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1 Introduction

One main distinction of K3 surfaces, among others, is that they form the only class
of surfaces that might admit more than one elliptic fibration with section, which is
not of product type [17, Lemma 12.18]. It is therefore a natural problem to classify
such fibrations. This has been done in the past three decades, via different methods
by several authors, see for instance [15, 14, 7, 2, 3, 6] and [1]. Recently, the second
and third authors have proposed a new method to classify elliptic fibrations on K3
surfaces which arise as double cover of rational elliptic surfaces. We refer the reader
to [5] and [6] for more details.

Let X be a K3 surface obtained as a double cover of an extremal rational elliptic
surface defined over a number field k. The purpose of this paper is to determine
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fields of definition of the distinct elliptic fibrations on X, i.e., fields over which the
classes of the fiber and of at least one section are defined (see Definition 1). We
also determine, in some examples, an upper bound for the degree of the field over
which the Mordell–Weil group admits a set of generators. Extremal rational elliptic
surfaces have been classified by Miranda and Persson in [10]. There are sixteen
configurations of singular fibers on such surfaces. We restrict further our attention
to smooth double covers of extremal rational elliptic surfaces with distinct reducible
fibers, i.e. such that there are no two reducible fibers of the same Kodaira type. Given
a genus 1 fibration on such a K3 surface, we show that it admits a section over a field
that depends on the action of the cover involution on its fibers (see Theorem 1). We
illustrate this last result for K3 surfaces that arise as a double cover branched over
two smooth fibers of the extremal rational elliptic surfaces with one unique reducible
fiber and also on smooth double covers of the surface with fiber configurations
either (III ∗, I2) or (III ∗, I II ). Remark that among those sixteen configurations of
singular fibers on extremal rational elliptic surfaces only four of them have a unique
reducible fiber, namely (I9, 3I1), (II ∗, I I ), (II ∗, 2I1) and (I ∗

4 , 2I1). As only the
configuration of reducible fibers plays a role in our arguments, we narrow these
down to three classes and study those extremal rational elliptic surfaces, denoted by
R9, R2, and R4 and the corresponding K3 surfaces X9, X2, and X4, respectively.
We denote by R3 an extremal rational elliptic surface with fibers either (III ∗, I2)
or (III ∗, I II ) and its generic K3 cover X3. Notice that the surface X4 also occurs
as a double cover of R3 and hence, X3 and X4 belong to the same family of K3
surfaces. A reason to explore elliptic fibrations on Xi , i = 2, 3, 4, 9 is that they have
different behavior with respect to the cover involution of Xi → Ri . Fibrations that
are preserved by this involution are easier to describe via linear systems of curves
on a rational surface, and one can also exhibit a Weierstrass equation for those as
pointed out in [1] and [6]. In particular, on X3 and X4, which can be identified, we
have two different involutions (induced by the covers X4 → R4 and X3 → R3) and
the behavior of each fibration on X3 � X4 with respect to these two involutions can
be different.

This paper is organized as follows. In Sect. 2 we introduce the notations which
remain in force during the paper and lay down our setting. Section 3 is devoted to the
study of rational curves on the K3 surface X obtained as a double cover of a rational
elliptic surface R. More precisely, motivated by the work done in [5] and [6], we
study the behavior of the image by the quotient map π : X → R of rational curves
on X and we determine the rational curves on X coming from a section defined
over k of the elliptic fibration ER . While Sect. 3 is of geometric nature, Sect. 4
is dedicated to study the arithmetic of extremal rational elliptic surfaces defined
over k. In particular, we obtain the quite intriguing fact that with a possible unique
exception all extremal rational elliptic surfaces can be obtained, over the ground
field, as a blow-up of base points of a pencil of genus one curves in P

2 or P1 × P
1,

Lemma 4. Section 5 is dedicated to the study of K3 surfaces coming from double
covers of extremal rational elliptic surfaces. We prove in Theorem 1 that a genus 1
fibration on X admits a section over a field which depends on the action of the
cover involution on the fibers of the genus 1 fibration. Finally, in Sects. 6 and 7 we
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illustrate the previous result. More precisely, in Sect. 6 we give a classification of
elliptic fibrations on the surface X9 given by a generic double cover of an extremal
rational elliptic surfaceR9 with an I9. We present a fiber class corresponding to each
fibration onX9 using sections and components of the reducible fibers of the fibration
induced by the elliptic fibration on R9. We also study the Mordell–Weil groups of
each fibration and the fields of definition of the fibrations and their Mordell–Weil
groups. Section 7 has similar results for the K3 covers of the rational elliptic surfaces
R2, R3 and R4, with reducible fibers (II ∗), (III ∗, I2) and (I ∗

4 ), respectively.

1.1 Relation to the Literature

Fields of definition of the Mordell–Weil group of non-isotrivial elliptic surfaces
were studied independently by Swinnerton–Dyer in [19] and Kuwata in [8] via
different methods than the ones presented here. While the first focused on elliptic
surfaces fibered over P1, the latter dealt with basis of arbitrary genus. Nevertheless,
both works are concerned with more general elliptic surfaces than the scope of
this paper. In Kuwata’s work he supposes that each component of the reducible
fibers is defined over the ground field k. Let E be the generic fiber of an elliptic
surface defined over k with base curve C. He proves that there is an explicitly
computable number m and an explicitly computable extension L/k such that
mE(k̄(C)) = mE(L(C)). Our work differs from Kuwata’s in several ways. Firstly,
while he focusses on one unique elliptic fibration on a surface, we consider one
elliptic fibration which we assume is defined over some number field k and use
it as a point of start to study the other elliptic fibrations present on the surface.
Thus in our work, one elliptic fibration is defined over the ground field, while the
others not necessarily. For that reason we are concerned with different fields of
definition, namely the one of the elliptic fibration and that of the Mordell–Weil
group. Secondly, we focus on an specific class of surfaces, namely K3 surfaces.
The further assumption that the K3 is a double cover of an extremal rational elliptic
surface guarantees that the fields of definition will be much smaller than those for
arbitrary elliptic surfaces. Indeed, fields of definition of the Mordell–Weil group
of an elliptic surface can be quite large, for instance in [19] Swinnerton–Dyer
constructed an elliptic surface for which the field of definition of the Mordell–
Weil group has degree 27 · 34 · 5, and the degrees of the fields of definition in
Kuwata’s work are also much larger than the bounds obtained here. Finally, it is
worth to mention that Kuwata’s work deals with fields of arbitrary characteristic
while we focus on number fields. We expect that our work allows generalizations to
that setting and the restriction has been made for the matter of simplicity but also
because some of our work builds up on Miranda and Persson’s work in [10], and on
two of the author’s paper [5]. Both settings are restricted to characteristic zero.
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2 Preliminaries and Setting

Let R be a rational elliptic surface, i.e. a smooth projective rational surface endowed
with a relatively minimal genus one fibration. We assume throughout this article that
such a fibration admits a section. We denote by

ER : R → P
1 (1)

the elliptic fibration on R. Let d : C → P
1 be a double cover of P1 branched on 2n

points pi , i = 1, . . . , 2n. Then the fiber product R×
P
1 C is endowed with an elliptic

fibration R ×
P
1 C → C, induced by ER . We call the fibers E−1

R (pi), i = 1, . . . , 2n,
the branch fibers. If all the branch fibers are smooth, then the fiber product R ×

P
1 C

is smooth, and we denote it by X. Otherwise, R ×
P
1 C is singular and we denote by

X its smooth model such that the elliptic fibration EX : X → C, induced by ER , is
relatively minimal.

Assume that R, the fibration ER and the zero section O are all defined over a
given number field k, which we fix once and for all. If the morphism d is defined
over k then so is the fiber product, its possible desingularization X and the inherited
elliptic fibration EX.

The surface R ×
P
1 C is naturally endowed with an involution, namely the cover

involution of the mapR×
P
1C → R induced by the 2 : 1 map d : C → P

1. It extends
to an involution τ ∈ Aut(X) which is the cover involution of the generically 2 : 1
cover X → R. we denote by π the quotient map π : X → X/τ � bir R.

From now on we make the following assumptions.

• d : C → P
1 is defined over k,

• n = 1, i.e. d : C → P
1 is branched in two points. Hence C � P

1,
• the (two) branch fibers are reduced.

As a consequence of the previous assumptions we have that X is a K3 surface
over k (see [17, Example 12.5]), the involution τ is non-symplectic, i.e. it does
not preserve the symplectic form defined on X, since the quotient of a K3 by a
symplectic involution is again a K3 surface (see [13]), and both EX and its zero
section are defined over k. Moreover, if the branch fibers are smooth, the reducible
fibers of EX occur in pairs that are exchanged by τ .

Notation 1 We denote by τ ∗ the involution induced by τ on NS(X).
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We recall that, due to their geometry, i.e. trivial canonical class and regularity,
K3 surfaces might admit more than one elliptic fibration, all with basis P

1, see
for instance [17, Lemma 12.18]. Let X be as above, then it admits an elliptic
fibration EX and at least another elliptic fibration different from EX [3, §8.1] and
[6, Proposition 2.9]. One can divide the elliptic fibrations on X in three different
classes, depending on the action of τ on its fibers. In particular, let η be an elliptic
fibration on X then, by [5, Section 4.1], it is

• of type 1 with respect to τ , if τ preserves all the fibers of η;
• of type 2 with respect to τ , if τ does not preserve all the fibers of η, but maps a

fiber of η to another one. In this case τ is induced by an involution of the basis of
η : X → P

1. It fixes exactly two fibers and τ ∗ preserves the class of a fiber of η;
• of type 3, if τ maps fibers of η to fibers of another elliptic fibration. In this case

τ ∗ does not preserve the class of the generic fiber of η.

The distinct elliptic fibrations on X are not necessarily defined over k. Moreover,
different fibrations might be defined over different fields. The aim of this paper is to
take a first step into understanding how the action of the involution τ on the fibers
of a given fibration might influence its field of definition. Throughout this paper we
adopt the following definition.

Definition 1 Given X as above and an elliptic fibration η on X, then the smallest
field extension of k over which the class of a fiber of η is defined and η admits a
section is called the field of definition of the fibration η. We denote it by kη. We
denote by kη,MW the smallest field extension of kη over which the Mordell–Weil
group of η admits a set of generators.

