), therefore the inequality
is proved as soon as the total contribution of terms for ℓ = 1, . . . , 30 and the one for ℓ = r−1 (which is
another one, since r ≥ 33) is negative, i.e., as soon as

30∑
ℓ=1

nℓωℓ

8ℓℓ!

[
1−ωℓ

32

]
≤ nr−1ωr−1

8r−1(r−1)!

[ω(r−1)

32
−1

]
.

The term appearing to the left hand side is smaller than 5·10−61·n30 when n ≥ 900 (use the assumption

to get nℓ ≤ n30/90030−ℓ, and then compute the constant), and ω(r−1)
32 −1 ≥ 5/100 (because r ≥ 33,

again). Hence it is sufficient to prove that

10−59(8/ω)r−1(r−1)! ≤ nr−31.

This is true when n ≥ r2 and r ≥ 33. □

We use Lemma 2 to deduce that

n[r]

r!8r
+0.25

n[r−1]

(r−2)!8r
≤ nr

r!8r
− nr−1

4(r−2)!8r
+

nr−2

4(r−2)!8r

(
r+

r4

8n

)
,

and Lemma 3 to deduce that
r−2∑
ℓ=1

n[ℓ]ω
ℓ

8ℓℓ!
≤ nr−2ωr−2

8r−2(r−2)!
,
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at least when r ≥ 23 and n ≥ r2. With these bounds for the terms in (10), the claim will be proved as
soon as

nr−2

4(r−2)!8r

(
r+

r4

8n

)
+

nr−2ωr−2

8r−2(r−2)!
≤ nr−1

4(r−2)!8r
−η

3

nr−1

(r−2)!8r
,

i.e.,

r+
r4

8n
+256·ωr−2 ≤ n

(
1−4η

3

)
.

When η is in [0, 3/4) this inequality holds as soon as n ≥ 260·ωr/(1−4η/3) for every r, but it has been
deduced under the assumption that r ≥ 23 (and that n ≥ r2, but this is always true when n ≥ 260·ωr).
Thus, this argument proves (2) under the extra assumption that r ≥ 23.

For the range r ≤ 22 we need a different approach, still based upon the formula (4) for Gr(n;x), but
needing the assistance of a software for some computations. In Appendix we describe the main parts
of this computation, while a full description and the PARI-gp [4] code realizing the computation are
available to the interested reader in [3].

The lower-bound (3) has a simpler proof. In fact, we notice that

nr sup
x∈[0,1]

Mn,2r = n−r sup
x∈[0,1]

Gr(n, x) ≥ n−rGr(n, 1/2) ≥ (2r)!
[
br(0)

n[r]

nr
+br−1(0)

n[r−1]

nr

]
,

because in (4) all bℓ’s are positive. By (6) and (7) we get the values br(0) =
1

r!8r and br−1(0) =
1/6

(r−2)!8r ,

and from the second inequality in Lemma 2 we conclude that for n ≥ r2 and r ≥ 5 (so that
n[r−1]

nr−1 ≥
1− 1

n

(
r−1
2

)
)

nr sup
x∈[0,1]

Mn,2r ≥ (2r)!

r!8r

[
1− 1

n

(
r

2

)
+
3r2−13r+5

15n2

(
r

2

)]
+

(2r)!/6

(r−2)!8r

[ 1
n
− 1

n2

(
r−1

2

)]
= cr−

c′r
n
+c′r

r(r−11)

20n2
,

which is larger than cr− c′r
n as soon as r ≥ 11. Once again, the proof of the claim for the remaining range

r ≤ 10 is described in Appendix in its general ideas and in [3] in detail.

The assumption n ≥ 260·ωr we have made for (2) is not natural and actually can be relaxed consider-
ably, at least for the case η = 0. For example, with some extra work we can compute the exact formulas
for the coefficients br−2 and br−3 and deduce the bounds

(11) br−2(z) ≤
0.2

(r−4)!8r
and br−3(z) ≤

0.04

(r−6)!8r
∀z ∈ [0, 1].

These bounds improve exponentially with respect to what we got in (9) for the same bℓ’s. Plugging these
new bounds in the general formula (4) and retaining the general bound (9) only for coefficients bℓ with
ℓ ≤ r−4 we produce an estimation which is similar to (10), but that allows to prove (2) under the weaker
hypothesis n ≫ (r2ωr)1/3. Bounds (11) suggest that probably bℓ is smaller than 1

(2ℓ−r)!8r when ℓ ≥ r/2.

If true, this fact implies that n ≫ rc for some constant c suffices for (2). However, while it is possible to
prove it also for br−4, br−5 and in some other case, it is not clear how to produce these improvements for
all ℓ ≥ r/2.

As announced in the previous section, we repeat here that the explicit computations for r ≤ 22 in [3]
show also that for these r the case η = 0 of Inequality (2) holds for every n, i.e. without the restriction
n ≥ 260·ωr. We believe that this fact should be true for every r: if true, its proof probably needs a
different approach.

