Structural Landscape of Zn (II) and Cd (II) Coordination Compounds with Two Isomeric Triimidazole Luminophores: Impact of Crystal ${ }_{3}$ Packing Patterns on Emission Properties

${ }_{4}$ Marina S. Fonari,* Victor C. Kravtsov, Victor Bold, Elena Lucenti, Elena Cariati,* Daniele Marinotto, s and Alessandra Forni

Cite This: https://doi.org/10.1021/acs.cgd.1c00459

Read Online
ACCESS | 岆 Metrics \& More | 国 Article Recommendations | © Supporting Information

Abstract

6 ABSTRACT: The interplay of different $\mathrm{Zn}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$ salts with two 7 luminescent triimidazole ligands, triimidazo $\left[1,2-a: 1^{\prime}, 2^{\prime}-c: 1^{\prime \prime}, 2^{\prime \prime}-e\right][1,3,5]$-triazine $8\left(\mathrm{~L}_{1}\right)$ and its positional isomer triimidazo $\left[1,2-a: 1^{\prime}, 2^{\prime}-c: 1^{\prime \prime}, 5^{\prime \prime}-e\right][1,3,5]$ triazine $9\left(\mathrm{~L}_{2}\right)$, in solvothermal synthetic conditions resulted in mono-, bi-, and polynuclear $\mathrm{Zn}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$ coordination compounds with diverse metal/ luminophore $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right) /$ anion $/$ water ratios, $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{~L}_{1}\right)_{2}$ ($\left.\mathbf{1}\right)$, $[\mathrm{Zn}-$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(2),\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(3)$, $[\mathrm{Zn}-$ $\left.\left.\left(\mathrm{L}_{1}\right)\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(\mathrm{NO}_{3}\right)(4),\left[\mathrm{Cd}\left(\mathrm{L}_{1}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{H}_{2} \mathrm{O}\right)_{2}\right](5,6),\left[\mathrm{Cd}_{2}(\mathrm{bdc})-\right.$ $\left.\left(\mathrm{L}_{1}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(7),\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ (8), [Cd$\left.\left(\mathrm{L}_{2}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](9), \quad\left[\mathrm{Zn}\left(\mathrm{L}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right](10)$, $\left[\mathrm{Cd}\left(\mathrm{L}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{Im})_{0.75}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.25}\right] \cdot 0.5\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathbf{1 1}),\left[\mathrm{Zn}(\mathrm{Cl})_{2}\left(\mathrm{~L}_{1}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (12), $\left\{\left[\mathrm{Zn}(\mathrm{Cl})_{2}\left(\mathrm{~L}_{1}\right)\right] 1 / 6\left(\mathrm{~L}_{1} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right\}_{n}$ (13), and $\left[\mathrm{Cd}\left(\mathrm{L}_{2}\right)_{6}\right]_{2}\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]-$ $\left(\mathrm{ClO}_{4}\right)_{6} \cdot 7\left(\mathrm{H}_{2} \mathrm{O}\right)(14)$. Herein, for the first time, the Zn and Cd coordination compounds with L_{1} and L_{2} luminophores as inner-sphere ligands have been obtained and structurally characterized. The structural landscape includes inclusion compound 1, supramolecular isomers $\mathbf{1 - 3}$, isomorphs 2 and 3 , polymorphs 5 and 6 , and onedimensional coordination polymer 13. In discrete complexes, both luminophores coordinate to the metals in monodentate mode; in 13, L_{1} acts as a bidentate bridging ligand giving rise to the structure extension. Since the crystal packing and stacking patterns of the luminophore molecules are important factors underlying the aggregation induced emission, the finite and infinite stacking motifs registered in the crystal structures $\mathbf{1 - 1 4}$ are reported. All compounds reveal an emissive response upon irradiation under the UV-vis lamp. The best performing compounds in the series, namely, $\mathbf{4}, \mathbf{5}$, and $\mathbf{1 0}$, have been fully spectroscopically characterized.

INTRODUCTION

In the past decade, substantial research has been focused on new energy-saving concepts for lighting and display applications. Organic light-emitting diodes (OLEDs) are promising devices for this task, since they consume only a fraction of the energy of conventional, inefficient light bulbs and can be manufactured on thin, flexible, and lightweight substrates. The concept of aggregation induced emission (AIE) pioneered by Tang et al. in 2001^{1} nowadays is intensively studied for the above-mentioned applications. ${ }^{2-4}$ Most of the AIE materials exhibit high fluorescence quantum yields (QY) in the solid state or in colloidal aggregates but weak fluorescence in dilute solutions. Among the factors responsible for the AIE phenomenon, the restriction of intramolecular rotation (RIR) and/or intramolecular motion (RIM), heavy-atom (halogen) effect, impact of hydrogen bonding, and favorable arrangement of luminophores in the crystal lattice ${ }^{1-17}$ should be mentioned, all leading to a suppression of radiationless deactivation pathways.
The widespread research for a better understanding of the factors essential to optimizing emission properties in the solid
state revealed that packing features are among the most 47 important in affecting the bright fluorescence and room 48 temperature phosphorescence (RTP). ${ }^{2-4}$ In order to obtain 49 ultralong phosphorescence (RTUP), a stable long-lived excited 50 triplet state $\left(T_{1}\right)$ is a necessary condition. It has been proven 51 that the packing mode with strong $\pi-\pi$ interactions is one of 52 the most effective features in stabilizing the T_{1} state, resulting 53 in persistent RTP. ${ }^{6,18,19}$

Although organic dyes exhibit broad emission wavelengths 55 and tunability for optical gain materials, they are affected by 56 poor optical and thermal stability. Amid the approaches to 57 overcome such shortcomings, it has been proposed to load and 58 isolate the dye molecules in the cavities of porous oxides and

[^0]Scheme 1. Molecular Structures of Triimidazo[1,2-a:1 $\mathbf{1}^{\prime}, 2^{\prime}$ $\left.c: 1^{\prime \prime}, 2^{\prime \prime}-e\right][1,3,5]$ triazine $\left(\mathrm{L}_{1}\right)$ and Its Positional Isomer, Triimidazo[1,2-a:1'2'-c:1", $\left.5^{\prime \prime}-e\right][1,3,5]$ triazine (L_{2})

\mathbf{L}_{1}

L_{2}
associated with fast deactivation channels (in the nanosecond 123 region). ${ }^{6}$ Furthermore, thanks to its nitrogen atoms available 124 for coordination to metal atoms, L_{1} has been successfully 125 employed for the preparation of $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Ag}(\mathrm{I})$ coordination 126 networks where L_{1} behaves as a mono-, bi-, and tridentate 127 ligand, giving rise to one-, two-, and three-dimensional (1D, 128 2D, 3D) coordination polymeric networks of different 129 topologies. ${ }^{34,42}$ Very recently, L_{1} and L_{2} ligands have been 130 used for the synthesis of $\mathrm{Cu}(\mathrm{II})$ mononuclear and binuclear 131 discrete complexes and 1D coordination polymers. ${ }^{43}$ On the 132 other hand, our first attempts to obtain Zn (II) or $\mathrm{Cd}(\mathrm{II}) 133$ coordination compounds with an L_{1} luminophore resulted in 134 four inclusion compounds, where L_{1} shows different 135 aggregation stacking patterns, and the resulting compounds 136 retain the emissive properties where the metal atom behaves as 137 an external perturber. ${ }^{35}$ In particular, in 138 $\left[\mathrm{Zn}_{3}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{L}_{1}\right)_{2}$, the luminophore molecules 139 associate in a way very similar to the L_{1} pure phase, but the 140 increased spin-orbit coupling (SOC) manifests in an easier 141 singlet-to-triplet intersystem crossing (ISC) resulting in 142 intensification of the RTUP with respect to the fluorescence 143 and in the appearance of the $\mathrm{S}_{0}-\mathrm{T}^{\mathrm{H}}$ transition in the excitation 144 spectrum, T^{H} being the triplet state responsible for the 145 phosphorescent emission. These results provided further 146 contributions in the knowledge of RTUP from extrinsically 147 perturbed organic materials in the solid state. Herein, for the 148 first time, the Zn and Cd coordination compounds with L_{1} and 149 L_{2} luminophores as inner-sphere ligands have been obtained 150 and structurally characterized. Since the crystal packing and 151 stacking patterns of the luminophore molecules are important 152 for the AIE, the finite and infinite stacking motifs registered in 153 the crystal structures of $\mathbf{1 - 1 4}$ are reported. All compounds 154 reveal an emissive response upon irradiation under the UV-vis 155 lamp. Due to the difficulties in obtaining batches of the 156 compounds with the sufficient purity grade required to 157 perform reliable photophysical studies and consequently derive 158 congruent radiative deactivation mechanisms, photophysical 159 characterization has been carried out for the three of them that 160 revealed the strongest signals at the preliminary stages of the 161 studies.

- EXPERIMENTAL SECTION

163
Materials and Methods. All reagents and solvents were obtained 164 from commercial sources and used without further purification. 165 Ligands L_{1} and L_{2} were prepared according to literature 166 procedures. ${ }^{44,45}$

General Synthetic Procedures. Solvothermal reactions for 1, 2, 168 4-8, and 12-14 were performed using a sealed 12 mL Teflon-lined 169 reactor, heated $\left(0.41(6)^{\circ} \mathrm{C} / \mathrm{min}\right.$ rate $)$ in an oven at $80^{\circ} \mathrm{C}$ for $24 \mathrm{~h}, 170$ and slowly ($0.023{ }^{\circ} \mathrm{C} / \mathrm{min}$ rate) cooled to $30^{\circ} \mathrm{C}$. The reactions for ${ }^{171}$ 9-11 were carried out at $100^{\circ} \mathrm{C}$ for 48 h following slow cooling. In 172 typical reactions, the starting salt, $\mathrm{L}_{1} / \mathrm{L}_{2}$, was taken in a 1:1 molar 173

174 ratio; $\mathrm{CH}_{3} \mathrm{CN}$ or $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{DMF}$ solvent mixtures were taken in 7-10 175 mL amounts. After cooling, the reaction mixtures were filtered off and 176 left for crystallization at room temperature. Elemental analysis (C, N, 177 H) was performed on a Vario EL III Element Analyzer.

