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Introduction

Motivation

As wonderfully phrased by Feynman in his famous essay The Value of Science back
in 1955, ”the same drill, the same mystery, comes again and again when we look at any problem
deeply enough. With more knowledge comes deeper, more wonderful the mystery, luring one to
penetrate deeper still”. Indeed, the attempt of modeling nature and the physical laws that
seem to describe it, often raises questions of deep complexity. For the last decades, those
questions have headed the limits of direct observation and produced such complex for-
malisms when aiming to describe the atomic and nuclear phenomena. Heading now
towards the precision era of the Large Hadron Collider (LHC) at CERN, and involved
in an unprecedented computational revolution, the description of nature at its funda-
mental scales and the predictions built have reached an accuracy that exceeds even the
most optimistic aspirations. But there is, though, and phrasing Feynman again, plenty
of room at the bottom...

The main goal of theoretical high energy physics could just be phrased as trying to
accurately describe what are often referred to as the fundamental interactions. In words of
Guido Altarelli, an attempt to reduce all natural phenomena to a set of basic rules and
laws which, at least in principle, can quantitatively reproduce and predict experimental
observations. It is important to remind the reader, regardless of its previous experience
with the physical sciences, that beyond the microscopic level, all the phenomenology
of matter and radiation, including molecular, atomic, nuclear and sub-nuclear phenom-
ena, can be understood and accurately described in terms of three classes of fundamen-
tal interactions: the so-called electromagnetic, strong, and weak interactions. A forth
interaction, the gravitational one, plays a dominant role when addressing much more
macroscopic scales, from all material bodies on earth to the vast astrophysical and cos-
mic objects, while remaining negligible in atomic and nuclear physics.

All these interactions, with the current exception of gravity, are described within the
framework of quantum mechanics and special relativity, or more precisely, by a set or
relativistic Quantum Field Theories (QFTs). By quantum field theory, we mean that fun-
damental objects of nature will not be understood as point-like, following the classical
intuition that small objects are localized in a well defined position. They will, instead, be
described by homogeneous fields with quantum mechanical behavior, in such a way that
particles are understood as localized excitations of the field. For a more detailed descrip-
tion of this formalism see [1]. Our current understanding of nature at the most funda-
mental scales, aiming to describe physical phenomena at the TeV scale - meaning length

vii



viii Thesis overview

scales of order . 10−20 m - is summarized in a set of Quantum Field Theories known
as the Standard Model of particle physics [2]. Those fields belong to different classes
of matter such as fermions, composing matter itself, gauge bosons acting as the medi-
ators of the interactions, and a scalar Higgs boson, responsible for the process through
which all particles acquire mass. Without going into much detail, those different species
of matter will be described by quantum fields fulfilling different representations of the
Lorentz group, generating the vast amount of phenomenology encountered in nature
from a very fundamental set of rules.

This thesis is devoted to Quantum Chromodynamics (QCD) [3], the sector of the
Standard Model describing the strong interactions, meaning the interactions between
quarks and gluons. A full chapter of this thesis is devoted to a proper introduction on
QCD and its basic components. Finally heading towards the precision era of the LHC, as
already mentioned, building fast and accurate predictions at the TeV scale and beyond
has become the main task for theoreticians. Indeed, being the LHC a hadron collider, all
the interesting reactions originate from a hadronic scattering, mediated by the strong in-
teractions and described by QCD. LHC and related experiments finally started in 2010,
being one of its original goals the detection of the Higgs boson, already predicted by
Higgs and Englert [4, 5, 6], among others, back in the mid 1960s. The first collision
at center-of-mass energy of 7 TeV took place in March of 2010, exceeding the previous
world record set by the US Fermi National Accelerator Laboratory’s Tevatron collider
in 2010, and setting the beginning of a new era for particle physics, which marked an
important milestone in LHC commissioning. A second milestone, and such a famous
one, was the detection of a resonance compatible with the Higgs boson predicted by the
Standard Model [7, 8].

Along the LHC ring, we find four main experiments worth mentioning: ATLAS (A
Toroidal LHC ApparatuS), CMS (Compact Muon Solenoid), ALICE (A Large Ion Col-
lider Experiment) and LHCb (LHC beauty). The last two are devoted to the study
of high-density hadron matter, such as quark-gluon plasma, and the so-called flavour
physics through the study of b-hadrons and the phenomenon of CP-violation, respec-
tively. ATLAS and CMS, conversely, are general purpose experiments, and their main
goals were originally searching for the Higgs boson - at that time, the last missing parti-
cle to make the Standard Model consistent - and for any kind of signals of new physics
beyond the Standard Model (Supersymmetry (SUSY), extra-dimensions, dark matter sig-
natures, ...). To be able to see such hints of new physics beyond the Standard Model, it is
crucial to have very accurate theoretical predictions of what is expected by the Standard
Model, at least as accurate as precise the detection and measurement techniques, in order
to be able to distinguish deviation from the expectations with the maximal significance.

Our current understanding of particle physics depends crucially on the breaking of
the electroweak symmetry (EWSB) to give mass to the W and Z bosons, as well as to all
fermions composing matter. As we just mentioned, the Standard Model involves in its
description a neutral scalar, the Higgs boson, whose dominant production mechanism at
the LHC is the gluon-gluon fusion process. Through parts I and II of this manuscript we
will go through the basics of QCD, perturbation theory and some of the most important
process addressed in collider experiments, such as Deep Inelastic Scattering (DIS), the
Drell-Yan lepton pair production, and the Higgs boson production.

The observable quantities that are measured in LHC and related experiments are
mainly cross sections, both total (inclusive) and differential (exclusive) in the various
kinematic variables. Cross-sections in particle physics processes are typically computed
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using perturbation theory, which provides a very powerful set of tools to predict observ-
able quantities from a Quantum Field Theory. It is based on the assumption that a given
observable can be defined by a power series in the coupling constant of the theory: then,
if such coupling is small enough to be considered a perturbative parameter, the compu-
tation of the first few orders of the power series is sufficiently accurate to describe the
observable. However, this assumption needs some care, since perturbative series can
indeed de divergent. It is possible to interpret the perturbative expansion in the sense
of an asymptotic series, where the inclusion of higher orders improves the estimate of
the physical quantity under study, up to some finite order, thereby saving perturbation
theory from a dramatic failure. However, there are situations in which the growth of the
series already starts at the level of the first terms; in these cases, a truncation of the series
is of no meaning and only a resummed result is reliable. This is a situation that quite
often appears in QCD, and hence one of the main problems addressed in this thesis. A
cross-section generically depends on many energy scales, and the dependence is typi-
cally in the form of logarithmic ratios of energies. In some kinematical regimes, when
two of such scales become very different to each other these logs become large and the
coefficients of the perturbative series are significantly enhanced, making the standard
perturbative approach unreliable. Then, the entire series of these enhanced terms has to
be resummed in order to have an accurate prediction for the observable.

Finally heading to the actual purpose of this thesis, we face here the problem of re-
summation of perturbation series in QCD. The processes that will be discussed are the
production of high invariant mass systems at hadron colliders, such as the Drell-Yan
pair production or the Higgs boson production. Since at hadron colliders the initial state
particles are hadrons, the cross-sections are typically computed using the Parton Model,
which describes the interaction of the hadron via its partons (quarks and gluons): the
parton-level cross-section is then computed in QCD using perturbation theory, and the
hadronic cross-section is predicted by performing a convolution with the parton dis-
tribution functions, which are non-perturbative objects encoding the information about
how those partons are distributed inside the hadron. Chapter 2 of this thesis is devoted
to the introduction of the Parton Model and the parton densities, and Chapter 4 to the
transverse momentum resummation formalism.

The production of colourless particles (Drell–Yan lepton pairs, Higgs boson, etc) are
extremely important for Standard Model precision tests and for beyond the Standard
Model (BSM) searches at hadron colliders. Fast and accurate predictions are essential to
enable the best use of the precision measurements for these processes; they are used
for parton density fits, for the extraction of fundamental parameters of the SM, and
for the estimation of background processes in various searches. This thesis describes
at its end a new numerical program, HTurbo, producing fast and accurate predictions
for the QCD transverse-momentum resummation of Higgs cross sections up to next-
to-next-to-next-to-leading logarithmic (N3LL) accuracy, combined with the fixed-order
results at next-to-next-to-leading order, including the full kinematical dependence of the
decaying lepton pair with the corresponding spin correlations and the finite-width ef-
fects. The HTurbo program is an improved reimplementation of the HqT, HRes and
HNNLO programs, which provides fast and numerically precise predictions through the
factorization of the cross section into production and decay variables, and the usage of
quadrature rules based on interpolating functions, together with the Vegas Monte Carlo
algorithm, for the integration over kinematic variables. We show below a brief outline of
this thesis, for the reader to have an overall sight of its contents, to be used as a roadmap.
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Thesis overview

Outline

The present thesis consists in three parts, with a total of six chapters, followed by
an Appendix section and the bibliographic note. Each part is devoted to the study of
the internal dynamics of the proton and the computational tools used for its description.
Part I describes the basics of Quantum Chromodynamics, the part of the Standard Model
addressing the strong interactions. It also briefly presents the main physical processes
addressed by the experiments within the LHC, meaning the production of colourless
particles such as the Drell-Yan process (via the intermediate production of electroweak
bosons Z and W), and the Higgs boson. Part II describes with some detail the resumma-
tion formalism, that is, the mathematical framework used to to address the logarithmic
enhancements that appear in the perturbative series when computing the cross sections.
Finally, in Part III we present the implementation of this formalism in the numerical
code named HTurbo, producing fast and precise predictions for the resummed trans-
verse momentum distribution of the Higgs boson at the LHC.
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Main results

As stated already, the production of fast and accurate predictions has become one
of the main tasks among theoreticians, heading towards the high luminosity era of
the LHC, and resummation in QCD is needed for the prediction of hadronic observ-
ables, and in particular of differential distributions. The HTurbo program provides fast
and numerically precise predictions for Higgs boson production, through a new imple-
mentation of the HqT, HRes and HNNLO numerical codes. The cross-section predictions
include the calculation of the QCD transverse-momentum resummation up to next-to-
next-to-next-to-leading logarithmic (N3LL) accuracy, combined with the fixed-order re-
sults at next-to-next-to-leading order. They also include the full kinematical dependence
of the decaying photon pair. The enhancement in performance over previous programs
is achieved by code optimization, by factorizing the cross section into production and
decay variables, and with the usage of numerical integration based on interpolating
functions. The resulting cross-section predictions are in agreement with the results of
the original programs at the per mille level. The great reduction of computing time for
performing cross-sections calculation opens new possibilities for Higgs processes at the
LHC, and also opens the possibility of searches for physics beyond the Standard Model.
A detailed description of the code performance and its results can be found at the very
end of this thesis in Chapter 6, while the architecture and usage are discussed in Ap-
pendix C.
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CHAPTER 1

Quantum Chromodynamics

The strong interactions

This chapter aims to introduce Quantum Chromodynamics (QCD), the theory of the
strong interactions. We would like to draw the reader’s attention to this chapter in par-
ticular, since the basic concepts about colour quantum number, group representation and
renormalization, among others, are the ingredients for the description of more complex
phenomena that we will discuss later on throughout this thesis.

QCD is the sector of the so-called Standard Model of particle physics [2, 3], which
describes the strong interactions and the phenomenology we encounter at the typical
scales addressed by the LHC, which is, the TeV scale (. 10−20 m). In particular, QCD
is the theory of the interactions between quarks and gluons, which are the fundamental
fields that form the hadronic matter. It is an unbroken gauge theory based on the color
group SU(3) [9], where the eight massless gauge bosons are the so-called gluons g, and
the matter fields are described by ”colour triplet” fermions, named quarks. Therefore
quarks and gluons are the only fundamental fields of the Standard Model (SM) feel-
ing the strong interactions, in other words, the only ones that interact strongly. When
probed at very short wavelengths, QCD is essentially a theory of weakly interacting
”partons”1 - quarks and gluons - which scatter off one another through relatively small
quantum corrections. However, at longer wavelengths, of the order of the size of the
proton (∼ 1fm = 10−15m), or equivalently at energies of order MeV, we see large num-
ber of hadronic bound states emerging, with string-like, or confining potentials building
up as we try to separate their partonic constituents. Given our inability to perform ana-
lytic calculations in strongly coupled field theories, QCD is therefore still only partially
solved. Nevertheless, all its features across all length scales are believed to be encoded
in a single one-line formula of alluring simplicity; the Lagrangian of QCD, which we
describe in the sections below.

When describing collider physics, we encounter that some parts of QCD can be cal-
culated in terms of the fundamental parameters of the Lagrangian, whereas others must
be expressed through complex models lying on large sets of parameters which are not
a priori computable, and which need to be constrained by fitting from data. However,
even in the absence of a perturbative expansion, there are still theorems which can be
used to give relations between seemingly different processes and that do come to aid.
Thus, in the chapters dealing with phenomenological models we shall emphasize that

1The origin of the term ”parton” is due to Richard Feynman, who back in the 1960s realized that at high
enough energies any hadron could be described as a composite object made of point-like things that he called
”partons”. Effectively, when we say partons we are typically referring to quarks and gluons inside the proton.

3



4 1.1 The colour quantum number

the loss of a factorized perturbative expansion is not equivalent to a total loss of predic-
tivity, in the sense that QCD remains a perfectly self-consistent theory, whose predictions
can be compared with data with large accurate agreement.

Moreover, QCD is one of the richest gauge theories we have so far encountered.
Its emergent phenomena, unitarity properties, colour structure, non-perturbative dy-
namics, interplay between scale-invariant and scale-dependent properties, and its wide
range of phenomenological applications, are still topics of active investigation. In ad-
dition, or perhaps as a consequence, the field of QCD is currently experiencing fast im-
provements in various areas. On the perturbative side, new methods to compute scatter-
ing amplitudes with very high particle multiplicities are being developed, together with
advanced computational techniques for combining such amplitudes with all-orders re-
summation frameworks. On the non-perturbative side, data on soft-physics processes
from the LHC is suggesting to reconsider the reliability of the standard fragmentation
models, and heavy-ion collisions are providing new insights into the collective behav-
ior of hadronic matter in QCD, that can be already studied from e+e− annihilation. We
will now review some basics of QCD, introduce the Parton Model and describe in more
details the parton densities and the DGLAP evolution equations. This chapter is by no
means intended as a complete review; in particular we assume the reader knows the
quantum theory of fields.

We shall focus on QCD for mainstream collider physics. This includes the basics
of SU(3), colour factors, the running of αs, factorization, hard processes, infrared safety,
with some notes on parton showers and matching. While not covering everything, hope-
fully these topics can also serve at least as stepping stones to more specialized issues that
have been left out, such as event generators, heavy flavours, polarization, or to topics
more tangential to other fields, such as axions, lattice QCD, or heavy-ion physics.

1.1 The colour quantum number

The overwhelming experimental evidence that the nucelons are made of quarks is
reviewed in [9]. Baryons are bound states of three quarks, and the mesons are composed
by a quark and an antiquark. An immediate success of the quark model, following the
additive rules of angular momentum for building hadronic bound states, is not other
than its astonishing simplicity. Protons and neutrons are relatively complicated objects,
with a size and a rich internal quark structure. The structureless quarks, as dealt with in
Quantum Field Theory, enable to explore other interactions with the same powerful the-
oretical techniques that were so successful in describing the electromagnetic interactions
at the quantum level through Quantum Electrodynamics (QED).

As a chronological note for approaching the strong interactions, let us to consider
the story of the discovery the colour degree of freedom, or colour quantum number. The
first hint for a color quantum number, which was arguably the measurement of the ∆++

baryon state, discovered in 1951 [10], is described below. The title and part of the ab-
stract from this historical paper are reproduced in Figure 1.1. In the context of the quark
model, which first had to be developed, successively joining together notions of spin,
isospin, strangeness, etc, the flavour and spin of the ∆++ baryon state is described by

|∆++〉 = |u↑u↑u↑〉 , (1.1)

clearly a symmetric configuration of three u quarks with spin ”up”. This correctly
matches the properties of the doubly charged ∆++ baryon, however, since is a fermion,
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Figure 1.1: Title and part of the abstract of the 1951 paper [10] (published in 1952) in which the
existence of the ∆++ baryon was deduced, based on data from Sachs and Steinberger at Columbia
[11] and from Anderson, Fermi, Nagle et al. at Chicago [12, 13]. See also memoir by Nagle [14].

it must have an overall antisymmetric wave function. That is, the quark scheme forces
us to combine three identical fermions u in a completely symmetric ground state uuu in
order to accommodate the known properties of the ∆++ particle, but such a state is of
course forbidden by Fermi statistics. In 1965, fourteen years after its discovery, this was
finally understood by the introduction of colour as a new quantum number associated
with the SU(3) group [15, 16]. The ∆++ wave function can now be made antisymmetric
by arranging its three quarks antisymetrically in this new degree of freedom,

|∆++〉 = εijk |ui↑uj↑uk↑〉 , (1.2)

being now the color indices either red, green, or blue, and for antiquarks the comple-
mentary antired, antiblue, antigreen, and hence solving the mystery.

Here we encounter quite an immediate problem: if for instance uRuGuB is the ∆++,
then we appear to have, following the same reasoning, many candidate states for the
proton: uRuGdB, uRuGdG, uRuGdR, and so on. Yet only one proton state exists, and there-
fore we have to introduce our color quantum number in such a way that it does not
affect the number of proton states, since it would drive us to a direct conflict with ob-
servation. The way this is done is to assert that all particle states observed in nature are
color singlets, or colorless, or, to be more precise, unchanged by rotations in R, G, B color
space). More direct experimental tests of the number of colours were provided first by
measurements of the decay width of π0 → γγ decays, which turns out to be proportional
to N2

C [3], and later by the famous R ratio in e+e− collisions, that we will discuss later
on.

1.2 The Lagrangian of QCD

Quantum Chromodynamics, as already stated, is based on the SU(3) gauge group,
that is, the 3-dimensional special unitary group. Since there are a total of 9 linearly in-
dependent unitary complex matrices, one of which has determinant -1, there are a total
of 8 independent directions in this matrix space, corresponding to the 8 generators of the
group, as compared with the single one for QED. In the context of QCD, we commonly
represent this group using the so-called fundamental or defining representation, in which
the generators of the group are written as traceless and hermitian matrices. From now on
we will refer to the indices enumerating the the rows and columns of this matrices (from
1 to 3) as fundamental indices, and use the letters i, j, k, ..., to denote them. Meanwhile,
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Figure 1.2: Illustration of the three crossings of the interaction of a lepton current (black) with a
quark current (red) via an intermediate photon or Z boson, with the corresponding colour factors.

we will use the letters a, b, c, ..., to refer the indices enumerating the generators (from
1 to 8), also called adjoint indices. A detailed derivation of the QCD Lagrangian from
local gauge invariance under SU(3), in analogous way to what it is done for building the
QED Lagrangian from local U(1) invariance, is shown in Chapter 14 of [9]. The classical
Lagrangian for such a theory, involving only quarks and gluons, is written as

L = ψ̄iq(iγ
µ)(Dµ)ijψ

j
q −mqψ̄

i
qψqi −

1

4
F aµνF

aµν , (1.3)

where ψiq denotes a quark field with fundamental color index i, ψq = (ψqR, ψqB , ψqG)T ,
γµ is the Dirac matrix expressing the vector nature of the strong interaction, being µ the
Lorentz vector index, and mq represents the quark mass. F aµν is the field strength tensor
for a gluon with adjoint colour index a,

F aµν = ∂µA
a
µ − ∂νAaµ + gsf

abcAbµA
c
ν , (1.4)

being Dµ the QCD covariant derivative, whose elements are given by

(Dµ)ij = δij∂µ − igstaijAaµ , (1.5)

with gs the strong coupling, related to the usual αs coupling by αs = g2
s/4π. Aaµ is the

gluon field with colour index a, and taij proportional to the hermitian and traceless Gell-
Man matrices of SU(3). These generators are the SU(3) analogs to the Pauli matrices in
SU(2). By convention, the constant of proportionality is normally taken to be

taij =
1

2
λaij . (1.6)

This choice in turn determines the normalization of the coupling gs, via equation 1.5,
and fixes the values of the SU(3) Casimir operators and structure constants.

As already stated, the colour degree of freedom is introduced in a very specific way,
since no coloured objects have been directly observed in nature. Given that we do not
measure color in a final state, we average over all possible incoming colours and sum
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over all possible outgoing ones, in such a way that a QCD scattering amplitude in prac-
tice always contains sums over quark field contracted with Gell-Mann matrices. These
contractions in turn produce traces which yield the colour factors that are associated to
each QCD process, and which basically count the number of ”paths through colour
space” that the process at hand can take.

A very simple example of a colour factor is given by the decay process Z → qq̄.
This contains a simple δij factor in colour space, since the outgoing quark and antiquark
must have identical color and anti-color. Squaring the corresponding matrix element
and summing over final state colours yields a colour factor of∑

colours

|M|2 ∼ δijδ∗ji = Tr{δ} = NC = 3 . (1.7)

A next-to-simplest example, that we will revisit in the following chapters, is the so-
called lepton pair production, or Drell-Yan process, given by qq̄ → γ∗/Z → e+e−, which
is just a crossing of the previous one. By crossing symmetry, the squared matrix element,
including the colour factor, is exactly the same as before, but since the quarks are here
incoming, we must average rather than sum over their colours, leading to∑

colours

1

9
|M|2 ∼ 1

9
δijδ

∗
ji =

1

9
Tr{δ} =

1

3
, (1.8)

where the colour factor now expresses a suppression due to the fact that only quarks of
matching colours are able to collide to produce a Z boson. The chance that a quark and
antiquark picked at random from the initial state have matching colours is 1/NC .

Similarly, lq → lq via the t-channel photon exchange (usually called Deep Inelastic
Scattering), constitutes yet another crossing of the same process, see figure 1.2. The color
factor of this process comes out as unity.

We will not go with much detail into more complicated processes, such that the ones
involving quark-gluon vertices, as the one depicted in figure 1.3. Just remark that the
task of taking traces over t matrices can be greatly simplified by the use of the relations
given in Figure 1.5. In the standard normalization convention for the SU(3) generators,
given in equation 1.6, the Casimirs appearing in 1.5 are

TR =
1

2
, CF =

4

3
, CA = 3 . (1.9)

In addition, notice that the gluon self-coupling on the third line of Figure 1.5 involves a
factor fabc. These are called structure constants of QCD and they enter via the non-abelian
term in the gluon field strength tensor F aµν from equation 1.4. The structure constants of
SU(3) are listed in Figure 1.6.

They define the adjoint, or vector representation of SU(3) and are related to the funda-
mental representation generators via the commutator relations

tatb − tatb = [ta, tb] = ifabctc, (1.10)

or equivalently
ifabctc = 2Tr{tc[ta, tb]}. (1.11)
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Figure 1.3: Illustration of a qqg vertex in QCD, before summing/averaging over colours: a gluon
in a state represented by λ1 interacts with quarks in the states ψqR and ψqG.

Figure 1.4: Illustration of a ggg vertex in QCD, before summing/averaging over colours: interac-
tion between gluons in states λ2, λ4, λ6 represented by the structure constant f246.

Figure 1.5: Trace relations for t matrices (convention-independent). Other useful relations of the
QCD generators and Casimir operators can be found in [1] [3]
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Figure 1.6: Structure constants of SU(3)

Thus, it is a matter of choice whether one prefers to express colour space on basis of
fundamental-representation of t matrices, or via the structure constants fabc. Expanding
the FµνFµν term in the Lagrangian using equation 1.4, we see that there is a 3-gluon
and 4-gluon vertex that involve fabc, the latter of which has two powers of f and two
powers of the coupling. Finally, the last line of the table is not really a trace but instead
a useful so-called Fierz transformation, which expresses products of t matrices in terms
of Kronecker δ functions 2.

A gluon self-interaction vertex is illustrated in figure 1.4, compared with the quark-
gluon one in Figure 1.3. We remind the reader that gauge boson self-interaction are a
hallmark of non-abelian theories and that their presence leads to the main differences
between QED and QCD.

1.3 The strong coupling

In this section we provide an introduction to the renormalization group formalism
and the concept of running coupling, which will allow for the description of confinement
of quarks, and will also lead to the result that QCD exhibits asymptotic freedom.

We start with a brief summary of how renormalization works. In the context of QED,
we know how the electric charge is modified by the vacuum polarization loops in the
photon propagator 3. After a proper reparametrization, which takes us from the bare
to the physical charge, loops lead to finite and measurable effects. We know that the
loop will be repeated in higher orders as shown in 1.7, which can be also written as 1.8,
and the geometric series can be summed to give 1.9. While a detailed description of the

2Fierz transformation is often used, for instance, in shower Monte Carlo applications, to assist in mapping
between colour flows in NC = 3 and the so called large number of colors, or leading colour approximation.

3The infinities appearing in loop diagrams are a consequence of a naive definition of the electric (or color)
charge. After a proper reparametrization, which takes us· from the bare to the physical charge, loops lead to
finite and measurable effects. The calculations based on renormalization agree with experiment, for which the
Lamb shift and the anomalous magnetic moment are dramatic illustrations. For a more detailed description
see [1, 9].
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Figure 1.7: Vacuum polarization loops in photon propagator at higher orders.

Figure 1.8: Vacuum polarization loops in photon propagator, expressed as geometric series.

renormalization procedure can be found in [1, 9], let us show here the solution found by
redefining the coupling including all vacuum polarization loops as given by 1.9. This
leads to the fact that the charge measured by an experiment depends on the momentum
µ2 of the experiment, and hence α(µ2) is referred to as the running coupling. The leading
order behavior of α(µ2) is written in terms of a reference or renormalization scale µR as
follows:

αs(µ
2) =

αs(µ
2
R)

1− αs(µ2
R)

3π log µ2

µ2
R

(1.12)

The running coupling α(µ2) describes how the effective charge depends on the sep-
aration of the charged particles. As µ2 increases, the photon sees more and more charge
until, at some unphysically large but finite µ2, the coupling α(µ2) eventually diverges.
We will return to this point when describing the running coupling in QCD.

Let us now deal with QCD, where crucial differences appear. One could try to pro-
ceed as it was done for renormalization in QED, replacing lepton fields by quarks and
photon loops by gluons. But the cancellation in QCD is much more complicated, given
the self-coupling among gluons - with origin in the SU(3) structure of QCD - and requires
the introduction of a ”ghost” field to cancel the unphysical polarizations. Another much
more elegant way of describing the running of the coupling with the energy comes un-
der the name of renormalization group.

