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Abstract 
 

In this project, we investigate the contribution of long non-coding RNAs (lncRNAs) in the 

acquisition of adaptive phenotypes in breast cancer. LncRNAs have multiple regulatory 

functions that define these transcripts as fine regulators of gene expression, engaging in 

different oncogenic networks. However, the functional classification of these RNA 

molecules is still limited. We aim at building a functional map of lncRNAs in the context 

non-genetic adaptive mechanisms occurring in breast cancer by means of pooled 

CRISPRinterference (CRISPRi) screenings. We selected 620 lncRNAs for their positive 

association with models of adaptive responses in breast cancer. Specifically, we evaluated 

the expression of adaptive response signatures in primary tumors, modeled the chemo-

tolerance to the neo-adjuvant drug Paclitaxel and evaluated the inherent plasticity of the 

MaSC-like population of the HMLE cell line.  

We designed a CRISPRi library for the simultaneous perturbation of 620 lncRNAs. To 

precisely map the TSS of candidates lncRNAs, the design of the lentiviral library was aided 

by NET-Cage data.  

We tested how the perturbation of lncRNAs modulates the adaptive properties of the TNBC 

cell line SUM159PT by growing cells in increasingly stringent conditions (2D, 3D, chemo-

response, in vivo). In this setting cells must address different responses to survive.  

Overall, we could identify 18.8% of genes DROP-OUTs, and 19% of genes DROP-INs in 

one or multiple screenings. We will broaden the characterization of lncRNAs hits by 

evaluating the transcriptomic response upon their perturbation.  

With this work, we outline a sound and reliable approach for identifying lncRNAs that are 

relevant in cancer and provide new insights into the regulatory roles lncRNAs play in cancer 

cell plasticity. 
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1. Introduction  
 

1.1 Breast Cancer and adaptation mechanisms during cancer evolution  
 

1.1.1 The mammary gland: an intrinsically plastic organ  

 

The mammary gland is composed of a glandular epithelium responsible for lactation. This 

organ peculiarly completes its development post-natal and remains prone to large 

remodeling through several decades. The mammary gland is organized in a ductal-alveolar 

tree that digs its branches into the stroma of the organ (the fat pad) and opens in the nipple. 

The functional unit of the gland is the terminal lobular-ductal unit (TLDUs), generally 

composed of two types of cells: secretory inner cuboidal luminal cells and basal 

myoepithelial cells in direct contact with the basal membrane (Figure 1). During 

embryogenesis the mammary gland consists in a rudimental ductal structure, a 

“primordium”. After birth, the development of the gland arrests until puberty when the 

ovarian hormones re-launch the development of the gland. The rudimental ducts differentiate 

in the multilayered structure that elongates and produce side branches forming the entire 

ductal tree. During pregnancy, the inner epithelial layer differentiates into milk-secretory 

alveoli. The gland is then subject to involution that partially repristinate the status of the 

gland before pregnancy. The gland remains susceptible to multiple remodeling steps for each 

pregnancy until menopause (Figure 2) (Gjorevski and Nelson, 2011). The dynamic re-

arrangement in the architecture of the gland implies a stem compartment able to maintain 

the organ plasticity and its cellular complexity. It was indeed demonstrated the existence of 

mammary stem cells (MaSCs) that own the basic features of adult stem cells: they can 

regenerate the mammary gland when transplanted in vivo into cleared mammary fat pad of 

mice (Shackleton et al., 2006; Stingl et al., 2006), they divide by asymmetric divisions and 

are normally placed in a quiescent state. The MaSCs are intrinsically resistant to anoikis and 

can grow anchorage-independently (Lloyd-Lewis et al., 2017). The precise hierarchical 

structure of progenitors in the mammary gland remains to be clarified (Koren and Bentires-

Alj, 2015) (Figure 3). Nonetheless, these characteristics define the mammary gland as an 

heterogenous group of epithelial cells that are prone to plastic changes.  
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Figure 1: Representation of the functional unit of the mammary gland – The picture 

represents the components of mammary stroma and a terminal lobular-ductal unit of luminal 

epithelial cells (in pink) and basal myoepithelial cells (in violet), the duct terminates into a 

terminal end bud. Figure from (Gjorevski and Nelson, 2011).  

