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Deep denoising 
for multi‑dimensional 
synchrotron X‑ray tomography 
without high‑quality reference data
Allard A. Hendriksen1*, Minna Bührer2, Laura Leone3, Marco Merlini3, Nicola Vigano4, 
Daniël M. Pelt1,5, Federica Marone2, Marco di Michiel4 & K. Joost Batenburg1,5

Synchrotron X-ray tomography enables the examination of the internal structure of materials 
at submicron spatial resolution and subsecond temporal resolution. Unavoidable experimental 
constraints can impose dose and time limits on the measurements, introducing noise in the 
reconstructed images. Convolutional neural networks (CNNs) have emerged as a powerful tool 
to remove noise from reconstructed images. However, their training typically requires collecting 
a dataset of paired noisy and high-quality measurements, which is a major obstacle to their use 
in practice. To circumvent this problem, methods for CNN-based denoising have recently been 
proposed that require no separate training data beyond the already available noisy reconstructions. 
Among these, the Noise2Inverse method is specifically designed for tomography and related inverse 
problems. To date, applications of Noise2Inverse have only taken into account 2D spatial information. 
In this paper, we expand the application of Noise2Inverse in space, time, and spectrum-like domains. 
This development enhances applications to static and dynamic micro-tomography as well as X-ray 
diffraction tomography. Results on real-world datasets establish that Noise2Inverse is capable of 
accurate denoising and enables a substantial reduction in acquisition time while maintaining image 
quality.

Synchrotron-based X-ray tomography is a powerful technique for investigating the internal structure of objects 
with applications in energy research, materials science, life sciences, and many other fields1–3. Thanks to the high 
photon flux available at synchrotrons, experiments can be performed at speeds and microscopic scales that push 
the envelope of scientific imaging4,5. In these experiments, a rotating object is located in the path of an X-ray 
beam, and its projection is measured on a detector. A representation of the object is reconstructed from a series 
of its projection images. The projection images typically suffer from noise, which carries over to the reconstructed 
images. Noise can be reduced by increasing the exposure time or photon flux, resulting in a higher dose. In many 
cases, however, dose and exposure time are limited by unavoidable experimental constraints, such as fast sample 
dynamics, radiation damage, and alteration of system properties during prolonged exposure to high-flux synchro-
tron X-ray beams4,6–10. In such experiments, accurate denoising of the reconstructed images is a central problem.

Among techniques for removing noise from reconstructed images, deep convolutional neural network (CNN)-
based methods have shown strong results, often outperforming conventional state-of-the-art techniques11–13. A 
substantial subset of these techniques are known as post-processing techniques. Here, a reconstruction is first 
computed using a fast reconstruction algorithm and a CNN is used to post-process the reconstructed image. 
Other approaches, such as learned iterative techniques13 also exist, but are generally not as computationally effi-
cient. Most proposed methods, however, require supervised training before they can be applied to the problem at 
hand. That is, the networks are trained by using paired examples of noisy input reconstructions and high-quality 
target reconstructions.

In practice, obtaining the set of paired noisy and high-quality reconstructions required for supervised training 
is a major obstacle14. First, obtaining low-noise reconstructions may not be possible, due to the aforementioned 
experimental constraints. Second, accurate pairing of two different datasets may require time-consuming manual 
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labor to register the images, especially because the accuracy of registration directly impacts the output quality 
of the trained network15. Sub-pixel inaccuracies may cause blurring of the network output, for example. Finally, 
with fewer than 50 synchrotron facilities worldwide, beamtime is a scarce resource16, and acquiring additional 
measurements may simply be too expensive.

To sidestep the issue of obtaining training data, CNN-based denoising techniques have recently been pro-
posed that do not require the acquisition of high-quality images17–24. However, many of these techniques rely 
on assumptions about the source of noise that are not correct in tomography, resulting in suboptimal denoising 
accuracy25. As a solution to these difficulties, we have proposed Noise2Inverse25, which is a post-processing 
technique specifically designed for tomography and related inverse problems. Using self-supervised training, 
the acquisition process is exploited to create pairs of noisy reconstructions from a single tomographic dataset. 
Although no high-quality reconstructions are presented to the network, training still produces a denoising CNN 
whose accuracy is comparable to supervised CNN training25. To obtain a denoised reconstruction, the trained 
CNN can be applied both to the noisy training reconstruction and to similar data that is acquired in the future. 
The Noise2Inverse method can be applied in the aforementioned cases where collecting a training set is found 
to be an obstacle.