Remark 1 The reader should be aware that in Definition 1 our starting data is a
K3 surface X constructed as a base change of a rational elliptic surface R. Thanks
to this construction X inherits an elliptic fibration from R which is defined over a
number field k. All other fields of definition that appear in this paper are (possibly
trivial) field extensions of k. In this sense, the field of definition is unique, but when
considering X without this preliminary data then the field is no longer necessarily
unique. Indeed, one could for instance obtain the same X as a double cover of
another rational elliptic surface R′ defined over a different field k′.

3 Rational Curves on K3 Surfaces

Let X be a K3 surface as in Sect. 2. In this section we study the behavior of the
image by the quotient map π of the rational curves on X. As in the case of elliptic
curves, this behavior depends on the action of the cover involution τ on the rational
curve.



176 V. Cantoral-Farfán et al.

Lemma 1 Let C be a smooth rational curve on X and D = π(C) its image on R.
Denote by m the intersection number C · τ(C). Then D is of one of the following
types.

(i) A fiber component of ER on R.
(ii) A section of ER .
(iii) An m-section of ER , where m > 0.

Moreover, if π is branched over two smooth fibers of ER then (i) implies m = 0.

Proof Let C be a smooth rational curve on X and D = π(C). By the adjunction
formula we have that C2 = −2. We consider the following cases τ(C) = C and
τ(C) �= C.

1. τ(C) = C. In this case, the involution can either act as the identity on C or as an
involution of C. If the former holds then D is a (−2)-curve on R and therefore
it is a component of a fiber of ER . If τ acts as an involution on C then since
π∗(C) = 2D, we have that 2D2 = C2 = −2. Hence D2 = −1, and in particular
D is a section of ER .

2. τ(C) = C′ �= C. Then m ≥ 0, then π∗(D)2 = 2D2 = (C + C′)2 = −4 + 2m.
Hence D2 = m − 2. By the adjunction formula we have that D(−KR) = m. To
conclude it is enough to recall that the class of a fiber of the elliptic fibration onR

is given by −KR . Thus, D is an m-section of ER if m > 0, or a fiber component
of ER if m = 0.

Moreover, if π is branched over two different smooth fibers, τ(C) = C implies that
τ is an involution of C, and thus D is a section of the elliptic fibration ER . Hence if
D is a component of a fiber one must have τ(C) �= C, i.e., case 2. with m = 0. 	


The next lemma deals with rational curves on X that come from sections defined
over k of the elliptic fibration ER . As sections do not split on the double cover we
show that their inverse image is as irreducible curve defined over k.

Lemma 2 Let PR be a section of ER : R → P
1 that is defined over k, then

PX := π−1(PR) is an irreducible smooth rational curve of X and τ(PX) = PX. In
particular PX is defined over k.

Proof If PR is a section of an elliptic fibration on a rational surface then it meets the
branch locus of R ×

P
1 P

1 → R, which is given by two fibers, in two points. Thus its
inverse image is a 2 : 1 cover of a rational curve branched in two points, i.e. either
an irreducible smooth rational curve or the union of two smooth rational curves
meeting in two points. If the inverse image of PR is the union of two curves, say P1
and P2, we have π∗(PR) = P1 + P2. Since the inverse image of a fiber FR , which
is not a branch fiber, consists of two disjoint fibers, we have π∗(FR) = (F1 + F2).
But then we would have π∗(FR)π∗(PR) = 2 = (F1 + F2)(P1 + P2) = 2(F1P1) +
2(F1P2), where we used that F1 and F2 are linearly equivalent, since they are fibers
of the same fibration on X. This would imply that either P1 or P2 is a component
of a fiber, which is not possible, because they intersect in two points which lie in
two different fibers, namely the ramification fibers. We conclude that π−1(PR) is
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a smooth rational curve. Even if one has to blow up some points to obtain X from
R ×

P
1 P

1, the strict transform of the inverse image of PR , which we denote by PX,
remains irreducible and thus τ(PX) = PX. Since the double cover map d is assumed
to be defined over k and so are the points that one has to possibly blow up, we have
that PX is also defined over k. 	


4 Extremal Rational Elliptic Surfaces

In what follows we analyze the arithmetic of extremal rational elliptic surfaces
defined over k. Let us recall that an extremal rational elliptic surface has Mordell–
Weil rank equal to 0, and thus only finitely many sections, i.e. (−1)-curves.

Lemma 3 LetR be an extremal rational elliptic surface defined over k. Assume that
all reducible fibers of the elliptic fibration are distinct. Then the Néron–Severi group
NS(R) admits generators defined over a field extension of k of degree at most 2.

Proof There are two main ingredients in the proof of the statement. The first one is
the Shioda–Tate formula which tells us that

NS(R)/T � MW(ER), (2)

where T = 〈O, F 〉 ⊕ ∑
v∈reducible fibers

i∈Sv

�v,i , with �v,i denoting the nv components

of the reducible fiber E−1
R (v), Sv = {1, · · · , nv − 1} and, since the surface is

extremal, MW(ER) is a finite group. The second is the fact that the absolute Galois
group Gk̄ acts on NS(R) preserving the intersection pairing.

Recall that both the zero section O and the class of a smooth fiber F are defined
over k. A reducible fiber with exactly two components has each component defined
over k since the component that intersects the zero section is preserved Gk̄ . Thus in
what follows we can focus on reducible fibers with at least three components. By the
hypothesis on the reducible fibers being distinct, there are at most two such fibers,
say Fv1 and Fv2 , see the table in [10, Thm. 4.1]. Assume w.l.o.g that Fv1 is the fiber
with more reducible components. Each reducible fiber is globally defined over k

because, by assumption, it is unique. Hence its trivial component is also defined over
k. Since the latter intersects at most two other components, these are Gk̄-conjugate
and as a pair they form a Gk̄-orbit. The same happens to all other components that
are not defined over k. Let kR/k be the quadratic extension over which the fiber
components of Fv1 are defined. We show that each section is defined over kR . The
Mordell–Weil group is globally defined over k since its elements are precisely the
(−1)-curves in the Néron–Severi group. Moreover because each sectionC intersects
transversally a unique fiber component of Fv1 , the point of intersection is mapped
by any element in Gk̄ to another point of intersection of a component of Fv1 and
a section. Since a component of a fiber is mapped by Gk̄ either to itself or to a
unique other fiber component defined over kR , the intersection point is also defined
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over kR . Thus C is a rational curve with a kR-point and hence it is also defined
over kR . It remains to show that the components of Fv2 are defined over kR . This
follows from the fact that after contracting the sections and certain fiber components
of Fv1 we reach either P2 or P1 × P

1 cf. Lemma 4. The components of Fv2 are thus
rational curves with kR-points that correspond to the contracted curves, and hence
are defined over kR as well. 	

Example 1 The extremal rational elliptic surface with Weierstrass equation

y2 = x3 − 3(t2 − 3)(t − 2)2x + t (2t2 − 9)(t − 2)3 (3)

has reducible fibers of types I ∗
1 and I4. Its Mordell–Weil group is Z/4Z with two

sections defined over Q, namely [0, 1, 0] and [t2 − 2t, 0, 1], and two conjugate
sections, namely [(t−3)(t−2),±3

√
3(t−2)2, 1], which are defined over a quadratic

extension. The reader can find this example as X141 in [10, Table 5.2].

The next example shows that the hypothesis on the distinct reducible fibers is
indispensable in Lemma 3.

Example 2 The extremal rational elliptic surface with Weierstrass equation

y2 = x3 + (3t4 + 24t)x + 2t6 + 40t3 − 16 (4)

has four reducible fibers of type I3. Its Mordell–Weil group is defined over a
biquadratic extension Q(i,

√
3). This corresponds to the surface X3333 in [10, Table

5.3]. See also Remark 2(iii).

Notation 2 In what follows, we keep the notation introduced in Lemma 3 and
denote by kR the extension of k over which the Néron–Severi group NS(R) admits a
set of generators given by fiber components and sections of the elliptic fibration on
R, and by GR the Galois group Gal(kR/k). We keep the subscript R for the Galois
group to reinforce the dependence on the surface. By Lemma 3, if the Kodaira types
of the reducible fibers of ER are different then kR/k has degree at most 2.

Remark 2

(i) Certain configurations of reducible fibers force the Galois group GR to
be trivial. Thus such surfaces always admit a set of generators for their
Néron–Severi group over the ground field k. This holds for instance for any
rational elliptic surface over k which has reducible fiber configurations (II ∗),
(III ∗, I2), (III ∗, I II ) or (I ∗

4 ); see the proof of Lemma 4 or [16, Cor. 4.4].
(ii) Five out of sixteen configurations of reducible fibers on extremal rational

elliptic surfaces, namely (2I ∗
0 ), (2I5), (2I4, 2I2), (I ∗

2 , 2I2) and (4I3) do not
satisfy the hypothesis of Lemma 3, see [10, Theorem 4.1].

(iii) Extremal rational elliptic surfaces with repeated reducible fibers have their
Néron–Severi group defined, in general, over extensions of larger degree. For
instance, a rational elliptic surface with reducible fiber configuration (2I5) has,
in general, its Néron–Severi group defined over an extension of degree four,
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with cyclic Galois group (see the proof of Lemma 4), while a surface R0 with
(2I ∗

0 ) has, in general, NS(R0) defined over an extension of the ground field
with Galois group given by the dihedral group of order 12. Indeed, the Galois
group is generated by an involution which preserves each section and switches
the two I ∗

0 -fibers and by S3 which preserves the fibers, and permutes the non-
trivial elements of MW(R0) = (Z/2Z)2.

4.1 Minimal Models for Extremal RES Over k

We recall that every rational elliptic surface defined over and algebraically closed
field of characteristic zero can be obtained as the blow-up of the base points of
a pencil of generically smooth cubics [4, §5.6.1] or [9, Lemma IV.1.2.]. This fact
clearly does not hold, in general, over a number field k. For instance, the blow-up of
the base point of the anti-canonical linear system of a k-minimal del Pezzo surface
of degree one is a rational elliptic surface defined over k which does not admit a blow
down to P2 as it is clearly not even k-rational. On the other hand, if one restricts our
attention to extremal rational elliptic surfaces then one can show that they are always
k-rational, with possible exception given by those with reducible fiber configuration
(2I ∗

0 ).1 Still this is not enough to assure that they can be obtained as a blow-up
of the projective plane. Indeed, we provide an example in Proposition 2 for which
this does not hold. Nonetheless, we obtain a quite intriguing fact, namely that with a
possible exception of surfaces with configuration (2I ∗

0 ), all extremal rational elliptic
surfaces can be obtained, over the ground field, as a blow-up of base points of a
pencil of genus one curves in P

2 or P1 × P
1, in Lemma 4. Despite its simple proof,

this intriguing fact is not in the literature and likely not known to many experts.
Since an extremal rational elliptic surface has finite Mordell–Weil group, it has

only finitely many curves of negative self-intersection [9, Proposition VIII.1.2].
The Galois group GR acts on NS(R) preserving the intersection pairing. Since,
by hypothesis, the zero section of the fibration ER is defined over k it is always
preserved by GR .

