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Abstract

The ENIGMA group on Generalized Anxiety Disorder (ENIGMA-Anxiety/GAD) is part

of a broader effort to investigate anxiety disorders using imaging and genetic data

across multiple sites worldwide. The group is actively conducting a mega-analysis of a

large number of brain structural scans. In this process, the group was confronted with

many methodological challenges related to study planning and implementation,

between-country transfer of subject-level data, quality control of a considerable

amount of imaging data, and choices related to statistical methods and efficient use

of resources. This report summarizes the background information and rationale for

the various methodological decisions, as well as the approach taken to implement

them. The goal is to document the approach and help guide other research groups

working with large brain imaging data sets as they develop their own analytic pipe-

lines for mega-analyses.

K E YWORD S

data sharing, generalized anxiety disorder, mega-analyses, meta-analyses, neuroimaging

1 | INTRODUCTION

The ENIGMA (Enhancing NeuroImaging Genetics through Meta Anal-

ysis) Consortium, started in 2009, with the aim of performing large-

scale neuroimaging genetics research using meta-analytic methods by

pooling data from around the world. ENIGMA has since expanded to

include many working groups, resources, and expertise to answer fun-

damental questions in neuroscience, psychiatry, neurology, and genet-

ics (Thompson et al., 2014; Thompson et al., 2020). One of these

groups is the ENIGMA-Anxiety working group, created in 2016 (Bas-

Hoogendam et al., 2020), focused on anxiety related disorders. Such

disorders, that include social anxiety disorder, specific phobia, panic

disorder, generalized anxiety disorder (GAD), and agoraphobia, share

substantive phenomenological features and are often comorbid.

Within the ENIGMA-Anxiety working group, a subgroup devoted to

the study of GAD was formed, the ENIGMA-Anxiety/GAD

“subgroup,” which for simplicity is referred to here as

“ENIGMA-GAD.”

Because the ENIGMA-Anxiety working group was formed rela-

tively recently, it has benefited from the experience and work per-

formed by earlier groups, particularly in terms of collaborative

methods. In more recent years, research groups have become increas-

ingly favorable toward sharing and transferring de-identified individual

participant data (IPD), often as part of cooperative agreements that

respect country-level differences in data privacy and data protection

procedures, discussed below. In the case of ENIGMA-GAD, as

detailed in the final section of this article, the vast majority of sites

contributed raw, T1-weighted magnetic resonance imaging (MRI)

scans, as opposed to processed scans or results of subsequent ana-

lyses. These raw data could then be processed centrally using an

imaging processing software, in this case FreeSurfer1 (Dale, Fischl, &

Sereno, 1999; Fischl et al., 2002; Fischl, Sereno, & Dale, 1999). Having

access to raw IPD provided unique opportunities to review methods

for handling and harmonizing such data, defining processing pipelines,

and implementing analytic strategies. Crucially, this led ENIGMA-GAD

to prioritize a mega-analysis approach. This approach consists of ana-

lyzing IPD from all sites in one stage. This contrasts with two-stage

approaches, which consist of analyzes of site-specific results in a sec-

ond step after each site generates processed data in an initial step

(detailed below).

This paper presents some of the challenges posed by the decision,

by the ENIGMA-GAD group, to use a mega-analysis, and discusses

the rationale for the choices that were made to establish the analysis

plan. The discussion is broadly applicable to mega-analyses in the con-

text of ENIGMA and other international neuroimaging efforts. Below,

differences between meta-analytic vs. mega-analytic approaches, ben-

efits of preregistration, issues concerning data sharing and data reuse

are discussed. Methods for quality control and choices with respect to

ZUGMAN ET AL. 257
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measurements and statistical analyses are also presented. Finally, spe-

cific choices in the ENIGMA-GAD group with respect to each of these

issues are described.

2 | META-ANALYSIS VERSUS MEGA-
ANALYSIS

As collaborative and coordinated endeavors, ENIGMA meta-analyses

studies operate differently from literature-based meta-analyses. In the

latter, results from published studies are compiled to draw conclusions

on a certain question. In most cases, such pooled studies have been

conducted and published over many years, with high sample and

methodological heterogeneity, encompassing diverse statistical

approaches. Such diversity is aggravated in meta-analyses that exam-

ine neuroimaging studies. In neuroimaging studies, substantial chal-

lenges for combined inference result from the use of statistical maps

limited to significant p-values or test statistics, tables with coordinates

in relation to some standard (but not always the same) stereotaxic

space, and different representations of the brain (volume-based or

surface-based; Fox, Lancaster, Laird, & Eickhoff, 2014; Müller

et al., 2018; Tahmasian et al., 2019). Moreover, because of publication

biases, there can be a misrepresentation of negative results (the “file-

drawer” problem; Rosenthal, 1979) or study selection (Roseman

et al., 2011).

In ENIGMA, these issues are minimized through analysis of IPD

using an agreed upon processing strategy. Briefly, three approaches,

that relate to data location, are currently used by different projects

within ENIGMA working groups: (a) all raw data and all derived IPD

remote in relation to the coordinating facility; (b) all raw data remote

in relation to the coordinating facility, but derived data centralized;

(c) all raw data centralized. These approaches are not mutually exclu-

sive within a working group, and different projects conducted by the

same working group may each use a different strategy, depending on

the project goals and considerations about data availability, computa-

tional resources, and expertise. These approaches are summarized

schematically in Figure 1.

For meta-analysis with access to IPD, the strategy includes quality

checks and statistical analysis over mostly coetaneous data. Summary

statistics (such as effect sizes, standard errors, and/or confidence

intervals) are pooled by a coordinating facility that then uses meta-

analytic methods for inference across sites. Such a coordinated, two-

stage meta-analysis approach has been pursued by most ENIGMA

working groups (Hibar et al., 2015; Hibar et al., 2016; Schmaal

et al., 2016; Stein et al., 2012; van Erp et al., 2016), particularly due to

privacy concerns regarding genetic data. ENIGMA genome-wide asso-

ciation studies still use a meta-analysis approach (Hibar et al., 2017;

Satizabal et al., 2019); sites analyze their own data with an agreed

upon protocol, which avoids the need to transfer individual participant

genomic data, and allows distributed analysis of computationally

intense approaches.

Other strategies can be considered if the coordinating facility

has access to all IPD: a single-stage statistical analysis can be

performed by the coordinating facility, while addressing site-

related heterogeneity; this would be a one stage meta-analysis, or

simply “mega-analysis.” With imaging data, such mega-analyses

could start with the raw images being sent to the coordinating

facility where they then undergo batch processing using identical

methods and computing environments. Alternatively, mega-

analyses could start with image-derived measurements, such as

the volumes of brain structures or cortical surface area, already

computed and furnished by the participating sites to the coordi-

nating facility, for each individual participant; the coordinating

facility then proceeds to the statistical analysis. Combination of

approaches for some projects (e.g., some sites sending raw data

for processing whereas others sending processed data) are also

possible.

Analyses using IPD offer several advantages (Riley, Lambert, &

Abo-Zaid, 2010): they improve consistency in inclusion criteria

across sites, better treatment of confounds and of missing data,

verification of assumptions of statistical models, standardization of

procedures, increases in statistical power, reductions in biases for

not depending on previous publications of (invariably significant)

results. Access to IPD further allows other strategies for investiga-

tion that are not limited to hypotheses testing. For example, it may

allow classification at the individual participant level using

machine-learning methods (Nunes et al., 2018). In a mega-analysis

starting with raw imaging data, all data can be processed identi-

cally in the same facility, thus minimizing the chance for errors or

variability that can arise when each site conducts these aspects of

the analysis. One major challenge to this approach is that mega-

analysis requires at least one site to possess the necessary

resources and expertise to handle large datasets. Additionally, this

approach is only possible when IPD are shared with a central facil-

ity. Data exchange on an IPD level often is limited as data protec-

tion is regulated differently among research projects, consortia,

and countries. Barriers on data exchange and limitation of available

resources can, in effect, restrict the participation to few well-

equipped centers.