To obtain a denoising CNN, the reconstructed training pairs must satisfy certain conditions, which we 
describe in this paper and refer to as the Noise2Inverse conditions. In previous work, analysis of the Noise2Inverse 
conditions was limited to single-slice (2D) parallel-beam tomography25, treating multi-slice (3D) tomographic 
datasets as a stack of independent 2D problems. In the synchrotron community, however, 3D tomography is rou-
tine and many important research questions can only be answered using more advanced imaging techniques that 
make use of additional information in the time or spectral domain of the signal4–10,26–30. In this paper, we extend 
the analysis of the Noise2Inverse conditions to such techniques, including micro-tomography (space), dynamic 
micro-tomography (time), as well as X-ray diffraction computed tomography (diffractogram, spectrum-like). 
Taking into account the Noise2Inverse conditions, we tailor training procedures to each of these techniques. Our 
description of the training procedures for these imaging techniques may serve as a template for other use cases. 
In addition, we discuss how the acquisition can be refined to optimize the results of Noise2Inverse denoising. 
Finally, we apply Noise2Inverse to real-world datasets, compare it to commonly used reconstruction techniques, 
and investigate the possibility of reducing acquisition time without loss of image quality.

This paper is structured as follows. First, we introduce the basics of CNN-based denoising. Next, we describe 
the Noise2Inverse method for single-slice (2D) parallel-beam tomography. Then, for each of the three domains 
(space, time, and diffractogram) and corresponding imaging technique, we describe a Noise2Inverse train-
ing procedure that exploits the acquisition process to obtain a denoising CNN. Next, we present results of the 
application of Noise2Inverse to real-world datasets of each of these techniques, and conclude with a discussion.

CNN‑based denoising
This section briefly introduces convolutional neural networks (CNNs) for denoising. For a more detailed over-
view, we refer the reader to31,32. CNNs are usually organized in layers: the input image is copied into the first 
layer, the output image is the final layer, and computations are performed in the intermediate layers. The CNN 
computes convolutions that are parameterized by thousands to millions of small filters (typically 3× 3 ). In each 
intermediate layer, the images in the previous layer are convolved with these filters, after which a pixel-wise 
non-linear function is applied. A common non-linearity is the ReLU function, which is the identity for positive 
arguments and zero otherwise33,34. A prototypical CNN is illustrated in Fig. 1. The input to the network can 
consist of multiple 2D channels, for example when the input is a color image. Similarly, the intermediate layers 
and output may consist of multiple channels—regardless of the number of channels in the input.

The network can be prepared to perform denoising by supervised training. During training, the network is 
presented with noisy input images and noise-free target images from a training dataset. On each image pair, 
the parameters of the convolutions are optimized to minimize the training loss, i.e., the difference between the 
output and target image. The training loss is commonly quantified by the mean square error35 and minimized 
using stochastic gradient descent36.

Figure 1.   A prototypical convolutional neural network (CNN) in a supervised training arrangement for 
denoising. The CNN is composed of multiple layers. To compute an image in the next layer, images in the 
previous layer are convolved with a small filter (depicted in blue), after which a non-linear function is applied. 
To train a CNN to perform denoising, the output image is compared to a target image, and the convolution 
filters are updated accordingly.
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If the number of parameters of a CNN is large compared to the amount of training data, there is a risk of 
overfitting. In such situations, the network starts to fit features particular to the training data which causes its 
accuracy to suffer on its intended use case14. A practical remedy is to monitor the results of the network on a 
separate validation dataset, and perform early stopping when the results start deteriorating. Early stopping may 
not be necessary, however, if the number of training pixels vastly exceeds the number of CNN parameters35.

In tomography, the reconstructed data is often volumetric rather than a single 2D image. In the volumetric 
case, it has been observed that image quality can be improved by using 3D CNNs instead of 2D CNNs37. Here, 
the input and output are a 3D volume, and intermediate computations are performed using 3D convolutions. 
3D CNNs, however, impose computational demands that can be prohibitive in practice. As a solution to this 
problem, 2.5D CNNs have been proposed. These networks can often achieve image quality similar to 3D CNNs 
at a reduced computational cost37. We refer to a 2D sub-image of a 3D volumetric dataset as a slice. The input to 
a 2.5D CNN is a stack of 2D slices, and its output is a 2D slice. In addition to the current input slice, the network 
input consists of context slices located above and below the current slice. This technique is applied to 3D tomo-
graphic datasets in section “Noise2Inverse for synchrotron X-ray tomography”.

As described before, the collection of paired image data can be a major obstacle to the use of supervised train-
ing. In the next section, we describe how a denoiser can be trained without such a training dataset.

Methods
In this section, we discuss the Noise2Inverse method. First, we summarize the procedure for single-slice (2D) 
parallel-beam tomography and describe the conditions under which Noise2Inverse training is possible25. Next, 
we describe how Noise2Inverse can be extend in space, time, and spectrum-like domains so that it can be applied 
to imaging techniques in common use at synchrotron facilities.