From now on we will use the following notation for the irreducible components
of a reducible fiber: the component which intersects the zero section will be denoted
by C0; in a fiber of type In, the components Ci , i ∈ Z/nZ are numbered requiring
that CiCj = 1 if and only if |i − j | = 1.

Lemma 4 Let R be an extremal rational elliptic surface defined over k with at most
one non-reduced fiber. Then R is k-isomorphic to the blow-up of the base points of
a pencil of cubic curves in P

2 or a pencil of curves of bidegree (2, 2) in P
1 × P

1. In
particular, such surfaces are always k-rational.

1These can be k-birational to a k-minimal Châtelet surface depending on whether the elliptic
fibration has a 2-torsion section over k or not.
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Proof We recall that the Galois group GR preserves the zero section, maps a fiber
of a certain Kodaira type to a fiber of the same Kodaira type and maps sections to
sections. The consequences are the following:

(i) If MW(ER) = {0} or MW(ER) = Z/2Z, then GR maps each section to itself;
(ii) If every reducible fiber is of different Kodaira type, then GR maps the zero

component of each fiber to itself;
(iii) If both (i) and (ii) are satisfied, then GR is trivial since in that case the fiber

with most components is a non-reduced fiber of type II ∗, I II ∗ or I ∗
4 (see the

table in [10, Thm. 4.1]) and each component is preserved by the Galois group
because the zero section and the two torsion sections are preserved and defined
over k;

(iv) If there is a fiber which is preserved by GR as, for example, in case (ii) and it is
either of type In or of type IV ∗, thenGR restricted to that fiber and toMW(ER)

acts trivially or as the hyperelliptic involution because it has to preserve the
intersection properties of the components of the reducible fiber of type In.

Using these properties of GR , one is able to find an explicit contraction γ defined
over k, which maps a rational elliptic surface R either to P

2 or to P
1 × P

1 for all
the extremal rational elliptic surfaces R with reducible fiber configuration different
from (2I ∗

0 ).
Fibrations (II ∗, I I ), (II ∗, 2I1), (III ∗, I II ), (III ∗, I2, I1), (I ∗

4 , 2I1): GR is
trivial because (iii) in the previous list is satisfied. One first contracts all the sections,
then contracts the image of the components of the fibers II ∗, III ∗, I ∗

4 , respectively,
that are the (−1)-curves after the previous contractions. One iterates this process
in order to contract 9 curves. The composition of all these contractions is a map
R → P

2, defined over k.
Fibrations (IV ∗, IV ), (IV ∗, I3, I1): by (iv), GR acts trivially or coincides with

the hyperelliptic involution. After contracting all the sections, one obtains three
(−1)-curves in the image of the IV ∗-fiber. One is preserved by GR , the other two
might be exchanged by it. After contracting these three curves, one is in a similar
situation, i.e. there are three (−1)-curves, forming two or three orbits for GR . After
contracting also these three curves, one obtains a k-rational map from R to P2.

Fibrations (I9, 3I1), (I8, I2, 2I1), (I6, I3, I2): by (iv), GR acts trivially or
coincides with the hyperelliptic involution. First one contracts all the sections. Then
one contracts some curves in the image of the fibers of type I9, I8 and I6 respectively,
but not in the other reducible fibers. For the fiber I9 one contracts the images of the
components C0, preserved by GR , and of C3 and C6, which are either fixed or
switched by GR; after that one contracts the images of the curves C2 and C7, which
are also either fixed or switched by GR . For the fiber I8 one contracts the images
of components C0 and C4, which are preserved by GR , and of the components C2
and C6, which are either fixed or conjugate under GR . For the fiber of type I6 one
contracts the images of components C0 and C3, which are preserved by GR . In all
the cases one obtains a k-rational map from R to P1 × P

1.
Fibrations of type (4I3) and (2I4, 2I2): in both these cases there are many

sections, namely 9 sections in case (4I3) and 8 in case (2I4, 2I2). Since the torsion
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sections are disjoint and GR preserves MW(ER), one can contract simultaneously
all the sections. This produces a k-rational map to P2 in case (4I3) and to P1 ×P

1 in
case (2I4, 2I2).

Fibration of type (2I5, 2I1): we have GR ⊆ Z/4Z, and if GR = Z/4Z then the
action of the generator of GR is the following. t0 → t0, C

(1)
0 ↔ C

(2)
0 , t1 → t3 →

t4 → t2 → t1, C
(1)
1 → C

(2)
1 → C

(1)
4 → C

(2)
4 , C(1)

2 → C
(2)
2 → C

(1)
3 → C

(2)
3 , where

C
(j)
i the i-th component of the j -th fiber of type I5. To obtain a k-rational map to

P
2, one first contracts all the sections, and then one contracts the components C

(1)
1 ,

C
(2)
1 , C(1)

4 , C(2)
4 , which form an orbit if GR = Z/4Z.

Fibration of type (I ∗
2 , 2I2) and (I ∗

1 , I4, I1): one contracts first the four sections
and then the images of the four simple components of the fiber of type I ∗

i . This gives
a k-rational map to P1 × P

1. 	

Proposition 1 LetR be a semi-stable extremal rational elliptic surface defined over
k and m the order of the Mordell–Weil group. Then the following holds.

(i) If m is odd and R has a unique reducible fiber then R admits a contraction
over k to P1 × P

1.
(ii) If m is odd and R has at least two reducible fibers then R admits a contraction

over k to P2.
(iii) If m is even then R admits a contraction over k to P1 × P

1.

Proof The result follows by the proof of the previous lemma. Indeed, if R is a
semi-stable extremal elliptic fibration and m is odd, then the fibration on R is one of
the following: (I9, 3I1), (2I5, 2I1), (4I3). The first fibration corresponds to case (i)
and can be contracted to P

1 × P
1, for every action of GR . The other two fibrations

correspond to the case (ii) and it was already proved that they can be contracted to
P
2.
If m is even (case (iii)), then the fibration on R is one of the following:

(I8, I2, 2I1), (I6, I3, I2), (2I4, 2I2) and in the proof of the previous lemma is shown
that all of them can be contracted to P2. 	

Remark 3 The converse of the different cases in Proposition 1 is not always true;
some of the surfaces treated in Lemma 4 can be contracted, over an algebraically
closed field, to both P2 and P1×P

1. Whether or not these surfaces can be contracted
to both P2 and P1 ×P

1 over k as well depends on the action of GR , and in particular
on the action of the hyperelliptic involution on the reducible fibers. See Proposition 2
and Fig. 1, where we show this for a surface with fibers (I9, 3I1).

5 Double Covers of Extremal Rational Elliptic Surfaces

In the rest of this article we consider K3 surfaces that are double covers of extremal
rational elliptic surfaces defined over k and branched on two smooth Gk̄-conjugate
fibers. Let X be such a surface. Recall that since the extremal rational elliptic
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surfaces considered here2 are rigid, their K3 double covers have a 2-dimensional
moduli space, as each branch point is allowed to vary in P1.

In this section we show that the field over which a genus one fibration on X

admits a section depends on the action of the cover involution on the fibers of the
genus one fibration.

Notation 3 Let R and X be as above and t1, · · · , tm ∈ P
1
k points over which the

reducible fibers of R are located. Since the base change map X → R is branched
only over smooth fibers, there are two distinct points above each ti . Then τ restricted
to the pair of fibers of EX above each ti is a field homomorphism, which we denote
by σi . We denote by kτ the Galois field extension of k whose Galois group is
generated by σ1, · · · , σm. By construction kτ /k is an extension of even degree
dividing 2m. We denote by kR,τ the compositum of the fields kR and kτ .

Lemma 5 Let R be an extremal rational elliptic surface as above and X a generic
member of the 2-dimensional family given by double covers of R branched in two
smooth fibers. Then NS(X) admits a set of generators over kR,τ .

Proof Since the Néron–Severi group has rank 10 and the Mordell–Weil group has
rank zero, it follows from the Shioda–Tate formula that the reducible fibers of an
extremal rational elliptic surface R have in total 8 components contributing to the
set of generators of NS(R). Since X is a double cover of an extremal rational elliptic
surface R branched on smooth fibers, the reducible fibers of the inherited fibration
EX contribute with 16 components to a set of generators of NS(X). If X is generic
among such surfaces then it lies in a 2-dimensional family and hence NS(X) has
rank 18 and is generated by fiber components, the zero section and a smooth fiber
of EX. All such curves are defined at most over kR,τ . 	

Theorem 1 Let R be an extremal rational elliptic surface defined over k such that
its reducible fibers are all of distinct Kodaira types. Let X be a K3 surface obtained
as a double cover of R branched on two smooth fibers conjugate under Gk̄ , τ the
cover involution and η a genus 1 fibration on X. Then the following hold.

(i) If η is of type 1 w.r.t. τ then η is defined over kR and admits a section over kR,τ .
(ii) If η is of type 2 w.r.t. τ then it is defined and admits a section over k.

Proof For (ii) notice that because the branch locus is smooth there is only one
fibration of type 2, namely the one induced by the elliptic fibration on R. Indeed,
different fibrations of type 2 correspond to different contractions of (−1)-curves
in X/τ that are components of non-relatively minimal elliptic fibrations. Since the
branch locus is smooth there are no (−1)-curves to be contracted and, in particular,
X/τ � R. Since the double cover morphism is defined over k so is the induced
elliptic fibration on X and the zero section inherited from R. If η is of type 1 then
each fiber is the pull-back of a conic3 in R [5, Theorem 4.2]. Let C be such a conic.