 

 

 

 

 

 

Figure 2: Development of the mammary gland – Different stages of mammary 

development from embryonic to adult life in mice. TEB= Terminal End Buds, formation at 

the extremities of the TLDU from which the elongation and branching of the ducts starts. 

E=Estrogen, Pg= Progesterone, Prl= Prolactin. Figure from (Visvader and Stingl, 2014). 
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Figure 3: Model of mammary cells hierarchy – It is still unclear whether the homeostasis 

of the mammary gland is maintained by an adult multipotent stem cell giving rise to both 

luminal and basal progenitors or the two lineages are sustained in the adult life by basal and 

luminal unipotent stem cells. Figure from (Koren and Bentires-Alj, 2015).  

 

1.1.2 The heterogeneity of breast cancer   

 

The heterogeneity and plasticity of the mammary gland is reflected by its main disease: the 

breast cancer. Breast cancer is the leading cause of death among adult women, it is a complex 

and multi-faceted disease that was historically classified according to the 

immunohistochemical status of the hormonal receptors. This classification distinguishes 

ER+ tumors (tumors immunoreactive for progesterone (PR) and estrogen receptors (ER)), 

HER2+ tumors (tumors positive for the expression of the human epidermal growth factor 

receptor 2 (HER2)) and triple-negative breast cancer (TNBC) that lacks the expression of 

the three receptors (ER-, PR-, HER2-). This classification expanded with the molecular 

characterization provided by the introduction of the PAM50 (Prediction analysis of 

Microarray 50) (Hu et al., 2006), which introduced a molecular signature of 50 expressed 

genes that further distinguishes the tumors in 5 different categories: Luminal A, luminal B, 

HER2 amplified, Basal-like and Claudin-low (Parker et al., 2009; Prat et al., 2012; Prat and 

Perou, 2011) . This characterization shows that different tumor subtypes resemble different 

gene expression profiles of the mammary gland. Luminal A and Luminal B tumors 

approximate more closely the transcriptome of mature luminal cells, while Basal-like and 

claudin-low tumors are more akin to the transcriptome of basal and less-differentiated 

MaSCs (Figure 4). This nomenclature does not refer to the cell-of-orgin of the tumor. It was 

demonstrated indeed that luminal progenitors are equally able to give rise to basal-like 

tumors (Molyneux et al., 2010). The molecular subtypes classification helps describing the 

phenotype of the different breast tumors, suggests prognosis and operatively defines the 

eligibility to different therapeutic options.  

Therapies for breast cancer involve either local treatment (surgery and radiotherapy) as well 

as systemic treatments that include both targeted therapies as well as cytotoxic chemotherapy 
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(Cardoso et al., 2019). Upon detection, specialists evaluate the size of the primary mass and 

involvement of proximal lymph nodes. Smaller and less invasive masses are surgically 

resected, and patients are followed-up with different pharmacological options according to 

the histological and molecular diagnosis with the goal of treating distant micro metastasis 

and prolong survival. Larger and higher-grade lesions are treated first with Neo-Adjuvant 

Chemotherapy (NACT) with the aim of reducing the size and downgrading tumors to 

increase the success of surgery (Loibl et al., 2021).  

Hormone therapy is the standard pharmacological option for ER+/PR+ breast tumors. 

Tamoxifen is the leading drug used for the treatment of such malignancy. Tamoxifen 

interferes with the pro-survival activity of estrogen hormone. Conspicuous data support that 

this drug reduces the risk of recurrence and metastasis regardless of the age of patients 

(Regan et al., 2016). Tamoxifen is administered for 10 years after primary treatment and 

recent studies suggest the beneficial effect of the combination with other hormone agonist 

(Luteinizing hormone agonist and releasing hormone agonist) and aromatase inhibitors (AI) 

(Regan et al., 2016).    