Noise2Inverse for single‑slice parallel‑beam tomography.  In single-slice parallel-beam tomogra-
phy, a rotating object is located in the path of a planar beam, and its projection is measured on a line detector, 
as displayed in Fig. 2. A 2D image, called the sinogram, is collected from readouts at a series of angles. From the 
sinogram, a 2D image (slice) of the object can be computed using a reconstruction algorithm38.

The Noise2Inverse procedure for parallel-beam tomography was comprehensively introduced in25. First, the 
acquired sinogram is split into multiple target sections in the domain of the rotation angle. Each target section 
has a matching input section that covers the remainder of the sinogram. As displayed in Fig. 2b, the target sec-
tions split the sinogram in such a way that adjacent measurements in the angular domain are in different target 
sections. During CNN training, the input and target images are reconstructed from the corresponding sections 
of the sinogram. The CNN thus learns to map noisy reconstructed images to each other. The training process 
is displayed in Fig. 2.

After training, the reconstructed images are post-processed using the CNN. In this paper, we propose a 
modification to the post-processing step described in25. There, the CNN was applied to reconstructions of the 
input sections separately, resulting in several denoised intermediate images, of which the average formed the 
output of the algorithm. In this work, however, the output is computed by directly applying the CNN to the 
reconstruction of the full sinogram. Empirically, this modification consistently improves results19, although no 
theoretical explanation for its success has yet emerged.

To train a denoising CNN, the Noise2Inverse method requires that the reconstructed training pairs satisfy 
two conditions, which we refer to as the Noise2Inverse conditions: 

1.	 The noise in the reconstructed input image is statistically independent from noise in the reconstructed target 
image.

2.	 Every subset of the measurement is used in the reconstructed target images equally often.

The Noise2Inverse conditions are satisfied in the case of single-slice parallel-beam tomography. The noise in the 
reconstructed input and target images is independent (“uncorrelated”), because the images, and thus the noise, 

Figure 2.   Noise2Inverse for single-slice parallel-beam tomography. (a), A sinogram is acquired of a rotating 
object. (b), The sinogram is split into sections (red, green, and blue) in the domain of the rotation angle. (c), The 
input and target images for training the network are reconstructed from distinct sections of the sinograms 
(indicated by the red, green, and blue dots). The input and target sections cover 2

3
 and 1

3
 of the sinogram, 

respectively.
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are reconstructed from distinct input and target sections of the sinogram. Because target sections from all parts 
of the sinogram are used during training, the second requirement is satisfied as well. This prevents biasing the 
result towards a specific subset of the measurements.

Formally, the first condition makes it possible to write the training loss as the sum of two terms. Consider a 
noisy measurement and its corresponding unknown noise-free sinogram. Split the measurement into J target 
sections and denote by xj,noise-free the reconstruction of the jth target section of the noise-free sinogram. Denote 
by xj,noisy the reconstruction of the jth target section of the noisy measurement and by x·�=j,noisy the corresponding 
input reconstruction. The training loss can then be decomposed as a sum of two terms25

where E= indicates that the equality holds on average over the statistical distribution of the noise and the imaged 
objects. On the right hand side, the first term represents the difference between the CNN output and the noise-
free reconstructions, and the second term represents the variance of the noise in the reconstructed images, which 
does not depend on the CNN. Minimizing the Noise2Inverse training loss therefore minimizes the loss with 
respect to the noise-free reconstructions, which is the goal of denoising.

Equation (1) holds in combination with any linear reconstruction algorithm. Most common reconstruction 
algorithms in synchrotron tomography fall into this category, e.g., FBP, GridRec, and SIRT38–40. An additional 
requirement is that the measurement noise is zero-mean. This is typically satisfied by sources of noise in X-ray 
synchrotron tomography, such as Poisson or additive Gaussian noise. An example of noise that is not zero-mean 
is salt and pepper noise, which randomly corrupts pixels by setting them to zero or a fixed high value.

Intuitively, Noise2Inverse and other self-supervised methods rely on the ability of CNNs to find correlations 
between images. During training, the content of both the input and the target reconstruction is determined by 
the structure of the object—resulting in a strong structural correlation between the images—and the noise, which 
is uncorrelated. Therefore, the network is rewarded when it makes a prediction using the structure of the object. 
If it picks up a correlation based on the noise, it may be punished when this spurious correlation is absent in 
later iterations. During training, the network thus learns the statistical distribution of noiseless reconstructions. 
This distribution encompasses all features of the reconstructed images that are not related to the measurement 
noise. Therefore, when systematic imperfections in the measurement carry over into the reconstructed images, 
the network will not learn to remove them. This can occur, for instance, when the angular sampling of the full 
sinogram has insufficient resolution, as described in25.

If the Noise2Inverse conditions are not satisfied, then the output of the trained CNN can be sub-optimal. 
First, if the noise in the reconstructed input and target images is not independent, then the CNN will learn to 
reintroduce noise in its output. This can happen when the input and target sections of the measured data partially 
overlap, for instance. Second, when not every subset of the measurement is used in the target image equally 
often, then the CNN may be trained to overemphasize reconstruction of certain sections of the measured data, 
resulting in biased output.