2We exclude rational elliptic surfaces with (2I ∗
0 ). These have a 1-dimensional moduli space.

3A conic is a rational curve C such that C · (−KR) = 2.
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Since NS(R) is generated by curves defined over kR then the class of C has a divisor
C0 whose components are defined over kR . Moreover, as the fibers of η are fixed by
τ , the pull-back C0 is also defined over kR . Its class moves in X giving the elliptic
fibration η. 	


The fibrations of type 3 are certainly more difficult to study by using the geometry
related with R. Indeed, even if X is a double cover of R, the fibrations of type 3 are
not easily related with the geometry of R, by definition, since they are not preserved
by the cover involution. But, one is still able to prove that certain fibrations of type 3
are defined on certain fields, if one is able to find components of their reducible fiber
is a proper way, as observed in the next Remark.

Remark 4 Since the irreducible components of reducible fibers and of the sections
of the elliptic fibration on K3 surface are rational curves, they are rigid in their class.
So if their class is defined over a certain field, say kR,τ , and they are irreducible
curves, then they are defined over kR,τ . Suppose now that the Néron–Severi group
is defined over kR,τ and it is generated by a certain set of classes of irreducible
rational curves. If the union of some of these curves is a reducible fiber F of a
fibration η, then the reducible fiber F and its class are defined over kR,τ . In particular
the fibration η is defined on kR,τ and if also a section of η can be found among the
generators of the Néron–Severi, then η is an elliptic fibration on kR,τ .

So, in order to prove that a fibration of type 3 defined on a K3 surface satisfying
the assumptions of Theorem 1, is defined over kR,τ , it suffices to find among
the generators of NS(X) a configuration of (−2)-curves which corresponds to a
reducible fiber of η.

Remark 5 We believe that it is always possible to find a fibration of type 3 as in
the previous remark, at least for the K3 surfaces X as in Theorem 1. We are able
to prove this for all the elliptic fibrations of type 3 on the surfaces considered in
Sects. 6.3 and 7.3 of this paper. Hence for all the surfaces considered in this paper,
we have that the fields of definition of the elliptic fibrations on the K3 surfaces X as
in Theorem 1 are at most biquadratic extensions of k, by the explicit description of
the elliptic fibration and the Remark 4.

Remark 6 Certain sections on elliptic K3 surfaces as above might be defined over a
smaller subfield of kR,τ that contains k. See, for instance, the fifth column of lines
2, 3, 4, 9, 11, and 12 in Table 2.

Following the geometric classification of extremal rational elliptic surfaces by
Miranda and Persson [10, Theorem 4.1], we notice that, among those surfaces, only
four of them have only one reducible fiber, namely (I9, 3I1), (II ∗, I I ), (II ∗, 2I1),
and (I ∗

4 , 2I1). From a lattice theoretic point of view the surfaces with singular
fibers (II ∗, I I ) and (II ∗, 2I1) are the same since, from that perspective, only the
reducible fibers matter. Moreover, they share the same properties of interest to us,
namely reducible fibers and fields of definition of components of fibers and thus
we denote both of them by R2. In the following sections, we study those extremal
rational elliptic surfaces, denoted by R9, R2, and R4 and their corresponding K3
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surfaces X9, X2, and X4, respectively. We also study the surface R3 which has
two reducible fibers (III ∗, I II ) and its generic K3 cover X3. The justification for
considering R3 as well is the fact that the surface X4 occurs also as double cover of
R3 and hence X3 and X4 belong to the same family of K3 surfaces.

5.1 Arithmetic Models of Extremal Rational Elliptic Surfaces

Over algebraically close fields, all rational elliptic surfaces can be obtained by the
blow up of the base points of a pencil of genus 1 curves in the projective plane. Over
a number field k, this no longer holds true. Nevertheless, if one restricts attention
to extremal rational elliptic surfaces, we have shown in Lemma 4 that, with one
possible exception, they can be obtained as a blow up of a pencil of genus 1 curves
in the plane or in the ruled surface P

1 × P
1. The realization of the blow down of

an extremal rational elliptic surface R to either rational minimal model is connected
to, but not always determined by, the Galois group GR introduced in Notation 2.
More precisely, given singular fiber configurations on an extremal rational elliptic
surface might entail more than one possible action of the Galois group Gk̄ on its
fiber components and hence, with a few exceptions, it does not make sense anymore
to speak about the extremal rational elliptic surface with a given configuration as
one does over algebraically closed fields. In what follows we keep the notation Ri

and Xi for a surface with fiber configuration described in the previous paragraph.
We study what are the possible actions of Gk̄ on each configuration. We show, in
Propositions 2 and 5 respectively, that R9 might admit two possible actions, while
R2, R3, R4 always admit a unique action.

6 The Surfaces R9 and X9

Let R9 be an extremal rational elliptic surface with one reducible fiber of type I9
and X9 a K3 surface obtained by a double cover of R9 branched in two smooth
Gk̄-conjugate fibers. In this section, we classify all the possible fibrations of the K3
surface X9 and determine their types with respect to the cover involution τ9, a field
over which the class of a fiber is defined and a field over which the Mordell–Weil
group is defined.
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6.1 Negative Curves on R9

Recall that the configuration I9 is given by 9 smooth rational curves meeting in
a cycle with dual graph Ã8 (see [9, Table I.4.1]4). The singular fibers of R9 are
I9 + 3I1 and the Mordell–Weil group is Z/3Z = {O, t1, t2}, where O is the zero
section and t1 and t2 are 3-torsion sections. The Néron–Severi group of R9 contains
also the classes of the irreducible components of the unique reducible fiber, denoted
by C0, C1, . . . , C8. The intersections which are not trivial are the following

C2
i = −2; CiCj = 1 iff |i − j | = 1; (5)

OC0 = t1C3 = t2C6 = 1; O2 = t21 = t22 = −1. (6)

The following result tells us that R9 can always be obtained as the blow-up of
the eight base points on a pencil of curves of bi-degree (2,2) in P

1 × P
1, and that if

the Galois group GR9 fixes each 3-torsion section then R9 can also be obtained as
the blow-up of the nine base points of a pencil of cubics in P

2 (see also Lemma 4).
Both blow-ups occur in multiple points, i.e., points with assigned multiplicities.

Proposition 2 If for every g ∈ GR9 = Gal(kR9/k) we have g(t1) = t1, then GR9 =
{id} and R9 can be contracted both to P2 and to P1 × P

1. If there exists at least one
g ∈ GR9 such that g(t1) �= t1, then g(t1) = t2, GR9 = Z/2Z = 〈g〉 and g is the
elliptic involution ιR9 restricted to the fiber I9. In this case R9 can be contracted to
P
1 × P

1 but not to P2.

Proof Let F be the class of a fiber of ER9 . Since F is preserved by GR9 , for each
g ∈ GR9 we have 1 = t1F = g(t1)g(F ) and thus g(t1) is necessarily a section.
It is different from O as the latter is fixed by GR9 . Hence either g(t1) = t1 or
g(t1) = t2. We begin with g(t1) = t1. In that case g(t2) = t2 and since t1 intersects
the fiber component C3 and t2 intersects C6, we have g(C3) = C3 and g(C6) = C6.
Since each other fiber component intersects one among C0, C3 and C6, it is also
fixed by g. Hence GR9 is trivial. We pass to the case g(t1) = t2. This implies that
g(C3) = C6. The fiber components intersecting C3 and C6 must be switched by g

and, a posteriori, so must C1 and C8. We have g(Ci) = C9−i . Hence, in that case,
GR9 has order 2 and is generated by the elliptic involution.

Let us now consider the contraction of the (−1)-curves on R9, i.e., the sections
O, t1 and t2. The reader might find it helpful to follow Fig. 1 in parallel. First one
contracts the three sections, which are all disjoint and form either 3 or 2 orbits for
the action of GR9 , depending on whether GR9 is {id} or Z/2Z. Let us denote by
β1 : R9 → R′ this contraction. The curves β1(C0), β1(C3), β1(C6) are disjoint
(−1)-curves of R′ and form 2 or 3 orbits with respect to GR9 . Secondly, we call
β2 : R′ → R′′ the contraction of these three curves. The curves β2(β1(Ci)) for
i = 1, 2, 4, 5, 7, 8 are (−1)-curves on R′′. The curves β2(β1(C2)) and β2(β1(C7))

4Though this table contains a typo, namely a fiber of In has dual graph Ãn−1.
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form 1 or 2 orbits with respect to GR9 . Hence they can be contracted in order to
obtain a minimal surface. Let us denote by β3 : R′′ → R′′′ this contraction. Then
R′′′ is P1×P

1, the curves β3(β2(β1(C1))) and β3(β2(β1(C5))) are curves of bidegree
(1, 0) in P

1 × P
1 and the curves β3(β2(β1(C4))) and β3(β2(β1(C8))) are curves of

bidegree (0, 1). Hence the image of the reducible fiber I9 is a reducible curve of
bidegree (2, 2) in P

1 × P
1. There is another possible choice of curves to contract

on R′′ in order to obtain a minimal surface. If GR9 = {id}, one can contract the
curves β2(β1(C1)), β2(β1(C4)), β2(β1(C7)) obtaining P

2 as minimal surface. But
these curves do not form an orbit for GR9 if GR9 = Z/2Z, hence this contraction is
allowed only if GR9 is trivial. 	


Figure 1 shows the contractions β1, β2, and β3 of the fiber I9 as in the proof
of Proposition 2. Black lines represent curves defined over k. Lines of the same
color (not black) represent curves that are conjugate under the action of GR9 if
GR9 �= {id}; of course if GR9 = {id} then all curves are defined over k. Dotted lines
represent (−1)-curves, lines with label 0 represent curves with self-intersection 0,
and all other lines represent (−2)-curves.

Remark 7 If one contracts R9 to P
1 × P

1, the elliptic involution defined on R9
induces an involution of P1×P

1, which is precisely the exchange of the two rulings.
Indeed ιR9 maps C1 to C8 and C4 to C5, so the automorphism induced by ιR9 on
P
1 × P

1 maps the (1, 0)-curves β3(β2(β1(C1))) and β3(β2(β1(C5))) to the (0, 1)-
curves β3(β2(β1(C8))) and β3(β2(β1(C4))).