Multiple studies have compared meta- and mega-analysis (Belias,

Rovers, Reitsma, Debray, & IntHout, 2019; Riley et al., 2010;

Simmonds, Stewart, & Stewart, 2015), suggesting superiority of mega-

analyses with IPD when compared to meta-analyses in terms of higher

statistical power and acceptable false positive rates. In the context of

ENIGMA, comparisons have likewise tended to favor mega-analyses

(Boedhoe et al., 2019; Kochunov et al., 2014; Koshiyama et al., 2020).

However, if individual sites use identical processing strategies with

IPD, a random-effects two-stage approach leads to the same esti-

mates as a (one-stage) mega-analysis. This is well-established in the

neuroimaging literature, which uses similar statistical methods for

multi-level inference for analysis of functional magnetic resonance

imaging data (Beckmann, Jenkinson, & Smith, 2003; Worsley

et al., 2002). Rarely such identical processing can be accomplished,

though, given the usually large number of sites and, and the need that

all engage in approaches intended to ensure consistency (discussed

below).
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3 | ANALYSIS PLAN AND
PREREGISTRATION

Preregistration of clinical trials has been emphasized for many years,

and a registry2 was established by law in the United States through

the Food and Drug Administration Modernization Act of 1997

(Dickersin & Rennie, 2003). Similar registries exist in other countries,

and an international directory was created by the World Health Orga-

nization (WHO), the International Clinical Trials Registry Platform

(ICTRP).3 However, broadly similar efforts did not emerge in other

research areas for decades. Defining a hypothesis, an associated anal-

ysis plan, and preregistering these ideas before conducting any ana-

lyses is important in many ways (Chambers, 2013). It helps to

conceptually separate specific, previously formulated hypotheses

F IGURE 1 Differences between classical, literature-based meta-analyses, conducted without access to individual participant data (IPD) (upper
panel) versus approaches used by different ENIGMA working groups, in which researchers, collectively, have access to IPD (lower panel). The
latter encompasses three main approaches (top) data are processed using common methods at each site, then summary statistics are computed
and sent to a coordinating facility which then conducts a meta-analysis; (middle) data are processed using common methods at each site, then
sent to the coordinating facility which then conducts a mega-analysis; and (bottom) raw data are sent to the coordinating facility which then
processes the data in batch and conducts a mega-analysis, while taking site-specific effects into account

ZUGMAN ET AL. 259
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from exploratory analyses that have potential to generate new

hypotheses based on the data (Nosek, Ebersole, DeHaven, &

Mellor, 2018; Wagenmakers, Wetzels, Borsboom, van der Maas, &

Kievit, 2012). Likewise, it helps to separate a priori and exploratory

hypotheses and the analytic plans used for their investigation

(Ledgerwood, 2018). The benefits, however, stretch well beyond epis-

temological advantages by reducing the potential for questionable

research practices (Chambers, Feredoes, Muthukumaraswamy, &

Etchells, 2014). For example, preregistration reduces problems that

follow when negative results remain unreported (Rosenthal, 1979;

Sterling, 1959), reduces the chances of selective reporting (Macleod

et al., 2014) and maximizes transparency in analytic approaches,

thereby facilitating replication (Simmons, Nelson, &

Simonsohn, 2011). Without preregistration, these problems remain

prevalent, possibly due to the structure of incentives in academic

environments (Neuroskeptic, 2012; Nosek, Spies, & Motyl, 2012). Pre-

registration also reduces hypothesizing after the results are known

(Kerr, 1998), and protects scientists from other biases

(Chambers, 2013), such as confirmation bias, hindsight bias, and

anchoring effects (Moreau, 2019).

For ENIGMA, specific details and challenges need to be consid-

ered when preregistering a study. First, an analytic plan must be dis-

cussed with participating centers. The plan should include who access

the data, roles of each participating site and their personnel, compli-

ance with supervening laws and regulations, funding sources, as well

as authorship expectation. This ensures that pooled data from differ-

ent cohorts are analyzed in a way acceptable by all investigators. Sec-

ond, many ENIGMA sites may have already analyzed the data they

share for meta or mega-analysis, often to test similar hypotheses as

those being considered for the ENIGMA combined analyses.

Obtaining credible results requires an analytic plan free of influences

from findings known by the investigators, and that remains inclusive

of all relevant data. Preregistration mitigates such concerns by

supporting reasonable hypotheses of broad interest and with well-

defined inclusion and exclusion criteria of subjects, both of which are

unlikely to be swayed by prior knowledge of outcomes. These analytic

plans are formalized into “project proposals,” which can be distributed

to members for approval and participation, and are often considered a

form of preregistration for working group members.

Many platforms support preregistration, though the platform pro-

vided by the Open Science Foundation4 stands out for its comprehen-

siveness and user-friendliness. The process is remarkably simple, with

the site offering detailed instructions and preregistration templates.

Specifying an embargo period before the registration becomes public

is possible, and a digital object identifier (DOI) can be generated.

4 | DATA SHARING AND REUSE

Both meta- and mega-analysis require that individual sites transfer

data to the coordinating facility. Aggregated data, such as histograms

of quality metrics, effect sizes, confidence intervals, and standard

errors, are not identifiable at the individual level and can be

transferred parsimoniously among sites without substantive risk of

reidentification. It should be noted, however, that without precaution-

ary measures, repeated computation of aggregate results using slightly

varying subsets of participants can expose information about individ-

uals (Dwork, 2006). This risk can be minimized through agreements

among researchers on the nature and amount of aggregated data to

be transferred. For mega-analyses, in which IPD are transferred, fur-

ther attention is needed, due to differences across sites in the regula-

tions that protect the confidentiality, integrity, and security of the IPD

and their use in human research. In international collaborations, such

as ENIGMA, accommodating such requirements necessitates that the

strictest regulations are followed. While compliance with the law must

be integral, three points are particularly relevant for ENIGMA projects:

(a) protection of data and privacy of research subjects, (b) data reuse,

and (c) international transfers of data.

In the United States (US), research must follow the Federal Policy

for the Protection of Human Subjects (the “Common Rule”; Arellano,

Dai, Wang, Jiang, & Ohno-Machado, 2018). This requires that specific

consent be obtained from participants before their data and/or speci-

mens can be used not only for the research project for which they are

enrolling, but also for future research that may use such material,

which often is the case of ENIGMA projects. Privacy in the US is

governed by the Health Insurance Portability and Accountability Act

(HIPAA) of 1996, which requires patient data to be de-identified;

reuse requires approval by an Institutional Review Board.

Regulations differ, however, across countries. In the US, there is a

presumption that processing personal data is lawful unless it is

expressly forbidden. In the European Union (EU), in contrast, the

processing of such data is prohibited unless there is a lawful basis that

permits it (Dove, 2018). Legal provision for data protection and use in

research comes from the General Data Protection Regulation (GDPR),

adopted in 2016, which also covers the use of data from EU residents

outside the Union (Chassang, 2017). While HIPAA emphasizes subject

privacy, the GDPR makes no direct mention of privacy whatsoever,

dealing instead with data protection, as established in the EU Charter

of Fundamental Rights along with the right to a private life. Privacy is

extremely difficult to define (Alfino & Mayes, 2003), and may be

understood in this context as a state of nonaccess to data pertaining

to an individual (Dove, 2018). Data protection, in turn, is a less ambig-

uous definition and can be understood as a set of rules that aim to

protect the rights, freedoms, and interests of individuals whose per-

sonal data are handled and used (Tzanou, 2013).

The GDPR establishes that data reuse should only be allowed

where new purposes are compatible with those for which the data

were initially collected. This is usually the case for ENIGMA analyses.