Noise2Inverse for synchrotron X‑ray tomography.  In this section, we propose Noise2Inverse train-
ing strategies tailored to imaging techniques in common use at synchrotron facilities. We discuss extensions in 
the spatial domain (3D micro-tomography), time domain (dynamic micro-tomography), and spectrum-like 
domain (X-ray diffraction tomography). In addition, we discuss how the training strategies satisfy the Noise2In-
verse conditions.

Static 3D micro‑tomography.  In 3D micro-tomography, the beam is measured on a 2D detector instead of a line 
detector. In the parallel-beam case, this problem can be viewed as a stack of single-slice problems. Therefore, 
the strategy from the previous section could be pursued, using reconstructed image pairs from the entire stack 
to train a single 2D CNN25. As discussed in section “CNN-based denoising”, however, the image quality can be 
further improved by using a 2.5D CNN37. This network’s input consists of context slices located above and below 
the current slice, as illustrated in Fig. 3c.

The Noise2Inverse strategy can be used with 2.5D CNNs. After acquisition of a stack of sinograms, we propose 
that each sinogram is split in the angular domain to obtain target sections and complementary input sections. 
In each training iteration, the target image is a single slice reconstructed from a target section. The input con-
sists of an input slice and context slices reconstructed from the corresponding input section. The procedure is 
illustrated in Fig. 3. This strategy preserves the Noise2Inverse conditions, as the noise in the input and target is 
reconstructed from distinct sections of the sinograms, and each part of the sinogram is used as target section.

Dynamic micro‑tomography.  In dynamic tomography, a full scan of a dynamically evolving process is made at 
several time steps. In a single time step, movement of the object can result in motion artifacts, severely degrading 
the quality of the reconstructed image. To prevent such artifacts, the ideal scan time of a time step is bounded by 
the speed of the evolving process4,6. Additionally, the number of projection images per time step may be limited 
by the maximum frame rate of the detector. Therefore, both the exposure time and the number of projection 
images per rotation may be limited, and a reconstruction of a single time step may suffer from sparse angle 
artifacts41.

(1)

J∑

j=1

�CNN(x·�=j,noisy)− xj,noisy�
2
2

︸ ︷︷ ︸

Noise2Inverse training loss

E
=

J∑

j=1

�CNN(x·�=j,noisy)− xj,noise-free�
2
2

︸ ︷︷ ︸

Loss w.r.t. noise-free reconstructions

+�xj,noise-free − xj,noisy�
2
2
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Variance of the noise
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When performing dynamic tomography with angular undersampling, Noise2Inverse benefits from interlaced 
angular sampling42. Here, the angular sampling at each time step is displaced from the sampling at the previous 
time step. By combining sinograms of multiple time steps, this technique enables denser angular sampling to be 
achieved, as illustrated in Fig. 3e. From the combined sinogram, an accurate reconstruction can be computed, 
possibly even avoiding motion artifacts where and when the object is static. As discussed in Supplementary 
Note S1, it is likely that a fast dynamic scan uses interlaced angular sampling, either deliberately or as a conse-
quence of minimal mechanical inaccuracies.

Typically, the dynamic process does not start immediately during the acquisition. This creates a window of 
opportunity to train a CNN on the first few time steps. Here, interlaced sampling mitigates the effects of under-
sampling, and motion artifacts are avoided, since the dynamic process has not yet started. We propose that the 
sinogram stacks of these time steps are combined into a single sinogram stack. The sinogram stack is subdivided 
such that each input section covers a single time step, and the corresponding target section covers the remain-
ing time steps. During training, the input and target are reconstructed from the input and target sections. This 
process is displayed in Fig. 3d-f, where three time steps are combined into a single sinogram stack, and two 
time steps are used to reconstruct the target image in a round-robin fashion. The number of time steps should 
preferably be chosen such that the interlaced sampling distributes the angles of the projection images evenly 
over a 360° arc. As in the static 3D case, 2.5D CNN training can be used. After training, the network is applied 