In the limit of Bjorken scaling - first order approximation, or QCD at fixed coupling -
properties of high-energy interactions are determined only by dimensionless kinematic
quantities, such as rapidities in the scattering amplitudes and ratios of energy scales.
Indeed, the observed approximate agreement was used as a powerful argument for the
point-like structure of partons. Since measurements at different energies are sensitive to
different resolution scales, independence of the absolute energy scale is indicative of the
absence of other fundamental scales in the problem and hence of point-like constituents.
The running is logarithmic with energy, and it is governed by the so-called beta function,
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Figure 1.9: Result of the photon propagator after summing the geometric series.

as given in the so-called Callan-Symanzik equation, or renormalization-group equation

dαs
d lnµ2

= µ2 dαs
dµ2

= β
(
αs(µ

2)
)

(1.13)

where the β function can be expanded as a perturbative series in αs as

β(αs) = −α2
s

(
β0 + β1αs + β2α

2
s + ...

)
. (1.14)

The βi coefficients are known up to 5 loops (i = 3). More details on the analytic solutions
on the equation can be found in [1, 3, 9]. The LO (1-loop) and NLO (2-loop), NNLO
(3-loop) behavior are given by the LO, NLO, NNLO coefficients

β0 =
1

12π
(11CA − 2nf ) ,

β1 =
1

24π
(17C2

A − 10TRCAnf − 6TRCFCFnf )

β2 =
1

64

(
2857

54
C3
A +

1415

54
C2
Anf −

205

18
CACFnf + C2

Fnf +
79

54
CAn

2
f +

11

9
CFn

2
f

)
,

(1.15)

and so on and so forth. Here nf is the number of QCD massless flavours, and the SU(NC)
colour factors are CA = NC and CF = (N2

C − 1)/(2NC).

In the β0 coefficient, the first term is due to gluon loops while the second is due to
quark ones. Similarly, the first term of the β1 coefficient arises from double gluon loops,
while the second and third represent mixed quark-gluon ones. At higher loop orders,
the βi coefficients depend explicitly on the regularization and renormalization scheme
that is used 4. A brief discussion can be found in the PDG review on QCD [17].

Note that, if there are additional coloured particles beyond the Standard Model ones,
loops involving those particles would affect the coefficients of the beta function at energy
scales above the masses of the new particles, thus modifying the running of the coupling.

4A detailed description of the principles of dimensional regularization, together with the definition of the
minimal subtraction (MS) and the modified minimal subtraction (MS) scheme can be found in the notes by
Guido Altarelli ”Collider Physics within the Standard Model”. The (MS) definition of αs is one of the most
commonly adopted in literature, and values quoted for it normally refer to this definition.
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Figure 1.10: Extract of the prize announcement for D.Gross, H.Politzer, F.Wilczek in 2004.

By solving the renormalization-group equation we find the behavior of the coupling
in terms or the energy 5. The LO behavior is showed below

αs(µ
2) =

αs(µ
2
R)

1 + b0αs(µ2
R) ln µ2

µ2
R

+O(α2
s)

(1.16)

where, again, the numerical value of the strong coupling is usually specified by giving
its value at some physical scale µR, referred to as renormalization scale. Typical values
for this reference scale are µR = MZ , the mass of the Z boson around 90 GeV.

Contrary to the QED case, the negative overall sign of equation 1.14, combined with
the fact that β0 > 0 (which holds true for nf < 17), leads to the famous result that
the QCD decreases with energy, and hence QCD is what we call asymptotically free. A
discovery for which the Nobel price in physics was awarded to D.Gross, H.Politzer, and
F.Wilczek, in 2004. An extract of the price announcement is reported as follows in figure
1.10.

Note that this is quite a convenient result, since the energies we access with collider
experiments like the LHC will be typically very large, and will allow the application of
perturbation theory that is perfectly well-defined. On the other hand, this is the rea-
son why QCD can only be solved analytically through a perturbative approach at very
high energies. In other words, one of the main consequences of asymptotic freedom is
that perturbation theory becomes better behaved at higher absolute energies, due to the
efficiently decreasing coupling. Furthermore, since the running of αs explicitly breaks
Bjorken scaling, we also expect to see small changes in jet shapes and in jet production
ratios as we vary energy. Our current understanding of the QCD running coupling is
summarized by the plot in figure 1.11, taken from a recent comprehensive review by
S.Bethke [18].

As a final remark on the asymptotic freedom, note that the decreasing value of the
strong coupling with energy must eventually cause it to become comparable to the elec-
tromagnetic and weak ones, at some energy scale. Beyond that point, which may lie
at energies of order 1015 − 1017 GeV, we do not know what the further evolution of the
combined theory will actually look like, or whether it will continue to exhibit asymptotic

5Note that only at leading order, counting just with the β0 coefficient, the equation can be solved by sepa-
ration of variables. At higher orders, though, the equation needs to be solved applying a recursive procedure,
inserting the LO solution for the computation of the NLO, and so on and so forth.



Quantum Chromodynamics 13

Figure 1.11: QCD running coupling at different energy scales, taken from [17, 18].

freedom. Now consider what happens when we run the coupling in the other direction,
towards smaller energies. Taken at face value, the numerical value of the coupling di-
verges rapidly at scales below 1 GeV, as illustrated in by the curves disappearing off the
left-hand edge of the plot in figure 1.11. To make the singularity explicit, we can write
equation 1.16 in the following form 6.

αs(µ
2) =

1

b0 ln µ2

Λ2

, (1.17)

where
Λ ∼ 200 MeV (1.18)

specifies the energy scale at which the perturbative coupling would nominally become
infinite, the so-called Landau pole, which indicates the energy scale where perturbation
theory for QCD breaks down. Finally, one should be aware that there is a multitude of
different ways of defining both Λ and αs(µR). At the very least, the numerical value one
obtains depends both on the renormalization scheme used and on the perturbative order
of the calculations used to extract them. Typically, fits to experimental data yield smaller
values for αs(MZ)|LO & αs(MZ)|NLO & αs(MZ)|NNLO.

The behavior of αs at low energy scales is compatible with confinement. In nature,
as we already know, we don’t ever see isolated quarks or gluons, but only hadrons, i.e.
composite objects made of quarks and gluons which belong to the singlet representation
of the gauge group SU(3). As a consequence of the running of αs, we can not describe
the strong interactions in the small energy regime by use of perturbative QCD (pQCD
for short); Even counting on lattice simulations, which provide fine description of QCD
at small energies and some evidence that quarks confine, a complete non-perturbative

6Note, however, that this only parametrizes the purely perturbative result, which is not reliable at strong
coupling, so equation 1.17 should not be taken to imply that the physical behavior of full QCD should exhibit
a divergence at µ→ Λ.
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explanation is still missing. We can conclude here that, being composite objects, the
description of the interaction between hadrons and other particles is more complicated
than for elementary particles. The renormalization group allows us tu understand the
asymptotically free behavior of QCD, and hence to safely apply perturbative QCD in
this regime for producing accurate predictions.



CHAPTER 2

Hadronic processes and factorization

2.1 Parton Model and factorization

We just discussed in Chapter 1 the perturbative approach to the strong interactions,
and how pQCD is theoretically justified given the asymptotic freedom of QCD. At high
energies, it becomes small enough to be considered a perturbative parameter, and we
can study the interactions between the fundamental fields of the theory, i.e., quarks and
gluons, as if they were weakly coupled. In other words, we can compute observables via
the Feynman diagrams approach.

However, the short-distance (hard) scattering between particles of QCD can not be
directly observed. Indeed, due to confinement, in any measurement we perform we are
forced to also deal with long distance (soft) contributions, since the elementary objects
going through the hard interaction will then hadronize to form the objects that are mea-
sured in a final state. Unfortunately, a perturbative approach can not be applied on such
hadronization processes, and at first sight the application of pQCD on scattering experi-
ments seems doomed to fail. The entire picture is encoded in the so-called Parton Model
1, that we described below:

• At high enough energies, a scattering within a hadron can be described by a scat-
tering within the various constituents of the hadron - partons - which can be con-
sidered as point-like and freely moving.

• Any probe interacts with only one parton, with multiple scattering remaining neg-
ligible at all effects.

Under these assumptions, a scattering involving a hadron can be seen as the product
between the probability to find a particular parton inside the hadron times the scatter-
ing involving the parton, summed over all the possible partons inside the hadron in the
initial state. By identifying these partons with the fundamental quarks and gluons of
QCD, we are able to separate the long and short-distance dynamics.

In other words, we face the complication that hadrons are composite, with a time-
dependent structure illustrated in Figure 2.1; the internal dynamics of the hadron in-
volves a complex structure of constantly interacting partons, being emitted and absorbed
at very short time scales. Thus, before we can use perturbatively calculated scattering
amplitudes, we must first address the partonic structure of the colliding hadrons.

1First postulated by Bjorken [19] and Feynman [20].

15
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Figure 2.1: Representation of the partonic fluctuations inside a hadron.

For the hadron to remain intact, the fluctuations inside it must involve momentum trans-
fers smaller than the confinement scale. Indeed, high-virtuality fluctuations are sup-
pressed by powers of

αsΛ
2

|k|2
, (2.1)

with the confinement scale (Λ ∼ 200 MeV, see Chapter 1) and |k| the virtuality of the fluc-
tuation. Thus, most fluctuations take place over timescales of the order 1/Λ. By looking
at a DIS experiment as the one depicted in Figure 1.2, the scattered photon interacts over
a much shorter time scale 1/Q� 1/Λ, during which the partonic fluctuations inside the
hadron appear almost frozen. The hard probe effectively takes an instantaneous snap-
shot of the hadron structure, at a characteristic resolution given by 1/Q.

This is formalized by the factorization theorem [21], which expresses the independence
of long-wavelength (soft) structure and the short-distance (hard) process. Originally
formulated for DIS, the factorization theorem allows us to write the cross section for
lepton-hadron scattering as a convolution of a non-perturbative but universal (i.e., pro-
cess independent) parton density function (PDF) and a perturbatively calculable par-
tonic scattering cross section. Denoting by xi the fraction of the hadron momentum
carried by a parton of flavour i,

pi = xiph , (2.2)

we can write the lepton-hadron cross section in factorized form

σlh =
∑
i

∫ 1

0

dxi

∫
dΦF fi/h(xi, µ

2
F )

dσ̂li→F (xi,ΦF , µ
2
F )

dxidΦF
, (2.3)

with the i index running over all possible parton types in the incoming hadron, F de-
scribing all possible partonic final states, and dΦF the Lorentz-invariant phase space
volume element. Note that eq. 2.3 is valid only up to power corrections.

In this last expression two main quantities towards the computation of a hadronic
observable are shown. The parton densities, also referred to as parton distribution functions
are denoted by fi/h, and they parametrize the distribution of partons inside the target
hadron. They are not a priori calculable within a perturbative framework, and therefore
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they must be constrained by fits to data, as it is discussed in section 2.2.

On the other hand, the partonic cross section, dσ̂, describes the pure partonic inter-
action, meaning the short-distance dynamics in the hard scattering. It is calculable in
perturbation theory, as it is discussed in section 2.3.

There are three main classes of hard processes, that we will describe with detail in
the next chapters: those with no hadronic particles in the initial state, like e+e− annihi-
lation, those initiated by a lepton and a hadron, like DIS, and those with two incoming
hadrons, like pp̄ (Tevatron) or pp (LHC). The parton densities, defined and measured
in DIS, are instrumental to compute hard processes initiated by collisions of the form
h1 + h2 −→ F + X , where hi are hadrons and F some triggered final state particle, or
system of particles, or one or more jets which specify the large scale Q2 relevant for the
process. For example, F can be a W±, or a Z, or a virtual photon with large Q2, (Drell-
Yan process), or a jet with large transverse momentum qT , or a heavy quark-antiquark
pair. By X we mean totally inclusive collection of particles that can appear in our final
state.

For the purpose of this thesis we deal with LHC physics, meaning processes with
two hadrons in the initial state. The factorization theorem states that, for the total cross-
section - or some other sufficiently inclusive distribution - we can write, apart from
power suppressed corrections, the following expression

σ(s, τ) =
∑
AB

∫
dx1dx2 f1A(x1, Q

2) f2B(x2, Q
2)σ̂AB(x1x2s, τ) . (2.4)

Here τ = Q2/s is a scaling variable, f1A and f1B are the probability densities for a parton
of type A or B inside the hadron hi, and σ̂AB is the partonic, or hard cross section for

parton A+ parton B → F + X̂ . (2.5)

Here X̂ is the partonic version of X , i.e., an inclusive collection of quarks and gluons.
This result is based on the fact that the mass singularities associated with initial legs
are of universal nature, so that one can reproduce the same modified parton densities
by absorbing these singularities into the bare parton densities, as in DIS. Once the par-
ton densities and αs are known from other measurements, the prediction of the rate for
a given hard process is obtained within the corresponding theoretical ambiguity (e.g.,
from scale dependence or hadronization effects).

The residual scale and scheme dependence is often the most important source of the-
oretical error. Therefore one could ask to what extent the factorization theorem has been
proven. In perturbation theory up to NNLO, it has been explicitly checked to hold for
many processes: if corrections exist we already know that they must be small. The LHC
experiments offer a wonderful opportunity for testing the factorization theorem by com-
paring precise theoretical predictions with accurate data on a wide variety of processes.

A great effort has been and is being devoted to the theoretical preparation and in-
terpretation of the LHC experiments. For this purpose, very complex calculations are
needed at NLO and beyond because the strong coupling, even at large Q2 values in-
volved, is not negligible and radiative corrections can be sizeable.



18 2.2 Parton densities

2.2 Parton densities

As we just discussed, in order to calculate hadronic cross sections one needs to factor-
ize the short-distance (hard) and the long-distance (soft) physics. This is done by writing
a hadronic observable as the convolution of some partonic object, describing the inter-
action between two partons in the initial state, and then convoluting it with the parton
densities, or parton distribution functions, which encode the information about how those
partons were distributed inside the hadron.

Strictly speaking, the parton density fi/h(x, µ2
F ) represents the effective density of

partons of flavour i as a function of the momentum fraction x, when a hadron of type h
is probed at the factorization scale µF . The PDFs are non-perturbative functions which
are not a priori calculable, but a perturbative differential equation governing their evolu-
tion can be obtained by requiring that physical scattering cross sections are independent
of µF to a given perturbative orders. The resulting renormalization group equation is called
DGLAP 2 equation, and it can be used to evolve the PDFs from one perturbative scale to
another. This means that we only need to determine the form of the PDFs as a function
of x at a single, arbitrary scale µ0. We can then get its form at any other scale µF by
simple RGE evolution.

The derivation DGLAP from scale invariance can be somehow complex, involving
general treatment of the Callan-Symanzik equation in the context of factorization and
aspects about OPE expansion, which are beyond the scope of this thesis. Hence we limit
ourselves to present final results, while the interested reader can see the refs [25, 26]. For
a given physical observable O, the scale-invariance condition

µ2
F

∂O
∂µ2

F

= 0 (2.6)

can be fulfilled by requiring that the PDFs solve the following set of nf + 1 equations,
known in literature as DGLAP, or Altarelli-Parisi equations

µ2
F

∂

∂µ2
F

(
qi(x, µ

2
F )

g(x, µ2
F )

)
=

∫ 1

0

dz

z

(
Pqi,qj

(
x
z , αs(µ

2
F )
)

Pqi,g
(
x
z , αs(µ

2
F )
)

Pg,qj
(
x
z , αs(µ

2
F )
)

Pg,g
(
x
z , αs(µ

2
F )
))(qi(z, µ2

F )
g(z, µ2

F )

)
(2.7)

where the various Pij are the Altarelli-Parisi splitting functions, controlling the universal
collinear splitting of a parton i into a parton j. They admit a perturbative expansion in
powers of αs, leading to a perturbative solution for the DGLAP equation. Expansion of
the splitting functions at first order leads to the dominant - or leading logarithm accuracy
PDFs, while the introduction of further orders in the splitting functions permits to in-
clude subleading logarithmic contributions. The explicit perturbative solution of eq. 2.7,
together with the expression for the leading order of the splitting kernels are collected in
Appendix B.

Note that DGLAP equations are hence used to run the PDFs from one perturbative
resolution to another. This means that whatever the initial scale µ0 is, we can then get its
form at any another scale µF , which we will use for applying the factorization theorem,
by simple RGE evolution. This leads us to the next feature about PDF estimation: the

2DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi [22, 23, 24]
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Figure 2.2: Representation of the parton distributions for the different quark flavours and the
gluon, as a function of the momentum fraction x, probed at a given transfer momentumQ2. On the
right-hand side, the PDFs are scaled at a higher value ofQ2 = 104 GeV, and hence the dependence
with x differs from the one probed at Q2 = 10 GeV. Extracted from and MSTW 2008 PDF dataset.

PDF fitting process.

Many collaborations, such as the CTEQ, MSTW, NNPDF, are devoted to PDF fitting,
meaning the task of constraining the form of the PDF functions by fitting cross sections
to experimental data, e.g. from DIS, Drell-Yan and pp → jets. For a deeper review see
[27, 28, 29]. In the context of PDF fits, the reference scale µ0 is usually taken to be rel-
atively low, of order one or a few GeV. Note also that different collaborations apply
different ansätze for the form of the f(x, µ0), and also quite different models lying in
large sets of parameters. They may also include different data in the fits, and also treat
or weight the data differently. Hence, results from different groups may not always be
mutually compatible. For the time being, it is recommended to try at least sets from two
different groups, for a comprehensive uncertainty estimate.

Concerning terminology, the words structure functions and parton densities are com-
monly used interchangeably. However, there is an important distinction between the
two, which we find often in (quantum) physics. The former is a physical observable
used to parametrize cross section, while the latter is a ”fundamental” quantity extracted
from it. In particular, since the parton densities are not themselves a physically observ-
able, they can only be defined within a specific factorization scheme 3 order by order in
perturbation theory. The only exception is at leading order, at which they have the sim-
ple physical interpretation of parton number densities. When going to higher orders,

3For all practical purposes, when focusing on LHC physics it is likely to encounter only one of such schemes,
the modified minimal subtraction MS, already mentioned in the discussion of the definition of the strong
coupling in Section 1.3.
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Figure 2.3: Coefficients of the perturbative series in LO calculations. On the left, F production at
LO. On the right, F + 2 jet at LO, with half-shaded boxes illustrating the restriction to the region
of phase space with exactly 2 resolved jets. The total power of αs for each coefficient is given by
n = k + l.

though, we tend to keep the simple intuitive picture from LO in mind, but one should
be aware that the fundamental relationship between PDFs and measured quantities is
actually more complicated. Due to the interplay between PDFs and the real and vir-
tual corrections to the LO cross section, the the parton densities no longer have a clear
probabilistic interpretation starting from NLO, and their definition depends on the fac-
torization scheme.

2.3 Fixed-Order QCD

Now we are ready for addressing the hard interactions, for which perturbation the-
ory can be applied. Consider the production of an arbitrary final state, F (e.g. a Higgs
boson, a tt̄ pair, a Drell-Yan lepton pair, etc). We can expand the partonic differential
cross section for an observable O is

dσ̂F
dO

=

∞∑
k=0

dΦF+k

∣∣ ∞∑
l=0

M(l)
F+k

∣∣2δ(O −O(ΦF+k)
)
. (2.8)

Here, M(l)
F+k is the amplitude for producing the final state F in association with k ad-

ditional final-state partons, also called ”legs” in the diagrammatic sense, and with l ad-
ditional loops. The sum starts at k = 0 and l = 0, corresponding to the leading order
(LO) for producing F , while higher terms represent real and virtual contributions, re-
spectively. The delta function determines the dependence on the phase space, since O
represent the full dΦF+k phase space, and O(ΦF+k) is a function that defines O evalu-
ated at each specific momentum configuration. We obtain the various fixed-order trun-
cations of perturbative QCD by limiting the nested sums in equation 2.8 to include some
specific values of k + l. Thus,

k = 0, l = 0 =⇒ Leading Order (tree-level) for F production
k = n, l = 0 =⇒ Leading Order (tree-level) for F plus jets

k + l ≤ n =⇒ NnLO for F (includes Nn−1LO for F + 1 jet, Nn−2LO for F + 2 jet, etc)

For k ≥ 1 we are not considering inclusive F production; instead we are dealing with
F + k jets. If we simply integrate over momenta, as implied by the integration over
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Figure 2.4: Coefficients of the perturbative series in NLO calculations. On the left, F production
at NLO. On the right, F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the
region of phase space with exactly 1 resolved jet. The total power of αs for each coefficient is given
by n = k + l.

the dΦF+k in equation 2.8, we would be including configurations in which one or more
of the k partons can be soft and collinear. Such configurations lead to infrared diver-
gences in QCD and hence must be regulated. Imposing cuts on angles, energies or other
kinematic variables such as transverse momenta, we are able to cut away problematic
regions of the phase space.

Recall that regularization cuts on a dimensional quantity, like energy or transverse
momentum, should be formulated as a ratio of scales, rather than as an absolute num-
ber. For instance, a jet with qT = 50 GeV would be considered hard and well-separated
depending on the process, and in particular on the energy of the hard interaction. Such
classification and labeling of the jet would drastically change if produced in association
with an ordinary Z boson (with hard scale MZ = 90 GeV), or with a highly virtual (900
GeV) Z ′ boson.

The main remark at this point, and directly related to the purpose of this thesis, is
that, if the regularization scale is taken too low, logarithmic enhancements of the type

αns lnm≤2n

(
Q2
F

Q2
k

)
(2.9)

will generate progressively large corrections order by order, which will spoil any fixed-
order truncation of the perturbative series. Here, QF - F standing for ”Final sate” - is
the hard scale associated with the process under consideration, and Qk is the scale asso-
ciated with an additional parton k, such a momentum fraction, transfer momentum, etc,
which would become dangerous when it becomes much smaller than the hard scale QF .

One can state, as a rule of thumb, that if σk+1 ∼ σk, then the perturbative series is
converging too slowly for a fixed-order truncation to be reliable. For fixed-order per-
turbation theory to be applicable, one must apply cuts on the hard process such that
σk+1 � σk. This way, the region where perturbation theory can be applied safely ex-
tended.

The virtual amplitudes, for l ≥ 1, are divergent for any point in the phase space.
However, as given by the KLN theorem [30, 31], unitarity puts a powerful constraint on
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Figure 2.5: Coefficients of the perturbative series in NNLO calculations. The total power of αs for
each coefficient is given by n = k + l. Green shading represents the full perturbative coefficient at
the respective k + l.

the IR divergences, forcing them to cancel exactly against those coming from the unre-
solved real emissions that we had to cut out above, order by order, making the complete
answer for fixed k + l = n finite 4. It is important to remark that the KLN theorem
is only valid for inclusive quantities, like a total cross section. Nevertheless, since this
cancellation happens between contributions that formally live in different regions of the
phase space, an important aspect of higher-order calculations is how to arrange for this
cancellation in practice.

We illustrate in Figure 2.3 the terms of the perturbative series that are included in
a given matrix-element-based calculation. In the left-hand side, the shaded box corre-
sponds to the lowest-order ”Born-level” matrix element squared. This coefficient is non
singular and hence can be integrated over the whole phase space, which we illustrate
by letting the shaded area fill all of the relevant box. A different kind of leading-order
calculation is represented in the right-hand side of the figure, where the half-shaded box
corresponds to the lowest-order matrix element squared for F + 2 jets. This coefficient
diverges in the phase space region where one or both jets are unresolved (i.e., soft or
collinear), and hence integrations can only recover part of the phase space, which we
emphasize by only shading the upper half of the box.

Figure 2.4 illustrates the inclusion of NLO virtual contributions. To prevent confu-
sion, let’s pause for a discussion on notation. By σ(1)

0 we intend

σ
(1)
0 =

∫
dΦ0 2Re[M(1)

0 M
(0)∗
0 ] , (2.10)

which comes from the Born-virtual interference term, and it is of one order αs relative
to the Born-level. Compare for instance with the expansion on equation 2.8 to k + l =

1. In particular, σ(1)
0 should not be confused with the integral over the 1-loop matrix

element squared, which would be of relative order α2
s and hence forms part of the NNLO

coefficient σ(2)
0 . Back to Figure 2.4, the unitarity cancellations between real and virtual

singularities imply that we can now extend the integration of the real correction in the

4Formally, the KLN theorem states that the sum over degenerate quantum states is finite. In the context
of fixed-order perturbation theory, this is exemplified by states with infinitely soft and/or collinear radiation
being degenerate with the corresponding states with loop corrections. They can not be told apart by any
physical observable.
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Figure 2.6: Representation of the first order real correction to the γ → qq̄. Now the phase space
differs from the one in the process σ(e+e− → qq̄), due to the extra parton in the final state. This
process σ(e+e− → qq̄g) will reduce to the σ(e+e− → qq̄) in the IR limit, when the radiated gluon
is either infinitely soft or collinear.

left-hand side over all of phase space, while retaining a finite total cross section,

σNLO
0 =

∫
dΦ0|M(0)

0 |2 +

∫
dΦ1|M(0)

1 |2 +

∫
dΦ02Re[M(1)

0 M
(0)∗
0 ]

= σ
(0)
0 + σ

(0)
1 + σ

(1)
0 , (2.11)

with σ(0)
0 the finite Born-level cross section, and the positive divergence caused by inte-

grating the second term over all phase space is canceled by a negative one coming from
the integration over loop momenta in the third term. One method for arranging the can-
cellation of singularities - the subtraction method - is discussed below.

