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Abstract: This paper analyses the advancements of atomic scale 
nanoelectronics towards quantum neuromorphics. First, the key properties  
of elementary combinations of a few neurons, namely long- and short-term 
plasticity, spike-timing dependent plasticity (associative plasticity), 
quantumness and stochastic effects, and their potential computational 
employment are summarised. Next, several atomic scale device technologies 
are developed to control electron transport at the atomic level, including single 
atom implantation for atomic arrays and CMOS quantum dots, single atom 
memories, Ag2S and Cu2S atomic switches, hafnium-based RRAMs,  
organic material based transistors, and Ge2Sb2Te5 (GST) synapses. Each 
material/method was proved successful in achieving some of the properties 
observed in real neurons. This paper compares the different methods towards 
the creation of a new generation of naturally inspired and biophysically 
meaningful artificial neurons, in order to replace the rigid CMOS based 
neuromorphic hardware. The most challenging aspect to address appears to be 
to obtain both the stochastic/quantum behaviour and the associative plasticity, 
which are currently observed only below and above 20 nm length scale 
respectively, by employing the same material. 
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1 Introduction 

Neuromorphic devices have been inspired by the increasing understanding of 
mechanisms underlying the behaviour of real neurons, but hardware architectures have 
been principally focused on a brute force method to obtain realistic transfer functions of 
solicited artificial neurons (see [1]) and neural networks. Emulation of individual natural 
ingredients by using artificial components [2] has been generally neglected until the 
recent inclusion in the Emerging Research Device Chapter of ITRS 2013 [3]. Both 
classical and quantum schemes have been proposed to achieve artificial neuron  
behaviour [4,5] and quantum adiabatic neural systems [6] irrespectively from their 
biological plausibility. On the other hand, there are realistic (naturally inspired) kinds of 
neurons like those of Maeda and Makino [7] which can be developed from both the 
material science and the architectural point of view. The implementation of biologically 
plausible artificial neurons and synapses at nanometric scale requires the development of 
techniques based on quantum chemistry, quantum mechanics, atomic physics and 
material science. The methods for emulating specific properties of neurons are based on 
radically different approaches and, to date, the topic has never been systematically 
reviewed. In this review paper we separately consider the key properties of a biological 
neural system including neurons and synaptic activity, and the implementation realised 
by exploiting different materials. 

Real neurons and synapses are based on molecular scale phenomena, including ionic 
transport, single charge fluctuations, and protein folding, as well as genic expression of 
DNA. At such nanometric scale, quantum mechanics plays a major role. Studies in 
microtubules seem to confirm such conjecture [8]. Even if quantum effects have not been 
definitively demonstrated in neurons and in human brain in general, recent reports of 
quantum effects at room temperature in biological systems suggest that similar effects 
may be spread in many of them [9], including the brain, and the field is growing rapidly. 
In this paper, the recent progress in the fabrication of atomic scale devices suitable for 
implementation of nanometric electric functionality of real neurons is discussed. 

Artificial neurons can be described in terms of blocks which emulate functional 
properties. A nature-inspired artificial neuron will provide convergence and integration 
among the different blocks in a possibly single platform (namely materials and process). 
The blocks include synapse blocks (responsible of integration of the input spikes, 
elaboration of temporal dynamics, short and long-term plasticity mechanisms and of 
providing an output signal), a soma block (for temporal integration, spike generation, 
refractory period block and spike-frequency or spiking threshold adaptation block), and 
axon and dendrites spatial structure block (to implement the cable equation, for 
modelling signal propagation along passive neuronal fibres). Generally the literature is 
concentrated to synaptic emulation as plasticity is considered of greater complexity if 
compared to aspects related to connectivity and internal mechanisms of signal processing 
in neurons. The latter can in principle be replaced by an equivalent circuit with similar 
transfer function and connections. In the first part of this review, the key properties to 
achieve a nature inspired neural system are considered. In the second part a number of 
different fabrication methods and materials are reviewed. The features achieved by  
the fabrication methods are compared in Section 4. A connection emerges between 
fluctuations and quantum effects with nanometric scale, and between associative 
plasticity and size above 20 nm. 
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2 Requirements for nature inspired artificial synapses 