Figure 3.   Noise2Inverse training procedures for several imaging techniques. (a-c), Static 3D micro-
tomography. Acquisition produces a stack of sinograms (a), each of which is split in the angular domain (b). 
A 2.5D-CNN is supplied with the current input slice and several context slices (shown in white) reconstructed 
from one part of the sinogram (blue dot). The target slice is reconstructed from a different part of the 
sinogram (red dot). (d-f), Dynamic micro-tomography of an evolving process. Scans of multiple time steps 
are acquired (d). With interlaced acquisition, the angular sampling of each time step is slightly displaced with 
respect to the previous time step (indicated by the “clock’s hands”) (e). Denser angular sampling is achieved by 
combining the sinograms of multiple time steps (e). A 2.5D-CNN is trained on time steps where the dynamic 
process has not yet started (f). The input is a reconstruction of a single time step (blue dot), and the target 
is reconstructed from the sinograms of the other time steps (red and green dots). (g–i), X-ray diffraction 
computed tomography (XRD-CT). A pencil beam probes a rotating object that is moved sideways in steps (g). 
Diffraction of the beam gives rise to rings on the detector (in green). Azimuthal integration along rings at 
different radii yields several sinograms for each slice of the object. These sinograms are split in the domain of 
the rotation angle (blue and red dots) (h). From these sinograms, a multi-channel reconstruction is computed, 
representing the diffractogram of the object (in shades of green) (i). Training is performed with multi-channel 
inputs and multi-channel targets, with inputs and targets reconstructed from distinct parts of the sinograms 
(blue and red dots).
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to each reconstructed time step to obtain a sequence of denoised reconstructions. A similar approach has been 
described for dynamic magnetic resonance imaging (MRI)21.

This training strategy preserves the Noise2Inverse conditions. The noise in the reconstructed input and target 
images is independent as the images have been reconstructed from distinct time steps. The second property is 
satisfied, as each time step occurs in the target images equally often. Note that in contrast to the previous cases, 
the target is reconstructed from more measurements than the input, since the target is computed using multiple 
time steps. This enables the target reconstructions to achieve denser angular sampling and causes the network 
to mitigate sparse angle artifacts.

X‑ray diffraction computed tomography.  X-ray diffraction tomography (XRD-CT) makes it possible to non-
destructively identify the crystallographic phases that compose a material, using the principles of X-ray powder 
diffraction26,27. As illustrated in Fig. 3g, the acquisition proceeds by probing a rotating object with a pencil beam, 
repeating the acquisition as the object is moved sideways in steps. The diffraction signal produced by the sam-
ple is recorded on a 2D detector, on which rings correspond to the scattering angle of the beam. By azimuthal 
integration along these rings, sinograms are computed for each scattering angle, forming 2D images indexed by 
the rotation angle and the sideways translation of the object. Performing the azimuthal integration with different 
radii yields several sinograms for one 2D horizontal slice of the object. From these sinograms, a multi-channel 
reconstruction is computed where each channel corresponds to a radius of the azimuthal integration. For each 
voxel in the 2D slice, these channels form a diffractogram, which is a non-spatial dimension analogous to a 
spectrum.

The Noise2Inverse strategy for X-ray diffraction tomography exploits the interdependence of the object in 
the domain of the diffractogram (across channels). The diffractogram at a location is determined by the specific 
crystallographic phase of a material at that location. Hence, if a material in a specific phase is present at multi-
ple locations, its diffractogram—the values in the multi-channel reconstructed image—must correspond. The 
accuracy of denoising can be improved by exploiting this interdependence.

During Noise2Inverse training, we propose to split the obtained sinograms in the domain of the rotation 
angle to obtain input and target sections. Multi-channel reconstructions are computed from the input and target 
sections of the sinograms, which are used as input and target during training. This training strategy satisfies the 
Noise2Inverse conditions, as the input and target images are reconstructed from distinct sections of the sino-
grams, and the target sections cover the full sinogram.

In summary, Noise2Inverse can be adapted to make use of additional information in space, time, and spec-
trum-like domains. This enables its application to several imaging techniques in use at synchrotron X-ray facili-
ties. In the case of static 3D micro-tomography, the 2D network input is extended with context slices to utilize 
2.5D CNN training. In the case of dynamic 3D micro-tomography, the effects of sparse angular sampling are 
mitigated by reconstructing the target image from a combined sinogram of multiple time steps.

In the case of X-ray diffraction tomography, multiple channels represent the diffractogram of each voxel in a 
2D slice of the object—not its vertical direction—, and thus serve a different purpose than in the previous cases.

Results
We applied the Noise2Inverse method to datasets acquired at two synchrotron beamlines. In particular, we 
compared the method to common reconstruction algorithms on a static and a dynamic micro-tomography 
dataset from the TOMCAT beamline at the Swiss Light Source (SLS). In addition, we investigated the possibil-
ity of accelerating the acquisition process using an X-ray diffraction tomography (XRD-CT) dataset from the 
ID15A beamline at the European Synchrotron (ESRF). The acquisition procedure for each dataset is described 
in Supplementary Note S1.

On each dataset, CNN training was performed using the same parameter-efficient mixed-scale dense net-
work architecture (MS-D)43 and the same hyper-parameters. Differences between the Noise2Inverse training 
procedures on each dataset are summarized in Table 1 and described in more detail in Supplementary Note S2.