As a particular example, we describe here the first order corrections to e+e− annihi-
lation into hadrons. The Born level cross section for a process of the form e+e− → q+q−

is given by
σ(e+e− → q+q−) = 3

∑
q

e2
q σ(e+e− → µ+µ−) , (2.12)

with the same structure than the cross section for a e+e− annihilation int a pair of leptons,
with the difference over the fractional charges each pair of quarks could carry. Also, the
factor 3 refers to the number of color, as described in Section 1.1, referring to how many
quark pairs can we pick with colour-anticolour, to form a colour singlet. It is usually
expressed directly in term of the R ration,

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= 3

∑
q

e2
q , (2.13)

The order αs corrections to R will come from the possibility of radiating a gluon from q
or q̄. The integrand we obtain is given by

1

σ

dσ

dxqdxq̄
=

2αs
3π

x2
q + x2

q̄

(1− xq)(1− xq̄)
, (2.14)

We immediately notice that, when integrating over xq and xq̄ from 0 to 1, we will find a
divergence as xq or xq̄ go to 1. To trace the origin of the problem, consider for instance
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Figure 2.7: Representation of the first order virtual corrections to the γ → qq̄. The kinematics are
the same than σ(e+e− → qq̄) Born level, given the loop nature of the radiated gluon.

the factor 1− xq in the denominator,

1− xq =
s

Q2
=

2pq̄ · pg
Q2

=
2

Q2
Eq̄Eg(1− θq̄g) . (2.15)

We see that the factor 1 − xq vanishes either when Eg → 0, meaning the radiated gluon
is soft, or when the angle θq̄g goes to 0, i.e., q̄ and g become collinear. Now we must
regularize these infrared singularities. One way to accomplish this is to give a fictitious
mass mg to the gluon and repeat the calculation from the Feynman diagrams. For the
real radiation contribution depicted in Figure 2.6, we will have

σreal =

∫
dxqdxq̄

dσ

dxqdxq̄

= σ(0)αs
2π

4

3

{
log2

(
mq

Q

)
+ 3 log

(
mq

Q

)
− π2

3
+ 5

}
, (2.16)

which remains divergent when mg → 0. The key point is to realize that this can not be
the final answer, since it depends on the fictitious mass mq , or in the regulator ε if we
had used dimensional regularization.

As we already know, there is another O(αs) contribution, coming from the Born-
virtual interference term in Figure 2.7. The solution for this term, for which we are back
to the Born kinematics, gives the solution

σvirtual = σ(0)αs
2π

4

3

{
− log2

(
mq

Q

)
− 3 log

(
mq

Q

)
+
π2

3
− 5

}
. (2.17)

We can already see the perfect match between the two contributions, with opposite signs
that will cancel the divergent and regulator-dependent terms. Although formally they
live in different regions of the phase space, is precisely in the limit where the gluon in
Figure 2.7 is soft or collinear when the phase space becomes also Born-like, and both
contributions can be exactly canceled to give

σ = σreal + σvirtual = σ(0) αs
Q2

, (2.18)

which is finite and independent of regulator mg , as indeed it must be. These particular
case is a clear example of the general KLN theorem, and leads to the famous result for
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the R ratio in e+e− annihilation at order αs

R = 3
∑
q

e2
q

{
1 +

αs(Q
2)

π

}
. (2.19)

For a typical Q2 where αs ∼ 0.2, this correction is small and can not easily be distin-
guished and requires fine measurement techniques. This is indeed another example of
a scaling parton model result being modified by logQ2 corrections arising from gluon
radiation.

2.4 Exclusive final states - the subtraction idea

As stated by the KLN theorem, the IR singularities coming from integrating over soft
and collinear real emission configurations should cancel order by order, against those
coming from the IR divergent loop integrals. This implies that we should be able to
rewrite a higher order cross section, e.g. an NLO cross section, as

σNLO = σBorn + Finite
{∫

dΦF+1|M(0)
F+1|

2

}
+ Finite

{∫
dΦF 2Re[M(1)

F M
(0)∗
F ]

}
(2.20)

where the second and third terms have already gone through cancellation of their com-
mon - and opposite sign - singularities. Hence, the result that remains is perfectly finite.

The way this is achieved is by classifying the IR singularities, properly organized
depending on how and in which order will they appear in the amplitudes, as we just
discussed for the particular case of e+e− annihilation into qq̄. We know that the IR limits
are universal, hence they can be classified using a set of process-independent functions
that only needs to be calculated once and for all. The commonly used in literature are
the Catani-Seymour (CS) dipole ones [32, 33]. Here we will show as an example the
antennae formalism [34, 35]. There are also other NLO techniques such as sector decom-
position, hadroproduction of color states, etc, that are beyond the scope ot this thesis.
For more details see [36, 37].

For the case of NLO, the subtraction approach consists on rewriting the NLO cross
section by adding and subtracting a simple function, dσs, that encapsulates all the IR
singular limits.

σNLO = σBorn +

∫
dΦF+1

(
|M(0)

F+1|
2 − dσNLO

s

)
+

∫
dΦF 2Re[M(1)

F M
(0)∗
F ] +

∫
dΦF+1dσ

NLO
s . (2.21)

where the component
(
|M(0)

F+1|2−dσNLO
s

)
is finite by universality of the IR limit, and the

sum of the second and third integrals is finite as stated by the KLN theorem. The task
now is to construct a suitable form for dσs. A main requirement is that it should be suf-
ficiently simple that the integral in the last term can be done analytically, in dimensional
regularization, so that the IR poles it generates can be canceled against those from the
loop.
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Figure 2.8: Single real gluon emission from a general process. A parton with momentum p splits
into a gluon with fraction (1 − z)p, and the scaled parton remains with zp. On the left-hand side,
radiation comes form the final state, as we dealt with in the example of αs corrections to e+e−

annihilation. On the right-hand side, the same radiation takes place before the hard interactions,
and hence it will be described by initial state parton showers or directly by PDF evolution.

The way we proceed to parametrize the IR singularities on a given amplitude come
from the observation that gauge theory amplitudes factorize in the soft limit as follows

|MF+1(..., i, j, k, ...)|2 → g2
sNC

(
2sij
sijsjk

+
2m2

i

s2
ij

− 2m2
k

s2
ij

)
|MF (...i, k, ...)|2 (2.22)

where parton j is a soft gluon, partons i and k form a chain of color-space index con-
tractions, gs is the strong coupling, and the terms in parenthesis are called the soft eikonal
factor. The mass corrections contribute only if i and k have non-zero rest masses, and the
invariants sab are defined as

sab ≡ 2pa · 2pb = (pa + pb)
2 −m2

a −m2
b . (2.23)

The color factor,NC , is valid for the leading-color contribution, regardless of whether the
i and k factors are quarks or gluons. Similarly, amplitudes also factorize in the collinear
limit, with partons i and j parallel, so sij → 0, in which the eikonal factor above is
replaced by the DGLAP splitting kernels, which are already mentioned in the context of
PDF evolution.

2.5 IR safety

An important requirement for perturbative QCD to be reliable is that the observable
one aims to describe is infrared safe. By infrared, here we mean any limit that involves
a small scale, i.e., any non-UV limit, without regard to whether it is collinear or soft.
The property of infrared safety defines a special class of observables which have minimal
sensitivity to long-distance physics, and which can be consistently computed in pQCD.
An observable can be labeled as infrared safe if it does fulfill

• Safety against soft radiation: Adding any number of indefinitely soft particles should
not change the value of the observable.

• Safety against collinear radiation: Splitting an existing particle up into two comoving
particles, with arbitrary fractions z and (1− z) respectively of the original momen-
tum, should not change the value of the observable.

Both cases can be seen in Figure 2.8, where the radiated gluon can be both soft and/or
collinear. If both of these conditions are satisfied, any long-distance non-perturbative
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corrections will be suppressed by the ratio of the long-distance scale to the short-distance
to some power - process dependent - of the form

IR safe observable =⇒ IR corrections ∝ Q2
IR

Q2
UV

(2.24)

where QUV denotes a generic hard scale, and QIR ∼ ΛQCD ∼ O(1 GeV). Due to this
power suppression , IR safe observables are not sensitive to our lack of ability to solve
strongly coupled IR physics. Instead of the suppressed corrections above, the pertur-
bative predictions for IR sensitive observables contain logarithms of the form already
encountered in equation 2.9:

IR sensitive observable =⇒ IR corrections ∝ αns logm≤2n

(
Q2
IR

Q2
UV

)
, (2.25)

which grow increasingly large as QIR/QUV → 0. When dealing with exclusive final
states, such as differential distributions with respect to some kinematic variables - and
in particular with transverse momentum distributions - the logarithmic enhancements
will require an all-order treatment, that we will describe in Chapter 4 introducing the
resummation formalism.





CHAPTER 3

Phenomenology at the LHC

This chapter is devoted to describe the phenomenology we encounter at the LHC
and other collider experiments. First we will discuss some notations and nomenclature
typically used in collider experiments, and then we will describe some of the most im-
portant processes used for studying the hadronic structure, such as the Deep Inelastic
Scattering, the Drell-Yan lepton pair production, and finally the production of a Higgs
boson at the LHC.

It is commonly stated that the Standard Model is extremely successful to date. Pro-
ducing some of the most accurate predictions ever formulated by science, the Standard
Model already contains in its description;

• Eight gluons and three generations of quarks, described by the SU(3) gauge group,
with their mixing angles described by the CKM matrix.

• Three generations of charged leptons and three generations of massive neutrinos 1

with their mixing angles described by the PMNS matrix 2.

• The photon and the massive W± and Z bosons, described by the electroweak
SU(2)×U(1) gauge group.

• A scalar Higgs boson, responsible for the breaking of the electroweak symmetry
and hence for the generation of the mass hierarchies between the SM masses.

Along the LHC ring, we find four main experiments specialized in different kinds
of processes and measurements: The ATLAS (A Toroidal LHC ApparatuS) and CMS
(Compact Muon Solenoid) experiments, ALICE (A Large Ion Collider Experiment) and
the LHCb (LHC beauty). The last two are devoted to the study of high-density hadron
matter, such as quark-gluon plasma, and the so-called flavour physics through the study
of B-hadrons and the phenomenon of CP-violation, respectively. ATLAS and CMS, con-
versely, are general purpose experiments, and their main goals were originally search-
ing for the Higgs boson and for any kind of signals of new physics beyond the Standard

1While the neutrinos were originally assumed to be massless, the measurement of flavour oscillation, anal-
ogous to the CKM mixing of quarks, requires neutrinos to have non-zero mass. Different models are still
discussed to explain the nature of neutrinos masses, such as the Dirac and the Majorana mechanism, among
others.

2Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix), lepton mixing matrix, or neutrino mixing
matrix is a unitary matrix describing the quantum states of neutrinos when they propagate freely and when
they take part in the weak interactions. It states a model of neutrino oscillation, and it was introduced in 1962
by Ziro Maki, Masami Nakagawa and Shoichi Sakata to explain the neutrino oscillations predicted by Bruno
Pontecorvo.

29
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Figure 3.1: Representation of a collision at the LHC. From the two proton beams, partons with
fraction of energy x1 and x2 interact at a partonic center of mass energy

√
ŝ = (x1p1 + x2p2)2

Model (Supersymmetry (SUSY), extra-dimensions, dark matter signatures, etc). To be
able to distinguish such hints of new physics beyond the Standard Model, it is crucial to
have very accurate theoretical predictions of what is expected by the Standard Model,
at least as accurate as precise the detection and measurement techniques, in order to be
able to distinguish deviation from the expectations with the maximal significance.

When addressing scattering experiments, the most common quantity to measure is
the so-called cross section, representing the likelihood for a particular process to take
place. The cross section σ is a measurement of the probability that an event occurs. It is
measured in barns 1b = 10−24cm2. Then, the number of events for a particular process
is given by

Nevents/sec = Luminosity · cross section
Nevents/sec = L · σevent

Those are the typical units used in phenomenology rather that seconds and square me-
ters, since what we typically need is a fewer interesting events corresponding to a few
femtobarns of data. So the typical signals usually have values of the cross sections and
luminosity in the following orders of magnitude;

Nevents = L · σtot

L = 10 · · · 300 fb−1

σtot = 1 · · · 104 fb

where fb stands for femto-barn (1b−15). For instance, the total proton-proton cross sec-
tion at 7 TeV is approximately 110 mbarns.

Let’s see a couple of examples. The cross section for a hypothetical 350 GeV Higgs
boson is 50 fb via the qq → ZH process. So we can easily see,

σ = 50 · 10−15 · 10−24cm2 =⇒ σ = 5 · 10−38cm2

Nevents/sec = L · σH = 1034 cm−2 s−1 × 5 · 10−38 cm2 = 5 · 10−4

Therefore there are 5·10−4 events per second in which this Higgs boson will be appearing
(obviously, whether such a kind of Higgs boson exist). We can calculate the inverse of
that quantity

t = 1/(5 · 10−4) = 2000 s =⇒ t = 33 minutes
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Figure 3.2: Cross sections for different processes at the LHC. As expected, processes for which
more data is available have smaller statistical uncertainty, while the theory error remains even
for such cases. Therefore, producing accurate predictions becomes a main task for theoreticians
specially towards the high precision era of the LHC.

which means that every 33 minutes one Higgs boson excitation should be appearing.
Therefore, in one day of work, around 50 Higgs particles should be detected. It could
seem a lot, but thousands of billions of collisions will be produced in the detector in that
time. That’s why the triggering and selection technologies are crucial for phenomenol-
ogy analysis, to correctly discriminate between QCD background effects and the specific
signal we are looking for. Again, the importance of precise predictions goes together
with the fine measurement techniques.

Let’s see another example. The LHCb is the experiment dedicated to quark b physics
at the LHC. Its primary goal is to look for indirect evidence of beyond the Standard
Model physics in CP violation 3 and rare decays of hadrons which contains b and c
quarks.

Compared to other existing accelerators that are in operation, the LHC is by far one

3The discovery of CP violation in the decays of neutral kaons resulted in the Nobel Prize in Physics in 1980
for its discoverers James Cronin and Val Fitch. Nowadays it plays an important role both in the attempts of
cosmology to explain the dominance of matter over antimatter in the present universe, and in the study of
weak interactions in particle physics.
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of the most copious source of B mesons 4, due to the high bb̄ cross section, which is of
the order σ ∼ 500 µb at 14 TeV and Luminosity 2 · 1032cm−2s−1, on average. So for the
number of events we would have,

Nevents/sec = L · σbb̄
= 2 · 1032cm−2s−1 × 500 · 10−6 · 10−24 cm2 = 105 bb̄pairs/sec ,

therefore in a canonical year data taking corresponds to 280 hours (∼ 107)s

105pairs/sec · 107sec/year = 1012 pairs/year (3.1)

An important thing to remark when dealing with collider physics, is that usually
signals are much more rare than background events, therefore we have to extract and
look for the signal events out a much larger number of background events. For instance,
the production cross section of two bottom quarks at the LHC is larger than 105 nb or
1011 fb, while the typical production cross section for W and Z boson ranges around
200 nb or 2 · 108 fm. Looking at more signals, the production cross sections for a pair of
500 GeV gluinos is 4·104 fb and the Higgs production cross section lies around the 105 fb.

Therefore, if we want to extract such signals out of comparably huge backgrounds
we need to describe these backgrounds with incredible precision. Strictly speaking, this
holds at least for those background events which populate the signal region in phase
space. Such background event will always exist, so any LHC measurement will always
be a statistics exercise. The high energy community has therefore agreed that we call a
five sigma excess over the known backgrounds a signal or discovery, while a three sigma
excess can only mean an evidence.

S√
B

= Nσ > 5 Discovery - Gaussian limit

(3.2)

Hence, it is commonly said that three sigma is an evidence, but we need five sigma to
say discovery. This brings us to the importance of precise predictions and measurements
when searching for new physics. Since both signal and background events are mainly
described by QCD, we need to understand where our predictions come from and what
they assume.

3.1 Deep Inelastic Scattering

In order to explore the internal structure of the hadrons, one of the first processes that
were studied, and indeed one for which the parton model was originally formulated, is
the lepton-hadron scattering, through the so-called Deep Inelastic Scattering (DIS).

Given the simple kinematics they involve, DIS processes have played, and still play,
a very important role in our understanding of both QCD and the nucleon structure. We
will concentrate on the case of a charged lepton, as the one depicted in Figure 3.3. The
process is called inelastic because the energy of the interaction is such that it breaks the

4There exist also collider experiments known as B-factories, such as SuperB (Rome, Italy), BaBar (Stanford,
USA), and Belle II(Tsukuba, Japan), are specialized in B-meson physics.
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Figure 3.3: Representation of a Deep Inelastic Scattering (DIS) process, where a lepton with mo-
mentum k scatters with a hadron of momentum p. The hard interaction, represented by the green
blob, takes place between a highly virtual photon of momentum q, and the partons inside the
hadron. Perturbative QCD is here applied to calculate higher corrections such and virtual and real
emissions.

proton structure, leading to an arbitrary number of particles - such as other hadrons - in
the final state. We can write the amplitude for the process as

M = e ū(k′)γµu(k)Pµ(p, q) , (3.3)

where Pµ(p, q) includes the information about the hard part of the process, including
the photon propagator. The amplitude squared, after sum over final states and averaged
over the initial ones, can be written as

1

N

∑
i,j

|M|2 = LµνW
µν , (3.4)

where Lµν and Wµν are tensors containing the leptonic and hadronic part of the interac-
tion, respectively. They are usually directly referred to as leptonic and hadronic tensors.
The former one can be simply written as

Lµν = e2Tr{/k′γµ/kγν} , (3.5)

while theWµν contains all the information about the hadronic process. We will now skip
some part of the computations, presenting directly some results for fixing notations that
will be useful later in the thesis, while a complete review can be found in [3].

The final result for the cross section can be written as
dσ

dx dQ2
=

4παs
Q2

{(
1 + (1− y)2

)
F1(x,Q2) +

1− y
x

(
F2(x,Q2)− 2xF1(x,Q2)

)}
, (3.6)

where we have defined the kinematic invariants

x =
Q2

2pq
, y =

qp

kp
, Q2 = −q2 (3.7)
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with Q2 = −q2 defined such that we have a positive virtuality, and we have introduced
the so-called structure functions F1 and F2. After reading Chapter 1 one can already relate
those functions with the parton densities, but here we will try to give an intuition of the
information they encode simply from the kinematic of the DIS.

Note that this results is much older than QCD, at least much older than the time at
which it was completely formulated. Indeed, we have not stated anything so far about
the structure of the hadronic interaction, absorbing any hadronic information inside the
structure functions, which should be measured experimentally. It is sometimes useful to
introduce the longitudinal structure function

FL(x,Q2) = F2(x,Q2)− 2xF1(x,Q2) . (3.8)

The intuition behind this function, as we can inherit from 3.6 is that it corresponds to the
absorption of a longitudinally polarized virtual photon, while the F1(x,Q2) corresponds
to the absorption of a transversely polarize photon. Since the quarks have fractional spin
1/2, they can not absorb longitudinal photons, and they would lead to a vanishing FL
(Callan-Gross relation, [38]). Indeed, this is observed in the limit of an infinitely virtual
photon, with Q2 → ∞ at fixed x, the so-called Bjorken limit[19, 39], and hence confirm-
ing the spin 1/2 nature of quarks.

The structure functions follow from the hadronic tensor, that can be computed within
the Parton Model framework. We can write

Fi(x,Q
2) = x

∑
j

∫ 1

x

dz

z
fj(z)C

(0)
ij

(
x

z

)
, (3.9)

where the function C
(0)
ij are called the coefficient functions. The superscript (0) indicates

that we strictly remain in the Parton Model, and do not add higher order QCD correc-
tions. Therefore, in the ”naive” Parton Model, choosing F2 and FL as the two indepen-
dent structure functions, we have

C
(0)
2q (z) = e2

qδ(1− z) C
(0)
2g (z) = 0

C
(0)
Lq (z) = 0 C

(0)
Lg (z) = 0 (3.10)

where eq is the quark fractional charge. Then the structure functions are

F2(x,Q2) = x
∑
q

e2
qfq(x), FL(x,Q2) = 0 , (3.11)

where we see no dependence on Q2. This is known as Bjorken scaling, and we already
know that it will be violated when adding higher order QCD corrections, as the ones
coming from gluon emission. There are several structure functions Fi(x,Q2) that can be
studied, each function of two variables. Depending on the charges of l and l′, the pair
of particles going through the hard interaction, we can have neutral currents, such as
γ, Z, or charged currents such as W±. In the past years, DIS processes have been crucial
for establishing QCD as theory of strong interactions and quarks and gluons as QCD
partons.
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As a final note, let us introduce one of the key mathematical tools used in pQCD. One
should recall that equation 3.9 has the form of a Mellin convolution

(g ∗ h)(x) =

∫ 1

z

dz

z
g(z)h

(
x

z

)
, (3.12)

which is symmetric under the interchange of arguments z → x/z. The Mellin convolu-
tion diagonalizes under a Mellin transform

M[g(z)] = g̃(N) =

∫ 1

0

dz zN−1g(z) , (3.13)

meaning that a convolution in direct space becomes a simple product in Mellin space,
leading to much simple expressions to manipulate. These convolutions will drastically
simplify as

M[g ∗ h](N) = g̃(N)h̃(N) . (3.14)

The inverse Mellin transform is given by

M−1[g̃(N)] =
1

2πi

∫ c+i∞

c−i∞
dN xN−1g(z) , (3.15)

where c has to be to the right of the rightmost singularity of g̃(N), which always exists
since a Mellin (Laplace) transformation has always a convergent abscissa. The Mellin
transformation is related to the Laplace transformation by a simple change of variables.
Details on integral transforms and special functions can be found at the end of this thesis
in Appendix A.

At present DIS remains very important for quantitative studies and tests of QCD.
The theory of scaling violations for totally inclusive DIS structure functions, based on
operator expansion or diagrammatic techniques and renormalization group methods,
was able to predict the Q2 dependence that was later on measured at each value of x.
The measurement of quark and gluon parton densities in the nucleon, as functions of
x at some reference value Q2, which is an essential starting point for the calculation of
all relevant hadronic processes, was first performed in DIS processes. At the same time
one measures αs(Q2), and the DIS values of the running coupling can be compared with
those obtained from other processes.

3.2 The Drell-Yan process

In this section we describe a next-to-simplest example of a hadronic interaction with
respect to the DIS, involving now two hadrons in the initial state. The Drell-Yan lepton
pair production, or Drell-Yan for short, is theoretically computable and experimentally
measurable with the highest accuracy at hadron colliders, in particular at the LHC. As it
is shown in Figure 3.4, it consists in the production of a neutral or charged lepton pair,
such as ll̄ or lν̄, arising from the collision of two initial hadrons h1 and h2

h1(p1) + h2(p2)→ l(k1) + l̄(k2) +X (3.16)

in the case of neutral current, and

h1(p1) + h2(p2)→ l(k1) + ν̄(k2) +X (3.17)
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Figure 3.4: Representation of a Drell-Yan lepton pair production process. Two partons scatter from
the hadrons h1 and h2 with respective momenta z1p1 and z2p2, and undergo the hard interaction
to produce a virtual vector boson. The product of the interaction will eventually decay in a lepton
pair with energies k1 and k2, that will be measured in the detector.

for a charged one. In both cases the kinematics are the same, and X is the entire set
of other particles produced in the event. The large set of events collected at the LHC,
combined with a very precise theoretical determination of the process, can build a very
powerful test for perturbative QCD. Indeed, the high precision era of the LHC will allow
for detailed measurements at previously unexplored kinematic domains, significantly
improving the precision on, for instance, the determination of the PDFs.

The cross section can be computed at leading order, both in the electroweak and QCD
coupling, as the cross section for quark-antiquark annihilation into a virtual photon or a
virtual vector boson Z,W±, which subsequently decays into the lepton pair. Hence the
partonic centre-of-mass energy is given by

ŝ = x1x2s s = (p1 + p2)2 , (3.18)

where x1 and x2 are the momentum fractions of the two incoming partons. The available
energy is encoded in the lepton pair invariant mass M

M2 = (k1 + k2)2 , (3.19)

and the inclusive cross section is characterized by the variable

τ =
M2

s
, (3.20)

which describes the amount of initial hadronic energy going into the relevant final state,
actually the lepton pair. Again, if we start from the naive Parton Model and we include
higher order QCD corrections, real emission of gluons and quarks must be taken under
consideration, in order to cancel the infrared divergences coming from virtual emission.
In this case, the available partonic centre-of-mass energy is no longer equal to the mass
of the final state. It will be instead given by the variable

z =
M2

ŝ
=

τ

z1z2
, (3.21)
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which is the partonic analogous to τ , and it is indeed common to find it as τ̂ in the liter-
ature. The Born amplitude and its virtual corrections select z → 1, while in the case of
real emissions we have 0 ≤ z ≤ 1. As discussed in section 2.3, in such exclusive cases the
coefficient function comes enhanced by logarithmic terms of the form log(1 − z), which
in the soft limit z → 1 require all-orders threshold resummation to have reliable predic-
tions 5.

NNLO inclusive cross sections and rapidity distributions have already been com-
puted long ago. Results for both the integrated cross section can be found in [40], and
for rapidity distributions in [41]. Also, small effects such as those related to the coupling
of the gauge boson to final-state leptons have been studied recently [42]. There are al-
ready some results for N3LO distributions, but we will introduce them after discussing
the resummation formalism, in the context of N3LL predictions.

We briefly describe here the LO and NLO expressions for rapidity distributions and
inclusive cross sections. The rapidity distribution is written as

1

τ

dσ

dM2dy
=
∑
i,j

∫ 1

τ

dz

z

∫ 1

0

du Lij(z, u, µ2
F )C̄ij

(
z, u, αs(µ

2
R),

M2

µ2
F

,
M2

µ2
R

)
, (3.22)

where y is the hadronic rapidity, Lij is the parton luminosity and C̄ij is a coefficient
function representing the partonic channels. At NLO, the rapidity distribution receives
contributions from quark-antiquark and quark-gluon subprocesses

dσNLO

dM2dy
=

dσNLO
qq̄

dM2dy
+
dσNLO

qg+gq

dM2dy
, (3.23)

The qq̄ contribution is given by

C̄qq̄

(
z, u, αs(µ

2
R),

M2

µ2
F

,
M2

µ2
R

)
= δ(1− z) +

αs
π
CFFq

(
z, u,

M2

µ2
F

)
+O(α2

s) (3.24)

where the structure function Fq is given by

Fq

(
z, u,

M2

µ2
F

)
=
δ(u) + δ(1− u)

2

[
δ(1− z)

(
π2

3
− 4

)
+ 2(1 + z2)

(
log(1− z)

1− z

)
+

+ log
M2

µ2
F

(
1 + z2

1− z

)
+

− 1 + z2

1− z
log z + 1− z

]
+

1

2

1 + z2

1− z

[(
1

u

)
+

+

(
1

1− u

)
+

]
− (1− z) . (3.25)

The qg and gq contributions are given by

C̄qg

(
z, u, αs(µ

2
R),

M2

µ2
F

,
M2

µ2
R

)
=
αs
2π
TFFg

(
z, u,

M2

µ2
F

)
+O(α2

s) (3.26)

C̄gq

(
z, u, αs(µ

2
R),

M2

µ2
F

,
M2

µ2
R

)
=
αs
2π
TFFg

(
z, 1− u, M

2

µ2
F

)
+O(α2

s) (3.27)

5Note that in Chapter 2 we described another kind of logarithmic corrections, of the form log(M2/q2T ).
Hence, it is referred to talk about transverse momentum resummation. There exist also high energy resummation,
or BFKL resummation, which is beyond the scope of this thesis and that we will not discuss.
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where the Fg is now given by

Fg

(
z, u,

M2

µ2
F

)
= δ(u)

[
(z2 + (1− z)2)

(
log

(1− z)2

z
+ log

M2

µ2
F

)
+ 2z(1− z)

]
+ (z2 + (1− z)2)

(
1

u

)
+

− 2z(1− z) + (1− z)2u

]
. (3.28)

Now we see how the differential distribution can be written in terms of the C̄ij co-
efficients, which is computable in perturbation theory. The structure functions Fq and
Fg contain the singularities that appear in the form of plus distributions 6. This process,
among those quadratic in parton densities with a totally inclusive final state, is perhaps
the simplest one from a theoretical point of view. The large scale is specified and mea-
sured by the invariant mass squared M2 of the lepton pair, which is not itself strongly
interacting, so there are no hadronization effects.