Synthesis of $\left[\mathrm{Zn}(\mathrm{Cl})_{2}\left(\mathrm{~L}_{1}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (12) and $\left\{\left[\mathrm{Zn}(\mathrm{Cl})_{2}\left(\mathrm{~L}_{1}\right)\right] \cdot 1 / 6\left(\mathrm{~L}_{1}\right) \cdot 1 / 244\right.$ $\left.6\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{n}$ (13). In a Teflon beaker, in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$, was added 245 $\mathrm{ZnCl}_{2}(14.3 \mathrm{mg}, 0.104 \mathrm{mmol}), \mathrm{L}_{1}(21.6 \mathrm{mg}, 0.109 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{bdc} 246$ $(17.2 \mathrm{mg}, 0.103 \mathrm{mmol})$. Transparent colorless block-shaped crystals 247 of $\mathbf{1 2}$ were precipitated in 4 days. Yield: 30%. Elemental analysis, 248 found (calcd), \% for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{OZn}$: C, 30.67 (29.39); $\mathrm{H}, 2.29249$ (2.01); N, 23.84 (23.15). After 3 weeks, needle crystals of 13 were 250 precipitated. Yield: 18%. Elemental analysis, found (calcd), \% for 251 $\mathrm{C}_{10.5} \mathrm{H}_{7.33} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{0.17} \mathrm{Zn}: \mathrm{C}, 34.04$ (33.40); H, 1.99 (2.30); N, 26.46252 (25.99).

Synthesis of $\left.\left[\mathrm{Cd}\left(\mathrm{L}_{2}\right)_{6}\right]_{2}\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](\mathrm{ClO})_{4}\right)_{6} 7\left(\mathrm{H}_{2} \mathrm{O}\right)$ (14). In a Teflon 254 beaker, in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$, was added $\mathrm{Cd}\left(\mathrm{ClO}_{4}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}(34.9 \mathrm{mg}$, 255 $0.112 \mathrm{mmol}), \mathrm{L}_{2}(24 \mathrm{mg}, 0.121 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{bdc}(17.4 \mathrm{mg}, 0.104256$ mmol). Transparent colorless crystals were precipitated in 2 weeks. 257 Yield: 55\%. Elemental analysis, found (calcd), \% for 258 $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{CdCl}_{2} \mathrm{~N}_{24} \mathrm{O}_{12.52}: \mathrm{C}, 36.58$ (36.11); H, 2.73 (2.12); N, 28.44259 (28.02).

Crystallographic Studies. Diffraction measurements for 1-14 261 were carried out on an Xcalibur E diffractometer equipped with a 262 CCD area detector and a graphite monochromator utilizing Mo K $\alpha 263$ radiation at a room temperature. Final unit cell dimensions were 264 obtained and refined on an entire data set. All calculations to solve the 265 structures and to refine the models proposed were carried out with 266 the programs SHELXS97 and SHELXL2014. ${ }^{46,47}$ In compound 6, 267 oxygen atoms in one nitrate anion are disordered over two positions 268 and refined with the partial occupancies 0.628(5):0.372(5). 269 Compound 9 was refined as a two-component twin. In compound 270 11, the coordinated imidazole molecule that resides on a 2 -fold axis 271 alternates in this position with coordinated and outer-sphere water 272 molecules, the components were refined with a $0.75: 0.25$ population 273 ratio. Compound $\mathbf{1 2}$ was refined as an inversion twin with the ratio of 274 components $0.514: 0.486$. The structure is completely disordered; 275 each formula unit is disordered over two positions, with occupancies 276 $0.822(17): 0.178(17)$ and $0.679(19): 0.321(19)$, respectively. In 13, 277 the outer-sphere L_{1} and water molecules are disordered over a 3 -fold 278 axis and refined with incomplete occupancies. Hydrogen atoms 279 attached to carbon atoms were positioned geometrically and treated 280 as riding atoms using SHELXL default parameters with $U_{\text {iso }}(\mathrm{H})=281$ $1.2 U_{\text {eq }}(\mathrm{C})$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ for methyl groups and water 282 molecules. In water molecules with full occupancies, H atoms were 283 found at the preliminary stages of the refinement and finally refined in 284 fixed positions. In crystal structure 14, H atoms in the partly 285 populated outer-sphere water molecules were not localized. The X-ray 286 data and the details of the refinement for $\mathbf{1 - 4}$ are summarized in 287 Table 1. The figures were produced using MERCURY software. ${ }^{48} 288 \mathrm{tl}$ Calculations of $\pi \cdots \pi$ stacking parameters ($\mathrm{Cg} \cdots \mathrm{Cg}$ distances, 289 interplanar angles) were performed using PLATON software. ${ }^{49}$ The 290 geometric parameters are given in CIF files. CIF files were deposited 291 with the CSD, deposition numbers CCDC 2076858-2076871.

RESULTS AND DISCUSSION

293
Solvothermal reactions using blends of $\mathrm{Zn}(\mathrm{II}) / \mathrm{Cd}(\mathrm{II})$ salts, 294 $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 295$ $\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{ZnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{Cd}\left(\mathrm{ClO}_{4}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O} 296$ with either L_{1} or L_{2} luminophores resulted in 14 new 297 crystalline solids formulated as $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{~L}_{1}\right)_{2}(\mathbf{1}), 298$ $\left.\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (2), $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]-299$ $\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(3),\left[\mathrm{Zn}\left(\mathrm{L}_{1}\right)\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(\mathrm{NO}_{3}\right)(4),[\mathrm{Cd}-300$ $\left.\left(\mathrm{L}_{1}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](5,6),\left[\mathrm{Cd}_{2}(\right.$ bdc $\left.)\left(\mathrm{L}_{1}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 301$ $2 \mathrm{H}_{2} \mathrm{O}$ (bdc = 1,4-benzenedicarboxylate) (7), [Zn-302 $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}(8),\left[\mathrm{Cd}\left(\mathrm{L}_{2}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](9),[\mathrm{Zn}-303$ $\left.\left(\mathrm{L}_{2}\right)_{2}(\mathrm{Ac})_{2}\right](10),\left[\mathrm{Cd}\left(\mathrm{L}_{2}\right)_{2}(\mathrm{Ac})_{2}(\mathrm{Im})_{0.75}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.25}\right] \cdot 0.5\left(\mathrm{H}_{2} \mathrm{O}\right) 304$ $\left(\operatorname{Im}=\right.$ imidazole) (11), $\left[\mathrm{Zn}(\mathrm{Cl})_{2}\left(\mathrm{~L}_{1}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right](\mathbf{1 2)}$) (\{[Zn-305 $\left.\left.(\mathrm{Cl})_{2}\left(\mathrm{~L}_{1}\right)\right] \cdot 1 / 6\left(\mathrm{~L}_{1} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right\}_{n}(13)$, and $\left.\left.\mathrm{L}_{2}\right)_{6}\right]_{2}\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]-306$ $\left(\mathrm{ClO}_{4}\right)_{6} \cdot 7\left(\mathrm{H}_{2} \mathrm{O}\right)(14)$, whose crystal structures were studied 307 by single crystal X-ray diffraction structural analysis. The 308 crystallographic data for $\mathbf{1 - 1 4}$ are summarized in Table 1. The 309 bond distances and angles in the metals' coordination cores in 310
Table 1. Crystal Data and Structure Refinement Parameters for Compounds 1-7