International data transfers are not allowed unless the country to

which data are sent has been found by the European Commission to

provide “adequate” data protection; at the time of this writing, the list

of countries for which an adequacy decision has been provided

includes, for example, Argentina, Israel, Japan, New Zealand, and Swit-

zerland.5 While the list does include the US and Canada, in the case of

these two it does so for commercial uses of data that do not broadly

cover research by universities and research institutes as needed for
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ENIGMA. In the absence of such adequacy decision, or of specific der-

ogations, an alternative path to data transfer is through specific provi-

sion of safeguards concerning data protection. These require the

signing of legally binding agreements between authorities, or binding

corporate or institutional rules approved by competent supervisory

authorities (Dove, 2018; Staunton, Slokenberga, & Mascalzoni, 2019).

If none of these paths are viable, a possible solution to still allow

research is to determine that the coordinating facility for a given

ENIGMA Working Group will be in the EU itself; then no data from

EU subjects need to be transferred to outside the Union. However,

such a workaround is limited in scope and time: countries that are in

the process of adopting legislation modeled after GDPR (such as the

United Kingdom through the Data Protection Act of 2018) will be

under broadly similar rules; these countries might, nonetheless,

quickly receive an adequacy decision by the European Commission,

such that transfers between the EU and these countries should ulti-

mately be facilitated.

4.1 | De-identification

Regardless of specific legislation, data de-identification is a crucial

step. De-identification consists of removal of personally identifiable

information that allows data to be traced back to individuals, thus ren-

dering such identification impossible or extremely difficult or unlikely.

In the context of HIPAA, unless otherwise determined by an expert,

removal of information such as names, locations with granularity

smaller than that of a state, dates related to an individual (such as

birth date, admission date, etc.), and other identifying details, is con-

sidered to provide a reasonable basis to assume that the information

cannot be used to identify an individual. Full-face photographs and

any comparable images must likewise be removed for HIPAA compli-

ance. For ENIGMA data, this means that MRI scans may need to have

facial features of subjects removed before data are shared (see

below).

Unlike HIPAA, the GDPR does not specify de-identification

methods. Instead, researchers are expected to remain mindful that de-

identified data might become reidentifiable through the development

of new technologies or use of ancillary data. Thus, the GDPR requires

vigilance to ensure that data remain anonymous (Dove, 2018). Manag-

ing the risk of reidentification is crucial, and safeguards should be put

in place as if the data were not anonymous. Pseudonymized

(e.g., tokenized or key-coded) data are subject to the GDPR, even if

the codes are not shared and remain within different organizations.

For ENIGMA, this means that sites that handle information of EU resi-

dents must ensure complete de-identification as well as take into

account the risk that de-identified data becomes reidentifiable, or pur-

sue GDPR compliance by treating data as if not anonymous.

Imaging data stored in the standard Digital Imaging and Commu-

nications in Medicine (DICOM) file format are accompanied by a host

of personally identifiable information. Tools exist to anonymize such

files, by erasing fields from the file header that could contain such

information. Another popular file format used in brain imaging is the

Neuroimaging Informatics Technology Initiative (NIFTI). This format

stores no personally identifiable information but contains two

general-purpose fields (“descrip” and “intent_name,” with 80 and

16 bytes, respectively) that could hold such information. The format

can also accommodate extensions, and can be paired with a JavaScript

Object Notation text file (JSON), both of which may contain informa-

tion that may allow subject identification. Any field with information

that could lead to reidentification must be erased or removed before

data can be shared between ENIGMA sites and the coordinating facil-

ity, or other safeguards must be in place to ensure no reidentification

will be attempted or possible. A popular tool for conversion from

DICOM to NIFTI, “dcm2niix” (Rorden, 2014) allows removal of such

information during format conversion.

Moreover, the data portion of DICOM and NIFTI files may be

edited to ensure that facial features will be removed (defacing).

Reidentification of participants based on scan data had been consid-

ered a remote possibility, which motivated the creation of defacing

algorithms (Alfaro-Almagro et al., 2018; Bischoff-Grethe et al., 2007;

Milchenko & Marcus, 2013; Schimke, Kuehler, & Hale, 2011). Such

reidentification, however, has recently been demonstrated to be feasi-

ble (Schwarz et al., 2019), which now renders defacing mandatory for

publicly available data. Moreover, two recent developments further

complicate matters. First, even defaced data may be reidentified, par-

ticularly if facial features are only blurred, as opposed to completely

removed (Abramian & Eklund, 2019). Second, recent research indi-

cates that defacing unfortunately may degrade the performance of

image processing algorithms, possibly affecting the quality of mea-

surements obtained (de Sitter et al., 2020). For ENIGMA mega-ana-

lyses, reconciling data protection with maximum scientific value that

data can provide may ultimately require bilateral agreements to avoid

data breaches that could allow for unintended or malicious use. In this

case the participating institutions can reach an understanding (usually

in the terms of a data use agreement—DUA) that all shared data is to

remain securely stored with limited access to researchers who are

conducting relevant ENIGMA work.

4.2 | Encryption and transfer

Encryption reduces the possibility that data might be misappropriated

when stored, or intercepted during transfer, and thus reduces the

chances that data can be used in ways that are not in the best interest

of research participants. Data encryption is always compatible with

both HIPAA and GDPR, and in the case of the former, it can be con-

sidered “a reasonable and appropriate measure” to ensure confidenti-

ality, which renders it mandatory for all practical purposes. Even

without specific regulations, data encryption is good practice insofar

as the confidentiality, integrity, and security of data of participants are

concerned.

A basic scheme consists of encrypting the data using a reasonably

secure cipher (algorithm), with a key (password) that can also be used

for decrypting. Such a key is transmitted from an individual site to the

ENIGMA coordinating facility through means other than those used
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to transfer the encrypted data. A more sophisticated approach uses

pairs of public/private keys: the site encrypts the data using the public

(not secret) key provided by the coordinating facility; data can be

decrypted by the coordinating facility using the private (secret) key.

Various tools enable encryption of individual files or the generation of

encrypted containers, which are files that emulate a file system and

can hold multiple other files. Examples of such tools that operate

across multiple platforms include VeraCrypt,6 CipherShed,7 and

GnuPG.8

Data transfer can be performed in different ways: if data are

strongly encrypted, transmission does not require further encryption;

if data are not encrypted, transmission should use a form of secure

communication. For small amounts of data, such as for analyses using

imaging-derived measurements, which tend to be smaller than with

imaging data in full resolution, a plain email with encrypted attach-

ments containing the (possibly compressed) data, or encrypted emails

with nonencrypted attachments, are sufficient. For large volumes of

data, as for mega-analyses that start from raw data, data transfer

using methods such as SSH file transfer protocol (SFTP) are more con-

venient. However, connection to institutional servers (or even per-

sonal laptops) hosting the data may require the potentially

problematic opening of firewall exceptions. Two alternative methods

are straightforward to implement. One uses strong ciphers to encrypt

the data, which are then stored in a physical portable medium, such as

external hard drives, thumbsticks, or even secure digital (SD) cards, to

be sent by post or courier; decryption keys are negotiated ahead of

time and shared through different means. The second method uses

peer-to-peer secure transfers using a service such as Globus,9 a non-

profit, free service provided by the University of Chicago

(Ananthakrishnan, Chard, Foster, & Tuecke, 2015) for data exchange

among academic or research institutions.

Cloud storage systems (e.g., Dropbox,10 Box,11 Amazon Web

Services,12 Google Drive,13 and Microsoft Azure14) should be used

with caution. Even though most cloud providers offer some level of

encryption, compliance with data protection and privacy laws may

only be offered with high tier subscriptions or specific security set-

tings, if offered at all. Users should be aware of the level of compli-

ance that their choice of cloud system provides.

Encryption and transfer have sometimes to be established on a

site-specific basis. Some sites may have particular expertise and/or

infrastructure in place to allow transfer of large amounts of data using

particular methods, which would be favored over others. Laws

governing transfer of technology and geopolitics may also impact

choices: furnishing encryption software to some countries is illegal in

some jurisdictions, whereas receiving hard drives may also pose diffi-

culties in countries that heavily tax or delay the delivery of imported

goods.