This section is devoted to the different kinds of plasticity and stochastic processes 
existing in real neurons and synapses. The classification here proposed is based on the 
number of neurons involved in the process, and the time evolution of both the voltage 
solicitations and the consequent changes of the conductance. The timescale of the 
duration is also considered. In the following the term plasticity is used to refer to synaptic 
plasticity, not to be confused with intrinsic plasticity. The latter, not discussed in this 
work, consists of a persistent modification of the electrical properties of neurons, as a 
consequence of neuronal or synaptic activity. Long term plasticity, short-term plasticity 
(STP), spike-timing dependent plasticity, quantumness and stochastic activation are 
considered. Their computational uses are summarised in Table 1. 

Table 1 Various properties of synaptic activity are used in the brain for computational 
purposes. The table lists the key properties, the possible computational use and the 
references 

Property Computational use References 

STF Working memory [10] 
 Mapping input for readout [11] 
STD Removing auto-correlation [12] 
LTP Spatial memory storage [13,14] 
LTD Encoding space features [15,16] 
 Selective weakening of synapses [16] 
 Clearing old memory traces [17,18] 
F-STDP Long range temporal correlation [19] 
 Temporal coding [20] 
 Spatiotemporal coding [21,22] 
R-STDP Sensory filtering [23,24] 
SA/Q Enhanced excitability [25] 

2.1 Long term plasticity 

Long term plasticity involves either two or three neurons, including a presynaptic  
neuron A1 (eventually a modulatory interneuron neuron A2) and a postsynaptic neuron B. 
Long term plasticity may last either hours or days. The induction of long term plasticity 
results in either an increased or a decreased probability of discharge of postsynaptic 
neurons after repeated potential bursts of presynaptic neurons. 

• Long-term potentiation (LTP) involves two neurons, a presynaptic neuron A1 which 
acts as a generator of action potentials, and a postsynaptic neuron B. It results in the 
increase of the synaptic strength when activated by a high frequency stimulus. 

• Homosynaptic long-term depression (LTD) involves two neurons, a presynaptic 
neuron A1 which acts as a generator of action potentials, and a postsynaptic  
neuron B. It results in the weakening of the synapse when activated by a low 
frequency stimulus. 
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• Heterosynaptic long-term depression unlike the previous homosynaptic LTD, 
involves three neurons. It occurs at synapses that are not potentiated or are  
inactive between A1 and B. The weakening of the synapse is controlled by the  
firing of a distinct modulatory interneuron A2, independently from the activity  
of the presynaptic or postsynaptic neurons, as reported by Escobar and Derrick [26]. 

In the literature on artificial neurons, the term long-term plasticity is often improperly 
used to refer to LTP. Usually LTP and depression are a byproduct of the spiking time 
dependent plasticity (STDP) scheme (Section 2.3), where three neurons are involved,  
two of which fire. From a computational point of view, LTP is employed by nature to 
encode space [13], while LTD encodes the features of space [15], for example orientation 
and finer details [14]. In addition, LTD may determine selective weakening of synapses 
[16] and the clearing of old memory traces (see [17,18]). 

2.2 Short-term plasticity 

Unlike with long term plasticity, STP involves only two neurons, namely a presynaptic 
neuron A, which has the role of exciting a postsynaptic neuron B. STP invokes a change 
in the electrical properties of a single synapse, and it can act both in a depressive and in a 
facilitative mode. The modification to synaptic efficacy is temporary and lasts generally 
100–1000 ms. Both the facilitation and the depression depend on the local finite amount 
of ions and molecules at the synapse, which are continuously exchanged and re-employed 
at every process in the site. It is worth noting that the convention here employs P for 
plasticity, while in LTP it refers to potentiation. For historical reasons, the analogous 
term of potentiation is called facilitation for the short term processes. 

• Short-term facilitation (STF) constitutes an increased excitability of a synapse as 
reaction to an external stimulus. STF is due to penetration of Ca ions in the axon 
terminal after having generated a spike, with a consequent increase in the release  
of neurotransmitters. 

• Short-term depression (STD) consists of a diminished reaction of a neuron to 
external stimuli, owing to the depletion of neurotransmitters during the synaptic  
process at the axon terminal of a pre-synaptic neuron. 