Remark 8 Over the complex field all the rational elliptic fibrations can be con-
tracted to a pencil of cubics in P2 and for each extremal rational elliptic fibration, the
equation of an associated pencil is known [4, Proof of Theorem 5.6.2]. In particular,
an equation of a pencil of cubics associated to the surface R9 in P2(z0:z1:z2) is given by

P9 := (z0z1z2) + t (z20z1 + z21z2 + z22z0). (7)

The base points of P9 are (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1), each with
multiplicity 3. After blowing up these points one obtains a rational elliptic surface,
with a reducible fiber over t = 0. A birational map from P

2 to P
1 × P

1 is given by
the blow-up of two points and the contraction of the line through these points. For
example the maps

α1 : P1(x0:x1) × P
1
(y0:y1) → P

2, α1((x0 : x1), (y0 : y1)) = (x0y0 : x0y1 : x1y0) (8)

α2 : P2(z0:z1:z2) → P
1 × P

1, α2(z0 : z1 : z2) = ((z0 : z2), (z0 : z1)) (9)

are birational inverse maps. They correspond to blowing up the points (0 : 1 : 0)
and (0 : 0 : 1) in P2 and to contracting the line z0 = 0.

We observe that the points (0 : 1 : 0) and (0 : 0 : 1) are base points of the pencil
P9. The birational image of this pencil is a bidegree (2, 2) pencil in P

1 × P
1, given

by
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Fig. 1 Two ways to contract the fiber I9
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(x0x1y0y1) + t (x2
0y0y1 + x0x1y

2
1 + x2

1y
2
0), (10)

which still corresponds to R9. We conclude that the pencil (10), considered as
pencil of curves of bidegree (2, 2) over a certain field k, defines the rational elliptic
surface R9 over k. We already observed that the Galois action on R9 corresponds
to an involution exchanging the rulings of P1 × P

1 and indeed, with the chosen
coordinates, it is ((x0 : x1), (y0 : y1)) �→ ((y1 : y0), (x1 : x0)).

The following example illustrates the two different Galois actions that occur in
Proposition 2.

Example 3 In Remark 8, we saw that the pencil of cubics given by P9 = (z0z1z2)+
t (z20z1 + z21z2 + z22z0) gives rise to an R9 surface. A Weierstrass equation for this
surface is

y2 = x3 − (432t3 + 10368)xt + 3456t6 + 124416t3 + 746496, (11)

and the Mordell–Weil group consists of three sections defined over Q, which are
given by [0, 1, 0] and [12t2,±864, 1]. We conclude from 2 that in this case we have
GR9 = {id}.

Another example of an R9 surface is given by the Weierstrass equation

y2 = x3 − 3(t3 + 24)xt + 2(t6 + 36t3 + 216), (12)

which has Mordell–Weil group given by the section [0, 1, 0] and the two sections
[t2 − 1,±3

√
3t, 1] [10, Table 5.3]. So the Mordell–Weil group of this surface is

trivial over Q, and defined over the quadratic extension Q(
√
3). We conclude from

Proposition 2 that in this case we have GR9 = Z/2Z, and the surface can not be
contracted to P2.

6.2 The K3 Surface X9

Let X9 be a K3 surface obtained by a generic base change of order 2 on the rational
elliptic surface R9 as described in Sect. 2.

Then the elliptic fibration ER9 : R9 → P
1 induces an elliptic fibration EX9 :

X9 → P
1 on X9. We denote by ιX9 the elliptic involution on EX9 . We denote by τ9

the cover involution of π : X9 → R9.
By definition the fibration EX9 is of type 2 with respect to τ . So, by Theorem 1,

the field of definition of the elliptic fibration and of a section of it is k.
Nevertheless there could be other sections or components of some reducible

fibers which are not defined over k.
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In what follows we describe the Galois group GEX9 ,MW, i.e., the Galois group
of the field extension kEX9

/k over which all components of reducible fibers and
sections of the fibration EX9 are defined.

Proposition 3 The Galois group GEX9 ,MW of the elliptic fibration EX9 : X9 → P
1

is as follows

• GEX9 ,MW � (Z/2Z)2 if, and only if, GR9 � Z/2Z and the branch fibers of π are
not defined over kR9 ,

• GEX9 ,MW � Z/2Z if, and only if, GR9 � Z/2Z and the branch fibers of π are
defined over kR9 ,

• GEX9 ,MW � Z/2Z if, and only if, GR9 = {id} and the branch fibers of π are not
defined over kR9 ,

• GEX9 ,MW = {id} if, and only if, GR9 = {id} and the branch fibers of π are
defined over kR9 .

Proof This follows from a simple analysis of whether the extensions kR9 and kτ9

are linearly disjoint or not. This depends of course on the branch locus of the base
change map. See the discussion in Notation 2. 	


The elliptic fibration EX9 has two fibers of type I9. Let us denote by �
j
i , for

i = 0, . . . , 8, j = 1, 2 the i-th component of the j -th fiber of type I9. The sections
of ER9 induce sections of EX9 , and thus MW(EX9) = {OX9 , T1, T2}. Thus

π(OX9) = O, π(T1) = t1, π(T2) = t2, π(�
j
i ) = Ci, i = 0, . . . , 8, j = 1, 2.

(13)

The automorphism τ9 is the cover involution of π and thus

τ9(OX9) = OX9 , τ9(T1) = T1, τ9(T2) = T2, τ9(�
1
i ) = �2

i , i = 0, . . . , 8.
(14)

Figure 2 summarizes the above.

Proposition 4 The Néron–Severi group of X9 has rank 18, signature (1, 17),
discriminant group Z/9Z and its discriminant form is the opposite to the one of
A8. The transcendental lattice of X9 is the unique (up to isometries) even lattice
with signature (2, 2), discriminant group Z/9Z and discriminant form equal to the
one of A8.

Proof The Néron–Severi group contains the 18 linearly independent classes OX9 ,

T1, T2 and �
j
i , for i = 1, . . . , 8, j = 1, 2. Hence it has rank at least 18. On

the other hand the family of X9 is a two dimensional family (because of the
choice of two branch fibers of the double cover X9 → R9). So the Néron–
Severi has rank at most 18. We conclude that the 18 classes listed before form
a basis of NS(X9).The intersection form and the discriminant form of NS(X9)

can be explicitly computed and one can check that it has discriminant 9. In
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Fig. 2 Reducible fibers and sections of the fibration EX9 on X9

particular, a generator for the discriminant group is 2
(∑9

i=1 i
(
�1

i − �2
i

))
/9 and

its discriminant form is Z/9Z
(
8
9

)
, which is the opposite to the discriminant form

of A8. The discriminant form of the transcendental lattice is the opposite of the
discriminant form of the Néron–Severi group. Hence the transcendental lattice TX9

is an even lattice with signature (2, 2) and discriminant form Z/9Z
(−8

9

)
. The

transcendental lattice is uniquely determined by these data by [12, Theorem 1.13.2].
We observe that the discriminant form of TX9 is the same as the one of A8 and that
rank (TX9) + 4 = rank (A8). 	

Corollary 1 The filed kE9 coincides with kR,τ .

Proof By Proposition 4 the classes of the reducible fibers and of the sections of EX9

form a basis of NS(X). Each of these classes corresponds to a unique curve (since
these are negative curves), which is a smooth rational curve. Hence the field where
all these classes are defined coincides with the field where NS(X) is defined. The
former is kE9 by definition, the latter is kR9,τ9 by Lemma 5. 	
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6.3 Classification of All the Possible Fibrations of the K3
Surface X9

In order to find all elliptic fibrations on X9, we use Nishiyama’s method explained
in [14]. As explained in [14, Section 6.1], if one is able to find a lattice T0 which
is negative definite, has the same discriminant form of the transcendental lattice of
a K3 surface and its rank is the rank of the transcendental group plus four, then
there is an operative method to classify the configuration of the reducible fibers of
the elliptic fibrations on the surface. In our particular case, by Proposition 4, we put
T0 = A8 and in order to classify the elliptic fibrations on X9 (and in particular the
lattice W of each of these elliptic fibration, with the notation of [14]) we have to
find the orthogonal complements of primitive embeddings of the root lattice A8 in
the 24 possible lattices listed (by their root type) by Niemeier [11, Satz 8.3] (or [14,
Theorem 1.7]). By [14, Lemmas 4.1 and 4.3] we know that A8 embeds primitively
uniquely, up to the action of the Weyl group, in Am for m ≥ 8, in Dn for n ≥ 9,
and in no other root lattice. The orthogonal complements of these embeddings in the
24 Niemeier lattices are then found in [14, Corollary 4.4], and this determines the
reducible fibers and the rank of the Mordell–Weil group for each fibration. These
results are summarized in Table 1. Note that line 1 is the fibration EX9 . Apart from
the torsion part of the Mordell–Weil group, everything is found by Nishiyama’s
method as explained above. We compute the torsion parts in what follows.

6.3.1 Torsion of the Mordell–Weil Group for the Elliptic Fibrations
Associated to X9

By [18, Table 1], we can immediately conclude that the torsion of the fibrations in
lines 2, 3, 4, 5, 8, 9, and 12 is trivial, and the torsion part of fibrations 6, 7, 10, and
11 is either Z/2Z or trivial.

Fibration 11 comes from the orthogonal complement of the embedding of A8 in
a latticeN of rank 24 with root type A24. We observe that N/A24 = Z/5Z ([11, Satz
8.3] or [14, Theorem 1.7]). By Nishiyama [14, Lemma 6.6, iii)], the torsion of the
elliptic fibration corresponding to this embedding of A8 in N has to be contained in
N/A24, so this fibration does not have a 2-torsion section and the torsion part of the
Mordell–Weil group is trivial.

Note that, in terms of the notation of our configuration of 2I9 (see Fig. 2), we find
a fiber of type I16 composed of the following curves on X9.