4.3 | Organization and processing

Before or after being transferred to the coordinating facility, the data

can be organized into a scheme that facilitates processing and the use

of imaging pipelines, such as the brain imaging data structure (BIDS;

Gorgolewski et al., 2016). BIDS prescribes a hierarchy of files and

directories that is simple and intuitive, yet powerful enough to accom-

modate a diverse set of imaging modalities collected in varied circum-

stances. The scheme is intended to minimize efforts related to data

curation, to reduce the number of errors due to incorrect organization

of data files, and to facilitate the development and usage of software,

which can be written to parse the file structure directly (Gorgolewski,

Alfaro-Almagro, Auer, Bellec, & Capot, 2017).

Processing of the whole dataset using one operating system and

software version can help avoid inconsistencies. It has been demon-

strated that differences in operating systems can have a small effect

on, for example, FreeSurfer metrics (Gronenschild et al., 2012); such

metrics have been used in many ENIGMA analyses to date, including

in ENIGMA-GAD analyses. Scientists may benefit from monitoring

their computing environment and run analyses in batches that are not

interspersed with periodic software updates.

Options to ensure software consistency include the use of virtual

machines (such as QEMU/KVM,15 VirtualBox,16 or VMware17) or con-

tainerized environments (such as Docker18 or Singularity19). In virtual

machines, the whole system—including emulated hardware and the

“guest” operating system—can be kept static and be shared. Con-

tainers use a layer of compatibility between the “host” operating sys-

tem and the desired applications. They tend to run faster and have

simpler maintenance than virtual machines. In either case, the

researcher can keep tight control over software versions, libraries, and

dependencies. Neither of the two methods, however, is ideal. Virtual

machines can be heavier to run and offer less flexible integration with

the host operating system (which in turn may have access to a large

computing cluster, such that integration is something often desirable).

Containers address this problem but introduce others: troubleshoot-

ing experimental software may be difficult because it is not always

clear whether a given problem has arisen because of the software

itself, or because of the container or its interaction with the host sys-

tem. Regardless, such solutions improve reproducibility of results by

allowing researchers to share not only their code and information

about their computing environment, but also their actual computing

environment.

5 | QUALITY CONTROL

For ENIGMA meta-analyses, each site can perform a quality assess-

ment of its own data using a previously agreed protocol. Sites can

report the quality metrics to the coordinating facility, which then can

use the information in the statistical model by, for example, giving less

weight to sites contributing lower-quality data. ENIGMA protocols

provide consistent, streamlined strategies for visual inspection of

imaging data; these strategies involve inspection of the cortical border

between gray and white matter, parcellations of the cortex, and seg-

mentation of subcortical structures. For mega-analyses, while the

same kind of visual inspection could be advantageous, the amount of

data may render this process difficult. Although there is no standard

262 ZUGMAN ET AL.

 10970193, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.25096 by U
niversita'D

egli Studi D
i M

ila, W
iley O

nline L
ibrary on [14/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



triage or similar requirement before sharing raw data, it is usually the

case that images will have already been seen by at least one investiga-

tor before sharing, and as such, might have been excluded from con-

sideration and not sent to the coordinating facility. Moreover, while

using the same raters may give higher consistency on selection of par-

ticipants across sites given imaging features, the same process might

introduce unwanted bias toward selection, for example, if imaging fea-

tures used to visually define inclusion or exclusion are unknowingly

related to the variables investigated, a risk that may be present even if

quality criteria are consistent across sites.

5.1 | Automated methods

Biases arising from manual inspection can be minimized through auto-

mated quality control methods. In the UK Biobank, for example, a

supervised learning classifier identifies problematic images with

acceptable accuracy (Alfaro-Almagro et al., 2018). The UK Biobank,

however, benefits from the fact that data collection is limited to only

three sites, all of which use identical equipment (Miller et al., 2016). In

ENIGMA, data come from many sites, with MRI scanners from differ-

ent vendors and models, with different field and gradient strengths,

different coils, acquisition sequences, and software versions. Using a

quality control classifier with such heterogeneous data is challenging

(Chen et al., 2014; Focke et al., 2011; Han et al., 2006; Jovicich

et al., 2006), although methods with good performance have been

proposed (Klapwijk, van de Kamp, van der Meulen, Peters, &

Wierenga, 2019).

Tools such PCP-QAP20 (Zarrar et al., 2015) and MRIQC21

(Esteban et al., 2017) compute a host of image quality metrics that

consider signal, noise, image smoothness and contrast, as well as spe-

cific artifacts (Atkinson, Hill, Stoyle, Summers, & Keevil, 1997; Die-

trich, Raya, Reeder, Reiser, & Schoenberg, 2007; Ganzetti,

Wenderoth, & Mantini, 2016; Magnotta & Friedman, 2006; Mortamet

et al., 2009). In particular, MRIQC operates on data organized

according to BIDS, and produces detailed reports of these metrics.

This tool does not, however, classify images as having high or low

quality; instead, it provides an interface for a rater to make that deter-

mination based on the computed quality metrics and possibly other

features; these metrics may, in turn, be used to train a classifier. Such

classification, however, can be difficult to generalize, given the diver-

sity of data from multiple sites (Esteban et al., 2017). Even so, derived

metrics may be insufficient to predict successful generation of cortical

surfaces and segmentation of subcortical structures with FreeSurfer,

from which image-derived measurements of interest are often com-

puted. Notwithstanding these considerations, it is good practice to

investigate quality using this kind of tool, which includes boxplots

(Figure 2), and mosaics that show multiple slices color-coded so as to

highlight potential defects. The output from these tools are useful to

assist in flagging images that, even if successful at FreeSurfer

processing, may require specific decisions whether or not they should

remain in the sample. Moreover, these tools provide summary metrics

that can be returned to the contributing sites, where local researchers

can assess the quality of their own images versus those collected by

others or elsewhere (Esteban et al., 2019).

5.2 | Euler characteristic

One particular metric has been found to be a good predictor of the

quality of FreeSurfer outputs: the Euler characteristic (χ; sometimes

also called Euler number) of the cortical surface produced before

topological correction (Rosen et al., 2018). To conceptualize the Euler

characteristic, consider a polyhedron whose spatial configuration is

determined by its vertices, edges, and faces. It can be shown

(Lakatos, 1976) that if the polyhedron is convex, the number of verti-

ces (V), minus the number of edges (E), plus the number of faces (F), is

always equal to 2; this quantity is the Euler characteristic, that is,

χ = V − E + F. If the polyhedron is crossed by a single hole, χ is

decreased by 1; if crossed by two holes, decreased by 2; if hollow, χ is

increased by 1. More generally, for every hole that crosses a polyhe-

dron, its χ is decreased by one, whereas for every hollow, it is

increased by one. The Euler characteristic is well-known in neuroim-

aging as a key metric for multiple-testing correction using the random

field theory (RFT; Worsley et al., 1996). Here, however, it serves an

entirely different purpose: it acts as a metric to quantify topological

deviation of the initial cortical surface from a sphere, as an increas-

ingly large number of holes in the initial surface generates an increas-

ingly negative Euler characteristic. As these values become more

negative, the more likely it is that the original T1-weighted scans had

low quality in ways that negatively impacts the surface reconstruction.

FreeSurfer treats such holes as topological defects and corrects them

automatically to create a cortical surface that reaches a χ = 2 (Fischl,

Liu, & Dale, 2001). However, initial surfaces that have too many

defects are less likely to be ever usable, even after topology

correction.

The Euler characteristic was found to be highly correlated with

manual quality ratings, discriminating accurately unusable from usable

scans, and outperforming other data quality measures (Klapwijk

et al., 2019). However, the precise threshold to be applied to χ

remains unknown when deciding whether a surface is usable or not;

such a threshold may be site or scanner specific. Moreover, it is not

currently known whether, as a general rule, the Euler characteristics

for each brain hemisphere should be combined as their mean, or the

worst (minimum, most negative) of the two, nor whether other met-

rics related to surface topology could be helpful for quality assess-

ment. For subcortical structures, specific quality metrics are currently

missing from the literature.