	compound number						
	1	2	3	4	5	6	7
composition	$\begin{aligned} & {\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]} \\ & \left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{~L}_{1}\right)_{2} \end{aligned}$	$\begin{array}{r} {\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]} \\ \left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \end{array}$	$\begin{gathered} {\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]} \\ \left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \end{gathered}$	$\begin{aligned} & {\left[\mathrm{Zn}\left(\mathrm{~L}_{1}\right)\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]} \\ & \left(\mathrm{NO}_{3}\right) \end{aligned}$	$\left[\mathrm{Cd}\left(\mathrm{L}_{1}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$\left[\mathrm{Cd}\left(\mathrm{L}_{1}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$\left[\mathrm{Cd}_{2}(\mathrm{bdc})\left(\mathrm{L}_{1}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
empirical formula	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{14} \mathrm{O}_{12} \mathrm{Zn}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{14} \mathrm{O}_{12} \mathrm{Zn}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{CdN}_{14} \mathrm{O}_{12}$	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{Zn}$	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{CdN}_{14} \mathrm{O}_{8}$	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{CdN}_{14} \mathrm{O}_{8}$	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Cd}_{2} \mathrm{~N}_{14} \mathrm{O}_{16}$
formula weight	693.88	693.88	740.91	441.64	668.85	668.85	1017.42
crystal system	triclinic	triclinic	triclinic	triclinic	monoclinic	monoclinic	monoclinic
space group	$P \overline{1}$	$P \overline{1}$	$P \overline{1}$	$P \overline{1}$	C2/c	$P 2_{1} / n$	$P 2_{1} / n$
a, \AA	8.0765(6)	7.1668(8)	7.2358(10)	8.5471(7)	25.8206(13)	7.2334(2)	8.8497(4)
b, \AA	9.1056(7)	8.2481(9)	8.2970(13)	9.1061(7)	6.9849(5)	14.0028(4)	19.3876(12)
c, \AA	10.2014(8)	11.5772(14)	11.640(2)	11.1282(6)	13.5066(6)	22.4443(6)	10.3001 (4)
α, deg	71.701(7)	89.759(10)	89.688(14)	85.539(5)	90	90	90
β, deg	76.625(7)	83.656(10)	83.904(13)	78.333(6).	101.938(5)	91.314(3)	95.210(4)
γ, deg	77.036(7)	73.406(10)	73.517(13)	66.208(8)	90	90	90
volume, \AA^{3}	683.56(10)	651.57(14)	666.08(19)	776.13(10)	2383.3(2)	2272.74(11)	1759.94(15)
Z	1	1	1	2	4	4	2
D (calcd), mg/m ${ }^{3}$	1.686	1.768	1.847	1.890	1.864	1.955	1.920
μ, mm^{-1}	0.987	1.035	0.911	1.654	0.995	1.044	1.304
$F(000)$	356	356	374	448	1336	1336	1012
index ranges	$-9 \leq h \leq 9$	$-8 \leq h \leq 8$	$-8 \leq h \leq 7$	$-10 \leq h \leq 10$	$-21 \leq h \leq 31$	$-8 \leq h \leq 8$	$-10 \leq h \leq 10$
	$-11 \leq k \leq 8$	$-6 \leq k \leq 9$	$-10 \leq k \leq 9$	$-10 \leq k \leq 10$	$-8 \leq k \leq 4$	$-16 \leq k \leq 16$	$-23 \leq k \leq 12$
	$-11 \leq l \leq 12$	$-14 \leq l \leq 13$	$-14 \leq l \leq 13$	$-13 \leq l \leq 12$	$-16 \leq l \leq 13$	$-27 \leq l \leq 17$	$-12 \leq l \leq 8$
reflections collected	3767	3599	4121	4895	4302	8886	6238
independent reflections	2519 [$\left.R_{\text {int }}=0.0240\right]$	2403 [$\left.R_{\text {int }}=0.0220\right]$	2476 [$\left.R_{\text {int }}=0.0539\right]$	2800 [$\left.R_{\text {int }}=0.0236\right]$	2226 [$\left.R_{\text {int }}=0.0275\right]$	4195 [$\left.R_{\text {int }}=0.0250\right]$	3277 [$\left.R_{\text {int }}=0.0436\right]$
data/restraints/parameters	2519/9/229	2403/9/230	2476/12/229	2800/0/254	2226/3/196	4195/42/415	3277/10/280
goodness-of-fit on F^{2}	1.071	1.063	1.086	1.088	1.051	1.005	0.956
$\begin{aligned} & \text { final } R \text { indices }[I>2 \sigma(I)] \text {, } \\ & R_{1}, w R_{2} \end{aligned}$	0.0440, 0.0932	0.0370, 0.0824	0.0625, 0.1546	0.0366, 0.0785	0.0347, 0.0885	0.0309, 0.0674	0.0534, 0.0721
R indices all data), $R_{1}, w R_{2}$	0.0567, 0.1018	0.0438, 0.0870	0.0666, 0.1584	0.0428, 0.0830	0.0425, 0.0954	0.0390, 0.0710	0.0933, 0.0850
				compound	number		
	8	9	10	11	12	13	14
composition	$\begin{aligned} & {\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{2}\right)_{2}\right]} \\ & \left(\mathrm{NO}_{3}\right)_{2} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right.} \\ & \left.\left(\mathrm{L}_{2}\right)_{2}\right] \end{aligned}$	$\left[\mathrm{Zn}\left(\mathrm{L}_{2}\right)_{2}(\mathrm{Ac})_{2}\right]$	$\begin{aligned} & {\left[\mathrm{Cd}\left(\mathrm{~L}_{2}\right)_{2}(\mathrm{Ac})_{2}(\mathrm{Im})_{0.75}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.2}\right.} \\ & \left(\mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	$\begin{gathered} 5] \cdot 0.5 \quad\left[\begin{array}{c} {\left[\mathrm{Zn}(\mathrm{Cl})_{2}\left(\mathrm{~L}_{1}\right)\right.} \\ \left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \end{array}\right. \end{gathered}$	$\begin{aligned} & \left\{\left[\mathrm{Zn}(\mathrm{Cl})_{2}\left(\mathrm{~L}_{1}\right)\right] \cdot 1 / 6\left(\mathrm{~L}_{1}\right) \cdot 1 / 6\right. \\ & \left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{n} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{Cd}\left(\mathrm{~L}_{2}\right)_{6}\right]_{2}\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{6} 7} \\ & \left(\mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$
empirical formula	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{14} \mathrm{O}_{10} \mathrm{Zn}$	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{CdN}_{14} \mathrm{O}_{7}$	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{Zn}$	$\mathrm{C}_{24.25} \mathrm{H}_{21.75} \mathrm{CdN}_{13.5} \mathrm{O}_{4.75}$	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{OZn}$	$\mathrm{C}_{10.5} \mathrm{H}_{7.33} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{0.17} \mathrm{Zn}$	$\mathrm{C}_{108} \mathrm{H}_{96} \mathrm{Cd}_{3} \mathrm{Cl}_{6} \mathrm{~N}_{72} \mathrm{O}_{37.56}$
formula weight	657.85	650.83	579.85	690.70	352.48	370.50	3546.48
crystal system	monoclinic	triclinic	monoclinic	monoclinic	orthorhombic	trigonal	trigonal
space group	$P 2_{1} / n$	$P \overline{1}$	I2/c	C2/c	Pca2 ${ }_{1}$	R3c	$R \overline{3}$
a, \AA	11.6840(5)	6.8606(5)	18.5940(11)	23.0475(7)	13.5411(8)	24.956(3)	20.5390(12)
b, Å	9.5119(3)	10.4828(11)	5.8071(5)	8.4765(3)	16.3420(16)	24.956(3)	20.5390(12)
c, \AA	12.6066(5)	16.851(2)	23.117(2)	14.1559(5)	11.8542(8)	12.8686(13)	29.7452(13)
α, deg	90	99.422(9)	90	90	90	90	90
β, deg	116.602(5)	100.783(8)	110.065(8)	100.117(3)	90	90	90
γ, deg	90	100.592(8)	90	90	90	120	120
volume, \AA^{3}	1252.74(10)	1145.3(2)	2344.6(3)	2722.6(2)	2623.2(4)	6941(2)	10866.9(14)
Z	2	2	4	4	8	18	3

Table 1. continued

	compound number						
	8	9	10	11	12	13	14
D (calcd), $\mathrm{mg} / \mathrm{m}^{3}$	1.744	1.887	1.643	1.685	1.785	1.596	1.626
μ, mm^{-1}	1.066	1.030	1.107	0.866	2.280	1.941	0.649
$F(000)$	672	648	1184	1391	1408	3324	5376
index ranges	$-14 h \leq 14$	$-7 h \leq 8$	$-22 h \leq 15$	$-27 h \leq 25$	$-16 h \leq 11$	$-20 h \leq 29$	$-24 h \leq 20$
	$-10 \leq k \leq 11$	$-12 \leq k \leq 12$	$-7 k \leq 6$	$-10 k \leq 9$	$-11 k \leq 19$	$-16 k \leq 26$	$-22 k \leq 20$
	$-15 \leq l \leq 10$	$-20 l \leq 20$	$-19 l \leq 28$	$-16 l \leq 16$	$-14 l \leq 8$	$-10 l \leq 15$	$-25 l \leq 35$
reflections collected	4269	7865	4109	4870	6625	4517	7426
independent reflections	$2338\left[R_{\text {int }}=0.0213\right]$	7865	$\begin{gathered} 2162\left[R_{\mathrm{int}}=\right. \\ 0.0350] \end{gathered}$	2433 [$\left.R_{\text {int }}=0.0236\right]$	$\begin{gathered} 3501\left[R_{\text {int }}=\right. \\ 0.0497] \end{gathered}$	$1951\left[R_{\text {int }}=0.0678\right]$	$4494\left[R_{\text {int }}=0.0532\right]$
data/restraints/parameters	2338/6/209	7865/3/368	2162/0/178	2433/0/210	3501/149/506	1951/41/211	4494/15/355
goodness-of-fit on F^{2}	1.088	0.959	1.006	1.004	1.001	1.004	0.998
final R indices $[I>2 \sigma(I)], R_{1}$, $w R_{2}$	0.0397, 0.0981	0.0523, 0.1288	0.0450, 0.1040	0.0372, 0.1173	0.0567, 0.1161	0.0622, 0.1484	0.0666, 0.1448
R indices all data), $R_{1}, w R_{2}$	0.0508, 0.1096	0.0728, 0.1357	0.0619, 0.1137	0.0472, 0.1242	0.0914, 0.1321	0.0870, 0.1648	0.1167, 0.1718

1-14 do not differ from the literature values ${ }^{50}$ and are 311 summarized in Table S1 and in the deposited CIF files. The 312 hydrogen-bonding geometries are given in Table S2.

Crystal Structures and Supramolecular Architectures. 314 The most populated group of complexes is that obtained from 315 the blends of Zn (II) $/ \mathrm{Cd}$ (II) nitrates, $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} / 316$ $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{L}_{1} / \mathrm{L}_{2}$ luminophores, that includes 317 eight mononuclear and one binuclear compound, [$\mathrm{Zn}-318$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{~L}_{1}\right)_{2}(1),\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} 319$ (2), $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(3), \quad\left[\mathrm{Zn}\left(\mathrm{L}_{1}\right)\left(\mathrm{NO}_{3}\right)-320\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(\mathrm{NO}_{3}\right) \quad(4), \quad\left[\mathrm{Cd}\left(\mathrm{L}_{1}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \quad(5,6), 321$ $\left[\mathrm{Cd}_{2}(\mathrm{bdc})\left(\mathrm{L}_{1}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{bdc}=1,4$-benzenedi- 322 carboxylate; 7), $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \quad(8)$, and $[\mathrm{Cd}-323$ $\left.\left(\mathrm{L}_{2}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (9). The binuclear complex 7 was 324 obtained as a coprecipitation product in the synthesis of 5325 and is the only compound where the $\mathrm{H}_{2} \mathrm{bdc}$ ligand used in the 326 synthesis (see Experimental Section) was disclosed in the final 327 crystalline product.

The structural diversity among complexes is originated from 329 the water-anion-luminophore $\left(\mathrm{L}_{1} / \mathrm{L}_{2}\right)$ interplay. The formula 330 units for L_{1}-based mononuclear complexes $\mathbf{1 - 6}$ are depicted in 331 Figure 1. The metal atoms reside on inversion centers in $\mathbf{1 - 3} 332 \mathrm{fl}$ and 5 , and in general positions in 4 and $\mathbf{6}$, thus reflecting the 333 asymmetry of the latter. The two L_{1} ligands occupy opposite 334 trans positions in metals' coordination cores and are situated in 335 parallel planes in 2, 3, and $\mathbf{5}$ giving rise to extended $L_{1}-M-L_{1} 336$ platforms $17.076-17.592 \AA$ long, as measured by the distance 337 between the most distal H atoms. The L_{1} ligand coordinates in 338 a monodentate mode, leaving two other N atoms available for 339 participation in hydrogen bonding interactions. In 4, the 340 Zn (II) equatorial platform is complimented by a chelate 341 nitrate anion twisted at $18.1(2)^{\circ}$ from the L_{1} mean plane; in 6, 342 two L_{1}-wings form an interplanar angle of $52.26(3)^{\circ}$. Ionic 343 compounds comprise complex cations $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(1), 344$ $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]^{2+}(2),\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]^{2+}(3)$, and $[\mathrm{Zn}-345$ $\left.\left(\mathrm{L}_{1}\right)\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}(4)$ and outer-sphere nitrate-anions. The 346 neutrality of $\left[\mathrm{Cd}\left(\mathrm{L}_{1}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](5,6)$ polymorphs is 347 reached by coordination of nitrate anions to $\mathrm{Cd}(\mathrm{II})$ atoms 348 either in a monodentate mode as in 5 or in monodentate and 349 bidentate chelate modes as in $6 .{ }^{51}$ The Zn (II) atoms take the 350 octahedral coordination geometry, O_{6} being the ideal one in $\mathbf{1} 351$ and the $\mathrm{N}_{2} \mathrm{O}_{4}$ or NO_{5} distorted ones in 3 and 4, respectively. 352 The Cd (II) atoms take either the $\mathrm{N}_{2} \mathrm{O}_{4}$ distorted octahedral 353 $(3,5)$ or the $\mathrm{N}_{2} \mathrm{O}_{5}$ pentagonal-bipyramidal (6) coordination 354 geometries.