STF-enhanced synapses can be exploited to hold the memory trace of an input without 
recruiting persistent firing of neurons, which makes for a robust method to implement 
working memory [10]. Buonomano and Maass [11] showed that STF can map the input 
features from a low-dimensional space to the high-dimensional state space of a network 
to boost read-out of input information. STD can be employed to remove auto-correlation 
in temporal inputs, by exploiting the depression effect to reduce the output correlation of 
post-synaptic potential [12]. 

2.3 Spike timing dependent plasticity 

Spike timing dependent plasticity (STDP) is a temporally dependent asymmetric form of 
plasticity, which realises associative plasticity. It involves at least three neurons, as the 
simplest system is constituted by a presynaptic neuron A1 coupled with postsynaptic  
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neuron B, whose conductivity is changed after the process is completed, and a control 
presynaptic neuron A2 that excites the firing of the neuron B at some time. STDP is 
found in the following contexts: 

• Forward STDP (F-STDP). An asymmetric change in the conductance where  
the arrival of a repeated presynaptic spike from A1 a few milliseconds before 
postsynaptic action potentials in B leads to LTP, while the repeated arrival of 
presynaptic spikes after the occurrence of postsynaptic spikes in B leads to LTD.  
The connection between A2 and B does not change in the process. 

• Reversed STDP (R-STDP). Similar to F-STDP, where the repeated presynaptic  
spike arrival of a repeated presynaptic spike from A1 a few milliseconds before 
postsynaptic action potentials in B leads to LTD, and repeated spike arrival after 
postsynaptic spikes in B leads to LTP, like in some inhibitory connections to 
neocortical pyramidal neurons and corticostriatal synapses. 

• Invertible STDP (I-STDP). In some cases, STDP has a major dependence on the 
voltage of the postsynaptic neuron B just before the generation of action potentials. 
The voltage at the time of the action potential is able to control the direction of the 
change of the synapse, even for fixed spike timing [27]. Depending on the voltage  
in B, the STDP behaves as either forward or reversed STDP. 

STDP is often used to refer to F-STDP. F-STDP has been achieved in several systems 
(see Section 4). Both forward and reversed STDP have major computational use. F-STDP 
is considered the main faster responsible for memorisation. F-STDP includes possible 
employment based on the emergence of long-range temporal correlations [19] and 
temporal coding [20] or spacetime localisation learning (see [21,22]). R-STDP produces 
anti-Hebbian synaptic plasticity which allows to predict and cancel self-generated 
sensory signals (see [23,24]). 

2.4 Stochastic activation/quantumness 

The response of neurons to external stimuli is subject to some degree of randomness due 
to electrical spatially distributed noise. Channel noise, generated by the random gating of 
voltage-gated ion channels, has measurable effects on the dynamics of single neurons  
and it increases the range of spiking behaviours exhibited in a neural population [28]. 
Current fluctuations of individual ions and electrons manifest themselves at the level of a 
single quantum of conductance G0. Such effects may involve a number of neurons 
ranging from one to many. In addition, interference from noise of larger amplitudes with 
a spike train occurs even when the noise and signal do not overlap in time. Weak noise  
in neurons may inhibit the generation of bursts of spikes but only so when they overlap  
in time (see [29]). We refer to such a broad class of phenomena with stochastic 
activation/quantumness (SA/Q) in Tables 1 and 2. Maass [30] has shown how noise 
provides a powerful resource to enhance computational capability in neuromorphic 
systems. Nature exhibits underlying noise assisted activation, as suggested by in vivo 
experiments [31]. According to Sobie et al. [25], neuron response times are optimal under 
static noise that is sharply peaked at zero frequency, as a large number of neurons are 
close to threshold just before a step stimulus arrives. 
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Table 2 Neural properties and device technology. On the horizontal axis, the properties 
required by artificial synapses: SA/Q, STF, STD, LTP, both kinds of long term 
depression, F-STDP, R-STDP, I-STDP and scale size of the device in nanometres.  
On the vertical axis, the device technology considered in Section 2 

Neurons 
SA/Q  
(1–N) 

STF  
(2) 

STD 
(2) 

LTP  
(2) 

LTD 
(2–3) 