5.3 | Manual edits

Image processing pipelines may allow manual edits when automated

approaches fail to generate processed images of desirable quality. This

is also the case with FreeSurfer, whereby the user can employ “con-

trol points” to establish final cortical surface placements;
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segmentation also can be hand edited to exclude nonbrain tissue and

fix mislabeled regions. Different ENIGMA working groups have

decided differently on whether or not to do manual editing, as the

process is time consuming and requires expert knowledge. Crucially,

while manual editing may improve validity of measurements, it intro-

duces variance to the data unrelated to the images themselves, but

related to the manual operator; multiple operators potentially com-

pound the problem. Taken to an extreme, such undesired variance can

reduce power, though research has found that such editing may have

little impact on the final results, in either a beneficial or deleterious

manner (McCarthy et al., 2015).

6 | MEASUREMENTS

Imaging generates a myriad of measurements. Analyses can reveal

genetic and environmental influences on healthy and pathological var-

iability in the human brain, providing great potential currently not fully

harnessed. As an example, a recent ENIGMA meta-analysis using data

from 51,665 subjects identified 187 loci influencing cortical surface

area and 12 others influencing thickness (Grasby et al., 2020); in

another example, the recent UK Biobank analysis used 3,144 imaging-

derived traits (Elliott et al., 2018) to find 148 replicable clusters of

associations between single nucleotide polymorphisms and these

traits. Not all imaging traits are sufficiently well defined and stable to

allow reliable quantification for ENIGMA meta or mega-analyses,

though. While the problem can be partially mitigated in mega-analyses

that use common processing schemes, stable, reliable measurements

should be the first line of research. Region-based or vertex-based

measures of cortical thickness, cortical surface area, and cortical and

subcortical volumes are easily obtained, and measurement workflows

are established across multiple research sites (Hibar et al., 2015; Stein

et al., 2012; Thompson et al., 2014). Diffusion-weighted imaging also

allows measurements that are robust to variations on processing pipe-

lines, and workflows for ENIGMA have been developed (Jahanshad

et al., 2013; Kochunov et al., 2015). Likewise, a resting-state

F IGURE 2 Example screenshot of a report of image quality for the subjects of one site. Box plots of various metrics are shown. The report is
produced by the tool MRIQC, available, along with documentation that details all the metrics (many more than shown in the figure), at https://

mriqc.readthedocs.io
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functional MRI processing pipeline was proposed recently for use in

ENIGMA meta-analyses (Adhikari et al., 2018).

The goal of these pipelines is to ensure consistency in methods

across sites, not affecting the relationship between the imaging mea-

surements and their underlying biological processes. In effect, such

measurements may be influenced by a myriad of physiological and

pathological processes. For cortical thickness and surface area, for

example, measurements depend to some extent on neuronal and glial

cell volume and density, dendritic complexity, degree of myelination,

inflammatory processes, and other factors. Evidence has been

reported for changes in cortical thickness associated with learning

(Zatorre, Fields, & Johansen-Berg, 2012) and even with stimuli during

structural MRI data collection (Månsson et al., 2020); the latter find-

ing, if confirmed, could indicate that information about what the sub-

jects viewed would need to be considered as a confound at the time

of the statistical analysis.

Furthermore, the scale with which measurements are obtained

does not necessarily correspond to the scale in which linear effects

manifest; such linear effects constitute the backbone of most statisti-

cal brain-imaging analyses as encapsulated in the general linear model

(GLM). The GLM assumes that modeled factors (e.g., diagnostic group,

age, and sex) possess additive effects over the dependent variable

(e.g., an imaging-derived measurement); this may not always hold.

Some notable examples include fine-resolution area of the cortex,

which follows a lognormal distribution potentially reflecting exponen-

tial influences; fractional anisotropy of water diffusion, a quantity

bounded between 0 and 1, also could be considered not a sum of mul-

tiple small effects, nor functional connectivity assessments bounded

between −1 and 1. Cases such as these may be accommodated

through the use of a data transformation, such as logarithmic, power,

Fisher's r-to-z, logit, or probit transformations; generalized linear

models and nonparametric statistics can also be considered.

6.1 | Choice of resolution

Researchers need to consider whether imaging analyses should use

measures obtained at every point of an image (e.g., voxelwise or

vertexwise data) or aggregate measures computed over regions of

interest or parcellations, broadly termed as “ROIs.” Although

vertexwise analyses have been performed in recent ENIGMA research

(Chye et al., in press; Ho et al., 2020), most previous ENIGMA studies

used meta-analyses. In these cases, an ROI-based approach is more

robust to small deviations from a common image registration scheme.

Moreover, voxelwise and vertexwise measurements represent small

pieces of tissue in relation to the resolution inherent to the equipment

or scanning sequence. As such, these measures are intrinsically noisier

than ROI-based quantities. Furthermore, because the number of

voxels/vertices is usually many times larger than the number of ROIs

under potential consideration, their use is computationally more

intensive, and leads to an exacerbation of the multiple testing

problem.

These considerations, however, do not imply superiority of ROI-

based measurements over voxelwise or vertexwise approaches. While

noisier, vertexwise and voxelwise data are typically smoothed,

thereby increasing the signal-to-noise ratio while retaining localizing

power. Moreover, statistical power of ROI-based measurements is

maximal when the space spanned by the true effects matches per-

fectly the borders of the ROI; otherwise, true signal is diluted within

an ROI, or split across multiple ROIs. Multiplicity of testing, while

more severe with voxelwise or vertexwise data, may not necessarily

compromise power: the tests are largely nonindependent and

methods to accommodate such nonindependence exist, both in para-

metric (Worsley et al., 1996) and nonparametric cases (Winkler, Web-

ster, et al., 2016). Finally, it is not always obvious how to aggregate

measurements for ROIs, nor what the ROIs should be. For example,

while the surface area of an ROI can be trivially obtained by summing

together the areas assigned to all vertices within that region, thickness

within the same ROI could be computed either as an average of all

vertices, or as a weighted average using the areas of the vertices as

weighting factor; for functional MRI, aggregate measurements could

be the simple average, or the first principal component. Moreover, a

host of different parcellation schemes exist (Craddock, James,

Holtzheimer, Hu, & Mayberg, 2012; Desikan et al., 2006; Destrieux,

Fischl, Dale, & Halgren, 2010; Glasser et al., 2016; Ji et al., 2019; Mag-

gioni, Tana, Arrigoni, Zucca, & Bianchi, 2014; Power et al., 2011;

Schaefer et al., 2018; Tzourio-Mazoyer et al., 2002; Yeo et al., 2011),

based on various macroscopic, microscopic, and functional aspects of

the brain, none of which is clearly superior to others for all possible

investigations (Arslan et al., 2018; Brett, Johnsrude, & Owen, 2002;

Messé, 2019). For instance, the use of an anatomical parcellation in

fMRI studies might hide possibly relevant functional inhomogeneities

within each cluster (Maggioni et al., 2014).

Pooling raw IPD for mega-analysis creates many data analytic

opportunities. Since the coordinating facility has access to all data,

mass-univariate analyses are possible without the constraints imposed

by the limited data exchanges of meta-analyses. Mass-univariate

methods support easier, more reliable forms of vertexwise/voxelwise

analyses, performed by processing all data in an identical manner,

regardless of site provenance, an approach that has already been used

in ENIGMA (Wang et al., 2019). However, this process still can be

computationally difficult. FreeSurfer default surface data, for example,

uses 163,842 vertices per hemisphere for between-subject compari-

sons, which is denser than the number of voxels that pass through the

pia mater or the interface between gray and white matter in a typical

MRI scan, given the cortical convolutions; moreover, data are usually

smoothed, further lowering the effective resolution. Computational

savings that do not substantively sacrifice localizing power may be

accomplished by downsampling the surface. In the case of FreeSurfer,

this downsampling can be done by using an icosahedron recursively

subdivided fewer times (n) than the default 7 (Winkler et al., 2012,

appendix A) as the target for interpolation. Data from vertices not

explicitly included are still represented when smoothing is applied

before interpolation, thus before downsampling. The number of
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vertices is given by V = 10 � 4n + 2 if the grid is based on an icosahe-

dron; using n = 4 or 5 still allows good cortical coverage (Figure 3).