355
Water-rich compounds $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{~L}_{1}\right)_{2}(\mathbf{1})$, $[\mathrm{Zn}-356$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(2)$, and $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]-357$ $\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(3)$ reveal the same ratio of components, 358 crystallize in the same triclinic $P \overline{1}$ space group with comparable 359 unit cell dimensions (Table 1) and represent supramolecular 360 isomers, compounds 2 and 3 being isomorphous. The multiple 361 water molecules, acting as powerful H donors, are responsible 362 for the crucial impact of hydrogen bonds in crystal packing. $\mathbf{1}$ is 363 actually a precursor of coordination complex, being an 364 inclusion compound with L_{1} accommodated as a guest in the 365 crystal lattice. Each $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cation is H-bonded with six 366 L_{1} luminophores situated in two parallel planes, and each $\mathrm{L}_{1} 367$ molecule is linked with three adjacent $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations 368 giving rise to supramolecular H-bonded double-layer motif 369 parallel to the (111) plane and stabilized by six unique $\mathrm{OH} \cdots \mathrm{N} 370$ hydrogen bonds (Figure 2a). Remarkably, the $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots 371 \mathrm{f} 2$ $\mathrm{N}\left(\mathrm{L}_{1}\right)$ hydrogen bonds inside the supramolecular layer are 372 shorter $(2.755(3)-2.786(3) \AA)$ than $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{O}\left(\mathrm{NO}_{3}{ }^{-}\right) 373$

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1. Views of formula units in 1-6 (a-f).

374 hydrogen bonds (2.831(3)-2.847(3) Å, Table S2) with 375 participation of nitrate anions anchored to both surfaces of 376 the layer (Figure 2b). This provides an L_{1} assembling in 377 centrosymmetric stacking dimers in the crystal. Evidently, 378 complex $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{~L}_{1}\right)_{2}(\mathbf{1})$ enriches the family of 379 recently reported inclusion compounds $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](\mathrm{An})_{2}\left(\mathrm{~L}_{1}\right)_{2}$ $380\left(\mathrm{M}=\mathrm{Zn}, \mathrm{Cd}, \mathrm{An}=\mathrm{BF}_{4}^{-}, \mathrm{ClO}_{4}^{-}\right)^{35}$ with dissimilarities
provoked by the different anions' geometries, being trigonal 381 planar for the nitrate anion versus tetrahedral for tetrafluor- 382 oborate and perchlorate anions. In particular, L_{1} molecules in 1383 are placed in a slipped parallel mode in the stacking dimer 384 (Figure S1a). The overlapping area includes the fused triazine 385 (Tr) and imidazole (Im) rings, with an interplanar separation 386 of $3.2522(12) \AA$ and $\mathrm{Cg}(\operatorname{Tr}) \cdots \mathrm{Cg}(\operatorname{Tr})(1-x, 2-y,-z)=387$

Figure 2. Crystal structure of compound 1. (a) Association of $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations and L_{1} in H -bonded layer, top view; (b) side view of cationic double layer with perching nitrate anions; (c) crystal packing with parallel arrangement of L_{1}.

Figure 3. Crystal structure of compound 2. (a) Association of components in supramolecular H-bonded double layer, top and side views; (b) crystal packing, with indication of H bonds between supramolecular layers.

388 3.5344(16) \AA, against shorter $\mathrm{Cg}(\mathrm{Tr}) \cdots \mathrm{Cg}(\mathrm{Tr})$ distances of $3893.450 \AA$ (for $\mathrm{M}=\mathrm{Cd} ; \mathrm{An}=\mathrm{ClO}_{4}^{-}$) and $3.423 \AA(\mathrm{M}=\mathrm{Cd}, \mathrm{Zn}$; $390 \mathrm{An}=\mathrm{BF}_{4}^{-}$) in the previously reported compounds where the 391 triazine cycles overlap perfectly (Figure S1b). However, in all 392 cases, the luminophore's possibilities for further aggregation 393 are blocked by the perching anions. The observed dissim394 ilarities in crystal structures reflect crystallization in different 395 space groups, $P \overline{1}$ for $\mathbf{1}$ and $R \overline{3}$ for all three other compounds. ${ }^{35}$

The isomorphous compounds $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]$ - 396 $\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (2) and $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(3) 397$ reveal the replacement of two coordinated water molecules by 398 two L_{1} ligands that resulted in extended $\mathrm{L}_{1}-\mathrm{M}-\mathrm{L}_{1}$ platforms, 399 rigidified by $\mathrm{M}-\mathrm{N}$ coordination bonds that substitute a pair of 400 $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{N}\left(\mathrm{L}_{1}\right)$ hydrogen bonds registered in 1. However, 401 some crystal packing features are preserved. The supra- 402 molecular H -bonded double layer motif (Figure 3) now 403 f 3

Figure 4. Crystal structure of compound 4. (a) Fragment of crystal packing along the crystallographic a axis showing the stabilizing $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{NO}_{3}{ }^{-}$ and $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{N}\left(\mathrm{L}_{1}\right)$ hydrogen bonds; (b) side view of supramolecular cationic layer; (c) crystal packing showing L_{1} stacking motif assisted by hydrogen bonds.
includes $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{1}\right)_{2}\right]^{2+}$ complex cations, outer-sphere nitrate anions, and water molecules, all species held together in a supramolecular layer that is situated parallel to the (110) plane (of six unique hydrogen bonds five are realized inside this layer, and only one is orthogonal to the layer). The nitrate anion, being linked with the inner-sphere water molecule via the $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{O}\left(\mathrm{NO}_{3}\right)$ hydrogen bond (Table S2), is situated roughly parallel to L_{1}, as indicated by the dihedral angle between their mean planes, $6.09(16)^{\circ}$. The nitrate anion and outer sphere water molecule perching above/below L_{1} from the adjacent level (Figure 3) block any possible homomeric stacking pattern, replaced by the heteromeric water $\cdots \mathrm{L}_{1} \cdots \mathrm{NO}_{3}{ }^{-}$one (Figure S1c). Similarly to $\mathbf{1}$, the arrangement is strongly influenced by H bonds inside the layer that are shorter and more numerous than the single one, $\mathrm{O}(3)\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{O}(6)\left(\mathrm{NO}_{3}^{-}\right)$, between the supramolecular layers (Table S2).
In the ionic crystal $\left[\mathrm{Zn}\left(\mathrm{L}_{1}\right)\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(\mathrm{NO}_{3}\right)(4)$, selfassociation of complex cations $\left[\mathrm{Zn}\left(\mathrm{L}_{1}\right)\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$occurs parallel to the $b c$ plane via a pair of $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{O}\left(\mathrm{NO}_{3}{ }^{-}\right)$ hydrogen bonds in the form of the centrosymmetric supramolecular $\mathrm{R}_{2}{ }^{2}(8)$ synthon ${ }^{52}$ giving rise to a centrosymmetric cationic dimer 22.68 - \AA-long. The association of these dimers via two $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{N} 2 / \mathrm{N} 3$ (N 2 and N 3 being the L_{1} noncoordinated nitrogen atoms) hydrogen bonds (Figure 4a, Table 1) results in a supramolecular cationic double layer with L_{1} situated in parallel planes without overlap. Along the crystallographic a axis, the outer-sphere nitrate anions anchor to both surfaces of each cationic layer and bridge them via one single and one bifurcated $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{O}\left(\mathrm{NO}_{3}{ }^{-}\right)$hydrogen bond (Table S2) forming a 3D H -bonded network. This results in the formation of columns of coordinated L_{1} luminophores along the a axis with alternating short and long separations between luminophores in columns. Similarly to 1 , a meaningful stacking interaction is established within the centrosymmetric dimer with similar a $\mathrm{Tr}-\mathrm{Im}$ contour, having
an interplanar separation of $3.3209(12) \AA$ and $\mathrm{Cg}(\mathrm{Tr}) \cdots{ }_{440}$ $\mathrm{Cg}(\mathrm{Tr})(-x,-y, 1-z)$ distance of $3.8545(19) \AA$, alternating 441 with $\mathrm{Cg}(\operatorname{Tr}) \cdots \mathrm{Cg}(\operatorname{Tr})(1-x,-y, 1-z)$ distance equal to 442 5.1049(19) \AA and an interplanar separation of $3.3815(12) \AA 443$ (Figure S1d). Thus, the L_{1} ligands form infinite stacking 444 columns, and an additional, in comparison with the L_{1} pure 445 form, chromophores' planarization in the system is achieved 446 via coordination and hydrogen bond interactions.