Static 3D micro-tomography A static 3D micro-tomography dataset of a fuel cell was acquired. This dataset 
was part of a set of acquisitions aimed at imaging the water dynamics in the fuel cell. During operation, fuel cells 
generate water as a by-product. Suboptimal water management is currently a major limiting factor to sustained 
performance of the fuel cell at high current densities6. Accurate imaging of the water dynamics can inform 
improvements to the fuel cell design. This static dataset contained no water; a dynamic dataset of the operating 
fuel cell is discussed below.

We compared the Noise2Inverse reconstruction to GridRec reconstructions39 with and without additional 
preprocessing. The preprocessing was performed using Paganin phase retrieval44, and we refer to resulting 
reconstructions as Paganin+GridRec. For single material objects and monochromatic radiation, the Paganin 
algorithm44 can be used to preprocess the projection images prior to tomographic reconstruction to obtain 
quantitative results free of edge-enhancement artifacts. In the synchrotron community, thanks to its robustness, 
the Paganin algorithm is also used when not all assumptions are strictly satisfied as a tool to boost contrast and 
decrease noise in tomographic reconstructions. In both static and dynamic experiments with polychromatic 
radiation and a multi-material object, the parameters for the Paganin algorithm were chosen so as to maximize 
contrast while limiting the degradation of spatial resolution. The sinogram stacks were computed using stand-
ard dark-field, flat-field, and log-correction from the raw projection data for the GridRec and Noise2Inverse 
reconstructions. In the Paganin+GridRec reconstruction, the dark-field and flat-field corrections were applied 
before Paganin phase retrieval, and the log-correction was applied afterwards. We emphasize that the GridRec 
and Paganin+GridRec reconstructions were computed from exactly the same measured data as the Noise2Inverse 
reconstruction. No additional measurements were acquired for the Noise2Inverse reconstructions.
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The results are shown in Fig. 4. The measurement noise was carried over into the GridRec reconstruction, and 
the Paganin+GridRec reconstruction was blurred. Image features in the Noise2Inverse reconstruction could be 
more easily distinguished, and the reconstruction did not suffer from noise or blurring. In addition, we trained a 
2D CNN to illustrate the effect of not taking into account additional 3D information using a 2.5D CNN. Panel (b) 
displays a vertical cross-section of the resulting reconstruction that allows comparing between Noise2Inverse 
with a 2D CNN and with a 2.5D CNN. On this vertical reconstruction, we see that the 2D CNN reconstruction 
suffers from slight vertical discontinuities that are not present in the 2.5D CNN. The 2D CNN was not much 
faster to train than the 2.5D CNN.

Dynamic 3D micro-tomography A dataset was acquired of a fuel cell that was in operation. The speed of 
the water dynamics made it necessary to acquire a single time step 10 times faster than in the static case, result-
ing in a highly restricted exposure time and a restricted angular sampling frequency—due to the maximum 
frame rate of the detector. During the acquisition, the object was continuously rotating at a constant speed. As 
described in Supplementary Note S1, we observed a small deviation in the rotation speed as a result of a minor 
mechanical inaccuracy. This caused each time steps’ 300 projection angles to be slightly displaced with respect 
to the previous time step, resulting in interlaced sampling. Training was performed on the first 3.6 s of the 18 s 
acquisition (36 out of 180 time steps).

A comparison of GridRec, Paganin+GridRec, and Noise2Inverse can be found in Fig. 5. It shows a reconstruc-
tion of a horizontal slice, and several time steps of a magnified region of interest, in which the formation of a 
water bubble takes place. The GridRec reconstruction suffered severely from noise carried over into the recon-
struction, and the Paganin+GridRec reconstruction was blurred, although the water dynamics were discoverable. 
The Noise2Inverse reconstruction was substantially sharper, and the water dynamics in the magnified views were 
clear. In panel (b), several crops show the difference in blurring between Noise2Inverse and Paganin+GridRec 
on a vertical cross-section.

XRD-CT An X-ray diffraction tomography dataset was acquired of an archaeological ceramic, whose frag-
ments are kept at the University of Milan. The acquisition resulted in a dataset containing 3 horizontal slices 
with 11 channels each. Acquisition of each slice took 20 min. Two noisier datasets were obtained by applying 

Figure 4.   Comparison of reconstructions of a fuel cell using GridRec, Paganin+GridRec, and Noise2Inverse. 
(a), Reconstructions of the static fuel cell. The yellow region of interest is magnified in the windows on the 
right. Gray level ranges have been adjusted to improve contrast and are indicated by the shaded region in the 
histograms on the right. (b), A comparison of Noise2Inverse with a 2D CNN and a 2.5D CNN on a vertical 
cross-section of the reconstruction. The magnified regions of interest in the middle reveal discontinuities in the 
2D CNN reconstruction.
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synthetic noise to the sinograms. These were estimated to correspond to a virtual acquisition time of 70% and 
20% , respectively, as described in Supplementary Note S3. The relative variance of the noise of the synthetic 
datasets is displayed in Fig. S1.