Over the years the QCD predictions for W and Z production, a better testing ground
than the older fixed-target-DIS experiments, have been compared with experiments at
CERN Spp̄S and Tevatron energies and now at the LHC. M ∼ MW,Z is large enough to
make the prediction reliable (with a not too large K-factor) and the ration

√
τ = M/

√
s is

not too small. Results of current experiments are in fair agreement with the SM predic-
tions (see summary in [GA285] and references therein), and typical precision is compa-
rable to or better than the size of NLO corrections.

The calculation of theW/Z qT distribution is a classic challenge in QCD. For large qT ,
for instance qT ∼ O(MW ), the qT distribution can be reliably computed in perturbation
theory. This was done up to NLO in the late 1970s and early 1980s [GA183]. As we will
discuss in next chapter, a problem arises in the intermediate range ΛQCD � qT � MW ,
where the bulk of date is concentrated, because terms of order

αs(q
2
T ) log

(
M2
W

q2
T

)
(3.29)

become of order 1 and should be resummed to all orders, within the formalism of trans-
verse momentum resummation.

3.3 SM Higgs boson production

Higgs boson production is nowadays a topic of central importance in hadron col-
lider physics [43, 44, 45]. The main production mechanism at hadron colliders is the
gluon fusion process, an essentially strong-interaction process, which has attracted a
great amount of theoretical work in recent years [46, 47, 48].

Again, we will present some results that should serve as a summary and to fix nota-
tions, without digging in to the formalism with much detail. For a proper review on the
Higgs boson production at the LHC one can check [44], among others in literature, or
see Appendix B. If we consider the scalar part of the Standard Model Lagrangian

LH = (DµΦ)†(DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2 (3.30)

6The plus distributions are described in detail, both mathematical and the intuition in appendix A
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Figure 3.5: Feynman diagram representation of the dominant production channels for the Higgs
boson at the LHC. The kinematics are the same as in the Drell-Yan process depicted in Figure 3.4.

we see that the kinetic term for the Higgs field 1
2 (∂µH)2 comes from the term involving

the covariant derivative |DµΦ|2, while the mass and self-interacting parts arise from the
scalar potential

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
. (3.31)

The electroweak symmetry is broken by an SU(2)-doublet scalar field

Φ =

(
G+

(H + v)/
√

2 + iG0/
√

2

)
, (3.32)

where G+ and G0 are the Goldstone bosons that eventually become the longitudinal
degrees of freedom of theW+ and theZ. The quantity v is the Higgs vacuum expectation
value (vev), and H is the physical SM Higgs boson. When the electroweak symmetry is
broken, meaning the neutral component of Φ takes the expectation value

〈0|Φ |0〉 =

(
0
v√
2

)
being v =

(
− µ2

λ

)1/2

(3.33)

we can make a gauge transformation

Φ(x)→ 1√
2

(
0

v +H(x)

)
(3.34)

so the potential takes the form

V =
µ2

2
(0, v +H)

(
0

(v +H)

)
+
λ

4

∣∣∣∣(0, v +H)

(
0

(v +H)

) ∣∣∣∣2 , (3.35)
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Figure 3.6: Higgs boson couplings to fermions and gauge bosons and the Higgs self-couplings in
the Standard Model. The normalization factors of the Feynman rules are also displayed.

where we can use the relation v = −µ2/λ to write

V = −1

2
λv2(v +H)2 +

1

4
λ(v +H)4 (3.36)

and find that the Lagrangian containing the Higgs field H is given by

LH =
1

2
(∂µH)(∂µH)− V

=
1

2
(∂µH)2 − λv2H2 − λv H3 − λ

4
H4 . (3.37)

From this Lagrangian one can see that the Higgs boson mass directly reads

M2
H = 2λv2 = −2µ2 . (3.38)

The Feynman rules for Higgs self-interaction and for the coupling to fermions can be
found in Appendix B. The numerical value of the Higgs vev is fixed in terms of the W
mass and the Fermi constant

v = 2MW /g ' 246 GeV , (3.39)

such that the couplings of the physical Higgs boson to other SM particles are predicted
entirely in terms of v and the known particles masses via the usual SM Higgs mass gen-
eration mechanism.
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The total cross section for the Higgs boson production in gluon fusion has been com-
puted in QCD perturbation theory at leading order (LO), O(αs), next-to-leading order
(NLO), next-to-next-to-leading order (NNLO) and next-to-next-to-next (N3LO) in the
QCD coupling αs. The origin of the dominant perturbative contributions to the total
cross section comes from radiative corrections due to virtual and soft gluons.

The O(αs) corrections to the Higgs boson cross section

As previously mentioned, the dominant production channel for the Higgs boson at
the LHC is through a top quark loop arising from gluon fusion, as shown in Figure 3.5.
In the large Mt limit, the top quark can be replaced by a point-like vertex, leaving an
effective Higgs-gluon coupling in terms of the Lagrangian of the effective theory

Leff = −1

4

[
1− αs

3π

H

v

(
1 +

αs
4π

∆

)]
GaµνG

µν
a , (3.40)

where the finite O(αs) order correction to the effective Hgg operator ∆ is

∆ = 5Nc − 3CF = 11 , (3.41)

being Nc = 3 and CF = (N2
c − 1)/(2Nc) = 4/3. For the O(α2

s) corrections to this effec-
tive operator see [49]. The general form of the Higgs self-coupling and the coupling to
fermions is depicted in Figure 3.6.

We consider the scattering of two hadrons, with exact same kinematics as in the Drell-
Yan case depicted in Figure 3.4, now producing a neutral Higgs boson h1 +h2 → H+X .
Following the factorization formula we discussed in Chapter 2, the differential cross
section for this process via gluon-gluon fusion in perturbative QCD can be written

dσ

dq2
T dyH

=
∑
i,j

∫ 1

0

dxadxb fi/h1
(xa, µ

2
F ) fj/h2

(xb, µ
2
F )

dσ̂ij
dq2
T dyH

, (3.42)

being i and j the labels for the massless partons which scatter from the hadrons h1 and
h2. The partonic subprocess can be expanded as a power series of the strong coupling
αs(µ

2
R) as

dσ̂ij
dq2
T dyH

=
σ(0)

ŝ

[
αs(µ

2
R)

2π
G

(1)
ij +

(
αs(µ

2
R)

2π
G

(2)
ij

)2

+ ...

]
, (3.43)

with σ(0) the Born-level cross section

σ(0) =
π

64

(
αs(µ

2
R)

3πv

)2

, (3.44)

where the Higgs vacuum expectation value v is related to the Fermi constant GF =

1.16639 · 10−5 GeV−2 by 1/v2 =
√

2GF . The functions G(k)
ij depend on µR and µF , the

Higgs mass MH and the partonic Mandelstam invariants, defined by

ŝ = (pa + pb)
2 = (pH +Q)2 = xaxbs

t̂ = (pa −Q)2 = (pb + pH)2 = M2
H −
√
sxbmT e

yH (3.45)

û = (pb +Q)2 = (pa − pH)2 = M2
H −
√
sxamT e

−yH ,



where pa = xap1 and pb = xbp2 are the initial-state parton momenta,Q is the momentum
of the final-state partons balancing the Higgs boson, and m2

T the transverse mass m2
T =

M2
H + q2

T . These invariants are related by

Q2 = ŝ+ t̂+ û−M2
H . (3.46)

At leading order the contributions arising from the different subprocesses are given by
G

(1)
ij = gijδ(Q

2) with

ggg = Nc

(
M8
H + ŝ4 + t̂4 + û4

ŝt̂û

)
ggq = Nc

(
t̂2 + û2

−û

)
(3.47)

gqg = Nc

(
t̂2 + û2

ŝ

)
being ggq obtained from gqg via the exchange t̂ → û. Note that, since the final state is
colourless, the lowest-order partonic subprocess, c + c̄ → F , is either qq̄ annihilation
(c = q), as in the case of γ∗,W and Z production in Drell-Yan processes, or gg fusion
(c = g) in the case of the Higgs boson H .

For the computation of the orderO(αs) corrections, one must consider three different
sources. The virtual corrections (V) to Higgs plus one parton production, arising from
the interference term between the Born and the one-loop amplitudes; the real corrections
(R) from Higgs plus two partons; and finally the Altarelli-Parisi corrections (AP) arising
from the definition of the MS parton densities at NLO.

Note that for the computation of the different V, R and AP contributions one must use
some dimensional regularization procedure. As standard in perturbative QCD we use
conventional dimensional regularization (CDR) with dimension d = 4 − 2ε, so that the
collinear and soft singularities appear as ε-poles in the separate contributions, leading
to a well-defined total contribution

G
(2)
ij = lim

ε→0

(
G

(2R)
ij (ε) +G

(2V)
ij (ε) +G

(2AP)
ij (ε)

)
. (3.48)

For details about the explicit computation see [46].

As already mentioned, at small transverse momenta of the Higgs boson the perturba-
tion series for the qT spectrum becomes unstable, containing logarithmic enhancements
of the type

α2
s

q2
⊥
αns ln2n

(
M2
H

q2
T

)
, (3.49)

with the leading logarithm occurring for m = 2n − 1. This logarithmic series has to be
resummed, using the techniques developed by Collins, Soper, and Sterman [50], among
others, at various levels of approximation [51]. In the next chapter we discuss the re-
summation formalism, used to build a reliable prediction for the transverse momentum
distribution in the whole qT range.
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CHAPTER 4

Transverse momentum resummation

In this chapter we describe the behavior of the qT distribution of high-mass systems
produced by hard-scattering of partons in hadron-hadron collisions. In ref [43, 48] some
quantitative results on the qT spectrum of the Standard Model Higgs boson are pre-
sented, produced via the gluon fusion mechanism at high energies - ranging from 8 TeV
to 13 TeV - which are the typical energy scales addressed by the LHC. The formalism
used in [43, 48] is quite general and applies to the transverse momentum distribution of
generic high-mass systems, such as lepton pairs, vector bosons, Higgs particles, etc. In
the following chapter we aim to describe first with some details this formalism, and then
consider the explicit case of the Higgs boson transverse momentum distribution.

Since we aim to describe a wide range of qT values, from the region qT → 0 to several
hundreds of GeV, it is useful to separately consider the large-qT and small-qT regions.
The large-qT region will be described by the condition qT & M , such that the perturba-
tive series is controlled by a small expansion parameter αs(M2), and the computation
based on the truncation of the series at fixed order in αs is theoretically justified. The SM
Higgs boson production via gluon-gluon fusion at large-qT requires an associated radia-
tion of at least one recoiling parton, so the LO term for this observable is O(α3

s). The LO
calculation is shown in ref [52]; it shows that the large-Mt approximation works well as
long as MH . 2Mt, and qT . Mt. In the framework of the large-Mt approximation, the
NLO QCD corrections to the transverse momentum distribution of the SM Higgs boson
were computed in refs [46, 53, 54]. Corrections to the large-Mt approximation are shown
in ref [55]. The theoretical calculations are implemented in the numerical programs of
refs. [46, 53, 54].

In the small-qT region, (qT � M ), where the bulk of events is produced, the con-
vergence of the fixed order expansion is spoiled, since the coefficients of the perturba-
tive series in αs(M

2) are enhanced by powers of large logarithmic terms of the form
lnm(M2/q2

T ). Therefore to obtain reliable perturbative predictions, these terms have to
be resummed to all orders in αs. The method to systematically perform all-order re-
summation of logarithmically enhanced terms at small qT is described with detail in
[56, 57, 50, 58]. In the case of the SM Higgs boson, references are given in the next
chapter, where resummation has been explicitly computed at leading-logarithmic (LL),
next-to-leading logarithmic (NLL), and next-to-next-to-leading (NNLL) accuracy.

45
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Figure 4.1: Representation of a hadronic collision as the one described by formula 4.1. Two
hadrons h1 and h2 with momenta p1 and p2 produce some final-state system F , accompanied
by an arbitrary and undetected final state X .

4.1 The resummation formalism

The resummation formalism is used in order to build reliable predictions where the
truncation of the perturbation theory is not justified. As already mentioned, it is needed
to account for the logarithmic enhancements that appear in the small qT region, due
to the unbalanced cancellation of divergences in exclusive final sates. We consider the
hard-scattering process depicted in Figure 4.1,

h1(p1) + h2(p2) −→ F (M, qT ) +X (4.1)

where the collision of two hadrons h1 and h2 with momenta p1 and p2 produces some
final-state system F , accompanied by an arbitrary and undetected final state X . We
denote by

√
s the centre-of-mass energy of the colliding hadrons, given by

s = (p1 + p2)2 ' 2p1p2 . (4.2)

The observed final state F is a generic system of non-QCD partons such as one or more
vector bosons (γ,W,Z, ...), Higgs particles, Drell-Yan (DY) lepton pairs and so on.

Through this manuscript we consider the case in which the total invariant mass M
and transverse momentum qT of the system F are measured. According to the QCD
factorization theorem, already discussed in Chapter 2, the corresponding transverse mo-
mentum differential cross section 1 can be written as

dσF
dq2
T

(qT ,M, s) =
∑
a,b

∫ 1

0

dx1

∫ 1

0

dx2 fa/h1
(x1, µ

2
F )fb/h2

(x2, µ
2
F )
dσ̂F ab

dq2
T

(
qT ,M, ŝ;αs(µ

2
R), µ2

R, µ
2
F

)
,

(4.3)

1To be precise, when the final state F is not a single on-shell particle of massM , but some intermediate state
that will produce some decay products, what we denote by dσ̂/dq2T is actually the differential cross section
M2dσ̂/dM2dq2T . In the case of the Higgs boson the invariant mass distribution can - sometimes - reasonably
be considered a delta distribution, given the small value of its decay width. This is called the Narrow Width
Approximation (NWA).
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Figure 4.2: Representation of a hard interaction where the final state F is produced with some
transverse momentum with respect to the beam axis. Unbalanced cancellation when dealing with
such exclusive final states will lead to logarithmic enhancements dominating the cross section.

where fa/h(x, µ2
F ) and fb/h(x, µ2

F ) are the parton densities of the colliding hadrons at the
factorization scale µF , dσ̂F ab/dq

2
T is the partonic cross section, ŝ = x1x2s the partonic

center of mass energy, and µR the renormalization scale. For the whole discussion we
use parton densities as defined in the MS factorization scheme, and αs(q

2) is the QCD
running coupling in the MS renormalization scheme.

The partonic cross section is computable in QCD perturbation theory, that is, it can be
written as a power series expansion in αs. We assume that at the parton level the system
F is produced with vanishing qT , meaning with no accompanying final state radiation
in the lowest order approximation, in such a way that the corresponding cross section
would behave as dσ̂F ab/dq

2
T ∝ δ(q2

T ). Since F is colourless, the lowest-order partonic
subprocess, c + c̄ → F , is either qq̄ annihilation (c = q), as in the case of γ∗,W and Z
production in Drell-Yan processes, or gg fusion (c = g) in the case of the Higgs boson H .

Since we are dealing with an semi-inclusive final state, the cancellation of infrared
singularities comes unbalanced, as recalled in Chapter 2, and higher-order perturbative
contributions to the partonic cross section dσ̂F ab/dq

2
T contain logarithmic terms of the

type lnm(M2/q2
T ) that become large in the small qT region (qT � M ). Therefore, we

introduce in eq. 4.3 the following decomposition of the partonic cross section

dσ̂F ab

dq2
T

=
dσ̂(res.)

F ab

dq2
T

+
dσ̂(fin.)

F ab

dq2
T

. (4.4)

Note that this distinction between the two terms on the right-hand side is purely theo-
retical. It is done in such a way that the dσ̂(res.)

F ab contains all the logarithmically-enhanced
contributions

αns
q2
T

lnm
(
M2

q2
T

)
,

and has to be evaluated by resumming them to all orders in αs. The second term, dσ̂(fin.)
F ab,

is free of such contributions, and can be computed by fixed-order truncation of the per-
turbative series. Indeed, when we define the so-called ”finite” component dσ̂(fin.)

F ab we do
impose

lim
QT→0

∫ Q2
T

0

dq2
T

[
dσ̂(fin.)

F ab

dq2
T

]
F.O.

= 0 , (4.5)

where the right-hand side must vanish order by order in perturbation theory. In par-
ticular, this implies that any perturbative contributions proportional to δ(q2

T ) have been
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Figure 4.3: Table representing logarithmic enhancements of the type L = lnM2b2 appearing at
different orders. All these contributions will be absorbed inside the Sudakov form factor exp{G}.

removed from dσ̂(fin.)
F ab and absorbed in dσ̂(res.)

F ab.

To sum up, we will evaluate the qT distribution in eq. 4.3 by replacing the cross
section on the right-hand side in the following way

dσ̂F ab

dq2
T

−→
[
dσ̂(res.)

F ab

dq2
T

]
L.A.

+

[
dσ̂(fin.)

F ab

dq2
T

]
F.O.

(4.6)

where the logarithmically enhanced terms inside the resummed component dσ̂(res.)
ab can

be organized as LL, NLL, NNLL, ..., and then it is this logarithmic expansion that can be
truncated at some logarithmic accuracy (L.A.). In a similar way, the finite component is
truncated at some fixed order (F.O.) of the perturbative series. The distinction is done
such that the resummed component describes the behavior in the small-qT region, while
the finite component dominates at large values of qT .

Note that the resummed contributions inside [dσ̂(res.)
F ab]L.A. are necessary and fully jus-

tified at small qT . Although, they can lead to sizeable higher-order effects also at large
qT , where the resummed expansion is not supposed to be valid. To reduce the impact
of these unjustified higher-order terms, a unitarity constraint is applied, requiring that
they give no contributions to the total cross section. This is implemented by imposing
the following condition∫ ∞

0

dq2
T

[
dσ̂(res.)

F ab

dq2
T

]
L.A.

=

∫ ∞
0

dq2
T

[
dσ̂(res.)

F ab

dq2
T

]
F.O.

, (4.7)

which means, that the total cross section remains unaffected by small-qT logarithmic
terms. As a matter of fact, the logarithmic contributions contained in dσ̂(res.)

F ab are plus
distributions of the type [

αns
q2
T

lnm
(
M2

q2
T

)]
+

, (4.8)

therefore it is natural to require that these resummed terms give a vanishing contribution
to the total cross section. A detailed description of the plus distributions and how to
address them in the context of resummation can be found in Appendix A As a final
note before discussing the details of the resummed and finite components, note that this
formalism implements the QCD resummation at the level of the partonic cross section.
In the factorization formula 4.3, the parton densities are evaluated at the factorization
scale µF . The theoretical uncertainty of the resummed calculation can be investigated as
in customary fixed-order calculations, by varying µF and µR around this central value.
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4.2 The resummed component

The resummation method for the logarithmically-enhanced contributions at small qT
was set up [50, 56, 58] shortly after the first resummed calculation of the DY transverse
momentum spectrum to double logarithmic accuracy. The resummation procedure has
to be carried out in the impact parameter space, to correctly take into account the kine-
matic constraints from transverse momentum conservation.

The resummed component dσ̂(res.)
F ab of the partonic cross section in eq. 4.4 is then ob-

tained by performing the inverse Fourier-Bessel transformation with respect to the im-
pact parameter b.

dσ̂(res.)
F ab

dq2
T

(qT ,M, ŝ;αs(µ
2
R), µ2

R, µ
2
F ) =

M2

ŝ

∫
d2b
4π

eib·qT WF
ab(b,M, ŝ;αs(µ

2
R), µ2

R, µ
2
F )

=
M2

ŝ

∫ ∞
0

db
b

2
J0(bqT )WF

ab(b,M, ŝ;αs(µ
2
R), µ2

R, µ
2
F ) ,

(4.9)

where the 0th-order Bessel function J0(x) arises from the 2-dimensional Fourier trans-
formation, also referred to as Hankel transformation.

The process dependent factor WF
ab embodies the all-order dependence on the large

logarithms L = lnM2b2 at large b, which corresponds to the qT -space terms lnM2/q2
T

that are logarithmically enhanced at small qT . Note that the small-qT limit qT � M
we have been referring to now corresponds to Mb � 1, since b and qT are conjugated
variables. Resummation of these large logarithms is better expressed by defining the
N -momentsWF

ab,N of the resummed cross sectionWF
ab with respect to z = M2/ŝ at fixed

M ,

WF
ab,N (b,M ;αs(µ

2
R), µ2

F ) ≡
∫ 1

0

dz zN−1 WF
ab(b,M, ŝ = M2/z;αs(µ

2
R), µ2

F ) . (4.10)

The logarithmic terms included inWF
ab,N are due to final-state radiation of soft and/or

collinear partons with respect to the incoming ones. Their all-order resummation can be
organized in close analogy to the threshold contributions to hadronic cross sections [32],
and for the cases of soft-gluon resummation in hard scattering processes [59, 60]. The
structure ofWF

ab,N can indeed be factorized in exponential form as follows

WF
ab,N (b,M ;αs(µ

2
R), µ2

F ) = HFN
(
M,αs(µ

2
R);M2/µ2

R,M
2/µ2

F ,M
2/Q2

)
× exp

{
GN
(
αs(µ

2
R), L;M2/µ2

R,M
2/Q2

)}
, (4.11)

where, for simplicity, the subscripts denoting the flavour indices are implicit 2. The func-
tionHFN is process dependent, and it does not depend on qT and hence on the impact pa-
rameter b. Therefore it contains all the contributions that behave as constants in the limit
b → ∞. The function G is process independent and includes the complete dependence

2More precisely, we are writing here the resummation formulae in a simplified form which is valid when
there is a single species of partons. In the general case, the exponential is replaced by an exponential matrix
with respect to the flavour indices of the partons.
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on b. In particular, it contains all the terms that order by order in αs are logarithmically
divergent when b→∞. The specific form of those large logarithmic terms is given by

αnsL
m = αns lnm

M2b2

b20
, (4.12)

where b0 = 2e−γE and γE = 0.5772... is the Euler-Mascheroni constant. All terms with
1 ≤ m ≤ 2n are included in the form factor exp {G}. Indeed, all logarithmic contributions
to G with n + 2 ≤ m ≤ 2n are vanishing. The G factor is commonly referred to as the
Sudakov form factor, and it can be systematically expanded as

GN
(
αs, L;M2/µ2

R,M
2/Q2

)
= Lg

(1)
N

(
αsL

)
+ g

(2)
N

(
αsL;M2/µ2

R,M
2/Q2

)
+
αs
π
g

(3)
N

(
αsL;M2/µ2

R,M
2/Q2

)
+

∞∑
n=4

(
αs
π

)n−2

g
(n)
N

(
αsL;M2/µ2

R,M
2/Q2

)
, (4.13)

property that is referred to as exponentiation. The functions g(n) are defined such that
g(n) = 0 when αsL = 0. Thus the term Lg(1) collects all the LL contributions αnsLn+1, the
function g(2) contains the NLL contributions αnsLn , g(3) the NNLL αnsL

n−1, and so on
and so forth.

The functions g(n)
N (αsL) inside the Sudakov form factor can be expressed in terms

of the perturbative coefficients known as A(n), B(n) [43, 48]. Here we show the explicit
form of the first g(n)

N (αsL) factors, which is written as follows:

g(1)
(
αsL

)
=
A(1)

β0

λ+ ln(1− λ)

λ
(4.14)

g(2)

(
αsL;

MH

µ2
R

,
M2
H

Q2

)
=
B

(1)

N

β0
ln(1− λ)

A(2)

β2
0

(
λ

1− λ
+ ln(1− λ)

)
+
A(1)

β0

(
λ

1− λ
+ ln(1− λ)

)
ln
Q2

µ2
R

+
A(1)β1

β3
0

(
1

2
ln2(1− λ) +

ln(1− λ)

1− λ
+

λ

1− λ

)
, (4.15)

g(3)

(
αsL;

MH

µ2
R

,
M2
H

Q2

)
= −A

(3)

2β2
0

λ2

(1− λ)2
− B

(1)

N

β0

λ

1− λ

+
A(2)β1

β3
0

(
λ(3λ− 2)

2(1− λ)2
− (1− 2λ) ln(1− λ)

(1− 2λ)2

)
+
B

(1)

N β1

β2
0

(
λ

1− λ
+

ln(1− λ)

1− λ

)
− A(1)

2

λ2

(1− λ)2
ln
Q2

µ2
R

+
Q2

µ2
R

(
B

(1)N λ

1− λ
+
A(2)

β0

λ2

(1− λ)2
+A(1) β1

β2
0

(
λ

1− λ
+

1− 2λ

(1− λ)2
ln(1− λ)

))
+A(1)

(
β2

1

2β4
0

1− 2λ

(1− λ)2
ln2(1− λ) + ln(1− λ

[
β0β2 − β2

1

β4
0

+
β2

1

β4
0(1− λ)

]
+

λ

2β4
0(1− λ)2

(β0β2(2− 3λ) + β2
1λ

)
, (4.16)
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being λ and B
(n)

N given by

λ =
1

π
β0αs(µ

2
R)L , (4.17)

B
(n)

N = B̃
(n)
N +A(n) ln

M

Q2
, (4.18)

and βn are the coefficients of the QCD β function we already discussed in Chapter 1,

d lnαs(µ
2)

d lnµ2
= β(αs(µ

2)) = −
∞∑
n=0

βn

(
αs
π

)n+1

. (4.19)

Note that g(1)
N depends only on A(1), g(2)

N also depends on B(1) and A(2), g(3)
N also de-

pends on B(2) and A(3) and so on and so forth. We also observe that the functions g(2)
N

and g
(3)
N receive additional contributions from the LO and NLO anomalous dimensions

that control the evolution of the parton densities.