6.2 | Harmonization

In a mega-analysis, pooling data from numerous cohorts requires

addressing nuisance factors. Site, scanner and cohort-specific effects

of no interest can be manifest as effects larger than diagnosis or other

effects of interest; neglecting such nuisance effects can reduce power

or generate false positives and low reproducibility (Baggerly,

Coombes, & Neeley, 2008; Leek et al., 2010). These confounds can be

accommodated at the time of the statistical modeling and analysis, at

the penalty of increasing model complexity, or the data may be modi-

fied before analysis so as to remove such unwanted effects.

ComBat (“combining batches”) is such an approach, that allows

harmonization of data across sites. The method originated in genetics

for correcting batch effects in microarrays, and is described in detail in

F IGURE 3 Surface reconstructions of the cortex of the right hemisphere based on different resolutions of a recursively subdivided
icosahedron. The default in FreeSurfer uses n = 7 recursions, resulting in a total of 163,842 vertices. Considerable computational savings can be
obtained with lower resolutions (such as with n = 4 or 5) without substantial losses in localizing power. V, number of vertices; E, number of edges;
F, number of triangular faces
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(Johnson, Li, & Rabinovic, 2007). In brief, ComBat incorporates sys-

tematic biases common across voxels/vertices, under the mild

assumption that phenomena resulting in such “batch” effects

(e.g., site, scanner, and/or cohort effects) affect voxels/vertices in sim-

ilar ways (e.g., stronger mean values, higher variability). In the method,

location (additive) and scale (multiplicative) model parameters that

represent these batch effects are estimated. This estimation is done

by pooling information across voxels or vertices from participants

from each site so as to shrink such unwanted effects toward an over-

all group effect (i.e., across batches and voxels/vertices). These esti-

mates are then used to adjust the data, robustly discounting

unwanted effects. Variability of interest or related to known nuisance

or confounds (e.g., age or sex) can be retained. In brain imaging, the

approach has been an effective method to harmonize diffusion tensor

imaging data (Fortin et al., 2017), cortical thickness measures (Fortin

et al., 2018), rest and task-based functional MRI (Nielson et al., 2018),

and functional connectivity (Yu et al., 2018). ComBat has been used in

ENIGMA studies (Hatton et al., in press; Villalón-Reina et al., in press),

although it has been argued that it leads to similar results as random

effects linear regression (Zavaliangos-Petropulu et al., 2019). Which

statistical harmonization model is optimal remains an active discussion

at the time of this writing.

7 | STATISTICAL ANALYSIS

Statistical analyses can proceed once data have been processed, and

measurements obtained and possibly harmonized. Such analyses esti-

mate the effects of interest and compare them to expected observa-

tions should there be no real effect to compute a p-value. It is at the

stage of the statistical analysis that the differences between meta-

and mega-analysis become most pronounced.

7.1 | Fixed versus random effects

For all cases discussed in Figure 1, analyses may assume that true

effects are fixed (constant) across sites, and therefore any differences

in effects among sites are solely due to random experimental error, or

may assume that the true effects themselves may be random

(i.e., varying) across sites. For meta-analyses without access to IPD,

the above distinction between fixed and random effects holds rela-

tively without ambiguity, and distinct methods to summarize literature

findings for either of the two cases exist (Borenstein, Hedges,

Higgins, & Rothstein, 2009). For other cases, unfortunately, these

terms have multiple meanings that sometimes conflict

(Gelman, 2005). For research using IPD, less ambiguous definitions

apply to slopes and intercepts, which can be treated as constant (thus,

fixed) or allowed to vary (thus, random) across sites. This distinction

between fixed and random becomes then an attribute not of the sta-

tistical model, but of each independent variable.

As for the level of inference, in the case of ENIGMA, the selection

of sites is seldom a random quantity, and generalization is sought not

to an idealized “population of sites”, but instead to the actual popula-

tion. Thus, between-site variability is a nuisance that should either be

modeled by including random intercepts to accommodate different

site means, or be addressed through data harmonization, as discussed

above. Effects of interest, such as differences between individuals

with a specific condition and comparison individuals, can be assumed

to be fixed across sites (thus, would be modeled as a single regressor,

i.e., with fixed slopes), or assumed to vary across sites (thus, would be

modeled with multiple regressors, i.e., with random slopes), thus

implying the possibility of an interaction of site by effect of interest.

The latter would accommodate, for example, site differences due to

clinical characteristics or recruitment setting. Unwanted effects other

than the intercept can be modeled either considering fixed or random

slopes, the consideration being left on a per variable basis. For exam-

ple, age effects may be modeled using fixed slopes if all sites have par-

ticipants within similar age ranges, but using random slopes if some

sites have only young participants whereas others have only elderly,

as age is often not expected to have a linear effect across lifespan.

7.2 | Confounds

Unwanted data variability may arise due to procedural factors includ-

ing site or scanner features, or due to factors that affect both depen-

dent and independent variables. Variables representing the former

case are termed nuisance; those representing the latter, confounds.

Variables such as age or sex may be nuisance in some analyses or con-

founds in others, depending on the relationship between these vari-

ables and the other variables studied; here we broadly call nuisance

and confound variables covariates.

The large sample size of ENIGMA increases statistical power in

general, however, this may result in erroneous labeling confounding

effects (Smith & Nichols, 2018); ignoring such confounds may reduce

power or identify spurious associations. Addressing these concerns can

be challenging, as decisions regarding confounding variables affect

interpretation of the relationship between dependent and independent

variables (Gordon, 1968; Lord, 1967). For example, if a confounding var-

iable causes at least part of the variation observed in the imaging data

across participants and in the variation of the independent variable

(i.e., it is a collider), adjustment for the undesired effect induces a false

association (Berkson, 1946; Luque-Fernandez et al., 2019; Pearl, 2009,

chapter 6), which can happen in either direction (positive or negative).

Moreover, controlling for poorly reliable measures may not

completely remove their putative effects, leading to false conclusions

about effects (J. Westfall & Yarkoni, 2016). While this is a greater con-

cern for social and psychological constructs that often are measured

with relatively low reliability, the same can apply to imaging measure-

ments. Examples include segmentation of structures where tissue

contrast is minimal, or for structures that are small for the image reso-

lution; for functional MRI, false conclusions can occur through effects

of signal fluctuations that are poorly associated with task performance

or of weak functional connectivity among regions. All such measures

can produce variables that, if used as confounds, may increase the
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chance of false positives. Perhaps counterintuitively, here too large

sample sizes may exacerbate the problem.

A special kind of confound in brain imaging is a composite measure-

ment formed by pooling together values of all voxels/vertices or regions

of interest, with the goal of discounting unwanted global effects. For

example, in a vertexwise analysis of surface area, it might be of interest to

consider the total cortical surface area as a confounding variable. Like-

wise, for studies of subcortical volume, total brain size—or a related quan-

tity, the intracranial volume (Buckner et al., 2004)—can be considered a

confound; for cortical thickness, the average thickness across the cortex;

for functional MRI, at the subject level, a measurement of global signal,

though controversial, might be considered in a similar manner (Murphy &

Fox, 2017). The rationale for inclusion of a global measurement as a

regressor within the model stems from interest in enhancing the localizing

power afforded by imaging methods, and reducing sources of noise that

affect measures globally. From this perspective, the scientist seeks to

learn where, specifically, in the brain some phenomenon may occur. In

this context, arguably, global effects would be of lesser interest, unless a

research hypothesis is specifically about them. In addition, for functional

MRI, some sources of noise, such as movement and respiration, result in

artifactual global signal changes, and so removal of the global signal is also

an effective means of reducing artifacts (Ciric et al., 2017).