The results are shown in Fig. 6. As the virtual acquisition time was decreased, the quality of the FBP recon-
struction suffered due to measurement noise that was carried over into the reconstruction. Compared to the 
FBP reconstructions, the degradation in image quality of the Noise2Inverse reconstructions was substantially 
less severe.

Training time, intermediate results, and overfitting.  Differences of Noise2Inverse training between 
the three previous experiments are summarized in Table 1. The training times were realized on a system with 192 
GB of RAM and four Nvidia GeForce GTX 1080 Ti GPUs. The reported training times are indicative, and are 
specific to the hardware. For instance, a networked storage bottleneck caused training on the dynamic dataset 
to take twice as long as on the static dataset, even though a similar number of training iterations was spent on 
both datasets.

Although training times were substantial for all three datasets, we note that training time did not increase 
linearly with the size of the training dataset. For instance, the dynamic dataset was 10, 000 times larger than 
the XRD-CT dataset, yet training time took less than 30 times longer. An important factor is that training time 
dominates reconstruction time: the static fuel cell took 20 h to train, but inference took only 5 min for instance. 
As shown in Table 1, the CNNs had roughly the same number of parameters for all three datasets. That may be 
the reason that the number of required training iterations does not scale with the size of the dataset, but reaches 
a point of diminishing returns. Therefore, training does not necessarily take much longer for larger datasets.

The number of training iterations was fixed in advance for each experiment. On intermediate results on the 
XRD-CT dataset, we observed that most of the improvement occurred in the first 20% of training, in which all 

Figure 5.   Comparison of reconstructions of an operating fuel cell using GridRec, Paganin+GridRec, and 
Noise2Inverse. (a), Reconstructions of the fuel cell in operation. The yellow region of interest is magnified in the 
windows on the right, and shows the formation of a water bubble over several time steps. (b), A vertical cross-
section of the dynamic reconstruction is displayed with magnified regions of interest shown in the middle.
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noise was removed, but the images were slightly blurred. Small details evolved in the remaining 80% of training 
time. In25, it is reported that prolonged training can obtain some improvement in image metrics. In our experi-
ence, however, training for longer periods had no substantial influence on image quality. Because no ground truth 
data was available, changes in the output of the network were difficult to quantify. On the XRD-CT dataset, an 
additional training session was continued for ten times as many iterations (300,000). As training progressed, no 
reintroduction of noise into the reconstructed images was observed, and some small details were better resolved, 
indicating that overfitting was unlikely to occur.

Comparison to total‑variation minimization.  In this section, Noise2Inverse is compared to a tradi-
tional iterative reconstruction approach. We implemented Total-Variation Minimization (TV-MIN) using the 
Chambolle-Pock algorithm45. For each dataset, we used 500 iterations and determined the optimal regulariza-
tion parameter � visually, as described in Supplementary Note  S4. Reconstructions for several values of the 
regularization parameter are displayed in Fig. S2. The TV-MIN reconstruction was performed on a single slice 
of the reconstruction and did not take into account additional space, time, or diffractogram information that 
was present in the static micro-tomography, dynamic micro-tomography, or the XRD-CT dataset, respectively.

An indication of the reconstruction time is given in the top right corner of each panel in Fig. 7. For the 
Noise2Inverse reconstruction, the realized reconstruction time is reported. For the TV-MIN reconstruction, 
an idealized reconstruction time is calculated by performing a single-slice reconstruction on a single GPU. To 
arrive at the reconstruction time for the full dataset, this number is multiplied by the total number of slices and 
divided by four to correct for the number of GPUs. We see that TV-MIN is faster in each case, but that the rela-
tive difference diminishes substantially for larger datasets.

The TV-MIN and Noise2Inverse reconstructions of the static fuel cell are visually comparable. In the other 
two cases, the TV-MIN reconstruction suffers from residual noise and stair-casing artifacts, which diminish 

Figure 6.   X-ray diffraction tomography reconstructions of a single channel of a single slice of a ceramic 
fragment. The leftmost column shows the reconstruction of the originally acquired data, and the next two 
columns show reconstructions with synthetic noise. The rightmost three columns show magnifications of the 
yellow region of interest.

Table 1.   Details of Noise2Inverse training on the static and dynamic micro-tomography datasets of a fuel 
cell and X-ray diffraction tomography dataset of a ceramic. The relative section size reports the ratio of the 
size of the input section relative to the target section. The size of the training volumes varies widely, whereas 
the number of parameters in the CNN is stable. Reported training times are indicative, and are specific to the 
hardware.