�1
0,�

1
1,�

1
2,�

1
3, T1,�

2
3,�

1
2,�

2
1,�

2
0,�

2
8,�

2
7,�

2
6, T2,�

1
6,�

1
7,�

1
8. (15)

Moreover, �1
5,�

1
4,�

2
5,�

2
4 are sections for this fibration. Let �1

4 be the 0-section,

then the height h(�2
5) of the section �2

5 is 2 · 2 + 0 − 8(16−8)
16 = 0 [17, Chap. 11

§11.8], and therefore it is a torsion section [17, Theorem 11.5]. Since we know that
the fibration in line 11 has trivial torsion, and the fibration in line 7 is the only other
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Table 1 Elliptic fibrations of X9

no Niemeier Embedding Roots orth. Reducible fibers MW

1 A⊕3
8 A8 ⊂ A8 A⊕2

8 2I9 Z/3Z

2 E8 ⊕ D16 A8 ⊂ D16 E8 ⊕ D7 II ∗ + I ∗
3 Z

3 E⊕2
7 ⊕ D10 A8 ⊂ D10 E⊕2

7 2III ∗
Z
2

4 E7 ⊕ A17 A8 ⊂ A17 E7 ⊕ A8 III ∗ + I9 Z

5 D24 A8 ⊂ D24 D15 I ∗
11 Z

6 D⊕2
12 A8 ⊂ D12 D12 ⊕ A3 I ∗

8 + I4 Z/2Z ⊕ Z

7 D9 ⊕ A15 A8 ⊂ D9 A15 I16 Z/2Z ⊕ Z

8 D9 ⊕ A15 A8 ⊂ A15 D9 ⊕ A6 I ∗
5 + I7 Z

9 E6 ⊕ D7 ⊕ A11 A8 ⊂ A11 E6 ⊕ D7 ⊕ A2 IV ∗ + I ∗
3 + I3 Z

10 D6 ⊕ A⊕2
9 A8 ⊂ A9 D6 ⊕ A9 I ∗

2 + I10 Z/2Z ⊕ Z

11 A24 A8 ⊂ A24 A15 I16 Z

12 A⊕2
12 A8 ⊂ A12 A12 ⊕ A3 I13 + I4 Z

one with reducible fiber of type I16, we conclude that we found a representation of
the fibration in line 7, and therefore the torsion part of the Mordell–Weil group of
this fibration is Z/2Z.

Finally, we find that the torsion part of the Mordel–Weil groups of the fibrations
in lines 6 and 10 are Z/2Z in the same way as we did for line 7.

We find the class of the fiber of the other elliptic fibrations, by giving the
components of one reducible fiber in terms of the configuration of 2I9 (see Fig. 2).
The rational curves orthogonal to the class of the fiber are necessarily components
of other reducible fibers, hence we list all the irreducible components of at least one
reducible fiber and some components of the others for each elliptic fibration.
I ∗
8 + I4

�2
1,�

2
8, 2�

2
0, 2OX9 , 2�

1
0, 2�

1
8, 2�

1
7, 2�

1
6, 2�

1
5, 2�

1
4, 2�

1
3,�

1
2, T1 + �2

6,�
2
5,�

2
4,

I ∗
2 + I10

�1
8,�

1
0, 2�

1
1, 2OX9 , 2�

2
0,�

2
8,�

2
1 + T2,�

1
6,�

1
5,�

1
4,�

1
3, T1�

2
3,�

2
4,�

2
5,�

2
6,�

1
6.

For this configuration of I ∗
8 + I4 we find the three sections �2

7,�
2
3, and �2

2. If
we set �2

7 as the 0-section, then �2
3 has height 0 and hence it is a 2-torsion section.

Since there is only one fibration with reducible fiber I ∗
8 + I4 in our list, we conclude

that this configuration represents the fibration in line 6. Hence the torsion part of
the Mordell–Weil group is Z/2Z. For the fibration in line 10 we have the same
reasoning, after finding the sections �1

4,�
2
7,�

2
6,�

2
2, setting �1

2 as the 0-section
and finding that �2

7 is a 2-torsion section.
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6.4 Determining the Type of Each Fibration of X9

In what follows, we assume that the surface R9 is general, i.e., its Galois group GR9

is not trivial. The goal of this section is to find an example, for each fibration η in
Table 1, and to determine for each example the following:

(a) The type with respect to the cover involution τ9;
(b) an upper bound for the degree over k of a field of definition of the fibration, that

is, a field over which the reducible fiber and a 0-section are defined;
(c) an upper bound for the degree over k of a field kη,MW over which the Mordell–

Weil group of the fibration admits a set of generators.

The results are summarized in Table 2, with the notations introduced in
Sects. 4, 5, and 6.

For each fibration in Table 1 we find a configuration of (parts of the) reducible
fibers in terms of the curves in Fig. 2. Note that for lines 6, 7, and 10, this is done in
the previous section.

II ∗ + I ∗
3

�2
6, 2�

2
7, 3�

2
8, 4�

2
0, 5OX9 , 6�

1
0, 4�

1
8, 2�

1
7, 3�

1
1 + �2

4,�
2
2, 2�

2
3, 2T1, 2�

1
3,

2�1
4,�

1
5.

2III ∗
�1

5, 2�
1
6, 3T2, 4�

2
6, 3�

2
5, 2�

2
4,�

2
3, 2�

2
7 + �2

1, 2�
2
0, 3OX9 , 4�

1
0, 3�

1
1, 2�

1
2,

�1
3, 2�

1
8.

III ∗ + I9

�1
0, 2�

1
8, 3�

1
7, 4�

1
6, 3�

1
5, 2�

1
4,�

1
3, 2T2 + �2

7,�
2
8,�

2
0,�

2
1,�

2
2,�

2
3,�

2
4,�

2
5.

I ∗
5 + I7

�1
5, T2, 2�

1
6, 2�

1
7, 2�

1
8, 2�

1
0, 2OX9 , 2�

2
0,�

2
1,�

2
8 + �2

5,�
2
4,�

2
3, T1,�

1
3,�

1
2.

IV ∗ + I ∗
3 + I3

�2
6, 2T2, 3�

1
6, 2�

1
5,�

1
4, 2�

1
7,�

1
8 + OX9 ,�

2
8, 2�

2
0, 2�

2
1, 2�

2
2, 2�

2
3, T1,�

2
4 +

�1
1,�

1
2.

I13 + I4

T2,�
1
6,�

1
5,�

1
4,�

1
3, T1,�

2
3,�

2
2,�

2
1,�

2
0,�

2
8,�

2
7,�

2
6 + �1

8,�
1
0,�

1
1.

To find the elliptic fibrations described in lines 5 and 11 of the Table 1, we need
to find another rational curve on X9. We recall that the K3 surface X9 has an infinite
number of rational curves, and considering the elliptic fibration with fibers IV ∗ +
I ∗
3 + I3 we are able to describe one of them. Indeed, the divisor
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F := �2
6 + 2T2 + 3�1

6 + 2�1
5 + �1

4 + 2�1
7 + �1

8 (16)

corresponds to a reducible fiber of type IV ∗ of this elliptic fibration. In particular F

is the class of the fiber of this fibration, and the divisor OX9 + �2
8 + 2�2

0 + 2�2
1 +

2�2
2+2�2

3+T1+�2
4 is linearly equivalent to F and corresponds to the fiber of type

I ∗
3 . The remaining reducible fiber consists of three curves meeting in a triangle, one
is �1

1, one is �1
2 and we denote the third one by M . Since �1

1 + �1
2 + M is a fiber

of the elliptic fibration, M is linearly equivalent to F − �1
1 − �1

2. In particular this
implies that the intersections properties of M are the following: M�1

1 = M�1
2 =

M�2
7 = M�2

5 = 1 and M is orthogonal to all the other curves appearing in Fig. 2.
Let us consider the following configuration of curves:

I16

�1
6,�

1
5,�

1
4,�

1
3,�

1
2,M,�2

5,�
2
4,�

2
3,�

2
2,�

2
1,�

2
0,OX9 ,�

1
0,�

1
8,�

1
7.

The curves T2 and �2
7 are sections of this fibration. Assume that T2 is the

zero section, then �2
7 is a section, orthogonal to the zero section and meeting

the reducible fiber I16 in his fifth component. Thus the height of this section is
9
16 . As a consequence, the lattice spanned by the irreducible components of the
reducible fiber of type I16, the zero section T2 and the section �2

7 is a sublattice
of NS(X9), which has the same rank and the same discriminant of NS(X9) and
therefore coincides with NS(X9). So there are no torsion sections for this elliptic
fibration (otherwise one should add their contribution to obtain the Néron–Severi
group). As a consequence the fibration whose class of the fiber is

�1
6 + �1

5 +�1
4 +�1

3 + �1
2 + M + �2

5 +�2
4 + �2

3 + �2
2 +�2

1 +�2
0 +OX9 + �1

0 +�1
8 + �1

7

(17)

corresponds to the fibration in line 11 of Table 1.
Similarly, the fibration in line 5 of Table 1 with a reducible fiber of type I ∗

11 is
given by

�2
4, �

2
6, 2�

2
5, 2M, 2�1

2, 2�
1
3, 2�

1
4, 2�

1
5, 2�

1
6, 2�

1
7, 2�

1
8, 2�

1
0, 2OX9 , 2�

2
0,�

2
1, �

2
8.

(18)

Corollary 2 For each fibration in Table 1, there exists at least one elliptic fibration
on X9 with the properties given in the list which is defined over kR9,τ9 .

Proof The result follows by 1 for the fibration of type 1 and 2. For the fibration of
type 3, one wants to apply Remark 4. For all the listed fibrations with the exception
of the 11, we are able to write the class of the fiber as a linear combination of �

j
i ,OX9 and Tk . All these curves are defined on kR9,τ9 , by 1. In the case of the fibration

11, we introduced another curve,M . Since its class is written as a linear combination
of the classes generating NS(X), its class is defined over kR9,τ8 . Since it is a negative
effective class, we deduce that it is supported either on an irreducible rational curve
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Table 2 Types of the different elliptic fibrations of X9 and fields of definition

no Roots Orth. Type Sections

Field of
Def.
0-section

Field of
Def. all
sections [kη,MW : k]

1 A⊕2
8 2 OX9 , T1, T2 OX9/k kR ≤ 2

2 E8 ⊕ D7 3 T2,�
2
5 T2/kR kR,τ9 ≤ 4

3 E⊕2
7 3 T1,�

2
2,�

1
4 T1/kR kR,τ9 ≤ 4

4 E7 ⊕ A8 3 OX9 , T1,�
1
1,�

1
2 OX9/k kR,τ9 ≤ 4

5 D15 3 �2
2,�

2
3 �2

2/kR,τ9 kR,τ9 ≤ 4

6 D12 ⊕ A3 3 �2
2,�

2
3,�

2
7 �2

7/kR,τ9 kR,τ9 ≤ 4

7 A15 1 �1
4,�

1
5,�

2
4,�

2
5 �1

4/kR,τ9 kR,τ9 ≤ 4

8 D9 ⊕ A6 3 �1
4,�

2
2,�

2
6,�

2
7 �1

4/kR,τ9 kR,τ9 ≤ 4

9 E6 ⊕ D7 ⊕ A2 3 �1
0,�

1
3,�

2
5,�

2
7 �1

0/kτ9 kR,τ9 ≤ 4

10 D6 ⊕ A9 1 �1
7,�

2
7,�

1
2 �1

7/kR,τ9 kR,τ9 ≤ 4

11 A15 3 T2,�
2
7,�

2
8,�

2
6 T2/kR kR,τ9 ≤ 4

12 A12 ⊕ A3 3 OX9 ,�
1
2,�

1
7,�

2
4,�

2
5 OX9/k kR,τ9 ≤ 4

or on the union of rational curves. Since it is a component of a fiber of a certain
fibration, at least on the closure of the field of definition of the fibration, it is an
irreducbile curve (where it is defined). Hence, M is an irreducible smooth rational
curve defined over kR9,τ9 	


We gave an example for each fibration in Table 1. We choose a section for each
of them to be the zero section and we determine their type with respect to τ . By
using Proposition 3 we describe the properties of the fields kη,MW , which follow by
the previous Corollary. The results are listed in Table 2.