The neutral complex $\left[\mathrm{Cd}\left(\mathrm{L}_{1}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ was pre- 448 pared in different synthetic conditions (Experimental Section) 449 as two monoclinic polymorphs (Table 1), namely as prismatic 450 crystals 5 (sp. gr. $C 2 / c$) and plate crystals 6 (sp. gr. $P 2_{1} / n$). 451 Complexes differ by molecular symmetries $\left(C_{i}\right.$ vs C_{1}, Figure 452 $1 \mathrm{e}, \mathrm{f})$ and show both similarities and dissimilarities in crystal 453 packings. In both structures, ligands in the $\mathrm{Cd}(\mathrm{II})$ equatorial 454 planes $\left(\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{NO}_{3}{ }^{-}\right)$are linked via $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{O}\left(\mathrm{NO}_{3}{ }^{-}\right) 455$ hydrogen bonds (Table S2) resulting in infinite supramolecular 456 2D H-bonding motifs parallel to the $b c$ plane in 5 and $a b$ plane 457 in 6 (Figure $5 \mathrm{a}, \mathrm{b}$) with L_{1} pillars lying orthogonally to these 458 fs layers. Sufficient separation between adjacent pillars allows $\mathrm{L}_{1} 459$ interdigitation along the crystallographic a axis in 5 and the $c 460$ axis in 6 (Figure $5 \mathrm{c}, \mathrm{d}$), with the formation of stacking columns. 461 In both polymorphs, $\mathrm{CH}\left(\mathrm{L}_{1}\right) \cdots \mathrm{N}\left(\mathrm{L}_{1}\right)$ edge-to-edge contacts, 462 absent in $\mathbf{1 - 4}$ (Table S2) and typical for the L_{1} pure form, ${ }^{6} 463$ were registered. These homomeric side contacts are realized as 464 either a centrosymmetric $\mathrm{R}_{2}{ }^{2}(10)$ homosynthon in 5 or 465 acentric (generated by the 2 -fold axis) $\mathrm{R}_{2}{ }^{2}(8)$ homosynthon in 466 6 (Figure S2a,b). In both structures, these contacts join 467 adjacent stacking columns forming stacking layers with 468 different degrees of corrugation (Figure 5e,f). The CH $\cdots \mathrm{N} 469$ side contacts complement the coordination and $\mathrm{OH} \cdots \mathrm{O} 470$ hydrogen bonds and contribute to the luminophores' align- 471 ments in the crystals. In $\mathbf{5}$, the alternating interplanar 472 separations between antiparallel L_{1} along the columns are 473 $3.4376(11)$ and $3.3744(11) \AA$, with distances between 474 centroids of triazine moieties alternately equal to $\mathrm{Cg}(\mathrm{Tr}) \cdots 475$

(a)

(c)

(b)

(d)

Figure 5. Fragments of crystal structures in polymorphs 5 and 6. (a) Fragment of crystal packing in 5 showing the $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{O}\left(\mathrm{NO}_{3}{ }^{-}\right)$hydrogen bonds and L_{1} pillars attached to supramolecular H-bonded inorganic layer; (b) the same in 6 ; (c) view of stacking layer in 5 ; (d) the same in 6 .

(a)

(b)

Figure 6. Crystal structure of compound 7. (a) View of formula unit; (b) fragment of crystal packing showing stacking motifs and hydrogen bonds.
${ }_{476} \mathrm{Cg}(\mathrm{Tr})(-x,-y,-z)=4.8835(18) \AA$ and $\mathrm{Cg}(\mathrm{Tr}) \cdots \mathrm{Cg}(\mathrm{Tr})$ $477(-x, 1-y,-z)=4.9379(17) \AA$ (Figure S1e). Less 478 homogeneous $\mathrm{Cg} \cdots \mathrm{Cg}$ separations are found along the
columns of ligands in $\mathbf{6}$ due to the complex's asymmetry. In 479 the columns, partially overlapping stacking dimers alternate. 480 Separations within alternating dimers are $\mathrm{Cg}(\operatorname{Tr} 1) \cdots \mathrm{Cg}(\operatorname{Tr} 1){ }^{481}$

(a)

(b)

Figure 7. Views of formula units in compounds 8 (a) and 9 (b).

Figure 8. Crystal structure of compound 8. (a) Fragment of crystal packing along the crystallographic a axis showing $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots\left(\mathrm{NO}_{3}{ }^{-}\right)$ hydrogen bonds and L_{2} pillars placed orthogonally to the supramolecular H-bonded layer; (b) view of crystal packing showing L_{2} stacking motif. $501-y,-z)=3.807(3) \AA$ and $\mathrm{Cg}(\mathrm{Tr}) \cdots \mathrm{Cg}(\mathrm{bdc})(x-1, y, z)=$ $5023.390(3) \AA$ (dihedral angle is $1.8(2)^{\circ}$; Figure 6b). The 503 extended mixed-ligand platform registered in 7 reveals a good 504 opportunity for stacking patterns, while replacement of 505 coordinated water molecules in metal's axial positions opens
a further pathway to the mixed-ligand triimidazole-dicarbox- 506 ylate coordination polymers.

The family of nitrate-containing compounds is comple- 508 mented by two complexes with the L_{2} luminophore, the ionic 509 complex $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{~L}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ (8) and the neutral 510 complex $\left[\mathrm{Cd}\left(\mathrm{L}_{2}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (9). As with L_{1}, two $\mathrm{L}_{2} 511$ ligands occupy opposite trans positions in metals' coordination 512 cores, and an N atom distal from the triazine core participates 513 in coordination to the metal. The metals' coordination cores 514 are complemented by O-donor ligands, being four water 515 molecules in 8 and two bidentate-chelate nitrate anions and 516 one water molecule in 9 ; in both structures, O ligands define 517 the equatorial planes (Figure 7). In compound 8, the $\mathrm{Zn}(\mathrm{II}) 518 \mathrm{f} 7$ atom takes an octahedral coordination geometry with the 519 $\mathrm{N}_{2} \mathrm{O}_{4}$ donor set, while in $9 \mathrm{Cd}(\mathrm{II})$ takes a pentagonal- 520 bipyramidal coordination geometry with the $\mathrm{N}_{2} \mathrm{O}_{5}$ donor set. 521 Ionic complex 8 is centrosymmetric with the Zn atom situated ${ }_{522}$ at the inversion center and two L_{2} ligands placed in parallel 523 planes. Neutral complex $\left[\mathrm{Cd}\left(\mathrm{L}_{2}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ resides in a 524 general position; the coordinated L_{2} ligands are virtually 525 coplanar, with the L_{2} / L_{2} twisting angle measured as $1.69(7)^{\circ} .526$

In 8, the centrosymmetric complex cations $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right)$ - 527 $\left.\left(\mathrm{L}_{2}\right)_{2}\right]^{2+}$ and outer-sphere nitrate anions are linked by 528 $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{O}\left(\mathrm{NO}_{3}\right)$ hydrogen bonds (Table S2) in supra- 529

Figure 9. Fragments of crystal packing in 9. (a) View of stacking layers stabilized by $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{N}\left(\mathrm{L}_{2}\right)$ hydrogen bonds; (b) packing of H -bonded layers with indication of $\mathrm{CH} \cdots \mathrm{O}$ and $\mathrm{CH} \cdots \mathrm{N}$ edge-to-edge side contacts between neighboring supramolecular layers.
molecular H -bonded layers parallel to the $b c$ plane with the L_{2} pillars placed orthogonally to this plane (Figure 8a). The supramolecular architecture resembles that of 5 and 6. Similarly, the L_{2} pillars interdigitate in the ac plane (Figure 8 b). The deep mutual interpenetration of coordinated L_{2} ligands is facilitated by $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{N}\left(\mathrm{L}_{2}\right)$ hydrogen bonds, which help to bring the luminophores closer and result in L_{2} stacking columns where short and long distances between overlapping areas of L_{2} alternate, $\mathrm{Cg}(\mathrm{Tr}) \cdots \mathrm{Cg}(\mathrm{Tr})(-x, 2-y$, $-z)=3.9773(14) \AA$ and $\mathrm{Cg}(\mathrm{Tr}) \cdots \mathrm{Cg}(\mathrm{Tr})(1 / 2-x, 1 / 2+y$, $1 / 2-z)=5.6698(15) \AA$ (Figure 8b, Figure S1g).
In triclinic crystal 9 (Table 1), neutral complexes [Cd$\left.\left(\mathrm{L}_{2}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ related by inversion stack in a zipper-like mode along the crystallographic a axis being interconnected via $\mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{N}\left(\mathrm{L}_{2}\right)$ hydrogen bonds (Table S2) and form $\mathrm{H}-$ bonded layers parallel to the (001) crystallographic plane, where L_{2} columns alternate with rows of $\mathrm{Cd}(\mathrm{II})$ atoms along the b axis (Figure 9a). Their stacks are characterized by alternation of rather short distances, $\mathrm{Cg}(\operatorname{Tr} 1) \cdots \mathrm{Cg}(\operatorname{Tr} 2)(x-$ $1, y-1, z)=3.483(4), \mathrm{Cg}(\operatorname{Tr} 1) \cdots \mathrm{Cg}(\operatorname{Tr} 2)(x, y-1, z)=$ 3.638(4) \AA, dihedral angle $\operatorname{Tr} 1 / \operatorname{Tr} 2=1.4(3)^{\circ}$, with significant overlapping areas (Figure 9b, Figure S1h). The H-bonded layers are interlinked by $\mathrm{CH}\left(\mathrm{L}_{2}\right) \cdots \mathrm{N}\left(\mathrm{L}_{2}\right)$ and $\mathrm{CH}\left(\mathrm{L}_{2}\right) \cdots$ $\mathrm{O}\left(\mathrm{NO}_{3}{ }^{-}\right)$weak interactions (Figure 9 b$)$, thus providing planarization of L_{2} motifs in two perpendicular directions.
Two more neutral complexes with L_{2}, [Zn$\left.\left(\mathrm{L}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right] \quad(\mathbf{1 0})$ and $\quad[\mathrm{Cd}-$ $\left.\left(\mathrm{L}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{Im})_{0.75}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.25}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (11), were obtained from zinc and cadmium acetates. Both crystals are monoclinic (Table 1), and mononuclear complexes reside on the 2 -fold axes with interplanar angles between their L_{2} wings of $72.51(3)^{\circ}$ in 10 and $74.76(4)^{\circ}$ in $\mathbf{1 1}$. Despite similarity of the values of dihedral angles between two L_{2} ligands, complexes have different shapes: complex $\mathbf{1 0}$ has a butterfly shape originated from bending along $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$, while in 11 the $\mathrm{N}-\mathrm{Cd}-\mathrm{N}$ fragment is linear, the L_{2} ligands are twisted along this line, and the complex is no longer of a butterfly shape but resembles a two-bladed propeller.

Similarly to 8 and $9, L_{2}$ coordinates via the distal N atom (Figure 10a,b). The $\mathrm{Zn}(\mathrm{II})$ atom takes an $\mathrm{N}_{2} \mathrm{O}_{2}$ tetrahedral coordination geometry with two acetate and two L_{2} ligands coordinated in monodentate modes, while the $\mathrm{Cd}(\mathrm{II})$ atom
takes an $\mathrm{N}_{3} \mathrm{O}_{4}$ pentagonal-bipyramidal coordination geometry 572 comprising two bidentate-chelate acetate anions, two 573 monodentate L_{2} ligands, and one monodentate Im ligand 574 (75% occupancy); the latter originated from partial degrada- 575 tion of L_{2}, which alternates in this position with coordinated 576 and outer-sphere water molecules (25% occupancy; Figure 577 S3).