The treatment of HER2+ breast cancer has also benefit of the introduction of targeted agents 

such as Trastuzumab. This drug is a monoclonal antibody that specifically targets the HER2 

receptor inhibiting the downstream signaling. Recent evidence supports the efficacy of the 

combinatorial treatment with trastuzumab and cytotoxic agents leading to greatly improved 

survival for patients suffering of this form of breast cancer (von Minckwitz et al., 2017).   

Patients displaying TN tumors are not suitable for targeted regimens and treated with 

cytotoxic chemotherapy and display the worst prognosis  (Eliyatkın et al., 2015). The first-

line chemotherapeutic option consists in combinations of taxanes and anthracycline in 
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sequence (Del Mastro et al., 2015) or alternatively cyclophosphamide, methotrexate, 5-

fluorouracil (CMF) can be proposed (Cardoso et al., 2019).  

 

 

 
 

Figure 4: Distribution of immunological clinical groups per molecular subtype – The 

pie chart shows that claudin-low and basal-like tumors collect the majority of TN (ER-

/HER2-). Figure adapted form (Prat and Perou, 2011). 

 

However, despite similar diagnosis, the response to therapies for breast cancer shows great 

variability (Ramos and Bentires-Alj, 2019). This variability can be partially explained by the 

intrinsic phenotypic and functional heterogeneity existing in breast cancer (De Palma and 

Hanahan, 2012; Meacham and Morrison, 2013). The heterogeneity comes from different 

sources (Figure 5). Inter-tumor heterogeneity among breast cancers derives from the unique 

combination of driver mutation and the status of the cell-of-origin where it occurs (Melchor 

et al., 2014). The intra-tumor heterogeneity can be genetic, deriving from the accumulation 

of diverse mutations in relevant genes in sub-clones of cells that result genetically 

heterogenous (Gerlinger et al., 2012). Alternatively, cancer cells display phenotypic 

heterogeneity regardless of their genetic background but due to cell plasticity that place 

cancer cells in transcriptionally heterogenous states. Indeed, in breast tumors not all cells 

have the same tumor-initiating capacity, but this potential is restricted to a population of 

Cancer Stem Cells (CSCs) that, just like normal mammary stem cells have self-renewal 

capacity and the ability to regrow the whole tumor. CSCs are in phenotypic equilibrium 

within the tumor bulk and preserve the heterogeneity of the tumor (D'Amato et al., 2012; 

Gupta et al., 2011; Van Keymeulen et al., 2015). Lastly, the microenvironment plays a role 
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in the development of the tumor and so, cancer cells display heterogenic phenotype 

depending on microenvironmental cues (Ghajar et al., 2013). All sources of heterogeneity 

coexist in breast tumors and provide cancer cells with multiple escapes from therapy and 

other challenging environments.  

 

 

 

 
 

Figure 5: Sources of breast cancer heterogeneity – A) The combination of the tumor 

initiating genetic alteration and the cell of origin produce phenotypically distinct tumors. B) 

Cell plasticity place cells in transcriptionally heterogeneous states. C) Tumoral multi-step 

genomic evolution produces genetically distinct subclones. D) The interaction with the 

microenvironment impact on tumor diversity. Figure adapted from (Koren and Bentires-Alj, 

2015).  

 

1.1.3 Plasticity drives adaptation mechanisms in cancer  

 

Despite treatment, some tumors progress by acquisition of therapy resistance, invasiveness, 

and metastatic capacity. Tumor evolution is a dynamic process in which cancer cells are 

exposed to many challenges, such as nutritional limitations, hypoxia, cytotoxic stress. 

Plasticity is the ability of cells to transiently alter their phenotypes and adapt to changing 

circumstances (Bakir et al., 2020).      