7 The Surfaces R4, R3, R2 and the Surfaces X4, X3, X2

In this section we establish an analogous study for the extremal rational surfaces
Ri , for i = 4, 3, 2. We classify all the possible fibrations of the K3 surfaces Xi and
determine their types with respect to the cover involutions τi , for i = 4, 3, 2.



196 V. Cantoral-Farfán et al.

7.1 The Rational Elliptic Surfaces R4, R3, and R2

Let R4 be an extremal rational elliptic surface with one reducible fiber of type I ∗
4 .

Its Mordell–Weil group is Z/2Z = {O, t1}, where O is the zero section and t1 is
a 2-torsion section. Recall that a fiber of type I ∗

4 is given by 9 smooth rational
curves meeting with dual graph D̃8, see [9, Table I.4.1]. The Néron–Severi group
of R4 contains also the classes of the irreducible components of the reducible fiber,
denoted byC0, C1, . . . , C8. The intersections which are not trivial are the following:

C2
l = −2, C0C2 = C6C8 = 1, (19)

ClCj = 1 if and only if |l − j | = 1 and {l, j} ⊂ {2, 3, 4, 5, 6}, (20)

OC0 = t1C8 = 1, and O2 = t21 = −1. (21)

Let R3 be an extremal rational elliptic surface over k with one reducible fiber of
type III ∗. As R3 is extremal, there is another reducible fiber which is either an I2
or an III . Its Mordell–Weil group is Z/2Z = {O, t1}, where O is the zero section
and t1 is a 2-torsion section. Recall that a fiber of type III ∗ is given by 8 smooth
rational curves meeting with dual graph Ẽ7, see [9, Table I.4.1]. The Néron–Severi
group of R3 contains also the classes of the irreducible components of the reducible
fiber. Denoted by Cl the components of the III ∗ fiber and by Dl the ones of the
other reducible fiber, the intersections which are not trivial are the following:

C2
l = −2, ClCj = 1 if and only if |l − j | = 1 and {l, j} ⊂ {0, 1, 2, 3, 4, 5, 6},

(22)

C3C7 = 1, D0D1 = 2, D2
j = −2, (23)

OC0 = t1C6 = OD0 = t1D1 = 1 and O2 = t21 = −1. (24)

Let R2 be an extremal rational elliptic surface over k with one reducible fiber of
type II ∗. The other singular fibers are either II or 2I1. Its Mordell–Weil group is
{O}, i.e., it is trivial. Recall that a fiber of type II ∗ is given by 9 smooth rational
curves meeting with dual graph Ẽ8, see [9, Table I.4.1]. The Néron–Severi group
of R2 contains also the classes of the irreducible components of the reducible fiber,
denoted byC0, C1, . . . , C8. The intersections which are not trivial are the following:

C2
l = −2, ClCj = 1 if and only if |l − j | = 1 and {l, j} ⊂ {0, 1, 2, 3, 4, 5, 6, 7},

(25)

C8C5 = 1, OC0 = 1, O2 = −1. (26)

The following result shows that the surfaces Ri have trivial Galois group GRi
,

that is its Néron-Severi group admits a set of generators over k given by the zero
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section, a smooth fiber and the non-trivial fiber components of the reducible fibers.
It also presents their contractions of negative curves to minimal k-rational surfaces.

Proposition 5 Let R be one the following surfaces: R2, R3, R4. Then GR is trivial.
Moreover, the surfaces R2, R3 and R4 can be contracted to P

2; the surfaces R3
and R4 can be also contracted to P

1 × P
1 and the surfaces R2 and R3 can be also

contracted to F2, the Hirzebruch surface with a unique (−2)-curve.

Proof The proof is similar to the one of Proposition 2. Indeed, for R = R2 or R3,
each g ∈ GR , g(O) = O and if MW = {O, t1}, g(t1) has to be a section different
from O and hence g(t1) = t1. Thus for each Ri , i = 2, 3, the sections are preserved
and this implies, arguing via the intersection of the components of the reducible
fibers as in Proposition 2, that all the components of the unique reducible fibers are
fixed.

Let us consider the surface of type R3. We have three different possibilities, to
obtain three different surfaces:

• Let us contract the sections O and t1. Then we contract the images of C0 and C6
(which are now (−1)-curves); the images of C1 and C5; the images of C2 and
C4. There remain the images of C3, which is a curve with self-intersection 0,
and of C7, which is a curve with self-intersection −2. There are no (−1)-curves
on this surface, so we obtain a minimal rational surface, with two independent
classes in the Néron–Severi group which have self-intersection 0 and −2. Hence
we obtained F2.

• Let us contract first the section O and then (in this order), the images of the
componentsC0,C1,C2,C3. Now the image ofC7 is a (−1)-curve. We contract it.
It remains a unique (−1)-curve, which is the section t1. We contract it and then (in
this order) the images of the componentsC6 andC5. We obtain a minimal rational
surface whose Néron–Severi group is generated by one class (we contracted 9
curves), which is the image of C4. This rational surface is necessarily P

2.
• Let us contract first the section O and then (in this order), the images of the

components C0, C1, C2, C3. Now the image of C4 is a (−1)-curve. We contract
it. Then we contract t1 and the image of the component C5. We obtain a minimal
rational surface, whose Néron–Severi group is generated by the two classes
which are the images of C7 and C5. Their self-intersection is 0 and they meet
in a point, so we obtained P

1 × P
1.

Let us now consider the surface R2 (see Fig. 3). There is a unique (−1)-curve,
the section O. So we contract it, and then we contract (in this order) the images of
the components C0, C1, C2, C3, C4, C5. Now both the images of C6 and C8 are
(−1)-curves and they meet in a point.

• If one contracts the image ofC8, one obtains a minimal surface, whose generators
of the Néron–Severi group are the images of C7 and C6 and this surface is F2
(because of the presence of a (−2)-curve, image of C7).
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Fig. 3 Contractions of R2 to F2 and to P
2

• If one contracts the image of C6, then one has to contract the image of C7 and one
obtains a minimal rational surface, whose Néron–Severi group has one generator
(the image of C8) and thus the surface is P2.

Let us consider the surface of type R4. We contract first the section O and then
(in this order) the images of the components C0, C2, C3, C4, C5, C6. Now we have
three (−1) curves, i.e. the images of C7, C8 and t1. The image of C8 meets both the
images of C7 and of t1: if one contracts the image of C8, one obtains the minimal
surface P1 × P

1; if one contracts the images of t1 and C7 one obtains P2. 	


7.2 The K3 Surfaces X4, X3, X2

Let Xi be a K3 surface obtained by a generic base change of order 2 on the
rational elliptic surface Ri for i = 4, 3, 2 as in Sect. 2. Let Pi and Qi be the points
corresponding to the branch fibers of the cover Xi → Ri . We have the following
result, analogous to Proposition 3.

Proposition 6 The Galois group GEXi
of the elliptic fibration EXi

: Xi → P
1 is

contained in (Z/2Z). It is trivial if and only if the points Pi and Qi are defined over
the ground field.
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Proof The group GRi
is trivial by Proposition 5, so the unique Galois action is the

one of the cover involution τi , which is trivial if and only if the branch fibers are
defined over the ground field. 	


The elliptic fibrations EXi
, i = 4, 3, 2, are induced by ERi

. We fix the following
notation: each component Cl (resp. Dl) of a reducible fiber of ERi

corresponds to

two curves �
j
l (resp. �

j
l ), j = 1, 2 on Xi which are components of two different

reducible fibers on Xi . Moreover the zero section of ERi
induces the zero section,

OXi
, of EXi

and, if there is a torsion section t1 on Ri , it induces a torsion section T1
on Xi .

So we have the following curves on Xi :

�
j
l j = 1, 2; OXi

; T1 if i �= 2; �
j
l j = 1, 2, l = 0, 1 if i = 3. (27)

Denote by πi : Xi → Ri the double cover of Ri induced by the base change and by
τi the cover involution. We have

πi(OXi
) = O, πi(�

1
l ) = πi(�

2
l ) = Cl, (28)

πi(T1) = t1 if i �= 2, πi(�
1
l ) = πi(�

2
l ) = Dl if i = 3. (29)

τi(OXi
) = OXi

, τi(�
1
l ) = �2

l , τi(T1) = T1 if i �= 2, τi(�
1
l ) = �2

l if i = 3.

(30)

Figures 4, 5, and 6 summarize the above. Note that in Fig. 5, �1
2 and �2

2 are both
connected to T1.

Fig. 4 Reducible fibers and sections of the fibration EX4 on X4
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Fig. 5 Reducible fibers and sections of the fibration EX3 on X3

Fig. 6 Reducible fibers and sections of the fibration EX2 on X2

Proposition 7 The Néron–Severi group of Xi has rank 18, signature (1, 17), for
every i = 2, 3, 4.

Both lattices NS(X4) and of NS(X3) are isometric to U ⊕ D8 ⊕ E8 and
their transcendental lattices are both isometric to U ⊕ U(2), which has the same
discriminant group and form as D8. In particular X3 and X4 lie in the same family
of K3 surfaces, namely the family of U ⊕ D8 ⊕ E8-polarized K3 surfaces.