What makes these confounds special is that, being composites of

all other local (voxelwise/vertexwise) or regional quantities, they are

almost certainly correlated with these measurements, and thus, are

likely to also be associated with variables of interest in the model if

these are associated with the local or regional measurements. These

global variables are more likely to impact results where local or regional

effects of interest are present, even more so if these are widespread

across the brain. Options for taking into account such global effects in

the statistical analysis have been studied (Andersson, 1997; Barnes

et al., 2010; Nordenskjöld et al., 2013; Sanfilipo, Benedict, Zivadinov, &

Bakshi, 2004). The main approaches are: (a) convert each local or

regional measurement into a proportion over the global quantity;

(b) residualize the dependent variable with respect to the global; and

(c) include the global in the model. Among these three, the latter option

should always be favored as it accounts for effects that the con-

founding variable may have over both dependent and independent vari-

ables. The least preferable is the proportion method (a), one of the

reasons being that noisier (unreliable) measurements compromise the

measurements to a much greater extent than the others.

If confounding variables are meant to be included in the model, it

is often appropriate, considering all the above, to present results with

and without these variables in the model (Hyatt et al., 2020; Simmons

et al., 2011). Ideally, these would also be corrected for multiple test-

ing, as the number of opportunities for falsely significant results has

now doubled (see below more on multiple testing).

7.3 | Inference

Choices for inference can be broadly divided into parametric and non-

parametric. Parametric methods are computationally faster but require

assumptions that are sometimes difficult to justify. For example, data

have to be assumed to be independent and normally distributed with

identical variances after all nuisance variables and confounds have

been taken into account. These assumptions may hold for some ana-

lyses, but not for others. When the variety of imaging modalities pos-

sible for ENIGMA studies is considered, these assumptions cannot

hold for all of them. The consequence is that results will be incorrect

in at least some cases. Nonparametric tests, such as permutation tests,

on the other hand, require very few assumptions about the data prob-

ability distribution, and therefore can be applied to a wider variety of

situations than parametric tests. For permutation tests, the only key

assumption is that any random instantiation of permuted data must

be as likely to have been observed as the original, unpermuted. In

other words, the data must be exchangeable. If exchangeability holds,

permutation tests are exact, in the sense that the probability of

observing a p-value smaller than a predefined significance level α is α

itself when there are no true effects (Holmes, Blair, Watson, &

Ford, 1996; T. E. Nichols & Holmes, 2002; Winkler, Ridgway, Web-

ster, Smith, & Nichols, 2014).

For ENIGMA mega-analyses, permutation tests can pose practical

challenges, though. Large sample sizes and the multiplicity of sites,

combined with modeling that include random slopes and random

intercepts for covariates, leads to large design matrices that can be

slow to process repeatedly as needed for permutations. Moreover,

unless data have been harmonized in ways that accommodate poten-

tial different variances across sites, statistics that are robust to

heteroscedasticity (DiCiccio & Romano, 2017; Guillaume, Hua,

Thompson, Waldorp, & Nichols, 2014; Winkler et al., 2014) can like-

wise add to the computational burden; here, permutations may be

restricted to blocks of exchangeable observations that have been col-

lected within each site or within scanner. Another increase in compu-

tational expense occurs if more powerful, yet nonstandard test

statistics, such as pseudo-t (T. E. Nichols & Holmes, 2002), or spatial

statistics such as cluster extent, cluster mass, or threshold-free cluster

enhancement (TFCE) (Smith & Nichols, 2009) are used. In all these

cases, speed can be increased using fast, parallel implementation of

permutation algorithms (Eklund, Dufort, Villani, & Laconte, 2014), or

using accelerations based on various mathematical and statistical

properties of these same tests (Winkler, Ridgway, et al., 2016),

or both.

7.4 | Multiple testing

As with any imaging experiment that uses one statistical test per

imaging element (voxel, vertex, ROI), correction for multiple testing is

necessary (T. Nichols & Hayasaka, 2003). For parametric inference,

and under a series of additional assumptions, it is possible to control

the familywise error rate (FWER) using the RFT (Worsley et al., 1996);

methods and software exist for both voxelwise and vertexwise data.

However, this method cannot be used for ROIs, as these cannot be

represented as a regular lattice, or for voxelwise data that do not

meet all the assumptions of the theory, such as tract-based spatial
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statistics (Smith et al., 2006). A valid approach for all these cases, but

that controls a different error quantity, is the false discovery rate

(FDR) (Benjamini & Hochberg, 1995; Genovese, Lazar, &

Nichols, 2002). For permutation inference, correction for multiple

testing that controls the FWER can be accomplished in a straightfor-

ward manner for all the above cases using the distribution of the max-

imum statistic obtained across all tests in each permutation

(P. H. Westfall & Young, 1993). Uncorrected permutation p-values

can also be subjected to FDR correction.

Correction should consider not only the multiplicity of imaging

elements as voxels or ROIs, but also the multiple imaging-derived

measurements eventually tested in the same ENIGMA study

(e.g., cortical thickness and cortical area), as well as multiple hypothe-

ses formulated in terms of contrasts of parameters of the model

(Alberton, Nichols, Gamba, & Winkler, 2019), or multiple models for

the same data, for example, with and without a global measurement

as confounding variable. Failing to consider these issues exposes a

study to the risk of excess false positives. Correcting across multiple

tests for multiple hypotheses in the same study is challenging with

parametric tests given the existing but invariably unknown depen-

dence structure among tests; Bonferroni correction, while valid, is

unduly conservative given that dependence. Correction using the dis-

tribution of the maximum statistic, assessed via permutations, solves

the problem, regardless of the dependence structure, yielding exact

results, thus that are neither conservative (thus not less powerful

given the multiplicity of tests) nor invalid.

8 | REPORTING RESULTS

Classical meta-analyses results are often reported with the aid of for-

est plots (Borenstein et al., 2009), which show effect sizes and confi-

dence intervals for each study separately (or for each site in the case

of ENIGMA), along with a combined effect size that considers the

effects from all studies after some sensible weighting. ENIGMA stud-

ies that used meta-analyses adopted a similar approach where possi-

ble, for example, when imaging metrics were collapsible into single

numbers, such as asymmetry (Guadalupe et al., 2017; Kong

et al., 2018) or indices for specific structures (Hibar et al., 2015; Stein

et al., 2012). For mega-analyses, while such plots may be of lesser

value as the ultimate conclusions come from pooling all IPD into a sin-

gle analysis, reporting forest plots may still be helpful for showing

potentially distinct effects at each site, as well as identifying outlier

sites and qualitatively revealing how disperse the data are. However,

for this purpose, the mega-analysis may need to be broken down into

separate analyses, one per site, or contrasts tested separately for each

site in the case of random slopes (which accommodate interactions of

effects of interest by site). While these two approaches are equivalent

if there are no fixed slopes or fixed intercept anywhere in the model,

running analyses separately for each site is computationally less inten-

sive (and can be done in parallel in a straightforward manner).

Voxelwise and vertexwise results cannot, however, be feasibly shown

with forest plots, and the usual, color-coded maps for effect sizes

and/or p-values in logarithmic scale become then necessary, one per

site, as well as for the overall results.

8.1 | Authorship

Given the large number of involved sites and investigators, authorship

of published reports are an important aspect of ENIGMA projects.