Beside the genetic diversity, tumors are structured in phenotypically heterogeneous 

components (Brock et al., 2009; Pogrebniak and Curtis, 2018) (See 1.1.2). The introduction 

of lineage-tracing tools paired with single-cell RNA-seq (scRNA-seq) technologies allowed 

unprecedent knowledge of complex phenotypes such as resistance to therapies (Echeverria 

et al., 2019; Oren et al., 2021) and metastasis formation (Echeverria et al., 2018; Simeonov 
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et al., 2021). Both phenotypes are ascribable to the selection of rare pre-existing clones 

genetically similar to the primary tumor but transcriptionally distinct. These observations 

make space for the non-genetic interpretation of disease progression.  

All therapeutic options for breast cancer leave minimal residual disease (MRD), from which 

tumor unavoidably re-grows causing relapse (Jansen et al., 2013; Magnani et al., 2013; 

Thomas et al., 2011). This is particularly true for TNBC patients which are usually treated, 

before primary tumor resection, with NACT (Asselain et al., 2017).  

Lacking molecular surface targets, NACT hits the tumor with a combination of taxanes 

(mitotic inhibitors) and anthracyclines (DNA intercalators). Nonetheless 30%-50% of 

patients show resistance and development of distant metastasis which remain largely 

incurable (Foulkes et al., 2010; Liedtke et al., 2008).  

The mutational profile and transcriptomic response to NACT has been investigated pre- and 

post-treatment, in a cohort of TNBC patients (Kim et al., 2018a). In some cases, mutations 

were pre-existing to the treatment and the surviving clones actively adapted to the treatment 

through chemo-therapy induced transcriptional reprogramming, converging the 

transcriptome of post-treatment cells towards common pathways such as the acquisition of 

the epithelial to mesenchymal (EMT) transcription program, AKT1 survival pathway, 

hypoxia, angiogenesis and extracellular matrix (ECM) degradation that were previously 

associated with chemo-resistance (Kim et al., 2007; Lu et al., 2012; Oskarsson, 2013; Petit 

et al., 2016). With similar importance, the transcriptional adaptation to NACT was reported 

to be reversible in terms of transcriptomic response and drug-sensitivity (Echeverria et al., 

2019). This is consistent with the clinical evidence that some tumors respond to the same 

therapy following a “drug holiday” (Nardi et al., 2004).  

The non-genetic mechanisms of drug-response have been reported in multiple cancers (Bell 

et al., 2019; Shaffer et al., 2018; Sharma et al., 2010). This process has been accounted to 

the survival of drug-tolerant persisters (DTPs). In reaction to the therapeutic pressure, some 

cells survive the treatment by entering in a less proliferative and drug-resilient state, not 

driven by mutations (Shen et al., 2020). Having remained undetected, DTPs re-establish 

proliferation, being ultimately responsible for relapse. The acquisition of a less proliferative 

state in DTPs establishes a difference with genetic resistance in which, due to the acquired 

mutations, cells have unaltered proliferation in presence of the drug. Therefore, the process 

of altered proliferation in response to the drug is more precisely referred to as chemo-

tolerance (Marine et al., 2020).  

The origin of DTPs can be accounted to the presence, in the heterogenous primary tumors, 

of cells in a primed transcriptional program of drug-tolerance (Emert et al., 2021) or, 
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alternatively, by an active drug-induced reprogramming occurring in rare clones (Echeverria 

et al., 2019; Rambow et al., 2018) (Figure 6).  

 

 

Figure 6: Origin of treatment resistance – A) The treatment induce the clonal selection of 

rare pre-existing clones (pre-existing therapy resistance or genetic priming). B) The drug 

treatment allows the accumulation of novel mutation that can be causative of treatment 

resistance (acquired resistance). C) Clones are selected by the treatment because of their pre-

existing transcriptional drug-tolerant state (transcriptional priming). D) Cancer cells adapt 

their phenotype in response to the therapeutic pressure. Figure from (Marine et al., 2020). 