F-STDP 
(3) 

R-STDP 
(3) 

I-STDP  
(3) 

Size 
(nm) 

Al atom •        1–2 

Ag2S • •  •     1–2 

Cu2S • •  •     1–2 

Si •        2–130 

HfO2 RRAM •     •   20 

InGaZnO  •  •  •   20–40 

GST      • • • 20–100 

Organic hyb.      •   20–200 

3 Hardware implementation of atomic scale neuromorphic properties 

Several fabrication methods have been proposed to implement short-term and long-term 
plasticity and spike-timing dependent plasticity. This section reviews the different 
methods, including Ge2Sb2Te5 (GST) phase change materials (PCM), silicon, aluminium 
single atom memories, Ag2S and Cu2S atomic switches, hafnium based RRAMs, organic 
material based transistors, to implement such features, as well as other features related to 
stochastic activation of synapses and quantum effects. 

3.1 Nanoelectronic programmable synapses based on phase  
change materials 

Synapses based on phase change materials (PCM) reported by Kuzum et al. [32]  
have been developed as an alternative to CMOS based architectures. It operates  
at pJ energy scale, while CMOS requires a larger power consumption (at least 10 
transistors per synapse would be required for an equivalent response). PCM are 
sufficiently compact to overcome scalability constraints and 1015 circuits can be targeted. 
The operation principle relies on the switching between amorphous (reset, high 
resistivity) and crystalline (set, low resistivity) states by applying electric pulses  
capable of locally heating the device and inducing a phase transformation. GST has  
been used by Kuzum et al. [32] to create artificial synapses. The device consists  
of GST deposited between a 75 nm diameter bottom electrode and a top electrode  
(20 nm is the minimum feature size of this approach). PCM are ordinarily programmed  
to up to 16 intermediate resistance levels by current pulses. Differently, for synaptic 
applications, a finer resistance control (1% change) is performed. An order of magnitude 
change in the phase change cell resistance has been reported through 100 steps for both 
the set and reset transitions. Both F-STDP and R-STDP have been demonstrated,  
as shown in Figure 1. 
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Figure 1 F-STDP (a, black) and R-STDP (b, red) in GST from Kuzum et al. [32].  
In the convention adopted here, ∆t > 0 when the presynaptic spike occurs before the 
postsynaptic spike. In F-STDP, the synaptic weight is increased when the presynaptic 
spike comes first (a) (see online version for colours) 

 
Source: Reprinted with permission from Kuzum et al. [32].  

Copyright (2012) American Chemical Society 

3.2 CMOS and silicon nanoelectronics 

Currently, CMOS technology provides the only platform which includes the minimum set 
of properties to emulate an individual neuron and a network of neurons. Silicon neurons 
can be described as circuits having one/multiple synapse blocks, receiving spikes from 
other neurons (time-integrated and converted in currents), a soma block (time-integrating 
inputs and generating the output action potentials or alternatively digital spikes), and 
circuits emulating the network of dendridic trees and axons. The circuits process  
short- and long-term plasticity mechanisms, conversion of voltage spikes into excitatory 
and inhibitory post-synaptic currents (EPSCs and IPSCs), soma integration and some 
adaptation functionalities. Such functionalities generally rely on the robust architecture of 
the 180 nm CMOS node, where device variability does not affect the performances. 
Inspired by the development of the 28 nm technology node of IBM TrueNorth silicon 
chip [33], we investigate nanoscale effects offered by the technology to directly 
implement complex properties of neurons and synapses in the devices, instead of using 
large circuits built with many components. Few-atom [34,35] and few-electron  
devices [36] at the sub 14 nm node induce both strong non-linear effects, variability and 
stochastic fluctuations at room temperature. Random fluctuations generated by charged 
defects [37,38] may generate Lorentzian spectrum noise which provides an internal 
source of neuron activity and neural synchronisation [2]. At either cryogenic temperature 
or size below 5 nm at room temperature, transport is dominated by quantum regime. 
Single electron circuits for depressing synapse have been explored to develop  
noise-tolerant architectures [39]. Native memory and plasticity effects are not reported in 
silicon technology. 