Also, the functions g(n)
N (αsL) are singular when λ = β0αsL → 1. This singular be-

haviour is related to the presence of the Landau pole in the perturbative running of the
QCD coupling. To properly define the b integration in equation 4.9, a prescription to deal
with these singularities must be introduced. Here we follow ref [61] and deform the in-
tegration contour in the complex b-space, as an extension of the minimal prescription of
ref. [32].

The function HFN on equation 4.9 does not depend on b and, hence, its evaluation
does not require resummation of large logarithmic terms. It can also be expanded in
series of αs as

HFN
(
M,αs(µ

2
R);M2/µ2

R,M
2/µ2

F ,M
2/Q2

)
= σ(0)(αs,M)

[
1 +

αs
π
H(1)
N

(
M2/µ2

R,M
2/µ2

F ,M
2/Q2

)
+

(
αs
π

)2

H(2)
N

(
M2/µ2

R,M
2/µ2

F ,M
2/Q2

)
+

∞∑
n=3

(
αs
π

)n
H(n)
N

(
M2/µ2

R,M
2/µ2

F ,M
2/Q2

)]
,

where σ(0) = αpsσ
LO is the lowest order (Born-level) cross section for the hard scattering

process in eq. 4.3. The explicit form of the first H(n)
N coefficients is shown in the next

section, together with the description of the finite component.

As a final comment, one must note that the expansion of eq. 4.13 is built such that the
parameter αsL is formally considered to be of order unity. Also, to reduce the impact
of unjustified resummed logarithms in the large-qT region, where resummation is not
supposed to play a dominant role, we can use a procedure inspired by [59], and perform
in the expansion 4.13, the following replacement;

G(αsL) −→ G(αsL̃) , (4.20)

where the logarithmic variable L has been replaced by

L̃ = ln

(
M2b2

b20
+ 1

)
. (4.21)
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The reason for using L̃ rather than L is the following. We clearly see that the use of one
or another is equivalent in the small-qT region, where Mb → ∞, since there L̃ ∼ L. On
the other hand, whenMb� 1, L̃→ 0 and exp{G} → 1. Therefore, using the definition in
eq. 4.21 we avoid the introduction of all-order contributions in the small-b region, where
the use of the large-b resummation formalism is not justified. In particular, exp{G} = 1
at b = 0. This implies that the integral over qT of dσ/dqT exactly reproduces the fixed-
order calculation of the total cross section. Since resummed and fixed-order perturba-
tion theory control the small-qT and large-qT regions respectively, the total cross section
constraint mainly acts on the size of the higher order contributions introduced in the
intermediate-qT region by the matching procedure [43, 48]



Transverse momentum resummation 53

4.3 The finite component

The finite component dσ̂(fin.)
ab of the partonic cross section is computed at a given order

in αs, according to eq. 4.4. It does not contain any contribution proportional to δ(q2
T ),

and it can be written as

dσ̂(fin.)
F ab

dq2
T

=

[
dσ̂F ab

dq2
T

]
F.O.
−
[
dσ̂(res.)

F ab

dq2
T

]
F.O.

. (4.22)

The first term is the usual perturbative series for the partonic cross section truncated at
a fixed order in αs. The second one is obtained by truncating the resummed compo-
nent at the same fixed order in αs. The small-qT (resummed) and large-qT (fixed-order)
approaches are thus consistently matched by avoiding double-counting in the interme-
diate qT region. This procedure guarantees that the right-hand side of eq. 4.4 contains
full information of the perturbative calculation up to the fixed order specified, plus re-
summation of the logarithmically-enhanced contributions from higher orders.

Moreover, we impose the condition[[
dσ̂(res).

F ab

dq2
T

]
L.A.

]
F.O

=

[
dσ̂(res.)

F ab

dq2
T

]
F.O.

, (4.23)

which implies that the replacement retains the full information of the perturbative cal-
culation up to the specified order plus resummation of logarithmically enhanced contri-
butions from higher orders. Equations 4.22 and 4.23 indeed imply that the matching is
perturbatively exact, in the sense that the fixed-order truncation in the right-hand side of
4.22 exactly reproduces the customary fixed-order truncation of the partonic cross sec-
tion in 4.3.

The fixed order truncation of the resummed component, [dσ̂(res.)
F ab]F.O., is obtained by

perturbatively expanding dσ̂(res.)
F ab in terms of the Σ̃(n) coefficients as follows:

WF
ab(b,M, ŝ, αs;µ

2
R, µ

2
F , Q

2
)

=
∑
c

σ
(0)
cc̄ (αs,M)

{
δca δc̄b δ(1− z)

+

∞∑
n=1

(
αs
π

)n[
Σ̃

(n)
cc̄←ab

(
z, L̃;

M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
+HF (n)

cc̄←ab

(
z;
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)]}
(4.24)

where z = M2/ŝ, and the power pcF inside the Σ̃ab andHF (n)
cc̄←ab depends on lowest order

partonic subprocesses c + c̄ → F . Note, however, that equation 4.24 depends on the
resummation scale Q2. This dependence has been introduced in eq. 4.11 through the
replacement in 4.21. The perturbative coefficient Σ̃(n) on the right-hand side is a polyno-
mial of degree 2n in the logarithmic variable L̃. The coefficients Σ̃(n) vanish by definition
when L̃ = 0, (i.e. when b = 0), and the b-independent part ofWF

ab,N (b,M) is embodied
in the hard factorsH(n).
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For computing the coefficients needed in the finite cross section, the perturbative
expansion in 4.11, and specifically 4.24 gives

Σ̃
F (1)
cc̄←ab(z, L̃) = Σ

F (1;2)
cc̄←ab (z) L̃2 + Σ

F (1;1)
cc̄←ab (z) L̃ (4.25)

Σ̃
F (2)
cc̄←ab(z, L̃) = Σ

F (2;4)
cc̄←ab (z) L̃4 + Σ

F (2;3)
cc̄←ab (z) L̃3 + Σ

F (2;2)
cc̄←ab (z) L̃2 + Σ

F (2;1)
cc̄←ab (z) L̃ , (4.26)

where the dependence on the ratios M2/µ2
R, M2/µ2

F , M2/Q2 is again understood. It
is straightforward to extend the expansion in 4.26 to higher orders with n ≥ 3. The
b-independent coefficients Σ

F (1;k)
cc̄←ab (z), HF (1)

ab (z), Σ
F (2;k)
cc̄←ab (z), HF (2)

ab (z) are more easily
presented by considering their N -moments with respect to the variable z. These hard
coefficients can be expanded as a perturbative series in αs, being the first contributions
written as follows (Bozzi et al.,[43, 48])

HF (1)
ab,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= δcaδc̄b

[
H(1)
c −

(
B(1)
c +

1

2
A(1)
c lQ

)
lQ − pcFβ0lR

]
+ δcaC

(1)
c̄b,N + δc̄bC

(1)
ca,N +

(
δcaγ

(1)
c̄b,N + δc̄bγ

(1)
ca,N

)
(lF − lQ) , (4.27)

HF (2)
ab,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= δcaδc̄b

[
H(2)
c − δcaC

(2)
c̄b,N + δc̄bC

(2)
ca,N + C

(1)
ca,NC

(1)
c̄b,N

+H(1)
c

(
δcaC

(1)
c̄b,N + δc̄bC

(1)
ca,N

)
+

1

6
A(1)
c β0l

3
Qδcaδc̄b +

1

2

[
A(2)
c δcaδc̄bβ0Σ

(1:1)
N (M2

H/Q
2)

]
lQ

−
[
δcaδc̄b(B

(2)
c +A(2)

c lQ)− β0

(
δcaC

(1)
c̄b,N + δc̄bC

(1)
ca,N

)
+ δcaγ

(2)
c̄b,N + δc̄bγ

(2)
ca,N

]
lQ

+
1

2
β0

(
δcaγ

(1)
c̄b,N + δc̄bγ

(1)
ca,N

)
l2F +

(
δcaγ

(2)
c̄b,N + δc̄bγ

(2)
ca,N

)
lF −H(1)

N

(
M2

µ2
F

,
M2

µ2
F

,
M2

Q2

)
β0lR

+
1

2

∑
a1,b1

[
H(1)
N

(
M2

µ2
F

,
M2

µ2
F

,
M2

Q2

)
+ δca1δc̄b1H

(1)
C + δca1C

(1)
c̄b1,N

+ δc̄b1C
(1)
ca1,N

]

×
[(
δa1aγ

(1)
b1b,N

+ δb1bγ
(2)
a1a,N

)
(lF − lQ)− δa1aδb1b

((
B(1)
c +

1

2
A(1)
c lQ

)
lQ − pcFβ0lR

)]
− δcaδc̄bpcF

(
1

2
β2

0 l
2
R + β1lR

)
. (4.28)

Note that, as it happens with the g(n)
N coefficients, H(1)

N depends on H(1) and C(1), H(2)
N

also depends on H(2) and C(2), and so on and so forth. The terms lR, lF and lQ are
defined as

lR = ln
M2

µ2
R

, lF = ln
M2

µ2
F

, lQ = ln
M2

Q2
, (4.29)

referring to the ratios of the hard scale with respect to the renormalization, factorization
and resummation scale, respectively. Ideally, those scales are usually set to the order of
the hard scale, µR ∼ µR ∼ Q ∼ M , such that those logarithms give zero contribution.
One can, hence, slightly change the values of those scales around their central value
to obtain an estimation of the perturbative uncertainty from unbalanced higher order
corrections.
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Similarly, the first Σ
(n)
ab,N components have the following structure (Bozzi et al.)

Σ
(1;2)
ab,N = −1

2
A(1)
c δcaδc̄b , (4.30)

Σ
(1;1)
ab,N

(
M2/Q2

)
= −

[
δcaδc̄b

(
B(1)
c +A(1)

c lQ

)
+ δcaγ

(1)
c̄b,N + δc̄bγ

(1)
ca,N

]
, (4.31)

Σ
(2;4)
ab,N =

1

8

(
A(1)
c

)(1)
δcaδc̄b , (4.32)

Σ
(2;3)
ab,N

(
M2/Q2

)
= −A(1)

c

[
1

3
β0δcaδc̄b +

1

2
Σ

(1;1)
ab,N

(
M2/Q2

)]
, (4.33)

Σ
(2;2)
ab,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= −1

2
A(1)
c

[
H(1)
ab,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
− β0δcaδc̄b(lR − lQ)

]
− 1

2

∑
a1,b1

Σ
(1;1)
a1b1,N

(
M2/Q2

)[
δa1aγ

(1)
b1b,N

+ δb1bγ
(1)
a1a,N

]
− 1

2

[
A(2)
c δcaδc̄b

(
B(1)
c +A(1)

c lQ − β0

)
Σ

(1;1)
a1b1,N

(
M2/Q2

)]
, (4.34)

Σ
(2;1)
ab,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= Σ

(1;1)
ab,N

(
M2/Q2

)
β0(lQ − lR)

−
∑
a1,b1

H(1)
a1b1,N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)[
δa1aδb1b

(
B(1)
c +A(1)

c lQ

)
+ δa1aγ

(1)
b1b,N

+ δb1bγ
(1)
a1a,N

]

−
[
δcaδc̄b

(
B(2)
c +A(2)lQ

)
− β0

(
δcaC

(1)
c̄b,N + δc̄bC

(1)
ca,N

)
+ δcaγ

(2)
c̄b,N + δc̄bγ

(2)
ca,N

]
,

(4.35)

This way we can write the fixed-order expansion of the resummed cross section as fol-
lows. For the leading order we have[

dσ̂(res.)
F ab

dq2
T

(qT ,M,ŝ =
M2

z
;αs(µ

2
R), µ2

R, µ
2
F , Q

2)

]
LO

=
αs(µ

2
R)

π

z

Q2

∑
c

σ
(0)
cc̄,F (αs(µ

2
R,M))

×
[
Σ̃
F (1;2)
cc̄←ab (z) Ĩ2(qT /Q) + Σ̃

F (1;1)
cc̄←ab

(
z,
M2

Q2

)
Ĩ1(qT /Q)

]
. (4.36)

And for the next-to-leading[
dσ̂(res.)

F ab

dq2
T

(qT ,M,ŝ =
M2

z
;αs(µ

2
R), µ2

R, µ
2
F , Q

2)

]
NLO

=

[
dσ̂(res.)

F ab

dq2
T

(qT ,M, ŝ =
M2

z
;αs(µ

2
R), µ2

R, µ
2
F , Q

2)

]
LO(

αs(µ
2
R)

π

)2
z

Q2

∑
c

σ
(0)
cc̄,F (αs(µ

2
R),M)

4∑
k=1

Σ̃
F (2;k)
cc̄←ab

(
z,
M2

µ2
R

,
M2

µ2
F

M2

Q2

)
Ĩk(qT /Q)

(4.37)

where the qT dependence is fully embodied in the Ĩn(qT /Q) functions, which are ob-
tained by the following Bessel transformation

Ĩ(qT /Q) = Q2

∫ ∞
0

db
b

2
J0(bqT ) ln2

(
Q2b2

b20
+ 1

)
. (4.38)
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The term ln(Q2b2/b0 + 1) = L̃ in the integrand comes from the replacement L → L̃.
In customary implementations of b-space resummation, one has to consider the Bessel
transformation of powers of lnn(Q2b2/b0) = Ln, which can be expressed in terms of
powers of lnn(Q2/qT ). The functions Ĩn(qT /Q) have instead a more involved functional
dependence on qT . As shown in Appendix B of [48], this functional dependence can be
expressed in terms of Kν(qT /Q), the modified Bessel function with imaginary argument
that is defined by the following integral representation.

Kν(qT /Q) =

∫ ∞
0

dt e−x cosh t cosh(νt) . (4.39)

Then the total cross section can finally be written as

σ̂(tot)
F ab(M, ŝ;αs(µ

2
R), µ2

R, µ
2
F ) =

∫ ∞
0

dq2
T

dσ̂F ab

dqT
(qT ,Mŝ;αs(µ

2
R), µ2

R, µ
2
F ) (4.40)

and evaluate the qT spectrum in the right-hand side according to the decomposition in
terms of ”resummed” and ”finite”. Then we can write

σ̂(tot)
F ab =

M2

ŝ
HFab +

∫ ∞
0

dq2
T

σ(fin.)
F ab

dq2
T

. (4.41)

This expression is valid order by order in QCD perturbation theory.

Note that the b-space resummation approach was formalized by Collins, Soper and
Sterman (CSS) [50, 62] in terms of perturbative coefficients. It is written by the CSS
formalism as

dσ

dq2
T

(qT ,M, s) =
M2

s

∫ ∞
0

db
b

2
J0(bqT )WF (b,M, s) + ... , (4.42)

where the dots on the right-hand side stand for terms that are not logarithmically en-
hanced at small qT (large b). One could notice already that eq. 4.42 regards the hadronic
cross section rather than the partonic one, as in 4.9. Therefore, the b-space function
WF (b,M, s) which embodies the logarithmically enhanced terms, depends on the par-
ton densities of the colliding hadrons. The all-order resummation of the large loga-
rithms ln(M2b2) in the region Mb � 1 is accomplished by computing the N -moments
WF
N (b,M) of W (b,M, s) with respect to z = M2/s at fixed M , which can be written in

the following form

WF
N (b,M) =

∑
c

σ
(0)
cc̄,F

(
αs(M

2),M
)
HF
c

(
αs(M

2)
)
Sc(M, b)

×
∑
a,b

Cca,N
(
αs(b

2
0/b

2)
)
Cc̄b,N

(
αs(b

2
0/b

2)
)
fa/h1,N (b20/b

2) fb/h2,N (b20/b
2) .

(4.43)

Here the Sudakov form factor has the following integral representation

Sc(M, b) = exp

{
−
∫ M2

b20/b
2

dq2

q2

[
Ac(αs(q

2)) ln
M2

q2
+Bc(αs(q

2))

]}
, (4.44)
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where this formula is invariant under resummation scheme transformations [48]. Com-
paring the partonic and hadronic cross sections in equations 4.9 and 4.43, we can see that
WF (b,M) andWF

ab are related by

WF (b,M) =

F∑
ab,N

WF
ab(b,M ;αs(µ

2
R), µ2

R, µ
2
F ) fa/h1,N (µ2

F ) fb/h2,N (µ2
F ) , (4.45)

where we can finally relate the resummed partonic cross sectionWF
ab in terms of the per-

turbative coefficients used for WF , which at the end of the day will be written in terms
of the N -moments of the Altarelli-Parisi splitting functions.

It is interesting feature, also from the pedagogical side, to consider the integral rep-
resentation of the Sudakov form factor as defined in eq. 4.11, where the resummation is
carried out at the partonic level,

GN
(
αs(µ

2
R), L;M2/µ2

R,M
2/Q2

)
= −

∫ Q2

b20/b
2

dq2

q2

[
A(αs(q

2)) ln
M

q2
+ B̃N (αs(q

2))

]
, (4.46)

and where we see that the perturbative coefficients A(αs) and BN (αs) can be written as

A(αs) =
αs
π
A(1) +

(
αs
π

)2

A(2) +

∞∑
n=3

(
αs
π

)n
A(n) , (4.47)

B̃N (αs) =
αs
π
B̃

(1)
N +

(
αs
π

)2

B̃
(2)
N +

∞∑
n=3

(
αs
π

)n
B̃

(n)
N . (4.48)

The coefficients A(n) and B(n) are related to the customary coefficients of the Sudakov
form factors and of the parton anomalous dimensions, as it is discussed in [48].





CHAPTER 5

The resummed Higgs qT distribution

To conclude this part of the thesis we apply the resummation formalism described in
the previous chapter to the specific case of the Higgs boson production at the LHC. The
case of the Higgs boson has been explicitly worked out at LL, NLL, and NNLL level. In
the next chapter we will finally present the numerical code HTurbo, producing fast and
accurate descriptions for the resummed and fixed-order qT distributions, and we will
also discuss the N3LO implementation.

The formalism used to compute the qT distribution of the Higgs boson at the LHC
is done by combining NNLL resummation at small qT and NNLO perturbation theory
at large-qT . The fixed-order and resummed approaches at small and large values of qT
can then be matched at intermediate values, to obtain QCD predictions to the entire
range of transverse momenta. Phenomenological studies of the transverse momentum
distribution of the SM Higgs boson have been performed in refs [51, 63, 64, 65, 66], by
combining resummed and fixed-order perturbation theory at different orders of theoret-
ical accuracy.

We consider the gluon fusion production mechanism gg → H , whose Born level cross
section is given by

σ
(0)
c̄c,H(αs,MH) = δcgδc̄gα

2
sσ

(0)(MH ;Mt,Mb) , (5.1)

where Mt and Mb are the masses of the top and bottom quarks, which circulate in the
heavy-quark loop that couples to the Higgs boson. The Born-level cross section is written

σ(0) =
GF

288π
√

2

∣∣∣∣∑
Q

AQ
(4M2

Q

M2
H

)∣∣∣∣ (5.2)

where GF is the Fermi constant, and MQ = Mt,Mb denotes the on-shell pole mass of the
top and bottom masses. For our numerical study they are set to the values Mb = 4.75
GeV and Mt = 175 GeV. Though the Born cross section is evaluated exactly, meaning in-
cluding its dependence on the top and bottom quark masses, the computation of higher
order QCD corrections is performed in the framework of the large-Mt approximation
[67]

At small values of the transverse momentum, qT � MH , the qT spectrum becomes
unstable at any fixed-order, due to the large logarithms ln(M2b2) coming from unbal-
anced cancellations of the IR singularities, which take the form that appears in Figure
4.3. At LO it diverges to positive infinity as qT → 0, as seen in Figure 1 of [43], while at
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NLO it diverges to negative infinity, as seen in Figure 2 of [43]. These logarithmic cor-
rections can be resummed, however, resulting in a well-behaved physical qT spectrum,
even in the small-qT limit.

Following the techniques of Collins, Soper and Sterman 1 and Bozzi et al. [43, 48],
we can write the resummed Higgs qT spectrum as an integral over the impact parameter
[68, 69, 70]

dσF
dq2
T

(qT ,MH , s) =
M2
H

s

∫ ∞
0

db b J0(bqT )W (b,MH , s) + ... , (5.3)

where the dots on the right-hand side stand for terms that are logarithmically enhanced
at small qT (large b). Now, since the 5.3 regards the hadronic cross section, the b-space
function W (b,MH , s), which embodies the logarithmically enhanced terms, depends on
the parton densities of the colliding hadrons. For writing the all-order resummation of
the large logarithms ln(M2

Hb
2) in the region M2

s b
2 � 1 we compute the N -moments

WF
N (b,MH) =

∑
c

σ
(0)
cc̄,F (αs(M

2
H),MH) HF

c Sc(M, b)

×
∑
a,b

Cca,N (αs(b
2
0/b

2)) Ccb̄,N (αs(b
2
0/b

2))fa/h1,N (b20/b
2)fb/h2,N (b20/b

2) (5.4)

where fa/h1,N (b20/b
2) and fb/h2,N (b20/b

2) are theN -moments of the parton densities, σ(0)
cc̄,F

the lowest-order cross section for the partonic subprocess c + c̄ → F , and now the Su-
dakov form factor is given by the function Sc, which has the integral representation

Sc = exp

{
−
∫ M2

H

b20/b
2

dq2

q2

[
Ac(αs(q)) ln

M2
H

q2
+Bc(αs(q))

]}
. (5.5)

By comparing eq. 5.4 and eq. 4.9 from last chapter we can see that resummed cross
sectionsWab and WF (b,M) are related by

WF
N (b,MH) =

∑
a,b

WF
ab,N (b,M ;αs(µ

2
R), µR2, µ2

F ) fa/h1,N (b20/b
2)fb/h2,N (b20/b

2) . (5.6)

To express the resummed partonic cross sectionWab in terms of the perturbative coeffi-
cients Ac, Bc, Cab, one must evaluate the parton densities at some factorization scale µF ,
which can be done by applying a QCD evolution operator which at the end of the day is
related to the Altarelli-Parisi splitting functions [43, 48].

The known coefficients and functions in the power series relevant for Higgs produc-
tion take the following values

A(1)
c = Cc , (5.7)

A(2)
c =

1

2
Cc

[(
67

18
− π2

6

)
− 5

9
nf

]
, (5.8)

1The formalism used by Collin, Soper and Sterman is equivalent to the one discussed in Chapter 4, with
some differences worth mentioning. The main one, is that the perturbative approach of CSS is applied directly
for hadronic cross sections rather than the one used by Bozzi et al., which performs resummation at the level
of partonic observables.
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where Cc = CF if c = q, q̄ and Cc = CA if c = g. The first orders of the Bc coefficients are
given by

B̃
(1)
c,N = B(1)

c + 2γcc,N , (5.9)

with γcc,N the parton anomalous dimension 2 and

B(1)
q = B

(1)
q̄ = −3

2
CF , B(1)

g = −1

6
(11CA − 2nf ) (5.10)

B̃
(2)
c,N = B(2)

c − 2β0C
(1)
cc,N + 2γcc,N . (5.11)

Equivalently, we can perform an inverse Mellin transformation and write the B̃(2)
c coef-

ficient in z-space

B̃(2)
c (z) = δ(1− z)B(2)

c − 2β0C
(1)
cc (z) + 2P (2)

cc (z) , (5.12)

whereP (2)
cc (z) is the second-order term of the Altarelli-Parisi splitting functionPcc(z)(αs, z).

The first orders of the Cab coefficients are given by

C(1)
qg = C

(1)
q̄g =

1

2
z (1− z) , (5.13)

C(1)
gq = C

(1)
gq̄ =

1

2
CF z , (5.14)

also expressed in z-space.

Here we discuss some existing results at NLL+LO and NNLL+NLO accuracy, for the
reader to have an overall view of the behavior of the Higgs qT distribution. By imple-
menting equation 4.4 and 4.9 of Chapter 4, one can compute the differential cross section
dσ/dqT at the LHC (pp collisions at

√
s = 13 TeV). As discussed in previous chapter, at

NLL+NLO accuracy we compute dσ̂(res.)
F ab at NLL accuracy, meaning we include the hard

coefficient H(1)
N and the functions g(1)

N and g
(2)
N , and then the resummed calculation is

matched with [dσ]F.O. evaluated at NLO (O(α3
s)) in the large-qT region. The functions

g(1) and g(2) of the Sudakov form factor are process independent and written in terms
of the universal coefficients A(1), A(2), B̃(1). The flavour off-diagonal part ofHH(1)

gg←ab,N is
also process independent and given by

HH(1)
gg←gq,N = HH(1)

gg←qg,N = C
(1)
gq,N =

1

2(N + 1)
CF , (5.15)

where the auxiliary scales µR, µF and the resummation scale Q are set to µR = µF =

Q = MH , and the perturbative coefficients C(n)
ab,N are exact, meaning they are not af-

fected by the large-Mt approximation. The flavour diagonalHH(1)
gg←gg,N is instead process

dependent, therefore it depends on Mt. In the large-Mt approximation it is written as

HH(1)
gg←gg,N = HH(1)

g + 2C
(1)
gg,N =

1

2

[
(5 + π2)CA − 3CF

]
=

1

2
(11 + 3π2) , (5.16)

2More precisely, γcc,N represent the N -moments of the Altarelli-Parisi splitting function.
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At NNLL+NNLO, we also include the hard coefficient H(2)
N and the function g

(3)
N in

the resummed component, and then this is matched with [dσ]F.O. evaluated at NNLO
(O(α4

s)) in the large-qT region. The process independent function g(3) depends on the
universal coefficients A(3), B̃(2). The scale-independent part of HH(2)

N is not known in
analytic form, yet it can be obtained by exploiting the perturbative unitarity, to extract
the numerical value from the knowledge of the NNLO total cross section [71]. The scale-
independent part ofHH(2)

gg←gg,N

HH(2)
gg←gg,N

∣∣∣∣
µR=µF=Q=MH

= HH(2)
g + 2C

(2)
gg,N +

(
C

(1)
gg,N

)2
+ 2HH(1)

g C
(1)
gg,N

=

(
19

16
+

1

3
nf

)
ln
M2
H

M2
t

+ cN ; (5.17)

where theMt-dependent contribution on the right-hand side is obtained from the results
in refs [49, 72], and cN does not depend on Mt since the calculation is done in the large
Mt approximation. We recall that the functions g(k)

N (λ) are singular when λ → 1, a
singular behavior which is related to the presence of the Landau pole in the perturbative
running of αs(q2). A practical implementation of the resummation procedure requires a
prescription to deal with these singularities. In our numerical study we follow the HRes
and HqT codes and deform the integration contour in the complex b-space. In particular
we choose the integration branches

b = (cosφ± i sinφ)t, t ∈ {0,∞} (5.18)

In the figures 1 and 2 of [43], an example the qT distribution of the Higgs boson is
depicted, computed using the HqT code at NLL+NLO and NNLL+NNLO, respectively.