While there are no enforceable rules to determine the authorship of a

scientific paper, a number of organizations have provided guidelines

and recommendations intended to ensure that substantial contributors

are credited as authors; for a review, see (Claxton, 2005). One such

organization is the International Committee of Medical Journal Editors

(ICMJE, also known as the “Vancouver group”), which recommends that

authorship are based on the following four criteria: (a) substantial contri-

butions to the conception or design of the work; or the acquisition,

analysis, or interpretation of data for the work; (b) drafting the work or

revising it critically for important intellectual content; (c) final approval

of the version to be published; (d) agreement to be accountable for all

aspects of the work in ensuring that questions related to the accuracy

or integrity of any part of the work are appropriately investigated and

resolved. It is recommended that all four conditions are satisfied. More-

over, all authors should be able to identify which co-authors are respon-

sible for other specific parts of the work (ICMJE, 2019).

Most ENIGMA studies have tried as much as possible to adhere to

these recommendations. For example, while not all investigators from all

sites may contribute directly to the planning or execution of the meta- or

mega-analysis, intellectual formulation of research hypotheses and study

design that led to the data collection at a given site often are the same for

which the data or results were pooled across multiple ENIGMA sites,

which, together with data collection itself, satisfies the first criterion. Col-

laborative, real-time text editing tools, such as Google Docs,22 Authorea,23

and Overleaf,24 allow many authors to work simultaneously on the same

document, editing and providing each other with comments, thus satisfy-

ing the second and third criterion. The fourth recommended criterion may

be satisfied implicitly through the communication established during the

editing process, by assenting upon the publication of a preprint, at a time

in which an author may choose to opt out before submission to a journal

and where eventual rectifications are more complex, or by signing a form

in which sugh agreement is made explicit. ENIGMA working group mem-

bers who do not satisfy the Vancouver criteria may be presented with

alternatives, such as (a) be named under a consortium author if they

worked on overarching conception of the project but not on the specific

paper, (b) be named in the Acknowledgments section of the paper, or

(c) not named; in the absence of guidelines, participating members are free

to choose what best represents their contribution.

9 | MEGA-ANALYSIS IN THE ENIGMA-GAD
GROUP

Having discussed the above, we are now in a position to better

describe the specifics of the ENIGMA-GAD analyses. In this group,
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sites were contacted based on their publication and funding record

using imaging data of subjects with a history of anxiety disorders, and

who could meet criteria for GAD. Virtually all sites that were con-

tacted and that did have structural imaging data were able to partici-

pate. While imaging offers a large range of measurements, the group

began by examining structural, T1-weighted imaging scans and per-

forming an analysis based on FreeSurfer. These choices reflected the

popularity of these scans, which are nearly universally collected,

regardless of other imaging modalities that each site may have used

for their investigations. Furthermore, FreeSurfer-based pipelines and

quality control protocols were already available from previous

ENIGMA studies. Having these as a starting point facilitated the

establishment of a new working group.

As described above, IPD were made available by the participating

sites to the coordinating facility—in this case, the National Institute of

Mental Health (NIMH), part of the US National Institutes of Health

(NIH)—such that a mega-analysis could be conducted. While the supe-

riority of mega-analyses is established, another factor was the propor-

tion of sites contributing IPD: nearly all sites preferred to send raw,

anonymized imaging scans, as opposed to individual level processed

data or simply summary results. Another early decision involved

preregistering the analytic plan, which was deposited at the Open Sci-

ence Foundation, where it remains publicly accessible.25 The plan was

registered after data had been received by the NIMH and processed

using FreeSurfer, such that sample sizes were known (eventually

more sites could contribute data after overcoming institutional bar-

riers; these were included in the analysis), and before statistical ana-

lyses. Data from some sites may have been part of previous

publications; the team analyzing the data at the coordinating facility

did not deliberately check the existence of previous results, nor

whether previous analyses on subsets used similar or different

methods. Instead, inclusion and exclusion criteria for data were

based on diagnoses given to the subjects in relation to the research

hypotheses, and the ability of the sites to make their data available

to the coordinating facility. In the preregistered plan, research

hypotheses were specified, inclusion and exclusion criteria were

defined, dependent and independent variables were indicated, and

statistical methods outlined. Exploratory analyses that were not the

main focus of the study were also listed.

A de-identification agreement was signed between the NIMH

and each participating center whereby any eventual identifiable data

would not be disclosed or requested by any of the parties. De-

identified data were transferred using the Globus service to a stor-

age partition of the high performance computing (HPC) systems of

the NIH. Each site had its own endpoint for transfer, such that no

information of any kind could leak from one contributing site to

another.

The received data were organized according to BIDS, passed

through an initial quality check using MRIQC, and processed using the

FreeSurfer 6.0.0. Given the large number of subjects, it was not viable

to follow the ENIGMA-QC26 protocol, according to which every corti-

cal parcel and every subcortical region of every participant would

need to be visually inspected and annotated where usable or not, so

as to give a mark “pass” or “fail.” This process would require an excess

of person-hours not available to the group. Instead, a semi-automated

method was used. First, a script27 to quickly allow visual inspection of

FreeSurfer cortical surfaces and subcortical segmentations of many

subjects in a single report page was used (Figure 4). One of the bene-

fits is that, by showing many subjects at the same time, the page per-

mits one to quickly learn how good quality surface and segmentations

should look like. Reconstructions with clear defects that grossly

affected anatomy were marked for exclusion by a single researcher

for all the data; all other reconstructions were, at this stage, not yet

marked for exclusion. Second, from the results of FreeSurfer, the

Euler characteristic of the surfaces before topology was obtained (it is

stored in the log file “recon-all.log”), as well as the number of vertices

of these surfaces. Receiver operating characteristic curves relating

variation on the Euler characteristic threshold and the ability to reject

the surfaces marked for exclusion after visual inspection were con-

structed so as to identify site-specific thresholds. Ultimately, the Euler

characteristic was replaced by the ratio between the Euler character-

istic and the number of vertices in the surfaces before topology cor-

rection, as this measure had a better ability to discriminate between

good and bad surfaces in this dataset. Finally, the identified threshold

was used to determine which subjects would be included and which

would not, on a per site basis.

Measurements considered for analyses, as indicated in the pre-

registration and as in previous ENIGMA studies, included cortical

measurements of thickness and surface area for each of the parcels of

the Desikan–Killiany atlas (Desikan et al., 2006), as well as volumes of

subcortical structures. Cortical vertexwise thickness and surface area

were also measured, and downsampled to the resolution of an icosa-

hedron recursively subdivided four times, with 2,562 vertices per

hemisphere. Because sites differed widely in variables such as age,

modeling age with random slopes (with additional quadratic effects)

seemed more appropriate than merely assuming that, across all ages

and sites, age effects would be exactly the same. Models with and

without a global measure (total surface area, average thickness, and

intracranial volume) were considered. Correction for multiple testing

used the distribution of the maximum statistic, assessed via permuta-

tions. ComBat was not used for the main analyses; instead, scanner-

specific effects were modeled (random intercepts) and a test statistic

robust to heteroscedasticity was used, along with variance groups

(one per site) and exchangeability blocks. ComBat is, however, being

assessed with the same data as a potential option for future studies;

results will be reported opportunely. Statistical analysis for this mega-

analysis used the tool Permutation Analysis of Linear Models

(PALM).28 At the time of this writing, the analysis is being finished and

the manuscript is being prepared for publication (Harrewijn et al., in

prep.). Authorship, like with the present paper, was defined according

to Vancouver criteria, generally with early career investigators, mem-

bers of the coordinating facility and who worked directly with the

data handling and the bulk of the writing appearing first, and with lead

investigators appearing last; in between, the contributing sites in

alphabetic order, and, within each site, early investigators appearing

first; lead investigators last.
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10 | CONCLUSION

This overview described the analytic choices across the various stages

of an ENIGMA mega-analysis, setting out the reasoning behind these

choices. Aspects related to data protection and privacy, and how to

handle confounds, along with other challenges that inevitably occur

when large-scale data from multiple sites are analyzed were also dis-

cussed. The various choices made by ENIGMA-GAD when facing each

of the discussed topics were presented. The hope is that the resulting

survey of these practical considerations will be useful to others

embarking on similar multi-site neuroimaging studies, especially those

integrating data across multiple countries and data modalities.
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