Complexes $\left[\mathrm{Zn}\left(\mathrm{L}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right]$ (10) form centrosym- 579 metric dimers via a couple of $\mathrm{CH} \cdots \mathrm{N}$ hydrogen bonds (Table 580 S2) giving rise to the $\mathrm{R}_{2}{ }^{2}(10)$ centrosymmetric homosynthon 581 in the same way as in the L_{2} pure form. ${ }^{6}$ These dimers form a 582 corrugated H -bonded chain along the crystallographic c axis, 583 and chains stack along the crystallographic b axis (the shortest 584 in this compound and the shortest crystallographic axis among 585 1-14, Table 1; Figure 10c) with interplanar separations 586 between L_{2} centrosymmetric dimers of $3.424 \AA$, and 587 alternating short and long distances, $\mathrm{Cg}(\mathrm{Tr}) \cdots \mathrm{Cg}(\mathrm{Tr})(-x, 588$ $-y,-z)=4.5720(17) \AA$ and $\mathrm{Cg}(\operatorname{Tr}) \cdots \mathrm{Cg}(\operatorname{Tr})(1 / 2-x, 1 / 2589$ $-y, 1 / 2-z)=5.807(2) \AA$. The stacking layers pack along the 590 crystallographic a axis with a herringbone arrangement of 591 adjacent luminophores (Figure 10d). The tetrahedral Zn (II) 592 atom somewhat imitates the tetrahedral geometry of the water 593 molecule in the parent $\mathrm{L}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ structure, ${ }^{6}$ similarly providing 594 the herringbone arrangement of the attached luminophores ($\mathrm{L}_{2} 595$ stacking ribbons). This results in a stronger rigidification in the 596 coordination network with respect to the pure L_{2} structure, 597 due to the replacement of part of hydrogen bonds (with 598 participation of water molecule) by coordination bonds. 599

Complexes $\left[\mathrm{Cd}\left(\mathrm{L}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{Im})_{0.75}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.25}\right]$ (11) 600 stack along the b axis, being interconnected via $\mathrm{CH} \cdots \mathrm{O}$ and 601 $\mathrm{OH} \cdots \mathrm{O}$ hydrogen bonds (Table S2) with involvement of $\operatorname{Im} 602$ and water molecules alternating in the $\mathrm{Cd}(\mathrm{II})$ axial position 603 (Figure 10e, Figure S3). The $\pi-\pi$ stacking interactions 604 combine the molecules in π-stacked chains along the 605 crystallographic a axis with $\mathrm{Cg}(\mathrm{Tr}) \cdots \mathrm{Cg}(\mathrm{Tr})(3 / 2-x, 1 / 2606$ $-y,-z)=4.325(2)($ Figure $S 1 j$) and interplanar separation of 607 3.3347 (15) \AA (Figure 10e). Due to the 2 -fold symmetry, the 608 neighboring stacking dimers are oriented in T-shape mode, 609 and the complexes are held together by alternating $\pi-\pi$ face- 610 to-face and edge-to-face stacking contacts (Figure 10f). 611

A one-pot reaction started from zinc chloride resulted in 612 mononuclear complex $\left[\mathrm{Zn}(\mathrm{Cl})_{2}\left(\mathrm{~L}_{1}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (12) as block 613

Figure 10. Views of complexes (a) $\mathbf{1 0}$ and (b) $\mathbf{1 1}$; (c) view of stacking layer in $\mathbf{1 0}$; (d) crystal packing in 10; (e) stacking motif in 11; (f) crystal packing in 11.

614 crystals, and one-dimensional (1D) coordination polymer $615\left\{\left[\mathrm{Zn}(\mathrm{Cl})_{2}\left(\mathrm{~L}_{1}\right)\right] \cdot 1 / 6\left(\mathrm{~L}_{1} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right\}_{n}(13)$ as needles. Both com616 pounds are noncentrosymmetric (Table 1), and compound 12 617 crystallizes with two mononuclear complexes per asymmetric 618 unit (Figure 11a). One water molecule from initial salt is 619 replaced by the L_{1} ligand in 12, while complete water 620 replacement in the $\mathrm{Zn}(\mathrm{II})$ coordination core occurs in 13. In 621 the latter structure, L_{1} acts as a bidentate bridging ligand 622 affording a 1D coordination chain with a $\mathrm{Zn} \cdots \mathrm{Zn}$ separation of 623 7.591(3) \AA (Figure 11b). Zn (II) atoms in 12 and 13 take 624 tetrahedral coordination geometries with NOCl_{2} and $\mathrm{N}_{2} \mathrm{Cl}_{2}$ 625 donor sets. The mononuclear complex 12 behaves as a double 626 H -donor and a double H -acceptor via participation in two $627 \mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{N}\left(\mathrm{L}_{1}\right)$ hydrogen bonds each (Table S2), thus 628 giving rise to an H -bonded double layer parallel to the $b c$ 629 crystallographic plane. Each complex in the layer is linked with 630 three neighbors on the other level (Figure 11c). The long 631 separation $\mathrm{Cg}(\operatorname{Tr} 1) \cdots \mathrm{Cg}(\operatorname{Tr} 2)=5.545(12) \AA\left(\mathrm{L}_{1} / \mathrm{L}_{1}\right.$ dihedral
angle of $\left.4.8(1)^{\circ}\right)$ between L_{1} ligands belonging to different 632 levels of the H -bonded supramolecular layer indicates the lack 633 of meaningful stacking interactions. Layers stack along the 634 crystallographic a axis and meet by their hydrophobic $L_{1} 635$ surfaces and Cl atoms from adjacent layers, and no meaningful 636 stacking interactions between the layers are present. The 637 disordering registered in this crystal is explained by the lack of 638 strong intermolecular forces between the layers and resulted in 639 the displacement of the layered motifs, one with respect to the 640 other parallel to the $b c$ plane.

The packing of the corrugated polymeric chains in $\mathbf{1 3}$ obeys 642 the 3 -fold symmetry and is driven by the outer-sphere $L_{1} 643$ ligand that acts as a template and arranges around three 644 coordination chains. These chains pack in a criss-cross mode 645 and are linked with the template L_{1} molecule by edge-to-face 646 $\mathrm{CH} \cdots \pi$ interactions. The templated L_{1} and water molecules 647 alternate in the channels (Figure 11d).

(a)
(c)

(b)

(d)

Figure 11. (a) View of mononuclear complexes 12; (b) fragment of coordination polymeric chain in 13; (c) fragment of H -bonded double layer in 12 where differently colored complexes belong to different levels; (d) fragment of packing of coordination chains and alternation of templates in the channels in 13.

Figure 12. Fragments of crystal packing in 14. (a) View of $\left[\mathrm{Cd}\left(\mathrm{L}_{2}\right)_{6}\right]^{2+}$ cations with partial labeling scheme; (b) mode of packing of $\left[\mathrm{Cd}\left(\mathrm{L}_{2}\right)_{6}\right]^{2+}$ cations indicating π-stacking dimeric patterns; (c) crystal packing with the channels filled by $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations, $\mathrm{ClO}_{4}{ }^{-}$anions, and water molecules.

649 Using $\mathrm{Cd}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6\left(\mathrm{H}_{2} \mathrm{O}\right)$, with the easy-leaving perchlorate 650 anion, as starting salt facilitates the coordination of six L_{2} 651 molecules to the $\mathrm{Cd}(\mathrm{II})$ atom resulting in the N_{6} octahedral 652 coordination geometry in $\left[\mathrm{Cd}\left(\mathrm{L}_{2}\right)_{6}\right]_{2}\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{6}$. $6537\left(\mathrm{H}_{2} \mathrm{O}\right)$ (14). This compound is quite unusual for the 654 metal/ligand 1:6 ratio, indicating that the coordination 655 capacity of the $\mathrm{Cd}(\mathrm{II})$ atom is sufficient to arrange six bulky 656 triazine ligands situated in pairs in three perpendicular planes 657 (Figure 12a). Such Cd(II) geometry allows infinite 3D 658 stacking in this crystal, unique in this family of compounds,
obtained through two types of very similar centrosymmetric 659 dimers (Figure 12b). The similarity is evident from the close, 660 short $\mathrm{Cg} \cdots \mathrm{Cg}$ distances, $\mathrm{Cg}(\operatorname{Tr} 1) \cdots \mathrm{Cg}(\operatorname{Tr} 1)(1 / 3-x, 2 / 3-y$, 661 $5 / 3-z)=3.786(4) \AA$ and $\mathrm{Cg}(\operatorname{Tr} 2) \cdots \mathrm{Cg}(\operatorname{Tr} 2)(-1 / 3-x, 1 / 662$ $3-y, 4 / 3-z)=3.678(4) \AA$, and alike overlapping areas 663 (Figure S1k). The distinction is connected with capped species 664 perching above these dimers, i.e., ClO_{4}^{-}anions and water 665 molecules. $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations and ClO_{4}^{-}anions act as 666 templates arranging around bulky $\left[\mathrm{Cd}\left(\mathrm{L}_{2}\right)_{6}\right]^{2+}$ cations in the 667 form of infinite channels (Figure 12c).

669 Luminescence Studies. Photophysical studies have been 670 performed for crystals of those compounds revealed as best 671 performing from visual inspection under a UV lamp, namely 4, 672 5, and 10. All samples display multiple emissions at 298 K fl3f14f15 673 (Figures 13-15). The steady state spectrum of compound 4

Figure 13. Normalized emission spectra of crystals of 4 at 298 K , black line ($\lambda_{\text {exc }}=350 \mathrm{~nm}$), and 77 K , blue line ($\lambda_{\mathrm{exc}}=330 \mathrm{~nm}$).

Figure 14. Normalized emission spectra of crystals of 5 at 298 K : black line $\left(\lambda_{\text {exc }}=280 \mathrm{~nm}\right)$ and blue line ($\lambda_{\text {exc }}=440 \mathrm{~nm}$).