3. Appendix

Here we describe the procedure we used in [3] to prove the claims of the theorem also in the remaining
range, i.e. r ≤ 22 for (2) and r ≤ 10 for (3).
Firstly, we compute explicitly the polynomial Gr(n;x). This is done using the formula in (4), since its
definition as

∑n
k=0(k−nx)2rBk,n(x) is not suitable for this purpose. The polynomial is in Q[n, x] and

PARI-gp [4] computes with full precision for this class of polynomials, so that the code produces the
correct answer without approximations. The computations show that Gr(n;x) has degree r in n and
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depends on x via (1−2x)2: its degree as a polynomial in (1−2x)2 is r again, at least for r ≤ 22 (but
this fact is actually provable for every r). To simplify the following steps we change (1−2x)2 with y and
we call Ar(n, y) the resulting polynomial. In terms of Ar, the first claim we have to prove states that
Ar(n, y) ≤ crn

r−ηc′rn
r−1 for every y ∈ [0, 1], for every η ∈ [0, 3/4) and for every n ≥ 260·ωr/(1−4η/3)

and r ≤ 22. We actually prove a stronger result, namely that Ar(n, y) ≤ crn
r− 3c′r

4 nr−1 for every y ∈ [0, 1]
for every n ≥ 260·ωr and r ≤ 22.
A close analysis of these polynomials show that Ar can be written as

Ar(n, y) =

r∑
k=1

(1−y)kPr,k(y)n
k,

where Pr,k(y) is a polynomial in y with degree r−k, and that

Pr,k(y) = (−1)r−k
r−k∑
j=0

cr,k,j(−y)j

with cr,k,j > 0 for every r, k, j (we believe that this fact is true for every r, but we have not a general
proof. However, its truth for r ≤ 22 is proved by inspection of the polynomial that we have computed
before). Moreover, we see that cr,r,0 = cr, and that cr,r−1,0 = c′r.

The following steps depend on a parameter yr with a different value for each r = 1, . . . , 22: any value in
(0, 1) for yr is admissible, but certain values produce better conclusions. With a try and error procedure
we have selected a convenient value for yr for each r ≤ 22.
STEP 1: we prove that there exists an integer N1,r such that

Ar(n, y) ≤ crn
r−3c′r

4
nr−1 for every y ∈ [yr, 1], when n ≥ N1,r

and we find an explicit value for N1,r.
In fact, for y ∈ [yr, 1] one has

Ar(n, y) = (1−y)rcrn
r+

r−1∑
k=1

(1−y)kPr,k(y)n
k ≤ (1−yr)

rcrn
r+

r−1∑
k=1

∥(1−y)kPr,k(y)∥[yr,1]n
k,

where ∥·∥[yr,1] denotes the sup norm in [yr, 1]. Thus, it is lower than crn
r− 3c′r

4 nr−1 as soon as

−(1−(1−yr)
r)crn

r+
3c′r
4

nr−1+

r−1∑
k=1

∥(1−y)kPr,k(y)∥[yr,1]n
k ≤ 0

and for N1,r we take the least integer which is larger than the greatest real root of this polynomial. This
proves the existence of N1,r for every r, but the formula produces an explicit value for N1,r only when r is
fixed, because in this case we can compute each ∥(1−y)kPr,k(y)∥[yr,1] exactly from its explicit description.
STEP 2: we prove that there exists N2,r such that

∂yAr(n, y) ≤ 0 for every y ∈ [0, yr], when n ≥ N2,r

and we find an explicit value for N2,r.
In fact, for y ∈ [0, yr] one has

∂yAr(n, y) = −r(1−y)r−1crn
r+

r−1∑
k=1

[(1−y)kPr,k(y)]
′nk

≤ −r(1−yr)
r−1crn

r+

r−1∑
k=1

∥[(1−y)kPr,k(y)]
′∥[0,yr]n

k

and for N2,r we take the least integer which is larger than the greatest real root of this polynomial. As
for Step 1, this proves the existence of N2,r for every r, but it produces an explicit value for N2,r only
when r is fixed.
STEP 3: we prove that there exists N3,r such that

Ar(n, 0) ≤ crn
r−3c′r

4
nr−1 for every n ≥ N3,r
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and we find an explicit value for N3,r.
In fact, we see that

Ar(n, 0) =

r∑
k=1

Pr,k(0)n
k =

r∑
k=1

(−1)r−kcr,k,0n
k

= cr,r,0n
r−nr−2(cr,r−1,0n−cr,r−2,0)−nr−4(cr,r−3,0n−cr,r−4,0)−· · ·

so that it is ≤ crn
r− 3c′r

4 nr−1 as soon as

n ≥ N3,r := max
{
4
cr,r−2,0

cr,r−1,0
,
cr,r−4,0

cr,r−3,0
, . . .

}
,

because cr,r,0 = cr, cr,r−1,0 = c′r, and all coefficients cr,k,j are positive.
Steps 1, 2 and 3 prove that

sup
x∈[0,1]

Gr(n;x) ≤ crn
r−3c′r

4
nr−1 ∀x ∈ [0, 1]

when r ≤ 22 and n ≥ Nr := max{Nr,1, Nr,2, Nr,3}. In all cases Nr ≤ 260·ωr, hence the upper bound of
the theorem is now proved also for r ≤ 22, with n ≥ 260·ωr.
As a final bonus, we show that when r ≤ 22 one has

sup
x∈[0,1]

Gr(n;x) ≤ crn
r

also when n < Nr by proving that for every choice of n in the given range the resulting polynomial (in
x) is bounded by crn

r. This procedure is possible since we have a finite (and relatively small) set of r’s
and n’s to test. This proves that, at least when r ≤ 22, the case η = 0 of the upper bound holds without
the restriction to n ≥ 260·ωr.

For the lower bound we act in similar way, since supx∈[0,1] Gr(n;x) ≥ Gr(n; 1/2) = Ar(n, 0). Thus, we

can test (3) by checking that

Ar(n, 0)−crn
r+c′rn

r−1 = nr−3(cr,r−2,0n−cr,r−3,0)+nr−5(cr,r−4,0n−cr,r−5,0)−· · ·
is positive. For this it is sufficient to have

n ≥ max
{cr,r−3,0

cr,r−2,0
,
cr,r−5,0

cr,r−4,0
, . . .

}
,

and the explicit computation shows that this maximum is lower than r2 when r ≤ 10.
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