3.3 Ag2S atomic switch 

A viable way to bypass the difficulty of silicon technology issues is based  
on the implementation of a different kind of plasticity, such as STF and LTP at the 
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physical level. The change in conductance is considered analogous to the change in 
strength of a biological synaptic connection (synaptic weight). It has been reported by 
Ohno et al. [40] that an Ag2S inorganic synapse is able to emulate synaptic functions  
with both STF and LTP characteristics through the use of input pulses repeated in time 
(Figure 1). Ag2S form an atomic switch, which operates at certain critical voltages, and 
stores information as STF with a spontaneous decay of the conductance according to 
intermittent input stimuli. Conversely, a more frequent stimulation determines a transition 
to LTP. The key point is that Ag2S inorganic synapse emulates a biological synapse to 
achieve dynamic memorisation in a single device, with no need of external pre-
programming. Such an implementation can be seen as a redox version of a memristor. 
The working principle consists of the application of the input pulses to determine the 
precipitation of Ag atoms from an Ag2S electrode, to form an Ag atomic bridge between 
the electrode itself and a counter metal electrode. If the precipitated Ag atoms are 
insufficient to form a bridge, the inorganic synapse works as STF. If they form a bridge, 
it works as LTP. Similarly to a biological synapse, for which the release of 
neurotransmitters is owing to the arrival of firing caused by action potentials, the signal is 
transmitted as a synaptic potential. In addition, a frequent stimulation enhances the 
strength of the synaptic connection at a long-term time scale. 

3.4 Cu2S atomic switch 

Similarly to the Ag2S atomic switch, it has been demonstrated that also a Cu2S gap-type 
atomic switch is also able to emulate the synaptic short-term and long-term plasticity as 
reported by Nayak et al. [41]. As in the previous material, the plasticity here is controlled 
by the interval, the amplitude, and the width of input voltage pulses. The degree of air or 
moisture in the environment influences the plasticity, which is also demonstrated by 
time-dependent scanning tunnelling microscopy images of the Cu-protrusions. A higher 
temperature increases the long-term memory effectiveness, as shorter or fewer are pulses, 
similarly to biological systems. The Cu2S gap-type atomic switch is obtained by a Cu2S 
solid electrolyte on a Cu electrode and a counter Pt electrode separated by a nanogap 
between them by a scanning tunnelling microscope. A voltage applied between the 
electrodes such that Cu2S is at the positive bias, makes the Cu+ ions (initially uniformly 
distributed) diffuse toward the Cu2S surface. The temperature and the voltage control  
the precipitation of Cu+ ions on the surface, because of the electrochemical reaction 
Cu+ + e– → Cu. Next, the precipitated Cu atoms form a bridge between the electrodes, 
which increases the conductance. Each single atomic contact saturates the quantum of 
conductance G0 = 2e2/h = 77.5 µS, where e is the electron charge and h is Planck’s 
constant. The inorganic synapse shows three different conductance states, similar to 
sensory memory (SM), STF, and LTP of a real synapse. Differing from Ag2S, which is an 
n-type material, Cu2S is a p-type material as Cu vacancies act as electron acceptors where 
free holes contribute to conductivity (the resistance increases by increasing the Cu 
concentration). 

3.5 Al single atomic switch 

Schirm et al. [42] have proposed a two-terminal (rather than three-terminal) electronic 
switch based on a metallic atomic-scale aluminium contact to be operated as a reliable 
and robust switch. Through the use of an electromigration protocol, the conductance of  
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the aluminium atomic contact is controlled between two values in the range of a few 
conductance quanta. Such change is ultimately associated with a switching process 
caused by the reversible rearrangement of single atoms, as revealed by current-voltage 
characteristics associated with superconductivity with molecular dynamics. The 
behaviour is hysteretic (with two distinct states), so the two-terminal switch may be 
employed as a non-volatile information storage element. When the switch is operated, the 
geometry changes from a single-atom contact to a dimer contact, with the rearrangement 
of a single atom and the rupture of only two bonds. The operation as a memory device is 
based on a potential read-and-write scheme: with a bistable state, whereby the control 
current is raised and lowered abruptly. The two respective conductance values are 
identified with the 1 state and the 0 state respectively, similarly to a flip flop, and they 
range between 1 and 2 G0. Thanks to the hysteretic nature of the switching process,  
small current biases can be used for the read phase, and high negative or positive biases 
for the write phase. 