674 (Figures 13 and S4) is dominated by an intense fluorescence at $675439 \mathrm{~nm}\left(\tau_{\mathrm{av}}=4.36 \mathrm{~ns}\right.$, see Figure S5) with a long-lived tail (τ_{av} $676=67.70 \mathrm{~ms}$, see Figure S6) at lower energy (about 550 nm) 677 with overall quantum efficiency $\Phi=1 \%$. On the basis of the 678 similarity with the photophysical behavior of other derivatives 679 of L_{1}, such emissions are of intraligand character, the former 680 associated with molecular fluorescence from S_{1} and the latter 681 deriving from $\pi-\pi$ aggregate triplet levels. At 77 K , though the 682 two components cannot be resolved (see Figures 13 and S7683 S9), the contribution of the phosphorescence is increased as 684 evidenced by the broadening of the emission resulting from the 685 convolution of the two. Comparison with L_{1} itself and the 686 previously reported compound $\left[\mathrm{Zn}_{3}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ $687\left(\mathrm{~L}_{1}\right)_{2},{ }^{35}$ having a similar organization of L_{1} inside the structure 688 but lacking coordination to the metal atom, allows drawing 689 some conclusions on the Zn (II) effect on the photophysical

Figure 15. Normalized emission spectra of crystals of 10 at 298 K : black line $\left(\lambda_{\text {exc }}=300 \mathrm{~nm}\right)$ and blue line $\left(\lambda_{\text {exc }}=450 \mathrm{~nm}\right)$.
properties of the luminophore. On the basis of the quantum 690 efficiency values and the lifetimes of the long-lived component 691 both decreasing in the order L_{1}, cocrystal, and 4 (30, 7 , and 692 $1 \% ; 970,650$, and 68 ms , respectively), it can be concluded 693 that the presence of Zn (II) facilitates depopulation of $\mathrm{S}_{1} 694$ through ISC to a triplet level with $k_{\mathrm{r}}<k_{\mathrm{nr}}$, the intrinsic 695 (coordination) effect being more pronounced than the 696 extrinsic (cocrystal) one.

697
Crystals of compound 5 at 298 K (Figure 14 and Figure 698 S10) show one fluorescence at 430 nm ($\tau_{\mathrm{av}}=0.61 \mathrm{~ns}$, Figure 699
S11) and a phosphorescence at $505 \mathrm{~nm}\left(\tau_{\mathrm{av}}=32.69 \mathrm{~ms}\right.$, Figure 700 S12), both of ligand-centered character. In particular, while the 701 former corresponds to radiative deactivation from S_{1}, the latter 702 is to be attributed to T_{1}. This assignment is ascribed, on one 703 hand, to the lack of strong $\pi-\pi$ interactions between $L_{1} 704$ molecules inside the structure and, on the other hand, to 705 rigidification of the ligand through edge-to-edge $\mathrm{CH} \cdots \mathrm{N} 706$ hydrogen bonds which inhibit nonradiative deactivation. 707

Crystals of compound 10 display at 298 K (Figure 15 and 708 Figure S16) one fluorescence at 490 nm ($\tau_{\text {av }}=1.94 \mathrm{~ns}$, Figure 709 S17) and a phosphorescence at $550 \mathrm{~nm}\left(\tau_{\mathrm{av}}=49.29 \mathrm{~ms}\right.$, Figure 710 S18) with overall quantum efficiency $\Phi=7 \%$. The absence of 711 strong $\pi-\pi$ interactions between L_{2} molecules points to a 712 molecular origin $\left(S_{1}\right.$ and $\left.T_{1}\right)$ for the two emissions. A greater 713 contribution from the metal with respect to 4 is expected based 714 on the shorter $\mathrm{Zn}-\mathrm{N}\left(\mathrm{L}_{2}\right)$ distance $(2.028(3)$ vs $2.084(2) \AA$ in 715 10 and 4, respectively) and confirmed by the appearance of 716 both emissions at low energies.

CONCLUSIONS

$\mathrm{Zn}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$ coordination compounds with two isomeric 719 luminophores, namely, triimidazo[1,2-a:1', $\left.2^{\prime}-c: 1^{\prime \prime}, 2^{\prime \prime}-e\right][1,3,5]-720$ triazine) (L_{1}) and triimidazo $\left[1,2-a: 1^{\prime}, 2^{\prime}-c: 1^{\prime \prime}, 5^{\prime \prime}-e\right][1,3,5]-721$ triazine $\left(L_{2}\right)$, are here reported for the first time. The structural 722 landscape comprises mononuclear and binuclear complexes 723 and one 1D coordination polymer. Among them, supra- 724 molecular isomers, isostructural compounds, and polymorphs 725 are found. The structural diversity is originated from the 726 different $\mathrm{Zn} / \mathrm{Cd}$ coordination capacities and results in the 727 variable metal/luminophore/anion/water ratios. In the major- 728 ity of the reported compounds both luminophores coordinate 729 in the monodentate mode, giving rise to the $1: 1,1: 2$, and 1:6 730
metal/ligand ratios. One example represents the inclusion compound with L_{1} associated in the crystal lattice as an outersphere stacking dimer. In the 1 D coordination polymer, L_{1} behaves as a bidentate bridging ligand. The rigidity imposed by coordination of luminophores to the metal centers constrains the ligands in different ways, and the bulky coordination entities with extended heterocyclic platforms generate the diversity of stacking patterns, either similar or not to those registered in the structures of pure forms of L_{1} and L_{2}. The presence of numerous strong H -donors in the form of innerand outer-sphere water molecules in some complexes provides a significant impact of hydrogen bonding interactions on the crystal packing. Otherwise, a reduced number of water molecules in the system results in a more pronounced impact of weaker intermolecular interactions, such as $\mathrm{CH} \cdots \mathrm{N}$ hydrogen bonds and $\pi-\pi$ stacking interactions, including those registered in L_{1} and L_{2} pure forms.

The comparison among L_{1}, the previously reported cocrystal $\left[\mathrm{Zn}_{3}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{L}_{1}\right)_{2}$ and Zn coordination compound $\left[\mathrm{Zn}\left(\mathrm{L}_{1}\right)\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(\mathrm{NO}_{3}\right) 4$, having similar stacking arrangement of L_{1}, provides evidence of the intrinsic/ extrinsic heavy $\mathrm{Zn}(\mathrm{II})$ metal atom effect on the photoluminescence: the greater the metal contribution, the smaller the quantum efficiency and the shorter the phosphorescence lifetime, both phenomena to be associated with easier ISC.

- ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.cgd.1c00459.

Tables of selected geometric parameters; figures of $L_{1} /$ L_{2} meaningful overlapping patterns in $\mathbf{1 - 1 4}, \mathrm{CH} \cdots \mathrm{N}$ motifs in polymorphs 5 and 6, major and minor disordering components in 11; normalized excitation and emission spectra and lifetime measurements for 4,5 , and 10 at 298 and 77 K (PDF)

Accession Codes

CCDC 2076858-2076871 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

- AUTHOR INFORMATION

Corresponding Authors

Marina S. Fonari - Institute of Applied Physics, MD2028
Chisinau, Republic of Moldova; © orcid.org/0000-0002-2508-5368; Email: marina.fonari@ifa.md
Elena Cariati - INSTM-UdR, 20133 Milano, Italy; Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy; © orcid.org/0000-0003-1781-0360; Email: elena.cariati@unimi.it

Authors

Victor C. Kravtsov - Institute of Applied Physics, MD2028 Chisinau, Republic of Moldova
Victor Bold - Institute of Applied Physics, MD2028 Chisinau, Republic of Moldova
Elena Lucenti - CNR-SCITEC, Institute of Sciences and Chemical Technologies "Giulio Natta", 20133 Milano, Italy; INSTM-UdR, 20133 Milano, Italy

Daniele Marinotto - CNR-SCITEC, Institute of Sciences and 790 Chemical Technologies "Giulio Natta", 20133 Milano, Italy; 791 INSTM-UdR, 20133 Milano, Italy
Alessandra Forni - CNR-SCITEC, Institute of Sciences and 793 Chemical Technologies "Giulio Natta", 20133 Milano, Italy; 794 INSTM-UdR, 20133 Milano, Italy
Complete contact information is available at: 796
https://pubs.acs.org/10.1021/acs.cgd.1c00459

Notes

The authors declare no competing financial interest.

- ACKNOWLEDGMENTS

The authors are indebted for support to the projects ANCD 801 20.80009.5007.15 (Republic of Moldova) and CNR (Italy) - 802 ASM (R. Moldova) 2018-2019.

REFERENCES

804
(1) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; 805 Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation- 806 induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. 807 Соттип. 2001, 1740-1741.
(2) Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. 809 Aggregation-Induced Emission: The Whole Is More Brilliant than the 810 Parts. Adv. Mater. 2014, 26, 5429-5479.
(3) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. 812 Z. Aggregation-Induced Emission: Together We Shine, United We 813 Soar! Chem. Rev. 2015, 115, 11718-11940.
(4) Jin, J.-L.; Geng, Y.; Su, Z.-M. Recent Theoretical Advances in 815 Understanding the Mechanism of Aggregation-Induced Emission for 816 Small Organic Molecules. Aggregation-Induced Emission: Fundamentals 817 and Applications 2013, No. Chapter 18, 399-418.

818
(5) Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; 819 Li, J.; Peng, Q.; Pu, K.; Li, Z. The influence of the molecular packing 820 on the room temperature phosphorescence of purely organic 821 luminogens. Nat. Commun. 2018, 9, 840.

822
(6) Lucenti, E.; Forni, A.; Botta, C.; Carlucci, L.; Giannini, C.; 823 Marinotto, D.; Previtali, A.; Righetto, S.; Cariati, E. H-aggregates 824 Granting Crystallization Induced Emissive Behavior and Ultralong 825 Phosphorescence from a Pure Organic Molecule. J. Phys. Chem. Lett. 826 2017, 8, 1894-1898.