Static fuel cell Dynamic fuel cell XRD-CT ceramic

Noise2Inverse

Channels (input, target) 11, 1 11, 1 11, 11

Relative section size (input : target) 1 : 1 1 : 5 2 : 1

Size

Sinograms (32-bit float) 6.3 GB 342 GB 9.2 MB

Training volume size (voxels) 6.86 · 108 2.47 · 1010 2.46 · 106

CNN Parameters 5.48 · 104 5.48 · 104 5.60 · 104

Duration

Training iterations 220,000 171,600 30,000

Training + Reconstruction duration ∼ 20 hours ∼ 43 hours ∼ 90 minutes
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the visibility of fine details. These results confirm the findings in25, where it was found that Noise2Inverse could 
substantially outperform TV-MIN in terms of common image metrics. Image metrics cannot be computed in 
this case, because ground-truth images are not available.

Discussion and conclusion
In this paper, we have shown that Noise2Inverse can be extended in space, time, and spectrum-like domains. As 
a result, it can be effectively applied to tomographic imaging techniques in common use at synchrotron X-ray 
facilities. In the case of static and dynamic micro-tomography, we have shown that Noise2Inverse offers sig-
nificant improvements in the quality of denoising over alternative reconstruction methods. In the case of X-ray 
diffraction tomography, we have shown that the acquisition time can be substantially reduced while maintaining 
image quality.

Using the Noise2Inverse conditions, we have discussed the considerations that enter into successful applica-
tion of the method to several synchrotron imaging techniques. As noted in25, the Noise2Inverse method benefits 
from high-resolution angular sampling, even at the cost of more measurement noise, but fares worse when angu-
lar sampling is sparse. We have shown that the effects of angular undersampling can be mitigated by exploiting 
interlaced angular sampling. We emphasize that Noise2Inverse does not assume a Gaussian noise model. The 
only assumption is that the noise does not result in a systematic upward or downward bias in the sinogram pixel 
intensities. Bias can result also from preprocessing, e.g., log correction and correcting for photon starvation, but 
for most realistic scenarios, the resulting bias is less than 1%.

Apart from measurement noise, vibrations and drifts of the sample constitute another substantial experimen-
tal uncertainty in dynamic micro-tomography. We note that the proposed approach does not deal with this issue 
directly: vibration of the sample can be visually identified between time steps in the Noise2Inverse reconstruc-
tions of the dynamic fuel cell dataset. It has been noted in previous work, however, that the improved visual 
reconstruction quality due to Noise2Inverse has enabled determining the correct center of rotation with greater 
precision25. Precise correction for sample vibration and drift as a preprocessing step is a topic for future work.

An open question is to what extent successful application to dynamic tomography depends on the similarity 
of the training time steps to later time steps. In our experiments, water was not present in the training data, but it 
was present in the rest of the sequence. We did not notice a deterioration of denoising accuracy for the water com-
pared to other structures. This may be different in cases where the dynamics introduce more substantial changes 
in the sample structure. In general, we remark that the generalizability of the trained network mainly depends 
on the data that it is trained with and less so on whether it is trained in a supervised way or using Noise2Inverse.

Figure 7.   Comparison between Total-Variation Minimization reconstructions (a-c) and Noise2Inverse (d-
g) reconstructions of the static and dynamic micro-tomography datasets of a fuel cell and X-ray diffraction 
tomography dataset of a ceramic. The displayed regions correspond to the reconstructions displayed in Figs. 4, 5, 
and 6. Magnifications of the yellow regions of interest are displayed in the lower-left corner of the panels. In the 
top right corner of each panel, an indication of the reconstruction time of the full dataset is given using four 
Nvidia GeForce GTX 1080 Ti GPUs. The indicated time was realized for the Noise2Inverse reconstruction and 
estimated for the TV-MIN reconstruction.
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The findings of this paper demonstrate numerous strong features of the Noise2Inverse method. First of all, 
its versatility was shown on both large and small datasets that were obtained using different imaging techniques. 
In this work, it was applied to a dynamic tomography dataset hundreds of gigabytes in size, and an XRD-CT 
dataset of less than 10 MB . In addition, the method requires no CNN hyper-parameter tuning for training, which 
substantially simplifies its use in practice. We were able to achieve all results in this work using the same network 
architecture and the same CNN hyper-parameters, illustrating the sample-independence of the method. Finally, 
since the MS-D network architecture has a small number of parameters, it is unlikely to overfit to the noise. 
Therefore, prevention of overfitting through early stopping is not necessary, reducing the necessity for continu-
ous observation of intermediate training results. All in all, the proposed method not only produces accurately 
denoised reconstructions, but can also be used in a “launch and forget” style, approaching the convenience of 
conventional reconstruction methods in a way that is uncommon for CNN-based methods. To scientists at syn-
chrotron facilities, the sample-independence of the method could be appealing, as it opens up the possibility of 
blind application of the method to a variety of different samples.

Data availability
The X-ray diffraction computed tomography dataset analyzed during the current study is publicly available via52. 
The raw fuel cell datasets are part of the TomoBank repository46.
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