The qT spectrum of the Higgs boson at NLL+NLO accuracy is shown in figure 1
of [43]. In the left-hand side, the full NLL+NLO (solid line) is compared with the LO
(dashed line) at the scales µF = µR = MH . We see that the NLO calculation, as expected,
diverges at qT → 0, and the effects of the resummation are relevant below qT ∼ 100 GeV.
In the right-hand side we show the NLL+LO band which is obtained by performing scale
variations around the central value.

The qT spectrum of the Higgs boson at NNLL+NNLO accuracy is shown in figure
2 of [43]. Again, in the left-hand side the full NNLL-NNLO (solid line) is compared
with the NNLO (dashed line) at the scales µF = µR = MH . We see that the NNLO
calculation diverges now to −∞ at qT → 0, with an unphysical peak which is produced
by the numerical compensation of negative leading logarithmic and positive sublead-
ing logarithmic contributions. In the right-hand side we show the NLL+LO band which
is obtained by performing scale variations around the central value. It is interesting to
compare figures 1 and 2 of ref. [43], since the NNLL+NNLO band is smaller than the
NLL+NLO one, suggesting a good convergence of the resummed expansion.

See figure 5.1 for a representation of the qT distribution of the Higgs boson produced
with HTurbo, where we plot the resummed and the fixed order prediction to see the
behavior in the low qT range.



Figure 5.1: Higgs boson qT distribution computed at NLL+NLO accuracy, together with the fixed
order prediction at NLO. Both curves are computed with HTurbo, with full phase for a 125 Higgs
boson and in the NWA approximation. By looking at this comparison we can observe how the
fixed order prediction diverges at qT → 0, reason for which only a resummed result is physically
reliable in the low qT regime.

Our complete calculation of the qT spectrum of the Higgs boson at the LHC is imple-
mented in the numerical code HTurbo, which can be downloaded from

github.com/JesusUrtasun/HTurbo3,

together with some accompanying notes, and it is described with detail through the next
chapter. The details about its architecture and usage are discussed in Appendix C

https://github.com/JesusUrtasun/HTurbo3
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CHAPTER 6

HTurbo numerical implementation

In this chapter we present the numerical code HTurbo, which provides fast and nu-
merically precise higher order QCD predictions for Higgs boson production through
gluon fusion. Arbitrary kinematical cuts can be applied in order to obtain fiducial cross
sections and associated kinematical distributions. The present version of the code, avail-
able at

github.com/JesusUrtasun/HTurbo3,

reproduces the perturbative QCD expansion up to next-to-next-to-leading order com-
bined with resummation of the large logarithmic corrections at small transverse mo-
menta up to next-to-next-to logarithmic accuracy, and it includes the decay of the Higgs
boson in a photon pair with full dependence on the final-state kinematics. Benchmark
comparison with other public numerical codes is presented. Furthermore, next-to-next-
to-next-to-leading logarithmic (N3LL) resummation is implemented and discussed fur-
ther on. Our results represent the first implementation of the resummation of refs [73, 74]
at N3LL for Higgs boson production.

HTurbo is written following the structure of the code DYTurbo [75], for the calcu-
lation of the QCD transverse-momentum resummation of Higgs cross sections up to
next-to-next-to-leading logarithmic accuracy combined with the fixed-order results at
next-to-next-to-leading order. We present a benchmark comparison with the predictions
obtained by the numerical programs HqT [48], HRes [36], and HNNLO [76], all of them
available at [77], for which HTurbo represents an improved and optimized implemen-
tation. A detailed description of the architecture and usage of HTurbo can be found in
Appendix C

6.1 Introduction

After the discovery of the Higgs boson back in 2012, one of the main goals of the
physics program at the LHC has become direct research of the electroweak symmetry
breaking mechanism. Both precision measurements of the QCD and electroweak (EW)
parameters, together with searches for possible deviations from the SM predictions on
the Higgs sector are still under continuous discussion, specially towards the high lumi-
nosity era of the LHC [78].

Through this manuscript we focus on the production of a SM Higgs boson through
the gluon fusion mechanism and its decay to a photon pair γγ. The gluon fusion process
gg → H is the dominant production channel at the LHC and its dynamics are driven
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by the strong interactions, as already discussed during the previous chapters, and it is
therefore essential to perform perturbative QCD calculations at higher orders for Higgs
cross sections and associated distributions. Such task that can indeed be extremely de-
manding from the computational side.

The QCD radiative corrections to the total cross section have been computed up to
next-to-next-to-next-to-leading order N3LO, as we discuss further on in this chapter.
Fully exclusive parton-level NNLO calculations, which include the decay of the Higgs
boson, have been already implemented in the public Monte Carlo codes HqT [48], HRes
[36], and HNNLO [76]. The cross section for H+jet boson production in gluon fusion
has been computed in QCD perturbation theory at leading order O(α3

s), [79, 80], and at
NLO in refs. [54, 55, 81]. The combination of the resummation formalism for logarithmi-
cally enhanced contributions at small qT with fixed-order perturbative results at differ-
ent levels of theoretical accuracy have been obtained following the techniques from refs.
[48, 56, 62, 82]. Analogous resummed calculations have been performed by applying Soft
Collinear Effective Theory methods and transverse-momentum dependent factorization
[83, 84, 85]. Precise theoretical predictions with a reliable estimate of the associated un-
certainties depend on several parameters and various theoretical assumptions. It it thus
extremely important to develop numerical codes which allow for fast computations with
small numerical uncertainties. As we discuss here, such codes already exist but they re-
quire larger and larger computation times when producing higher order predictions.

The HTurbo program presented in this chapter aims to provide fast and numeri-
cally precise predictions for the Higgs boson production cross sections, to be used for
phenomenological applications towards the precision era of the LHC. The architecture
is done by following the structure of the DYTurbo code, developed for the Drell-Yan
lepton pair production. The enhancements in performance over the original programs
are achieved by over-hauling pre-existing codes and introducing one-dimensional and
multi-dimensional numerical integration techniques. The HTurbo program is a reimple-
mentation of HqT and HRes programs for qT resummation, and of the HNNLO program
for finite-order perturbative calculations up to NNLO, which aims to facilitate the in-
clusion of N3LO corrections, as we will discuss in the next chapter. The HqT and HRes
programs encode the qT resummed cross sections up to next-to-next-to-leading logarith-
mic (NNLL) accuracy by using the resummation formalism of refs. [43, 48]. The H+jet
predictions at O(α3

s) and O(α4
s) are implemented in the MCFM program [86], as encoded

already in HRes and HNNLO, for the full kinematic dependence of the decaying photons.
Software profiling was employed to achieve code optimization.

The HTurbo software is based on modular C++ structure, with a few Fortran func-
tions wrapped in and interfaced to C++. The most successful optimization strategies,
leading to significant improvements in performance, were hoisting loop-invariant ex-
pressions out to loops, removing conditional statements from loops to allow the compiler
perform automatic loop vectorization, and manual loop unrolling. Multi-threading is
implemented within OpenMP, and through the Cuba library [87] by means of fork/wait
system calls. A flexible user interface allows setting parameters of the calculation through
input files and command line options, and the results are provided in the form of .txt
files and ROOT histograms.
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Figure 6.1: Comparison of the NLL resummed component computed with HRes and HTurbo at√
s = 13 TeV as a function of the Higgs boson transverse momentum. The phase space is here

totally inclusive, and the bottom panel shows ratio of HTurbo to HRes results. The comparison is
performed with the NNPDF31 nlo as 0118 PDF set.

6.2 Predictions with HTurbo

Upon integration of final-state QCD radiation, the fully-differential Higgs boson cross
section is described by six kinematic variables, corresponding to the momenta of the two
photons. Given the spin-0 nature of the SM Higgs boson, the fully differential cross sec-
tion factorizes in two independent factors for the production and decay subprocesses of
the Higgs boson. The cross section is therefore expressed as a function of the transverse
momentum qT , the rapidity y and the invariant mass m of the photon pair, and three
angular variables corresponding to the polar angle θ and azimuth φ of the photon de-
cay in the given boson rest frame, and to the azimuth φH of the boson in the laboratory
frame. The Higgs boson is treated in the narrow-with approximation (NWA) and there-
fore we have m = MH . Moreover, the cross section does not depend on φH , since in
unpolarized hadron collisions the initial state hadrons - i.e. the incoming beams - exhibit
to very good approximation azimuthal symmetry. At NLL+NLO and NNLL+NNLO,
the qT -resummed cross section for the Higgs boson production can be written as

dσH
(N)NLL+(N)LO = dσ(res)

(N)NLL − dσ
(asy)
(N)LO + dσ(f.o.)

(N)LO , (6.1)

where dσ(res) is the resummed component of the cross section, dσ(asy) is the asymptotic
term - or counterterm - that represents the fixed-order expansion of dσ(res), and dσ(f.o.)

is the H+jet finite-order cross section integrated over final-state QCD radiation. All the
cross sections are differentiated with respect to q2

T . The resummed component dσ(res)

gives the dominant contribution at small qT while the finite-order component dσ(f.o.)

dominates at large qT . A consistent matching between resummed and finite compo-
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Figure 6.2: Comparison of the NNLL resummed component computed with HRes and HTurbo
at
√
s = 13 TeV as a function of the Higgs boson transverse momentum. The phase space is here

totally inclusive, and the bottom panel shows ratio of HTurbo to HRes results. The comparison is
performed with the NNPDF31 nnlo as 0118 PDF set.

nents is essential to have an accurate description of the whole qT range. The fixed-order
expansion of the resummed component, dσ(asy), embodies the singular behavior of the
finite-order term, providing a smooth behavior in eq. 6.1 as qT approaches zero. The
resummed component and its fixed-order expansion are given by 1

dσ(res)
(N)NLL = dσ̂H

LO ×HH
(N)NLO × exp{G(N)NLL} , (6.2)

dσ
(asy)
(N)LO = dσ̂H

LO × ΣH(qT /Q)(N)LO , (6.3)

where Q denotes the auxiliary resummation scale that is introduced in dσ(res) and, con-
sistently, in dσ(asy).

The term dσ̂H
LO is the leading-order (LO) cross section evaluated for non-vanishing

values of qT . The factor HH is the hard-collinear coefficient function and G is the expo-
nent of the Sudakov form factor, originally expressed in terms of the impact parameter
b, the Fourier conjugate of qT . As discussed in Chapter 4, this term embodies the re-
summation of the logarithmically enhanced contributions at LL, NLL, NNLL accuracy
in b space. In order to parametrize non-perturbative QCD effects, the Sudakov form fac-
tor includes a non perturbative contribution, whose simplest form is a Gaussian form
factor. The b space expression of the Sudakov form factor is then evaluated in qT space
by numerically performing the inverse two-dimensional Fourier transformation (Hankel

1The convolution with PDFs and the sum over different initial-state partonic contributions are implied in
the short-hand notation of 6.2 and 6.3. Analogously, the inverse Fourier transformation from b space to qT
space is implied in 6.2.
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transformation 2) with respect to b. The function ΣH(qT /Q) arises from the finite-order
expansion of HH × exp{G}, and it matches the singular behavior of dσ(f.o) in the region
qT → 0.

An additional feature of the HTurbo program is the possibility of computing finite-
order cross sections at LO, NLO and NNLO (without the resummation of the logarithmi-
cally enhanced contributions). At NLO and NNLO, the finite-order cross section of the
Higgs boson production is computed by using the qT -subtraction formalism [32, 33, 36],
and it is expressed as the sum of three components:

dσH
(N)NLO = HH

(N)NLO × dσH
LO +

[
dσ

H+jet
(N)LO − dσ

CT
(N)LO

]
, (6.4)

with dσCT
(N)LO given by

dσCT
(N)LO = dσH

LO ×
∫ ∞

0

d2qT ΣH(qT /m)(N)LO . (6.5)

The LO cross section term dσH
LO = dσ̂H

LOδ(q
2
T ) is evaluated at qT = 0, and dσH+jet is the

H+jet cross section. 3

A unitarity constraint was needed in the resummation formalism to recover exactly
the finite-order result upon integration over qT of the full phase space matched cross
section, and it leads to the following relation:∫ ∞

0

dq2
T dσ

(res)
(N)NLL+(N)NLO = HH

(N)NLO × dσ
(res)
LO (0) . (6.6)

The terms dσ(res)
(N)NLL and dσ

(asy)
(N)LO can be, in general, multiplied by a switching function

w(qT ,m) above a given qT threshold, to the purpose of reducing the contribution of the
resummed calculation in the large-qT region, where small-qT resummation can not im-
prove the accuracy of the finite-order calculation. The switching function can spoil the
unitarity constrain in eq. 6.6, by an amount which is smaller when the chosen qT thresh-
old is larger. The default choice in HTurbo is a Gaussian switching function. The pre-
dictions for the Higgs boson cross section are obtained by integrating over the kinematic
variables of the two photons, and over additional variables related to QCD radiation,
convolutions and integral transforms, as we summarize in the following sections. The
integral transformations are evaluated by means of one-dimensional quadrature rules
based on interpolating functions. The numerical integration over the other variables is
performed with two different methods. The first one is based on the Vegas algorithm
[88] as implemented in the Cuba library, and the second one employs a combination of
of one-dimensional and multi-dimensional numerical integrations based on interpolat-
ing functions.

The Vegas integration method is available for all terms in the resummed and fixed-
order calculations, and it allows evaluating predictions for any arbitrary observable,

2For details about the integral transforms, see the Appendix A.
3More precisely, the term dσ

H+jet
(N)LO in equation 6.4 has to be evaluated with qT > qcut

T , the lower integration
limit in equation 6.5 has to be understood to be qcut

T and the square bracket in equation 6.5 is also evaluated in
the limit qcut

T → 0.
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Figure 6.3: Comparison of the NLL (upper figure) and NNLL (lower figure) resummed compo-
nents computed with HRes and HTurbo at

√
s = 8 TeV as a function of the Higgs boson transverse

momentum. The Higgs boson fiducial phase space is defined by the photon transverse momen-
tum qT > 20 GeV and the lepton pseudorapidity |η| < 2.4, and the bottom panels show ratios
of HTurbo to HRes results. The comparison is performed with the NNPDF31 nlo as 0118 PDF
set in the case of the NLO figure, and with the NNPDF31 nnlo as 0118 PDF set for the NNLO
figure.
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for total and fiducial cross sections. The numerical integration based on interpolating
functions is available for all the terms in the case of total cross sections, and for all the
terms except the finite-order O(α2

s) in the case of fiducial cross sections. This integra-
tion method allows calculating only the cross sections as functions of qT and y. Of these
two methods, the second is more versatile, whereas the latter allows reaching relative
uncertainties in the predicted cross sections below 10−3 in a time frame that is signifi-
cantly shorter than that required by the HRes and HNNLO programs. The default values
of the renormalization (µR), factorization (µF ) and resummation (Q) scales are fixed to
µR = µF = 2Q = MH . The prescriptions necessary to obtain the resummed results (i.e.
the switching function w(qT ,m) and the prescription to avoid the Landau singularity)
have been chosen following ref. [89].

6.2.1 Resummed component

The resummed component of the qT resummed cross section in eq. 6.1 can be fac-
torized as the product of the LO cross section dσ̂H

LO and the termW = HH × exp{G}. In
these two terms, only the LO cross section depends on the photon angular variables θl
and φl. In the general case of fiducial cross sections, the integrals describing the angular
dependence involve a factor Θk, known as the acceptance function of the kinematic re-
quirements.

TheW term in 6.2 is expressed through the Sudakov form factor exp{G} in b space,
and the qT -dependent cross section is obtained by means of a two-dimensional inverse
Fourier transformation, which is expressed as a zeroth-order inverse Hankel transfor-
mation by exploiting the azimuthal symmetry of theW function in the transverse plane:

W(qT ,m, y) =
m2

s

∫ ∞
0

db
b

2
J0(bqT ) W̃(b,m, y) , (6.7)

where W̃ is the expression of W in b space, J0(x) is the zeroth-order Bessel function
and s stands for the centre-of-mass energy. The integral transformation is computed by
means of a double-exponential formula for numerical integration [90, 91]. The convolu-
tion with PDFs is more efficiently performed by considering double Mellin moments of
the partonic functions Ŵab, defined as

ŴN1,N2

ab =

∫ 1

0

dz1 z
N1−1
1

∫ 1

0

dz2 z
N2−1
2 Ŵab(z1, z2) , (6.8)

where we have defined

z1,2 = m/
√
ŝ e±ŷ ,

ŷ = y − 1/2 ln(x1/x2) , (6.9)
ŝ = x1x2s ,

and a, b denote the initial state partonic indices. The function W̃ is then obtained by
means of a double inverse Mellin transformation

W̃(b,m, y) =

(
1

2πi

)2 ∫ c+i∞

c−i∞
dN1 x

−N1
1

∫ c+i∞

c−i∞
dN2 x

−N2
2 FN1

a FN2

b ŴN1,N2

ab , (6.10)
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where x1,2 = m/
√
s e±y , c is a real number which lies at the right of all poles of the

integrand, and FNi , with i = a, b are Mellin moments of PDFs fi(x) defined as

Fi(N) =

∫ 1

0

dx xN−1fi(x) . (6.11)

The integral transformation in 6.11 is computed by means of Gauss-Legendre quadra-
ture, and the PDFs are evolved from the factorization scale µF to the scale b0/b 4 using
the Pegasus QCD program for the evolution of the PDFs in Mellin space [92]. To perform
the Mellin inversion, it is necessary to calculate the Mellin moments Fi(N) at values N
along the contour of integration in the complex plane. Parametrizing the PDFs in a sim-
ple form as

f(x) = xα(1− x)βP (x) , (6.12)

where α, β are constants and P (x) is a polynomial function, Mellin moments for an
arbitrary complexN can be calculated through a simple formula involving the Γ function∫ 1

0

dx xα (1− xβ)
Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
. (6.13)

Thanks to the analytic continuation of eq. 6.13 in the region of the complex plane with
Re(N) < 0, when PDFs are expressed with this form the integration contour in 6.10 can
be optimized by bending towards negative values of Re(N), allowing for faster conver-
gence of the inverse Mellin integral. Such a strategy is adopted in HRes. As a drawback,
PDFs need to be parametrized as in eq. 6.12, otherwise they require an approxima-
tion which can be significantly time consuming. In HTurbo, the Mellin moments of
the PDFs are evaluated numerically, by using Gauss-Legendre quadrature to calculate
the integrals in 6.11. However these integrals can be evaluated numerically only for
Re(N) > 0. As a consequence the integration contour of the inverse Mellin transform
cannot be bent towards negative values of Re(N), and a standard contour along the
straight line [c − i∞, c + i∞] is used. This procedure results in a slower convergence of
the integration, but it has the great advantage of allowing usage of PDFs with arbitrary
parametrization, without requiring further time consuming evaluation.

The integration over the Higgs boson rapidity, y, is factorized as follows. In the case
of the total cross sections, the values of the angular integrals do not depend on y. The
only dependence on the rapidity in eq. 6.10 is in the expression

xN1
1 xN2

2 = e− ln
(
m
√
s
)

(N1+N2) e−y(N1−N2) , (6.14)

and the integrals of eq. 6.14 are evaluated analytically using the following relation∫ y1

y0

dy e−y(N1−N2) =
e−y1(N1−N2) − e−y0(N1−N2)

N1 −N2
, (6.15)

where y0 and y1 are the lower and upper y-bin boundaries. In the case N1 = N2, eq.
6.15 further simplifies to y1 − y0. When the y-bin boundaries are larger that the allowed
kinematic range |y| ≤ ymax, with ymax = ln(

√
s/m), eq. 6.15 simplifies 2πiδ(N1 − N2),

and the double Mellin inversion is reduced to a single Mellin inversion [43, 48] by setting
N1 = N2 = N . The integration over the Higgs boson transverse momentum qT , can be

4Here b0 = 2e−γE and γE = 0.5772... is the Euler-Mascheroni constant.



HTurbo numerical implementation 75

performed analytically in the case of full-photon phase space cross sections, since the
integrals over the angular variables of the photon pair do not depend on qT , and the
only term that depends on qT is J0(bqT ) of 6.7. By using the relation∫

dx xJ0(x) = xJ1(x) , (6.16)

the integration over qT in a bin of boundaries q0
T and q1

T can be evaluated as∫ q1T

q0T

dqT 2qTW(qT ,m) =
m2

s

∫ ∞
0

db
[
q1
TJ1(bq1

T )− q0
TJ1(bq0

T )
]
W̃(b,m) . (6.17)

Similarly to eq. 6.7, the integral of eq. 6.17 is computed by means of a double-exponential
formula for numerical integration, and by performing two separate integrations corre-
sponding to the terms J1(bq1

T ) and J1(bq0
T ). The information of the one-loop and two

loop virtual corrections to the LO subprocess is contained in the HH function. In the
computation of the fixed-order cross section of eq. 6.4, theHH function is evaluated in x-
space, i.e. without performing a Mellin transformation, and the convolution with PDFs
is performed by integrating over the variables z1,2 = e±ŷm/

√
ŝ. The corresponding in-

tegrals are calculated with Gauss-Legendre quadrature.

We present in figures. 6.1, 6.2 and 6.3 the results for the resummed component in a qT
range from qT = 0 to qT = 50 GeV, where the implemented next-to-leading and next-to-
next-to-leading log calculations of HTurbo shows excellent numerical agreement with
HqT and HRes.
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6.2.2 Asymptotic term and counter-term

The asymptotic term of eq. 6.3 and the counter-term of eq. 6.5 are computed us-
ing the function ΣH(qT /Q), which embodies the singular behavior of dσ(f.o.) in the limit
qT → 0. In the finite-order case the counter-term contributes at qT = 0. Accordingly,
the LO cross section is evaluated at qT = 0, and the function ΣH(q′T /Q) is integrated
over the auxiliary variable q′T . Meanwhile in the resummed case the asymptotic term is
a function of qT , and the LO cross section is evaluated for nonzero values of qT . The in-
tegration over the angular variables is performed as for the resummed term, factorizing
the LO cross section using the acceptance function Θk in the fiducial case. The function
ΣH(qT /Q) is evaluated in x-space, i.e. without performing the Mellin transformation,
and the convolution with PDFs is performed by integrating over the variables z1,2 with
Gauss-Legendre quadrature. In the case of full-photon phase space cross sections, the
qT dependence of the asymptotic term and of the function ΣH(qT /Q) is fully embodied
in a set of four functions Ĩn(qT /Q) as described in Chapter 4, which are integrated with
Gauss-Legendre quadrature. The integrals over the angular variables of the photon pair
also depend on qT , and the integrals∫ q1T

q0T

dqT 2qT Ĩn(qT /Q) θi(qT ) , i = 0, 1 , (6.18)

where q0
T and q1

T are the lower and upper qT -bin boundaries, which are evaluated nu-
merically by means of Gauss-Legendre quadrature. We present in figures. 6.4 and 6.5
results for the counterterm in a qT range from qT = 0 to qT = 120 GeV.

6.2.3 Finite-order term

The real-emission corrections are embodied in the (N)NLO finite-order term of eq.
6.1 and in the H+jet term of eq. 6.4 for the resummed predictions, respectively. Since
HTurbo provides results that are inclusive over final-state QCD radiation, the two terms
are fully equivalent 5. Two independent calculations for this term are implemented. The
first calculation, based on the HRes and HNNLO codes, is fully differential with respect
to the photon angular variables and the final-state QCD radiation. The second calcula-
tion, which is inclusive over the photon angles and the QCD radiation, implements the
analytic result as in the HqT implementation. The MCFM implementation of the lowest-
order term dσH+jet is the most complex part of the calculation, and it can be evaluated
only with the Vegas algorithm. The reason is that this NNLO calculation is based on
the Catani-Seymour dipole subtraction scheme [32, 33], in which for each point in the
phase space where the real radiation is evaluated, a set of counter-term dipoles is com-
puted corresponding to various different phase-space points. As in any local subtraction
procedure, the resulting integral presents discontinuities and it cannot be efficiently ap-
proximated by interpolating functions. The implementation of the analytic calculation
of refs [36, 48, 76] yields to double-differential production cross sections as a function
of qT and y of the photon pair, and it is used only for cross sections inclusive over the
photon decay, evaluated with numerical integration based on interpolating functions.
We present in figures. 6.6 and 6.7 results for the fixed-order cross section in a qT range
from qT = 0 to qT = 120 GeV, where the NLO and NNLO implementations of HTurbo
show excellent numerical agreement with HqT and HRes.