827
(7) Lucenti, E.; Forni, A.; Botta, C.; Giannini, C.; Malpicci, D.; 828 Marinotto, D.; Previtali, A.; Righetto, S.; Cariati, E. Intrinsic and 829 Extrinsic Heavy-Atom Effects on the Multifaceted Emissive Behavior 830 of Cyclic Triimidazole. Chem. - Eur. J. 2019, 25, 2452-2456. 831
(8) Shi, H.; An, Z.; Li, P.-Z.; Yin, J.; Xing, G.; He, T.; Chen, H.; 832 Wang, J.; Sun, H.; Huang, W.; Zhao, Y. Enhancing organic 833 phosphorescence by manipulating heavy-atom interaction. Cryst. 834 Growth Des. 2016, 16, 808-813.
(9) Gan, N.; Wang, X.; Ma, H.; Lv, A.; Wang, H.; Wang, Q.; Gu, M.; 836 Cai, S.; Zhang, Y.; Fu, L.; Zhang, M.; Dong, C.; Yao, W.; Shi, H.; An, 837 Z.; Huang, W. Manipulating the Triplet Chromophore Stacking for 838 Ultralong Organic Phosphorescence in Crystal. Angew. Chem. 2019, 839 131, 14278-14283.
(10) Cornil, J.; dos Santos, D. A.; Crispin, X.; Silbey, R.; Brédas, J. L. 841 Influence of Interchain Interactions on the Absorption and 842 Luminescence of Conjugated Oligomers and Polymers: A Quan- 843 tum-Chemical Characterization. J. Am. Chem. Soc. 1998, 120, 1289-844 1299.
(11) Cornil, J.; Beljonne, D.; Calbert, J. P.; Brédas, J. L. Interchain 846 Interactions in Organic p-Conjugated Materials: Impact on Electronic 847 Structure, Optical Response, and Charge Transport. Adv. Mater. 2001, 848 13, 1053-1067.
(12) Xie, Z.; Yang, B.; Li, F.; Cheng, G.; Liu, L.; Yang, G.; Xu, H.; 850 Ye, L.; Hanif, M.; Liu, S.; Ma, D.; Ma, Y. Cross Dipole Stacking in the 851 Crystal of Distyrylbenzene Deriative: The Approach toward High 852

853 Solid-State Luminescence Efficiency. J. Am. Chem. Soc. 2005, 127, 854 14152-14153.
855 (13) Qian, Y.; Cai, M.; Zhou, X.; Gao, Z.; Wang, X.; Zhao, Y.; Yan, 856 X.; Wei, W.; Xie, L.; Huang, W. More than Restriction of Twisted 857 Intramolecular Charge Transfer: Three-Dimensional Expanded 858 \#-Shaped Cross-Molecular Packing for Emission Enhancement in 859 Aggregates. J. Phys. Chem. C 2012, 116, 12187-12195. 873 Chem. Commun. 2014, 50, 8723-8726.

898 (24) Lustig, W. P.; Li, J. Luminescent metal-organic frameworks 899 and coordination polymers as alternative phosphors for energy 900 efficient lighting devices. Coord. Chem. Rev. 2018, 373, 116-147.
901 (25) Medishetty, R.; Nalla, V.; Nemec, L.; Henke, S.; Mayer, D.; 902 Sun, H.; Reuter, K.; Fischer, R. A. A New Class of Lasing Materials: 903 Intrinsic Stimulated Emission from Nonlinear Optically Active 904 Metal-Organic Frameworks. Adv. Mater. 2017, 29, 1605637.
905 (26) Wei, Z. W.; Gu, Z. Y.; Arvapally, R. K.; Chen, Y. P.; 906 McDougald, R. N.; Ivy, J. F.; Yakovenko, A. A.; Feng, D. W.; Omary, 907 M. A.; Zhou, H. C. Rigidifying Fluorescent Linkers by Metal-Organic 908 Framework Formation for Fluorescence Blue Shift and Quantum 909 Yield Enhancement. J. Am. Chem. Soc. 2014, 136, 8269-8276.
910 (27) Deria, P.; Yu, J.; Smith, T.; Balaraman, R. P. Ground-State 911 versus Excited-State Interchromophoric Interaction: Topology 912 Dependent Excimer Contribution in Metal-Organic Framework 913 Photophysics. J. Am. Chem. Soc. 2017, 139, 5973-5983.
914 (28) Yang, X. G.; Yan, D. P. Long-Afterglow Metal-organic 915 Frameworks: Reversible Guest-Induced Phosphorescence Tenability. 916 Chem. Sci. 2016, 7, 4519-4526.
917 (29) Rubin, H. N.; Reynolds, M. M. Amino-Incorporated 918 Tricarboxylate Metal-Organic Framework for the Sensitive Fluo919 rescence Detection of Heavy Metal Ions with Insights into the Origin 920 of Photoluminescence Response. Inorg. Chem. 2019, 58, 1067192110679.
(30) Li, F.; Sun, M.-L.; Zhang, X.; Yao, Y.-G. Diverse Structures and 922 Luminescence Properties of Nine Novel Zn/Cd(II)-Organic 923 Architectures Assembled by Two Different Rigid Ligands. Cryst. 924 Growth Des. 2019, 19, 4404-4416.
(31) Yin, H.-Q.; Wang, X.-Y.; Yin, X.-B. Rotation Restricted 926 Emission and Antenna Effect in Single Metal-Organic Frameworks. 927 J. Am. Chem. Soc. 2019, 141, 15166-15173. 928
(32) Li, Q.; Luo, J.; Wang, L.; Qi, C.; Yang, Y.; Zhang, X.; Qian, J. 929 Two cage-based zinc-tetracarboxylate frameworks with white-light 930 emission. CrystEngComm 2017, 19, 214-217.
(33) Mercs, L.; Albrecht, M. Beyond catalysis: N-heterocyclic 932 carbene complexes as components for medicinal, luminescent, and 933 functional materials applications. Chem. Soc. Rev. 2010, 39, 1903-934 1912.
(34) Lucenti, E.; Cariati, E.; Previtali, A.; Marinotto, D.; Forni, A.; 936 Bold, V.; Kravtsov, V. Ch.; Fonari, M. S.; Galli, S.; Carlucci, L. 937 Versatility of Cyclic Triimidazole to Assemble 1D, 2D and 3D Cu(I) 938 Halide Coordination Networks. Cryst. Growth Des. 2019, 19, 1567-939 1575.
(35) Cariati, E.; Forni, A.; Lucenti, E.; Marinotto, D.; Previtali, A.; 941 Righetto, S.; Botta, C.; Bold, V.; Kravtsov, V. Ch.; Fonari, M. S. 942 Extrinsic Heavy Metal Atom Effect on the Solid-State Room 943 Temperature Phosphorescence of Cyclic Triimidazole. Chem. - 944 Asian J. 2019, 14, 853-858.

945
(36) Li, R.; Wang, S.-H.; Liu, Z.-F.; Chen, X.-X.; Xiao, Y.; Zheng, F.- 946 K.; Guo, G.-C. An Azole-Based Metal-Organic Framework toward 947 Direct White-Light Emissions by the Synergism of Ligand-Centered 948 Charge Transfer and Interligand $\pi-\pi$ Interactions. Cryst. Growth Des. 949 2016, 16, 3969-3975. 950
(37) Xie, J.; Qiao, J.; Wang, L.; Xie, J.; Qiu, Y. An azomethin-zinc 951 complex for organic electroluminescence: Crystal structure, thermal 952 stability and optoelectronic properties. Inorg. Chim. Acta 2005, 358, 953 4451-4458.
(38) Sinha, N.; Stegemann, L.; Tan, T. T. Y.; Doltsinis, N. L.; 955 Strassert, C. A.; Hahn, F. E. Turn-On Fluorescence in Tetra-NHC 956 Ligands by Rigidification through Metal Complexation: An 957 Alternative to Aggregation-Induced Emission. Angew. Chem., Int. Ed. 958 2017, 56, 2785-2789.
(39) Yuan, S.; Deng, Y. K.; Sun, D. Unprecedented Second- 960 Timescale Blue/Green Emissions and Iodine Uptake Induced Single 961 Crystal to Single Crystal Transformation in $\mathrm{Zn}^{\text {II }} / \mathrm{Cd}^{\mathrm{II}}$ Metal-Organic 962 Frameworks. Chem. - Eur. J. 2014, 20, 10093-10098.
(40) Cepeda, J.; San Sebastian, E.; Padro, D.; Rodríguez-Diéguez, A.; 964 García, J. A.; Ugalde, J. M.; Seco, J. M. A Zn based coordination 965 polymer exhibiting long-lasting phosphorescence. Chem. Commun. 966 2016, 52, 8671-8674.
(41) Luo, F.; Sun, G.-M.; Zheng, A.-m.; Lian, S.-x.; Liu, Y.-1.; Feng, 968 X. F.; Chu, Y.-y. Promising long-lasting phosphor material: a novel 969 metal-organic framework showing intriguing luminescent perform- 970 ance. Dalton Trans. 2012, 41, 13280-13283.
(42) Malpicci, D.; Lucenti, E.; Forni, A.; Marinotto, D.; Previtali, A.; 972 Carlucci, L.; Mercandelli, P.; Botta, C.; Righetto, S.; Cariati, E. Ag(I) 973 and $\mathrm{Cu}(\mathrm{I})$ cyclic-triimidazole coordination polymers: revealing 974 different deactivation channels for multiple room temperature 975 phosphorescences. Inorg. Chem. Front. 2021, 8, 1312-1323. 976
(43) Melnic, E.; Kravtsov, V. Ch.; Lucenti, E.; Cariati, E.; Forni, A.; 977 Siminel, N.; Fonari, M. S. Regulation of $\pi \cdots \pi$ stacking interactions 978 between triimidazole luminophores and comprehensive emission 979 quenching by coordination to $\mathrm{Cu}(\mathrm{II})$. New J. Chem. 2021, 980 DOI: 10.1039/D1NJ00909E.
(44) Schubert, D. M.; Natan, D. T.; Wilson, D. C.; Hardcastle, K. I. 982 Facile Synthesis and Structures of Cyclic Triimidazole and Its Boric 983 Acid Adduct. Cryst. Growth Des. 2011, 11, 843-850. 984
(45) Buck, D. M.; Kunz, D. Triazine Annelated NHC Featuring 985 Unprecedented Coordination Versatility. Organometallics 2015, 34, 986 5335-5340.
(46) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., 988 Sect. A: Found. Crystallogr. 2008, A64, 112-122.

990 (47) Sheldrick, G. M. Crystal structure refinement with SHELXL. 991 Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3-8.
992 (48) Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; 993 Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: 994 visualization and analysis of crystal structures. J. Appl. Crystallogr. 995 2006, 39, 453-457.
996 (49) Spek, A. L. Single-crystal structure validation with the program 997 PLATON. J. Appl. Crystallogr. 2003, 36, 7-13.
998 (50) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The 999 Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci, 1000 Cryst. Eng. Mater. 2016, B72, 171-179.
1001 (51) Morris, D. F. C.; MacCarthy, J. D.; Newton, R. J. Outer-sphere 1002 and inner-sphere interactions in the formation of metal-ion nitrate 1003 complexes. Electrochim. Acta 1978, 23, 1383-1386.
1004 (52) Etter, M. Encoding and decoding hydrogen-bond patterns of 1005 organic compounds. Acc. Chem. Res. 1990, 23, 120-126.

[^0]: Received: April 21, 2021
 Revised: May 18, 2021