3.6 InGaZnO memristors 

Among the memristors proposed over the years based on ion migration or atomic  
switch mechanisms, such as TiO2, Ag2S, Cu2S, RbAg4I5 (see below), SiAg, and WOx as 
single synaptic devices, the InGaZnO memristor of Wang et al. [43] emulates not only 
the STDP and transmission characteristics of the synapse, but also includes spike-rate 
dependent, long-term/short-term plasticity and learning-experience behaviour. The 
learning-experience function is related to the metastable local structures in amorphous  
a-IGZO. A frequent stimulation may cause an enhancement of LTP, both spike-rate-
dependent and spike-timing dependent plasticity, and the STF to LTP transition may 
occur from repeated stimulation. The physical mechanism is based on ionic currents from 
oxygen migration/diffusion. Both LTF and STP are of the same time scale as in the 
human brain. The learning process is observed by the re-stimulation process from  
a mid-state. Far fewer pulses than the number of stimuli required in the first learning 
process are needed by the device for recovering its memory, like in the learning process 
based on experience in biological systems. 

3.7 HfO2-based Resistive switching memory 

Resistive switching memory (RRAM) devices are based on the change of the resistance 
when a metal is oxidised in response to electrical pulses. The physical process is based on 
a set and a reset transition in an oxide RRAM. The initial state for the set transition is the 
reset state, where a conductive filament (CF) is interrupted by a gap as a result of ion 
migration under negative voltage. The gap is depleted from oxygen vacancies and 
metallic impurities, such as excess Hf, responsible for the enhanced local conduction in 
the CF. The defects are generated by the dielectric breakdown needed to initiate resistive 
switching at the formation process. The RRAM reset state has a high resistance and when 
a positive voltage is applied to the top electrode the ionised defects migrate from the CF 
region close to the top electrode, with a resulting increased conductance, like a growth of 
the diameter of the connecting sub-filament within the gap. It is worth to remark that the 
method above radically differs from those merely based on a resistive switching device, 
integrated in a larger circuit including an LTP block, an LTD block, and a peripheral 
circuit, as the LTP and LTD effects are natively carried by the device. In addition, 
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random telegraph signals have reportedly been used in RRAMs by Puglisi et al. [44] and 
Ambrogio et al. [45], enabling the inclusion of stochastic activation. To be employed in 
neuromorphic synapses, an RRAM has to fulfil two key requirements: to provide a 
resistive connection between a presynaptic neuron and a postsynaptic neuron and to 
provide tuneability of its conductance in response to the neuron activity. The learning 
process may take place as STDP, i.e., as LTP when a postsynaptic pulse follows  
the presynaptic pulse, as LTD in the reversed case, where the conductance decays 
exponentially with the delay between the pre- and postsynaptic pulses. Ambrogio et al. 
[46] have demonstrated an STDP circuit consisting of a one-transistor-one-resistor 
(1T1R) structure comprising a MOSFET and a HfO2-based RRAM, included in a larger 
circuit providing the presynaptic and the postsynaptic artificial neurons. 