The lattice NS(X2) is isometric to U ⊕ E8 ⊕ E8 and its transcendental lattice is
isometric to U ⊕ U , which has the same discriminant form of E8.

Proof The curves in the Figs. 4, 5, and 6 (i.e. the curves �
j
l , OXi

, T1 if i �= 2

and �
j
l if i = 3) generate NS(Xi). They are not all linearly independent, but if

one extracts a basis, one obtains 18 independent generators of NS(Xi). Since one
knows all the intersection properties of these generators, one can explicitly compute
their intersection matrix. This identifies the lattice NS(Xi) and in particular its
discriminant group and form. We observe that all the lattices that appear are 2-
elementary, i.e., the discriminant group is (Z/2Z)a , a ∈ N. So the transcendental
lattice is a 2-elementary lattice with signature (2, 2). The indefinite 2-elementary
lattices are completely determined by their signature and their length, i.e., by a, and
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by another invariant, often denoted by δ, which is zero in all the cases considered.
This allows us to identify the transcendental lattices. 	


7.3 Classification of All the Possible Fibrations on the K3
Surfaces X4, X3, and X2

In the same way as we did for X9 in Sect. 6.3, we classify elliptic fibrations on the
surfaces X4 � X3 and X2 in what follows. By Proposition 7 we take T = D8
for X3 � X4, and T = E8 for X2 and apply Nishiyama’s method. By Nishiyama
[14, Lemmas 4.1 and 4.3] we know that D8 only embeds primitively in Dn for
n ≥ 8, and E8 only embeds primitively in E8. The orthogonal complements of
these embeddings in the 24 Niemeier lattices are then found in [14, Corollary 4.4].
Those results are summarized in Tables 3 and 4. We notice that the fibrations on
X2, X3 and X4 were already classified in [6, Table 2, case k = 8 and Table 1 case
k = 8, δ = 0] via different methods.

7.4 Determining the Type of Each Fibration of X4, X3, and X2

As in Sect. 6.4 we determine the type of each fibration obtained in Sect. 7.3 (Tables 3
and 4) with respect to the cover involutions τi , for i = 4, 3, 2. We determine
moreover the sections and their fields of definition. This study allows us to obtain
an upper bound for the degree over k of a field of definition kη of a given fibration

Table 3 Elliptic fibrations of X3 and X4

no Niemeier Embedding Roots Orth. Reducible fibers MW

1 E8 ⊕ D16 D8 ⊂ D16 E8 ⊕ D8 II ∗ + I ∗
4 {O}

2 E⊕2
7 ⊕ D10 D8 ⊂ D10 E⊕2

7 ⊕ A⊕2
1 2III ∗ + 2I2 Z/2Z

3 D24 D8 ⊂ D24 D16 I ∗
12 {O}

4 D⊕2
12 D8 ⊂ D12 D12 ⊕ D4 I ∗

8 + I ∗
0 Z/2Z

5 D⊕3
8 D8 ⊂ D8 D⊕2

8 2I ∗
4 Z/2Z

6 D9 ⊕ A15 D8 ⊂ D9 A15 I16 Z/2Z ⊕ Z

Table 4 Elliptic fibrations of X2

no Niemeier Embedding Roots Orth. Reducible fibers MW

1 E⊕3
8 E8 ⊂ E8 E⊕2

8 2II ∗ {O}
2 E8 ⊕ D16 E8 ⊂ E8 D16 I ∗

12 Z/2Z
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η, and an upper bound for the degree over k of a field of definition kη,MW of a set of
generators of the Mordell–Weil group of the fibration.

By Proposition 5 we know that the Galois group GRi
is trivial and all the fiber

components of Ri are defined over k, for i = 4, 3, 2. In order to determine the field
of definition of the sections, the only action that is taken into account is the one of
the cover involutions τi , for i = 4, 3, 2.

To determine the type of each fibration in Table 3 (resp. Table 4) with respect to
τ4 (resp. τ3 and τ2), we find a configuration of (parts of the) reducible fibers in terms
of the curves in Fig. 4 (resp. Figs. 5 and 6). The fibration in line 5 (resp. line 2 and
line 1) is represented in Fig. 4 (resp. Figs. 5 and 6).

The configurations associated to the fibers in lines 1, 2, 3, 4, and 6 in Table 3 for
the K3 surface X4 are listed below:

II ∗ + I ∗
4

�1
0, 2�

1
2, 3�

1
3, 4�

1
4, 5�

1
5, 6�

1
6, 4�

1
8, 2T1, 3�

1
7 + �2

0,�
2
1, 2�

2
2, 2�

2
3, 2�

2
4,

2�2
5, 2�

2
6,�

2
7,

2III ∗ + 2I2
�1

3, 2�
1
4, 3�

1
5, 4�

1
6, 3�

1
8, 2T1,�

2
8, 2�

1
7 + �1

0, 2OX4 , 3�
2
0, 4�

2
2, 3�

2
3, 2�

2
4,�

2
5,

2�2
1 + �1

1 + �2
7,

I ∗
12

�1
7,�

1
8, 2�

1
6, 2�

1
5, 2�

1
4, 2�

1
3, 2�

1
2, 2�

1
0, 2OX4 , 2�

2
0, 2�

2
2, 2�

2
3, 2�

2
4, 2�

2
5,

2�2
6,�

2
8,�

2
7,

I ∗
8 + I ∗

0

�1
8,�

1
7, 2�

1
6, 2�

1
5, 2�

1
4, 2�

1
3, 2�

1
2, 2�

1
0, 2OX4 , 2�

2
0, 2�

2
2,�

2
1,�

1
3 + �2

8,�
2
7,

2�2
6,�

2
5,

I16

�1
8,�

1
6,�

1
5,�

1
4,�

1
3,�

1
2,�

1
0,OX4 ,�

2
0,�

2
2,�

2
3,�

2
4,�

2
5,�

2
6,�

2
8, T1.

The configurations associated to the fibers in lines 1, 3, 4, 5, and 6 in Table 3 for
the K3 surface X3 are listed below:
II ∗ + I ∗

4

�2
0, 2OX3 , 3�

1
0, 4�

1
1, 5�

1
2, 6�

1
3, 4�

1
4, 2�

1
5, 3�

1
7

+ �1
2,�

2
2, 2T1, 2�

2
6, 2�

2
5, 2�

2
4, 2�

2
3,�

2
7,�

2
2,

I ∗
12

�1
1,�

2
1, 2OX3 , 2�

1
0, 2�

1
1, 2�

1
2, 2�

1
3, 2�

1
4, 2�

1
5, 2�

1
6, 2T1, 2�

2
6, 2�

2
5, 2�

2
4,

2�2
3,�

2
2,�

2
7,
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I ∗
8 + I ∗

0

�1
2,�

1
7, 2�

1
3, 2�

1
4, 2�

1
5, 2�

1
6, 2T1, 2�

2
6, 2�

2
5, 2�

2
4, 2�

2
3,�

2
2,�

2
7

+ �2
0,�

1
0, 2OX3 ,�

1
1,�

2
1,

2I ∗
4

�1
1,�

2
1, 2OX3 , 2�

1
0, 2�

1
1, 2�

1
2, 2�

1
3,�

1
4,�

1
7

+ �2
2,�

2
7, 2�

2
3, 2�

2
4, 2�

2
5, 2�

2
6, 2T1,�

1
6,

I16

�1
3,�

1
4,�

1
5,�

1
6, T1,�

2
6,�

2
5,�

2
4,�

2
3,�

2
2,�

2
1,�

2
0,OX3 ,�

1
0,�

1
1,�

1
2.

Finally, in terms of the configuration of 2II ∗ we find a fiber of type I ∗
12

representing the fibration in line 2 of Table 4 by including every curve in Fig. 6
except �1

7,�
2
7; the latter are sections for this fibration.

Note that all the reducible fibers listed above only appear once in Table 3 (resp.
Table 4), hence we know that they represent the corresponding fibrations in those
tables. Therefore, using these configurations, we can determine the type of the
corresponding fibration with respect to τ4 (resp. τ3 and τ2), and find sections for
the corresponding fibration. By choosing a 0-section, we determine whether the
different sections are fixed by τ4 (resp. τ3 and τ2) or not. The results are listed in
Table 5 (resp. Tables 6 and 7).

Table 5 Types of the different elliptic fibrations of X4 with respect to τ4 and fields of definition

no Roots Orth. Type Sections
Field of Def.
0-section

Field of Def. all
sections [kη,MW : k]

1 E8 ⊕ D8 3 OX4 OX4/k k 1

2 E⊕2
7 ⊕ A⊕2

1 3 �1
2,�

2
6 �1

2/kτ4 kτ4 ≤ 2

3 D16 1 T1 T1/k k 1

4 D12 ⊕ D4 3 T1,�
2
4 T1/k kτ4 ≤ 2

5 D⊕2
8 2 OX4 , T1 OX4/k k 1

6 A15 1 �1
1,�

1
7,�

2
1 �1

1/kτ4 kτ4 ≤ 2
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Table 6 Types of the different elliptic fibrations of X3 with respect to τ3 and fields of definition

no Roots Orth. Type Sections
Field of Def.
0-section

Field of Def. all
sections [kη,MW : k]

1 E8 ⊕ D8 3 �2
1 �2

1/kτ3 kτ3 ≤ 2

2 E⊕2
7 ⊕ A⊕2

1 2 OX3 , T1 OX3/k k 1

3 D16 3 �2
1 �2

1/kτ3 kτ3 ≤ 2

4 D12 ⊕ D4 1 �1
1,�

2
1 �2

1/kτ3 kτ3 ≤ 2

5 D⊕2
8 3 �1

5,�
2
1 �1

5/kτ3 kτ3 ≤ 2

6 A15 1 �1
7,�

2
7,�

1
1, �1

7/kτ3 kτ3 ≤ 2

Table 7 Types of the different elliptic fibrations of X2 with respect to τ2 and fields of definition

no Roots Orth. Type Sections
Field of Def.
0-section

Field of Def. all
sections [kη,MW : k]

1 E⊕2
8 2 O O/k k 1

2 D16 1 �1
7,�

2
7 �1

7/kτ2 kτ2 ≤ 2
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