5Resummed predictions can be computed only inclusively with respect to the final-state QCD radiation,
whereas fixed-order predictions could be evaluated differentially.
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Figure 6.4: Comparison of the LO (upper figure) and NLO (lower figure) asymptotic term com-
puted with HRes and HTurbo at

√
s = 13 TeV as a function of the Higgs boson transverse mo-

mentum. The phase space is here totally inclusive, and the bottom panels show ratios of HTurbo
to HRes results. The comparison is performed with the NNPDF31 nlo as 0118 PDF set in the
case of the NLO figure, and with the NNPDF31 nnlo as 0118 PDF set for the NNLO figure.
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Figure 6.5: Comparison of the LO (upper figure) and NLO (lower figure) asymptotic term com-
puted with HRes and HTurbo at

√
s = 13 TeV as a function of the Higgs boson transverse mo-

mentum. The Higgs boson fiducial phase space is defined by the photon transverse momentum
qT > 20 GeV and the lepton pseudorapidity |η| < 2.4, and the bottom panels show ratios of
HTurbo to HRes results. The comparison is performed with the NNPDF31 nlo as 0118 PDF set
in the case of the NLO figure, and with the NNPDF31 nnlo as 0118 PDF set for the NNLO figure.
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Figure 6.6: Comparison of fixed-order LO (upper figure) and NLO (lower figure) H+jet cross
sections computed with HNNLO and HTurbo at

√
s = 13 TeV as a function of the Higgs boson

transverse momentum. The phase space is here totally inclusive, and the bottom panels show
ratios of HTurbo to HNNLO results. The comparison is performed with the NNPDF31 nlo as 0118
PDF set in the case of the NLO figure, and with the NNPDF31 nnlo as 0118 PDF set for the
NNLO figure.



80 6.2 Predictions with HTurbo

Figure 6.7: Comparison of fixed-order LO (upper figure) and NLO (lower figure) H+jet cross
sections computed with HNNLO and HTurbo at

√
s = 13 TeV as a function of the Higgs boson

transverse momentum. The Higgs boson fiducial phase space is defined by the photon transverse
momentum qT > 20 GeV and the lepton pseudorapidity |η| < 2.4, and the bottom panels show
ratios of HTurbo to HNNLO results. The comparison is performed with the NNPDF31 nlo as 0118
PDF set in the case of the NLO figure, and with the NNPDF31 nnlo as 0118 PDF set for the
NNLO figure.
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Figure 6.8: Resummed predictions with different values of the scale variations, setting µR and µF
to be equal to the central value MH , 2MH and 1

2
MH . In the upper figure, the Higgs boson fiducial

phase space is defined by the photon transverse momentum qT > 20 GeV and the lepton pseudo-
rapidity |η| < 2.4, for a 125 GeV Higgs boson and in the NWA approximation. The comparison
in the lower figure is performed in full phase space, for a 125 GeV Higgs boson and in the NWA
approximation. The calculation is performed with the MSTW2008nnlo PDF set.
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Figure 6.9: Resummed predictions for the Higgs boson qT distribution at NLL and NNLL accuracy
at
√
s = 13 TeV, using in both cases the MSTW2008nnlo PDF set. The phase space is here totally

inclusive, for a 125 GeV Higgs boson and in the NWA approximation.

6.3 Tests of numerical precision

In order to validate the numerical precision of the resummed calculation, three clo-
sure tests are performed: the comparison of the fixed-order expansion of the resummed
component (asymptotic term) and the finite-order term at small qT , the comparison of
the term HH × dσLO and the resummed upon qT integration, and comparisons of the
integration methods available in HTurbo, namely the Vegas algorithm and the multi-
dimensional numerical integration based on interpolating functions, referred to as Gauss-
Legendre quadrature integration in the plots. The numerical tests of this section are
performed in full-photon phase space, using the MSTW2008nlo and MSTW2008nnlo
sets for parton density functions and with default values of the QCD scales and EW pa-
rameters. As discussed on section 6.2 of this chapter, the function dσ(asy) embodies the
singular behavior of dσ(f.o.) when qT → 0, yielding the relation

lim
QT→0

∫ QT

0

(dσ(f.o.) − dσ(asy)) = 0 . (6.19)

Computing such a relation at small values of QT provides a stringent test of the numeri-
cal precision of the asymptotic and finite-order predictions. The double-differential cross
sections dσ(asy) and dσ(f.o.), as functions of qT and y, are evaluated at the fixed value y = 0
for proton-proton as

√
s = 13 TeV.

The figures below provide some benchmark results with HRes at NNLL+NNLO, and
with HqT and HNNLO for the fixed-order at NLO and NNLO. Figure 6.8 displays the
NNLL distribution for different values of the µR and µF scales.
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Figure 6.10: Benchmark results for the total cross section gg → H at Born level. The upper image
shows the HTurbo output for the fixed-order only computation, which can be done by means of
the quadrature integration or the Vegas algorithm, leading to a more precise predictions but with
slower convergence. The lower image shows the HNNLO output, done by means of the quadrature
integration. The phase space is here totally inclusive, for a 125 GeV Higgs boson and in the NWA
approximation. The calculation is performed with the MSTW2008nnlo PDF set.
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Figure 6.11: Benchmark results for the total cross section gg → H at next-to-leading order correc-
tions in αs, meaning with one loop correction to the Born-level cross section. The upper image
shows the HTurbo output for the fixed-order only computation, which can be done by means of
the quadrature integration or the Vegas algorithm, leading to a more precise predictions but with
slower convergence. The lower image shows the HNNLO output, done by means of the quadrature
integration. The phase space is here totally inclusive, for a 125 GeV Higgs boson and in the NWA
approximation. The calculation is performed with the MSTW2008nnlo PDF set.
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Figure 6.12: Benchmark results for the total cross section gg → H at next-to-next-to-leading order
corrections in αs, meaning with two loop corrections to the Born-level cross section. The upper
image shows the HTurbo output for the fixed-order only computation, which can be done by
means of the quadrature integration or the Vegas algorithm, leading to a more precise predictions
but with slower convergence. The lower image shows the HNNLO output, done by means of the
quadrature integration. The phase space is here totally inclusive, for a 125 GeV Higgs boson and
in the NWA approximation. The calculation is performed with the MSTW2008nnlo PDF set.
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Figure 6.13: Benchmark results for the total cross section gg → H+jet at leading order corrections
in αs, meaning with one real (radiative) correction to the Born-level cross section. The upper image
shows the HTurbo output for the fixed-order only computation, which can be done by means of
the quadrature integration or the Vegas algorithm, leading to a more precise predictions but with
slower convergence. The lower image shows the HNNLO output, done by means of the quadrature
integration. The phase space here has a cut in qT = 5 GeV for the radiated parton, for a 125
GeV Higgs boson and in NWA approximation. The radiative correction is added to the Born-
level cross section to produce the total result. In the HNNLO code, the result of the accumulated
integral shows the contributions of the radiative corrections, to be compared with the V+J
column of HTurbo, while the final result Cross section must be compared against the total
column of HTurbo. Comparing with 6.14, a larger value of the qtext

T leads to a smaller acceptance
and hence to a smaller cross section. The calculation is performed with the MSTW2008nnlo PDF
set.
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Figure 6.14: Benchmark results for the total cross section gg → H+jet at leading order corrections
in αs, meaning with one real (radiative) correction to the Born-level cross section. The upper image
shows the HTurbo output for the fixed-order only computation, which can be done by means of
the quadrature integration or the Vegas algorithm, leading to a more precise predictions but with
slower convergence. The lower image shows the HNNLO output, done by means of the quadrature
integration. The phase space here has a cut in qT = 1 GeV for the radiated parton, for a 125
GeV Higgs boson and in NWA approximation. The radiative correction is added to the Born-
level cross section to produce the total result. In the HNNLO code, the result of the accumulated
integral shows the contributions of the radiative corrections, to be compared with the V+J
column of HTurbo, while the final result Cross section must be compared against the total
column of HTurbo. Comparing with 6.13, a larger value of the qtext

T leads to a smaller acceptance
and hence to a smaller cross section. The calculation is performed with the MSTW2008nnlo PDF
set.
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Figure 6.15: Benchmark results for the total cross section gg → H+jet at next-to-leading order cor-
rections in αs, meaning with one real (radiative) correction and one virtual (loop) to the Born-level
cross section. The upper image shows the HTurbo output for the fixed-order only computation,
which can be done by means of the quadrature integration or the Vegas algorithm, leading to a
more precise predictions but with slower convergence. The lower image shows the HNNLO output,
done by means of the quadrature integration. The phase space here has a cut in qT = 5 GeV for the
radiated parton, for a 125 GeV Higgs boson and in NWA approximation. The virtual correction is
added to the LOH → gg+jet cross section to produce the total result. In the HNNLO code, the result
of the accumulated integral shows the contributions of the radiative corrections, to be com-
pared with the V+J column of HTurbo, while the final result Cross section must be compared
against the total column of HTurbo. The calculation is performed with the MSTW2008nnlo PDF
set.
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6.4 HTurbo N3LL implementation

We will now discuss the N3LL implementation within HTurbo. As already stated
in chapters 2 and 4, reducing the theoretical uncertainties of the SM cross sections re-
mains one of the main motivations for the extension beyond NNLO accuracy. Extending
the perturbative accuracy of QCD calculations to higher orders implies developing new
methods and techniques to achieve the cancellation of infrared (IR) divergences that ap-
pear at intermediate steps of the calculations. The past few years have witnessed a great
development in both NNLL accuracy for resummed predictions and NNLO subtraction
prescriptions. The qT subtraction method [36, 48, 93], the residue subtraction [94, 95],
and the antenna subtraction method [96] or sector decomposition among others, have
all been successfully applied for LHC phenomenology. However, in view of the impres-
sive and continuously improving quality of the measurements performed at the LHC,
even NNLO accuracy is in some cases not sufficient to match the precision of the LHC
data.

This motivates the current theoretical effort to go beyond NNLO and include the
next perturbative order: the next-to-next-to-next-to-leading order (N3LO). Sum rules,
branching fractions [97] and deep inelastic structure functions [98] have been known to
this order for quite some time. At present, the Drell-Yan and the Higgs boson production
are some of the few processes for which N3LO QCD corrections have been calculated.
For the Drell-Yan production, rapidity and qT distributions at third order of the strong
coupling can be found at [99, 100, 101]. In the Higgs boson case, the total production
cross section in gluon fusion [102, 103] and in vector boson fusion [104] have been al-
ready computed. First steps have been taken towards more differential observables by
computing several N3LO threshold expansion terms to the Higgs boson rapidity distri-
bution in gluon fusion [105, 106]. The N3LO fixed order calculation for the Higgs boson
is computed in ref. [107]

The current version of HTurbo, as presented in this chapter, contains the perturbative
QCD expansion up to next-to-next-to-leading order combined with resummation of the
large logarithmic corrections at small transverse momenta up to next-to-next-to-next-to
logarithmic accuracy. The first ingredient used for building a N3LO prediction for the
qT distribution of the SM Higgs boson starts with the resummed contribution at N3LL.
Recalling the discussion of Chapter 4, the resummed cross section at an arbitrary order
of logarithmic accuracy is written as

dσ(res)
(n)NLL = dσ̂H

LO ×HH
(n)NLO × exp{G(n)NLL} , (6.20)

where both Sudakov factor G and hard coefficient H, usually written in Mellin space as
GN HN , can be expanded as perturbative series in αs

GN (αs, L) = L g(1)(αsL) + g(2)(αsL) +
αs
π
g(3)(αsL) +

(
αs
π

)2

g(4)(αsL) + ... , (6.21)

HN (αs) = 1 + αsH(1) + α2
sH(2) + α3

sH(3) + ... (6.22)

Written in this way, from the computation side the implementation becomes quite straight-
forward. For each new order of logarithmic accuracy, one needs to implement higher
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order contribution of GN andHN as follows:

LL(∼ αnsLn+1) : g(1), σ̂(0) ,

NLL(∼ αnsLn) : g(2),H(1) ,

NNLL(∼ αnsLn−1) : g(3),H(2) ,

N3LL(∼ αnsLn−1) : g(4),H(3) .

For the computation of the g(4) function of the Sudakov factor, two ingredients are
needed, as it can be already seen in the integral representation 4.44. Four-loop calcula-
tions are involved within the g(4), for which the so-called cusp and collinear anomalous
dimensions are required. 6. While the beta function of QCD determines the running
of the coupling due to ultraviolet divergences, the cusp anomalous dimensions of the
quark and gluon determine the leading infrared singularities of massless scattering am-
plitudes [108].

The phenomenological relevance of the cusp anomalous dimensions to the resum-
mation of prominent QCD observables is well-established, considered in some cases at
the next-to-next-to-next-to-leading (four-loop) logarithm level a decade ago [109, 110],
but their calculation to higher orders in QCD perturbation theory is a challenging task.
After the completion of the two-loop calculations, roughly twenty years elapsed before
the appearance of a first analytic calculation of the three-loop cusp anomalous dimen-
sions [111, 112] from the three-loop DGLAP splitting functions. Over the last few years, a
number of approximate numerical [113, 114] and partial analytic [115, 116, 117, 118, 119]
results have appeared at the four-loop level; just as for the beta function of massless
QCD, now known to five-loop order after years of intensive investigation [120, 121, 122],
a high degree of automation and significant computer resources enabled this progress.
Up to three loops, the cusp anomalous dimensions of the quark and gluon are related to
each other by the quadratic Casimir scaling principle [123, 124, 125, 126]. As discussed
in [114] this no longer holds at the four-loop level, but is rather generalized to accom-
modate novel color structures built out of quartic Casimir operators. This generalized
Casimir scaling proposal was recently contrasted by two independent theoretical studies
[127, 128]. An analytic form of the four-loop QCD cusp anomalous dimensions can be
found in a very recent computation [129].

The calculation of the four-loop quark and gluon cusp anomalous dimensions can
be found at [74]. While no independent results of γg4 are immediately available, [130]
provides the O(n3

f ) part of the four-loop virtual anomalous dimension, relating it to the
so-called eikonal four-loop anomalous dimension, Br4 , allowing for an alternative extrac-
tion of the first two terms of γg4 . In the general case,

γr4 = 2Br4 + fr4 , (6.23)

where fr4 represents the four-loop eikonal anomalous dimension of massless QCD. Re-
lating fq4 and fg4 by Casimir scaling, one can obtain the relevant terms for γg4 and γq4 and
find agreement with the relevant calculation. Indeed, the computation of the γg4 coeffi-
cient can be extracted from the quark one by applying the Casimir scaling [114, 127, 128]
at the four-loop level. Again, for further details about the explicit calculation we refer

6The computations required for these contributions can be quite specific and beyond the scope of this thesis,
so we provide a brief discussion and refer the reader to the recently published calculations for further details.
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For the computation of the second contribution to g(4), recent works have applied
Soft-Collinear Effective Theory (SCET) [131, 132, 133, 134, 135] to resum large loga-
rithms in perturbative QCD using renormalization group (RG) method. For qT resum-
mation this has been done by a number of authors [136, 137, 138, 139, 140, 141]. For
transverse-momentum observables, the relevant momentum modes in light-cone coor-
dinate for fields in the effective theory are soft ps ∼ Q(λ, λ, λ), collinear pc ∼ Q(λ2, 1, λ)
and anti-collinear ps ∼ Q(1, λ2, λ), where λ ∼ qT /Q is a power counting parameter. The
corresponding effective theory is SCETII. An important feature of SCETII is that soft and
collinear modes live on the same hyperbola of virtuality7, p2

s ∼ p2
c ∼ p2

c̄ ∼ λ2Q2. Besides
the usual large logarithms of ratio between hard scale Q and soft scale λQ, there are
also large rapidity separations between soft, collinear, and anti-collinear modes which
need to be resummed. In the CSS formalism, the resummation of large qT logarithms is
controlled by two anomalous dimension

A[αs(µ)] =

∞∑
i=1

ais Ai , (6.24)

B[αs(µ)] =

∞∑
i=1

ais Bi . (6.25)

It is straightforward to express these anomalous dimension in terms of the anomalous
dimension in SCETII, see e.g. ref. [142, 143]. In particular, we obtain the Bi anomalous
dimensions in the original CSS scheme through to three-loops

B1 = γv
0 − γr

0 , (6.26)
B2 = γv

1 − γr
1 + β0c

v
1 , (6.27)

B3 = γv
2 − γr

2 + β1c
v
1 + 2β0

(
cV
2 −

1

2
(cv

1)2

)
, (6.28)

where the γv is the anomalous dimension of hard function results matching QCD onto
SCETII, and the cv factor stands for the scale-dependent terms of the hard matching. For
the Drell-Yan they can be extracted from the quark and gluon form factors [144, 145, 146],
and for the Higgs case they can also be extracted from the effective coupling of the Higgs
boson to gluons [147]. The exact numbers for the Drell-Yan and Higgs boson production,
as they can be found in the HTurbo implementation of the Sudakov g(4), can be found
in ref. [73], where the formalism of [139] and [140] is used.

The Hard coefficients up to NNLO can be found in [148] and [149], respectively for
the vector boson and Higgs boson cases. The implementation of such coefficients at
N3LO is still work in progress in the current version of HTurbo, and it will be needed
towards the full N3LL+N3LO prediction. We present in fig. 6.16 a comparison of the
resummed predictions for the Higgs boson qT distribution at NLL, NNLL and N3LL
accuracy, with the Sudakov form factor now computed up to N3LL accuracy, including
the g(4) function. The smaller difference between the NNLL and N3LL curves suggest a
good convergence of the perturbative expansion.

7Again, for the details of the calculation we refer the reader to [73].
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Figure 6.16: Comparison of the resummed predictions for the Higgs boson qT distribution at NLL,
NNLL and N3LL accuracy, using in all cases the MSTW2008nnlo PDF set. The upper image shows
the computation with the Higgs boson fiducial phase space defined by the photon transverse mo-
mentum qT > 20 GeV and the lepton pseudorapidity |η| < 2.4, and for the lower image it is
totally inclusive. The Sudakov form factor is now computed including the g(4) function, by fol-
lowing [73] and [74]. The computation of the hard coefficients at N3LO is still to be implemented,
while the calculation is already available at [107]. The smaller difference between the NNLL and
N3LL curves suggest a good convergence of the perturbative expansion.



Conclusions

As mentioned at the very beginning of this thesis, the main goal of theoretical high
energy physics could just be phrased as trying to accurately describe the fundamental in-
teractions among the elementary particles. An attempt to reduce all natural phenomena
to a set of basic rules and laws which, at least in principle, can quantitatively reproduce
and predict experimental observations. The main argument of this thesis is Quantum
Chromodynamics (QCD), the sector of the Standard Model (SM) describing the strong
interactions, meaning the interactions between quarks and gluons. Finally heading to-
wards the precision era of the Large Hadron Collider (LHC), it is crucial to have very
accurate theoretical predictions of what is expected by the SM, at least as accurate as
precise the detection and measurement techniques, in order to be able to distinguish
possible deviation from the expectations with the maximal significance.

Cross-sections in high energy physics are typically computed using perturbation the-
ory, which provides a very powerful set of tools to predict observable quantities from a
Quantum Field Theory (QFT). However, there are situations in which a truncation of
the series is of no meaning, and then only a resummed result is reliable. This is a situ-
ation that quite often appears in QCD, and hence one of the main problems addressed
in this thesis. A cross-section generally depends on many energy scales, and the de-
pendence is typically in the form of logarithmic ratios of energies. In some kinematical
regimes, when two of such scales become very different to each other, these logs become
large and the coefficients of the perturbative series are significantly enhanced, making
the standard perturbative approach unreliable. Then, the entire series of these enhanced
terms has to be resummed in order to have an accurate prediction for the observable.

Hence, as described through chapters 2 and 4, resummation of the large logarithmic
contributions originating from incomplete cancellation of soft and collinear divergences
between real and virtual diagrams is crucial for QCD. The transverse-momentum distri-
bution of generic high-mass color-neutral systems (Drell-Yan lepton pair, Higgs boson,
etc.) produced in hadron collisions is of great interest since the early days of QCD, and
it requires both precise predictions at higher orders, together with fast numerical imple-
mentations to reach the required accuracy within short computation times.

We present a novel numerical code, HTurbo, which provides fast and numerically
precise predictions for Higgs boson production through gluon fusion, the dominant pro-
duction channel at the LHC. Arbitrary kinematical cuts can be applied in order to obtain
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fiducial cross sections and associated kinematical distributions. The present version of
the code, available at

github.com/JesusUrtasun/HTurbo3,

contains the resummation of the large logarithmic corrections up to next-to-next-to-next-
to-leading logarithmic (N3LL) accuracy combined with the perturbative QCD expansion
up to next-to-next-to-next-to leading order (NNLO). It also includes the decay of the
Higgs boson in a photon pair with full dependence on the final-state kinematics.

The predictions produced by HTurbo combine the resummation formalism for log-
arithmically enhanced contributions at small qT with fixed-order perturbative results at
different levels of theoretical accuracy. The implementation of resummation up to N3LL
follows the techniques of Bozzi et al. [43, 48], and for the computation of the fixed-order
cross sections we apply the qT -subtraction formalism [32, 33, 36], as discussed through
chapters 2 and 4 of this thesis.

HTurbo is implemented following the structure of the numerical code DYTurbo
[75], developed by S. Camarda for the calculation of the QCD transverse-momentum
resummation of the Drell-Yan cross sections up to NNLL accuracy combined with the
fixed-order results at NNLO, and later extended to contain the N3LL+N3LO contribu-
tion [101].

We present a benchmark comparison with the predictions obtained by the numerical
programs HqT [48], HRes [36], and HNNLO [76], all of them available at [77], for which
HTurbo represents an improved and optimized implementation. The current architec-
ture of HTurbo is built such that it allows for a straightforward implementation of the
N3LL, and it sets the first implementation of the resummation of refs [73, 74] at N3LL
for Higgs boson production. A detailed description of the code performance and bench-
mark results is presented in Chapter 6, while the architecture and usage of HTurbo can
be found in Appendix C

The enhancement in performance over previous programs is achieved by code op-
timization, by factorizing the cross section into production and decay variables, and
with the usage of numerical integration based on interpolating functions. The bench-
mark comparison with the predictions obtained by the HqT, HRes and HNNLO shows
excellent numerical agreement. The great reduction of computing time for performing
cross-section calculations opens new possibilities for Higgs processes at the LHC, and
also opens the possibility of searches for physics beyond the SM.

The N3LL prediction as depicted in figure 6.16 of the last chapter of this thesis sets
the first implementation of the resummation of refs [73, 74] at N3LL for Higgs boson
production.

https://github.com/JesusUrtasun/HTurbo3


List of Publications

As of Jesús Urtasun Elizari,

Publications in preparation

Higgs boson production at the LHC: fast and precise predictions in QCD at higher orders
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APPENDIX A

Integral transformations

A.1 Fourier-Bessel transformation

The multidimensional Fourier transformation of a generic function g(x) is defined as

g(b) ≡ F [g(x)] ≡ 1

(2π)n/2

∫
Rn
dnx g(x) e−ib·x , (A.1)

where we distinguish between the function in direct and Fourier space just by the name
of the argument 1.

The inverse Fourier transformation is given by

g(x) ≡ F−1[g(b)] ≡ 1

(2π)n/2

∫
Rn
dnb g(b) eib·x . (A.2)

Given the the symmetry that usually appears in collider phenomenology, usually one
has to deal with central functions in Rn. Therefore it is very convenient to express such
integral transformations with respect to the radial variable r

g(x1, ..., xn) ≡ g(r) .

In such cases, the Fourier transform in eq. A.1 can be simplified

g(b) ≡ F [g(r)] =
1

(2π)n/2

∫
Rn
dnx g(r) e−ib·x (A.3)

= b1−
n
2

∫
Rn
dr r r

n
2−1f(r)Jn

2−1(br) , (A.4)

where Jn
2−1(rb) is Bessel function of order n

2 − 1, and b and r stand for the modulus of b
and r. Due to angular symmetry, the inverse transformation can be obtained simply by
switching b with r.

The case n = 2 is particularly important in literature, and it is usually referred to as the
Hankel transformation

g(b) ≡ H[g(r)] =

∫ ∞
0

dr r J0(br)g(r) , (A.5)

g(r) ≡ H−1[g(b)] =

∫ ∞
0

db b J0(br)g(b) , (A.6)

1For the purpose of this thesis, we can identify the direct space x with the qT of a given physical state.
Then, the Fourier conjugate variable b will be no other than the impact parameter.
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A.2 Laplace transformation

The Laplace transformation of a generic function g(t) is given by

g(s) ≡ L [g(t)] =

∫ ∞
0

dt g(t) e−st , (A.1)

where, again, we distinguish the Laplace transformed function from the original one just
by the conjugate argument s.

If the function g(s) is well defined, then it is free of singularities for Re(s) > c, being
c some numerical value depending on g(t). Indeed, in order for the Laplace transform
to converge, the function g(t) can grow at most as ect as t→∞, case in which the trans-
formed function g(s) is free of singularities for Re(s) > c.

The inverse transformation is given by

g(t) ≡ L −1[g(t)] =
1

2πi

∫ c0+∞

c0−i∞
ds g(s) est , (A.2)

for some contour c0 such that c0 > c and Res > c. The proof is quite trivial:

1

2πi

∫ c0+∞

c0−i∞
ds g(s) est = ,

∫ ∞
0

dt′ g(t′)
1

2πi

∫ c0+∞

c0−i∞
ds es(t−t

′)

=

∫ ∞
0

dt′ g(t′) δ(t− t′)

=

{
g(t) if t ≥ 0

0 if t < 0 .
(A.3)

Note that, if we had taken a bilateral transformation, i.e. with lower limit −∞, the in-
verse transform A.2 would have reproduced g(t) in the whole range −∞ < t < ∞.
Hence, the Laplace transformation in A.1 should be referred to as unilateral Laplace
transformation, and it is suitable for functions defined only in t > 0, while the bilat-
eral one works for functions defined everywhere.

If g(t) is real, then g(s) is a real function, i.e. it satisfies

g(s∗) = (g(s))∗ (A.4)

for the complex conjugated variable s∗. This rule can immediately verified from the
definition of the Laplace transform in A.1.
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A.3 Mellin transformation

When a function g(z) is defined in the range 0 < z < 1, which is actually quite
common in QCD and collider phenomenology, and fits most of the cases discussed in
this thesis, we can decide to take a Laplace transformation with respect to the variable
z = e−t. The resulting transform is the so-called Mellin transformation;

g(N) ≡M[g(z)] ≡
∫ 1

0

dz zN−1 g(z) , (A.1)

And its inverse transformation is given by

g(z) ≡M−1[g(N)] ≡ 1

2πi

∫ N0+i∞

N0−i∞
dN z−N g(N) , (A.2)

where N0 must be greater than the real part of the rightmost singularity (which must
exist, because again g(N) has a convergent abscissa). The integration contour can be
deformed at will, provided that it does not cross any singularity. In other words, all sin-
gularities must be at the left of the contour. Being z < 1, a typical deformation scheme
consists in giving a phase to the upper and lower parts of the integration path in such a
way that the real part of N is negative, and increasing as its absolute value goes to infin-
ity. As a particular example, when g(N) is a real function we can perform the following
manipulations

g(z) =
1

2πi

∫ N0+i∞

N0−i∞
dN z−N g(N)

=
1

π
Im
∫ N0+i∞

N0

dN z−N g(N)

=
1

π

∫ ∞
0

dt Im[(i− ε)z−N0−(i−ε)t g(N0 + (i− ε)t)]

=
x−N0

π

∫ ∞
0

du Im
[
ε− i
log z

e(i−ε)u g

(
N0 − (i− ε) u

log z

)]
(A.3)

where in the last two steps we have deformed the integration contour according to
N = N0 + (i− ε)t, ε > 0, to guarantee numerical convergence.