3.8 Organic ionic/electronic hybrid materials in synaptic transistor 

Finally, we consider organic media for synaptic-like behaviour [47]. Such an approach 
has the interesting feature that, similarly to phenomena in a real brain, the signals may be 
transmitted by means of ionic fluxes. Indeed, potential spike signals in a presynaptic 
neuron can trigger an ionic excitatory postsynaptic current (EPSC) or inhibitory 
postsynaptic current (IPSC). The postsynaptic neurons collectively process such currents 
through 103–104 synapses which control spatial and temporal correlated functions, whose 
efficacy is modified by temporally correlated pre- and post-synaptic spikes via STDP. 
LTP can be obtained if a postsynaptic spike occurs after a presynaptic spike by a few 
milliseconds, which increases synaptic efficacy, whereas LTD occurs if the two spikes 
timings are reversed. Through the integration of a layer of an ionic conductor and a layer 
of ion-doped conjugated polymer onto the gate of a Si-based transistor, a synaptic 
transistor based on ionic/electronic hybrid materials has been obtained. A potential spike 
triggers ionic fluxes with a temporal lapse of a few milliseconds in the polymer, which in 
turn spontaneously generates EPSC in the Si layer. The ions stored in the polymer  
are modified by means of temporally correlated pre- and post-synaptic spikes, which,  
like for real synapses, results in a strengthening or weakening of the device transmission 
efficacy with STDP. An example of such a synaptic transistor is based on a standard  
Si n-p-n source-channel-drain MOS, with a 3-nm-thick SiO2 gate oxide. A 70-nm-thick 
conjugated polymer layer of poly[2-methoxy-5-(20-ethylhexyloxy)-p-phenylene 
vinylene] (MEH-PPV) and a 70-nm-thick ionic conductive layer of RbAg4I5 are 
sandwiched between the gate oxide and an Al/Ti electrode. The presynaptic spikes  
are applied to the transistor gate, and postsynaptic currents are measured from the source 
while postsynaptic spikes are also applied to the source. The typical time scale is of the 
order of milliseconds. 

4 Discussion 

The correspondence between the quantum neuromorphic devices and biological neurons 
leads to a table summarising the properties which have been artificially covered. Pure 
LTP from the two-neurons scheme has been reported with memristors based on Ag2S and 
Cu2S, as well as in the InGaZaO memristor, while pure LTD has not been observed. 
Figure 2(b) shows the realisation of LTP in Ag2S. STF has also been reported in Ag2S. 
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The same materials that allow LTP also reproduce STF. Like LTD, neither is pure STD 
currently reported. Figure 2(a) shows the realisation of STF in Ag2S. 

Figure 2 STF (a) and LTP (b) of Ag2S atomic switch, in Ohno et al. [40] (see online version  
for colours) 

 
Source: Reprinted with permission from Ohno et al. [40].  

Copyright (2011) Nature Publishing Group 

F-STDP has been demonstrated in InGaZnO memristors, HfO2 based RRAMs, the 
organic hybrid method, and GST. GST is currently the most complete method for STDP, 
as all the F-STDP, the R-STDP and the I-STDP have been realised experimentally. 
Interface and oxide defects in SiO2 and HfOx and single atom doping in CMOS 
technology are currently the only methods to introduce bistable noise at a native level in 
the components, like what happens in ion channels. Current effects at a Go conductance 
level are observed in silicon quantum dot technology, in the Al single atom memory, and 
in Ag2S and Cu2S atomic switches. 

Table 2 shows the potential of various device technologies for implementation of 
neural mechanisms. The second line indicates the number of neurons involved in the 
process. The last column reports the size of the devices. According to the size of a device, 
which depends on the device technology, some properties are more easily obtained.  
At nanometric scale, quantum and stochastic activation properties are obtained,  
but currently associative plasticity has not been demonstrated at such a small scale.  
For devices of size above 20 nm it is possible to implement plasticity but generally no 
quantum fluctuation effects are involved. An exception is provided by the Hf-based 
RRAMs where both stochastic effects and plasticity have been reported, at the 
intermediate length scale of about 20 nm. Silicon technology is able to realise long term, 
short term and associative plasticity only at a circuital level involving several 
components, while native properties for emulation of plasticity are not reported, so the 
corresponding elements in Table 2 are left empty. None of the mentioned technologies 
reproduces pure depression mechanisms. LTD can be achieved as a byproduct of STDP.  
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Therefore, if we exclude plasticity of silicon for the above reason, currently none of the 
materials and the methods reported so far provides the complete set of properties 
considered above to implement biologically inspired artificial neurons. It is difficult at 
the current stage to predict which method will prove to be the most efficient for future 
hardware implementations of brain-like capabilities, and more research is needed. 

5 Conclusion 

In order to implement biologically inspired properties of real neurons, a number of key 
ingredients emulating several kinds of plasticity and stochastic effects are required.  
The emulation of neurons and synapses at a more physical level calls for a multi-
platform/multi-materials approach to support plasticity. There are suggestions to improve 
computational capability by including usually unwanted features such as noise, 
fluctuations, tolerance to large variability, and randomness of nodes and of connections. 
Many of these properties naturally emerge at the quantum level, which governs the 
nanometric scale. 
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