We write here some properties of the Mellin transformation

Shift operation M[zcg(z)] = g(N + c)

Scale change M[g(az)Θ(a− z)] =

∫ a

0

dz zN−1g(az) = aN
∫ 1

0

dt tN−1 g(t) = aNg(N)

Logarithmic derivative M[lnk
(
g(N)

)
] =

∂k

∂εk
M[
(
g(N)

)ε
] =

∂k

∂εk
G(N, ε)

(A.4)

with usually G called generating function of g(z).





APPENDIX B

Special functions

B.1 Euler Gamma and related functions

The base function of this group it eh Euler Gamma function Γ(z), which arises as
an extension of the factorial function to complex numbers. It is defined for all complex
numbers except the non-positive integers. Derived by Daniel Bernoulli, for any complex
number with positive real part Re(z) > 0, the Euler Gamma is defined by

Γ(z) ≡
∫ ∞

0

dt e−t tz−1 . (B.1)

It is a real function, meaning that it satisfies

Γ(z∗) = (Γ(z))∗ , (B.2)

and in particular
Im Γ(z) = 0 for z ∈ R . (B.3)

Integrating by parts, it is easy to to show that Γ(z) satisfies the following recursive rela-
tion;

Γ(z + 1) = zΓ(z). (B.4)

Then, knowing that Γ(1) = 1, we have for z ∈ N that

Γ(n+ 1) = n! , (B.5)

extending the factorial to complex values.

Note that equation B.4 in reverse allows to analytically extend the Gamma function
to the whole complex plane, apart from singular points. Indeed, the Gamma function
has poles in the negative integers. More precisely, for n ∈ N, Γ(−n) has a simple pole
with residue

Resz=−nΓ(z) =
(−1)n

n!
, (B.6)

and around such poles the Gamma function satisfies the expansion

Γ(z − n) =
(−1)n

n!

[
1

z
+ ψ(n+ 1) +O(z)

]
, (B.7)

where ψ stands for the PolyGamma function ψ0.
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An important property satisfied by the Gamma function is the so-called Euler reflec-
tion formula

Γ(z)Γ(1− z) =
π

sin(πz)
, (B.8)

which is useful to relate the region of convergence of the integral in eq. B.1 with the
region Re(z) < 0.

At large |z|, for | arg z| < π, the Gamma function has the asymptotic expansion

Γ(z) = e−z zz−
1
2

√
2π

[
1 +

1

12z
+

1

288z2
+ ...

]
, (B.9)

which reduces to the well known Stirling approximation keeping only the first term.
One should keep in mind that the Stirling approximation is very precise also for small
values of z. For instance, int the Stirling approximation we have

Γ(2) = 0.96... (B.10)

which is very close to the exact value Γ(2) = 2.

Logarithmic derivatives of the Gamma function lead to another species of very im-
portant functions, the so-called PolyGamma functions of order k

ψk(z) ≡ d(k+1)

dz(k+1)
ln Γ(z) , (B.11)

with the first order derivative
ψ0(z) ≡ d

dz
Γ(z) , (B.12)

is commonly identified as the the original PolyGamma function, or DiGamma function.
From the recursion property of the Euler Gamma B.4 it follows that

ψ0(z + 1) = ψ0(1) + 1 +
1

2
+

1

3
+ ...+

1

n
. (B.13)

The value of ψ0(−1) is called the Euler-Mascheroni constant, and its numerical value is
given by

γE ≡ −ψ1 = 0.577216... (B.14)

For the case of higher order derivatives, From the recursion property of the Euler
Gamma B.4 one can derive the recursion formula for a k-th order PolyGamma,

ψn(z + 1) ≡ ψn(z) + n!(−1)n
1

zn+1
. (B.15)

As a last note, let’s comment the behavior of the PolyGamma functions at large |z|.
At large values of |z|with arg z < π, only ψ0(z) is divergent

ψ(z + 1) ∼ ln z +O
(1

z

)
. (B.16)

while all the PolyGammas coming from higher order derivatives, ψn with n > 1, vanish
as 1/zn.
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B.2 Riemann zeta function

A commonly appearing function in the context of resummation is the so-called Rie-
mann zeta function. Being first studied by Euler in the context of real numbers, it was
Riemann who extended the definition to complex analysis, and established the famous
relation between its zeros and the distribution of prime numbers.

The Riemann zeta function is defined by the series

ζ(s) =

∞∑
n=0

n−s =
1

1s
+

1

2s
+

1

3s
+ ..., if Re(s) > 1 . (B.1)

The series converges for Re(s) > 1, but the function can be analytically extended to the
whole complex plane, apart from s = 1, where it reduces to the divergent harmonic
series. The analytic continuation is based of the reflection formula

ζ(1− s) = 2(2π)−s cos

(
πs

2

)
Γ(s)ζ(s) . (B.2)

In particular, one can relate the zeta function for values of its argument less than 1 to the
zeta function at values when the series B.1 converges.

For positive integers s = n > 0, one finds two cases: when n = 2j + 1 is odd, the
cosine vanishes and we get

ζ(−2j) = 0, j ∈ N, j > 0 , (B.3)

while when n = 2j is even, we have

ζ(1− 2j) =
2(2j − 1)!

(2π)2j
ζ(2j), j ∈ N, j > 0 , (B.4)

The Riemann zeta function has the following integral representation

ζ(s) =
1

Γ(s)

∫ ∞
0

dt
ts−1

et − 1
. (B.5)

By expanding the denominator as a geometric series and exchanging the integral and
the sum we get back the series definition B.1.

Special values of ζ(s) are

ζ(−1) = − 1

12

ζ(0) =
1

2

ζ(1/2) =
1

2

ζ(2) =
π2

6

ζ(4) =
π4
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And they are usually labeled as
ζk ≡ ζ(k) . (B.6)
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B.3 Bessel function

Bessel functions, first defined by the mathematician Daniel Bernoulli and then gen-
eralized by Friedrich Bessel, arise as canonical solutions y(x) of the Bessel’s differential
equation

x
d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0 , (B.1)

for an arbitrary complex number α, which is usually denoted as the order of the Bessel
function.

Since B.1 is a second-order differential equation, there must be two linearly inde-
pendent solutions, respectively known as the Bessel functions of first kind and second
kind. Real values of the order α define Bessel functions of the first kind Jαs , and Bessel
functions of the second kind Yα(x). The difference between them is that Jα(x) always
vanishes for x = 0 and it is a single-valued function, while Yα(x) diverges at the origin
and it is a multi-valued function.

Bessel functions of the first kind, labeled as Jα(x), are solutions of the Bessel’s dif-
ferential equation with an integer α. For a positive integer α, Bessel functions of the
first kind are finite at the origin x = 0, while for negative integers they diverge as x ap-
proaches zero. It is possible to express them as a series expansion around x = 0, which
can be found by applying the Frobenius method;

Jα(x) =

∞∑
m=0

(−1)m

m! Γ(m+ α+ 1)

(
x

2

)2m+α

, (B.2)

where Γ is the Euler gamma function as defined in B.1. For non-integer values of α, the
functions Jα and J−α are linearly independent, and hence they are the two solutions for
the Bessel equation.

The Bessel functions of second kind 1, denoted by Yα(x), are multivalued functions
that have a singularity at the origin x = 0. Nor non-integer α, Yα(x) is related to Jα(x)
by

Yα(x) =
Jα(x) cos(απ)− J−α(x)

sin(απ)
. (B.3)

In the case of integer order n, the function is defined by taking the limit as the non-integer
α tends to n

Yn(x) = lim
α→n

Yα(x) (B.4)

Both Bessel functions are commonly given in the form of the integral representation

Jα(x) =
1

π

∫ π

0

dτ cos(ατ − x sin(τ))− sin(αx)

π

∫ ∞
0

dt e−x sinh(t)−αt , (B.5)

Yα(x) =
1

π

∫ π

0

dτ sin(x sin(x)− ατ)− 1

π

∫ ∞
0

dt e−x sinh(t)(e−αt cos(απ) + eαt) , (B.6)

1The second kind functions are sometimes also called Weber functions, as they were introduced by
H.M.Weber, and also Neumann functions after Carl Neumann.
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B.4 Plus distribution

The plus distributions arise in the context of cancellation of soft and collinear diver-
gences, and they are defined as∫ 1

0

dz [f(z)]+g(z) =

∫ 1

0

dz f(z)[g(z)− g(1)] . (B.1)

Formally, the plus distribution [f(z)]+ following from the definition above is given by

[f(z)]+ = f(z)− δ(1− z)
∫ ∞

0

dz f(z) , (B.2)

but, if f(z) diverges as z → 1, this expression needs to be written in a regularized form

[f(z)]+ = lim
η→0+

[
Θ(1− η − z)f(z)− δ(1− z)

∫ 1−η

0

dz f(z)

]
, (B.3)

where the limit η → 0+ is intended to be performed after the integration over the test
function g(z).

The plus distribution as defined in B.1 regularizes functions which diverge as z → 1,
in the sense that the integral over any test function g(z) remains finite. In particular, the
usual logarithms

logk(1− z)
1− z

(B.4)

are properly regularized.

Some useful relations can be derived from the definition. For instance, if g(z) is a
regular function as z → 1, then

[g(z)f(z)]+ = g(z)[f(z)]+ − δ(1− z)
∫ y

0

dy g(y)[f(y)]+ , (B.5)

g(z)[f(z)]+ = g(1)[f(z)]+ − [g(z)− g(1)]f(z) , (B.6)

where in the last term of the second line the plus distribution is no longer needed since
g(z)− g(1) regularizes f(z).

In our particular case, we are resumming the logarithmic the logarithmic contribu-
tions contained in dσ̂(res.)

F ab, which are plus distributions of the type[
αns
q2
T

lnm
(
M2

q2
T

)]
+

, (B.7)

being M the hard scale of a given process and qT the transverse momentum of the parti-
cle produced. It is natural hence to require that these resummed terms give a vanishing
contribution to the total cross section, leading to a finite result upon integration over qT .
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HTurbo architecture and usage

C.1 The structure of HTurbo

Since the HTurbo code can seem over complicated at first sight, inheriting routines
and subprocesses from HqT, HRes and HNNLO, together with the MCFM code and all the
ones already implemented for the Drell-Yan computation within DYTurbo 1, we present
here the main parts that implement the resummed, counterterm and finite-order contri-
butions for the Higgs boson production. We will describe first the architecture of HTurbo
from the computational side, then a small section dedicated to the repository from which
the results can be obtained and benchmarked with HRes, HqT and HNNLO..

1. The src directory implements the integration rules for the different components,
together with the most fundamental parts of the code such as reading the param-
eters from the input card, and the storing/linking instructions from the different
codes implemented

• The src/settings.C file stores the information from the runcard and sets the
active terms for the different contributions (resummed, counterterm, finite),
the phase space generation, and the integration rules (quadrature, Vegas, etc).

• The src/resintegr.C file performs the integration of the resummed contribu-
tion.

• The src/ctintegr.C file performs the integration of the counterterm.

• The src/finintegr.C file performs the integration of the fixed-order.

2. The input directory contains all the runcards. In the runcard one can set the active
contributions for the calculation (doBorn = True/False, doCT = True/False,
doVJ = True/False), the phase space cuts as well as the histogram for the out-
put file, as well as the integration algorithm, accuracy settings or parallelization
for faster performance. The runcards

• input/process RES 01.in, input/process RES 02.in

• input/process CT 01.in input/process CT 02.in

• input/process FO 01.in input/process FO 02.in

1HTurbo follows the architecture of the DYTurbo, written by S. Camarda for the purpose of computing
the Drell-Yan cross sections. HTurbo represents an optimized implementation of HRes, HqT and HNNLO in the
same way DYTurbo implemented the optimized version of DYRes and DYqT and DYNNLO, and it is contained
now within the same framework.
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https://github.com/JesusUrtasun/HTurbo3/tree/master/src
https://github.com/JesusUrtasun/HTurbo3/blob/master/src/settings.C
https://github.com/JesusUrtasun/HTurbo3/blob/master/src/resintegr.C
https://github.com/JesusUrtasun/HTurbo3/blob/master/src/ctintegr.C
https://github.com/JesusUrtasun/HTurbo3/blob/master/src/finintegr.C
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are already set to reproduce the benchmark results for the resummed component,
counterterm and fixed-order expansion. There are already some default input
cards labeled as default.in for the user to try various computations.

3. The born directory implements the leading order integration for computing the
Born-level cross section. The calculation is done in born/loint.C file, while coef-
ficients for the higher order corrections are taken from the resum, dyres and src
directories.

4. The resum directory includes all files needed for the resummed calculation, while
the integration running on top are in the src directory.

• The resum/mesq.C implements the LO amplitude section for the Higgs pro-
duction via gluon fusion.

• The resum/mellinint.C is where the collinear hard coefficients, the exponenti-
ation of theCab coefficients and the Sudakov form factor are joined to produce
the resummed integrand.

• The resum/sudakovff.C contains the implementation of the Sudakov form
factor.

• The resum/hcoeff.C and resum/hcoefficients.C contain the implementation
of the hard collinear coefficients.

• The resum/expc.C contains the exponentiation of the Cab coefficients.

5. The counterterm directory includes all files needed for the counterterm calculation,
while the integrations running on top are in the src directory.

• The counterterm/ctint.C implements the C++ version of the fixed-order ex-
pansion of the resummed cross section, producing the Σ functions together
with the leading, next-to-leading and next-to-next-to-leading contributions.

• The counterterm/countint.C implements the Fortran fixed-order expansion
of the resummed cross section, producing the Σ function together with the
leading, next-to-leading and next-to-next-to-leading contributions.

• The counterterm/qtint.C implements the integration of the counterterm and
the leading logarithmic contributions.

6. The vjet directory includes all files needed for the leading-order finite-order calcu-
lation, while the next-to-leading require the virtual and real contributions with are
inherited from integrands. The integrations running on top are in the src directory.

• The vjet/vjloint.C implements the LO integration for the H+jet cross section,
by means of the Gauss-Legendre quadrature and with the Vegas algorithm.

• The vjet/virtint.f implements the virtual+real contribution to the NLO H+jet
cross section, by means of the Vegas algorithm.

• The vjet/realint.f implements the double real contribution to the NLO H+jet
cross section, by means of the Vegas algorithm.

7. The mcfm directory includes all matrix amplitudes needed for the resummed and
finite-order calculations.
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A flexible user interface allows setting parameters of the calculation through input
files and command line options. Arbitrary kinematical cuts, modifications of the SM
parameters or setting the rapidity and transverse distribution ranges can be done di-
rectly in the input card. The results are provided in the form of .txt files and ROOT
histograms.

Here we write the basic steps for downloading, compiling and running the work-
ing version of the code. For the purpose of performing calculations the user just need
to compile using the instructions that can already be found in the original version of
DYTurbo

https://dyturbo.hepforge.org/

forge page. The runcards needed for performing a computation are already set with
default values inside the input directory implements the integration directory.

autoreconf -i;
./configure --enable-root --enable-Ofast
make -j 4
make install

Run with the default input card

cp input/default.in input/process.in;
./bin/dyturbo input/process.in

C.2 Benchmark results

For the purpose of producing benchmark results and comparing the predictions done
by HTurbo with other codes, the following repository is available

github/JesusUrtasun/HTurbo3 check codes,

where we store the output files produced by HTurbo, HqT, HRes, and HNNLO, together
with the Python scripts for the benchmark and comparison plots.

1. The check codes directory contains the Python scripts that reproduce all bench-
mark plots.

• The check codes/check hturbo qt all orders.py performs the comparison of
the resummed distribution HTurbo and HqT at LL, NLL and NNLL accuracy.

• The check codes/check hturbo3.py performs the comparison of the countert-
erm and fixed-order distribution of HTurbo, HqT, HRes and HNNLO.

• The check codes/check hturbo figures.py is devoted to reproduce the figures
used for this thesis.

2. The input directory contains all output data files from HTurbo, HqT, HRes, and
HNNLO, which are used directly as input for the Python plotter scripts. input/hturbo3
directory, input/hqt, input/hres directory, input/hnnlo directory, are the only ones
used for the figures of this thesis.

https://dyturbo.hepforge.org/
https://github.com/JesusUrtasun/HTurbo3/tree/master/input
https://github.com/JesusUrtasun/HTurbo3_check_codes/tree/master/src
https://github.com/JesusUrtasun/HTurbo3_check_codes/tree/master/check_codes
https://github.com/JesusUrtasun/HTurbo3_check_codes/blob/master/check_codes/check_hturbo_qt_all_orders.py
https://github.com/JesusUrtasun/HTurbo3_check_codes/blob/master/check_codes/check_hturbo3.py
https://github.com/JesusUrtasun/HTurbo3_check_codes/blob/master/check_codes/hturbo_figures.py
https://github.com/JesusUrtasun/HTurbo3_check_codes/input
https://github.com/JesusUrtasun/HTurbo3_check_codes/input/hturbo3
https://github.com/JesusUrtasun/HTurbo3_check_codes/input/hqt
https://github.com/JesusUrtasun/HTurbo3_check_codes/input/hres
https://github.com/JesusUrtasun/HTurbo3_check_codes/input/hnnlo
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√
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panels show ratios of HTurbo to HNNLO results. The comparison is per-
formed with the NNPDF31 nlo as 0118 PDF set in the case of the NLO
figure, and with the NNPDF31 nnlo as 0118 PDF set for the NNLO figure. 80

6.8 Resummed predictions with different values of the scale variations, set-
ting µR and µF to be equal to the central value MH , 2MH and 1

2MH . In
the upper figure, the Higgs boson fiducial phase space is defined by the
photon transverse momentum qT > 20 GeV and the lepton pseudorapid-
ity |η| < 2.4, for a 125 GeV Higgs boson and in the NWA approximation.
The comparison in the lower figure is performed in full phase space, for a
125 GeV Higgs boson and in the NWA approximation. The calculation is
performed with the MSTW2008nnlo PDF set. 81

6.9 Resummed predictions for the Higgs boson qT distribution at NLL and
NNLL accuracy at

√
s = 13 TeV, using in both cases the MSTW2008nnlo

PDF set. The phase space is here totally inclusive, for a 125 GeV Higgs
boson and in the NWA approximation. 82

6.10 Benchmark results for the total cross section gg → H at Born level. The
upper image shows the HTurbo output for the fixed-order only compu-
tation, which can be done by means of the quadrature integration or the
Vegas algorithm, leading to a more precise predictions but with slower
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of the quadrature integration. The phase space is here totally inclusive, for
a 125 GeV Higgs boson and in the NWA approximation. The calculation
is performed with the MSTW2008nnlo PDF set. 83
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6.11 Benchmark results for the total cross section gg → H at next-to-leading or-
der corrections in αs, meaning with one loop correction to the Born-level
cross section. The upper image shows the HTurbo output for the fixed-
order only computation, which can be done by means of the quadrature
integration or the Vegas algorithm, leading to a more precise predictions
but with slower convergence. The lower image shows the HNNLO output,
done by means of the quadrature integration. The phase space is here to-
tally inclusive, for a 125 GeV Higgs boson and in the NWA approximation.
The calculation is performed with the MSTW2008nnlo PDF set. 84

6.12 Benchmark results for the total cross section gg → H at next-to-next-to-
leading order corrections in αs, meaning with two loop corrections to
the Born-level cross section. The upper image shows the HTurbo out-
put for the fixed-order only computation, which can be done by means of
the quadrature integration or the Vegas algorithm, leading to a more pre-
cise predictions but with slower convergence. The lower image shows the
HNNLO output, done by means of the quadrature integration. The phase
space is here totally inclusive, for a 125 GeV Higgs boson and in the NWA
approximation. The calculation is performed with the MSTW2008nnlo
PDF set. 85

6.13 Benchmark results for the total cross section gg → H+jet at leading or-
der corrections in αs, meaning with one real (radiative) correction to the
Born-level cross section. The upper image shows the HTurbo output for
the fixed-order only computation, which can be done by means of the
quadrature integration or the Vegas algorithm, leading to a more pre-
cise predictions but with slower convergence. The lower image shows
the HNNLO output, done by means of the quadrature integration. The
phase space here has a cut in qT = 5 GeV for the radiated parton, for a
125 GeV Higgs boson and in NWA approximation. The radiative correc-
tion is added to the Born-level cross section to produce the total result.
In the HNNLO code, the result of the accumulated integral shows
the contributions of the radiative corrections, to be compared with the
V+J column of HTurbo, while the final result Cross section must be
compared against the total column of HTurbo. Comparing with 6.14, a
larger value of the qtext

T leads to a smaller acceptance and hence to a smaller
cross section. The calculation is performed with the MSTW2008nnlo PDF
set. 86



118 List of Figures

6.14 Benchmark results for the total cross section gg → H+jet at leading or-
der corrections in αs, meaning with one real (radiative) correction to the
Born-level cross section. The upper image shows the HTurbo output for
the fixed-order only computation, which can be done by means of the
quadrature integration or the Vegas algorithm, leading to a more pre-
cise predictions but with slower convergence. The lower image shows
the HNNLO output, done by means of the quadrature integration. The
phase space here has a cut in qT = 1 GeV for the radiated parton, for a
125 GeV Higgs boson and in NWA approximation. The radiative correc-
tion is added to the Born-level cross section to produce the total result.
In the HNNLO code, the result of the accumulated integral shows
the contributions of the radiative corrections, to be compared with the
V+J column of HTurbo, while the final result Cross section must be
compared against the total column of HTurbo. Comparing with 6.13, a
larger value of the qtext

T leads to a smaller acceptance and hence to a smaller
cross section. The calculation is performed with the MSTW2008nnlo PDF
set. 87

6.15 Benchmark results for the total cross section gg → H+jet at next-to-leading
order corrections in αs, meaning with one real (radiative) correction and
one virtual (loop) to the Born-level cross section. The upper image shows
the HTurbo output for the fixed-order only computation, which can be
done by means of the quadrature integration or the Vegas algorithm, lead-
ing to a more precise predictions but with slower convergence. The lower
image shows the HNNLO output, done by means of the quadrature integra-
tion. The phase space here has a cut in qT = 5 GeV for the radiated parton,
for a 125 GeV Higgs boson and in NWA approximation. The virtual cor-
rection is added to the LO H → gg+jet cross section to produce the total
result. In the HNNLO code, the result of the accumulated integral
shows the contributions of the radiative corrections, to be compared with
the V+J column of HTurbo, while the final result Cross section must
be compared against the total column of HTurbo. The calculation is
performed with the MSTW2008nnlo PDF set. 88

6.16 Comparison of the resummed predictions for the Higgs boson qT distribu-
tion at NLL, NNLL and N3LL accuracy, using in all cases the MSTW2008nnlo
PDF set. The upper image shows the computation with the Higgs boson
fiducial phase space defined by the photon transverse momentum qT > 20
GeV and the lepton pseudorapidity |η| < 2.4, and for the lower image it
is totally inclusive. The Sudakov form factor is now computed including
the g(4) function, by following [73] and [74]. The computation of the hard
coefficients at N3LO is still to be implemented, while the calculation is al-
ready available at [107]. The smaller difference between the NNLL and
N3LL curves suggest a good convergence of the perturbative expansion. 92
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loop beta function for a general gauge group and anomalous dimensions beyond
feynman gauge. Journal of High Energy Physics, 2017(10), Oct 2017.

[122] K. G. Chetyrkin, G. Falcioni, F. Herzog, and J.A.M. Vermaseren. Five-loop renor-
malisation of qcd in covariant gauges. Journal of High Energy Physics, 2017(10), Oct
2017.

[123] Thomas Becher and Matthias Neubert. Infrared singularities of scattering ampli-
tudes in perturbative qcd. Physical Review Letters, 102(16), Apr 2009.

[124] Einan Gardi and Lorenzo Magnea. Factorization constraints for soft anoma-
lous dimensions in qcd scattering amplitudes. Journal of High Energy Physics,
2009(03):079–079, Mar 2009.

[125] Thomas Becher and Matthias Neubert. On the structure of infrared singularities
of gauge-theory amplitudes. Journal of High Energy Physics, 2009(06):081–081, Jun
2009.

[126] Lance J. Dixon. Matter dependence of the three-loop soft-anomalous-dimension
matrix. Physical Review D, 79(9), May 2009.

[127] Stefano Catani, Daniel de Florian, and Massimiliano Grazzini. Soft-gluon effective
coupling and cusp anomalous dimension. The European Physical Journal C, 79(8),
Aug 2019.

[128] Thomas Becher and Matthias Neubert. Infrared singularities of scattering ampli-
tudes and n3ll resummation for n-jet processes. Journal of High Energy Physics,
2020(1), Jan 2020.

[129] Johannes M. Henn, Gregory P. Korchemsky, and Bernhard Mistlberger. The full
four-loop cusp anomalous dimension in N = 4 super yang-mills and qcd, 2019.

[130] J. Davies, A. Vogt, B. Ruijl, T. Ueda, and J.A.M. Vermaseren. Large-nf contributions
to the four-loop splitting functions in qcd. Nuclear Physics B, 915:335–362, Feb 2017.

[131] Christian W. Bauer, Sean Fleming, and Michael Luke. Summing sudakov loga-
rithms in b→ xs + γ in effective field theory. Physical Review D, 63(1), Dec 2000.

[132] Christian W. Bauer, Sean Fleming, Dan Pirjol, and Iain W. Stewart. An effective
field theory for collinear and soft gluons. Physical Review D, 63(11), May 2001.

[133] Miguel G. Echevarrı́a, Ahmad Idilbi, Andreas Schäfer, and Ignazio Scimemi.
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