 

In vitro DTPs can be generated by exposing cells to largely cytotoxic concentration of 

therapeutic drugs (Sharma et al., 2010). Drug-tolerance is realized by different means that 

are just being uncovered. DTP cells are placed in a dormant G0 state of reversible cell cycle 

arrest by activating quiescence programs and thus, eluding the anti-proliferative activity of 

many chemotherapeutic agents (Recasens and Munoz, 2019). Importantly, disseminated 

cancer cells undergo dormancy when they leave the primary tumor site and seed in a new 

niche, where they can remain quiescent for a long time (Sosa et al., 2014). This shared 

phenotype creates a conceptual link between the two events.  

The acquisition of a less proliferative state can be acquired thanks to the coordinate work of 

different stimuli and cell responses. In breast cancer, the acquisition of a quiescent state has 

been linked to the activation of Notch signalling (Abravanel et al., 2015), hypoxia (Samanta 
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et al., 2014), Unfolded Protein Response (Ranganathan et al., 2006) and activation of the 

Nuclear Factor-κB (NFκB) inflammatory response (El-Shennawy et al., 2018).  

Microenvironmental stimuli, such as the production of the Transforming-Growth Factor-β 

(TGF-β) (Prunier et al., 2018) and the inflammatory cytokine interferon-γ (IFN-γ) secreted 

by senescent cells, can activate dormancy (Müller-Hermelink et al., 2008).  

DTPs undergo metabolic changes to sustain the quiescent state. This is achieved by reducing 

the glucose consumption and shifting through a mitochondrial oxidative respiration and 

peroxisomal fatty acid β-oxydation (Viale et al., 2014). Moreover, the activation of 

autophagy, by recycling substrates fuels these metabolisms (Li et al., 2019).  

The dormant state of DTPs resembles the inner quiescent and xenobiotic-resistant state of 

CSCs (Raha et al., 2014; Sharma et al., 2010). Indeed, dormant cells express common 

stemness markers: the CD44 surface marker (Hangauer et al., 2017) and increased activity 

of the de-toxifying enzyme aldehyde-dehydrogenase (ALDH) (Raha et al., 2014; Sharma et 

al., 2010). It has been widely demonstrated that the exploitation of the epithelial to 

mesenchymal transcription program (EMT) promotes the acquisition of a de-differentiated 

state endowing cells with CSCs features and increased drug-resistance properties such as the 

upregulation of antioxidant responses (Del Vecchio et al., 2014; Feng et al., 2014) and 

activation of pro-survival pathways (Wu et al., 2015).  

EMT is a trans-differentiation program physiologically implied during embryonic 

development (Hay, 2005). EMT allows the reversible trans-differentiation from an epithelial 

to a mesenchymal state, in a complex transcriptional mechanism that realize profound 

phenotypic changes. EMT implies the repression of epithelial genes (e.g. E-cadherin) and 

coordinate expression of genes associated to a mesenchymal identity (e.g. vimentin). 

Importantly, cells undergoing EMT are placed in a spectrum of intermediate phenotypes 

characterized by the simultaneous expression of epithelial and mesenchymal markers (partial 

EMT, pEMT) as opposed to discrete uniquely “epithelial” or “mesenchymal” states. The 

hybrid pEMT status is highly tumorigenic and dynamic (Kröger et al., 2019; Simeonov et 

al., 2021). In pEMT the aggressiveness of both phenotypic states is maximized (Figure 7). 

DTPs exploits the mesenchymal drug-resistant and less-proliferating traits to survive the 

cytotoxic insult and restore more epithelial characteristics to re-instate tumor growth (Shen 

et al., 2020).  
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Figure 7: Properties of the EMT phenotypic transition – EMT is responsible for enabling 

invasiveness, metastatic seeding and tumor resistance of cancer cells. The tumor-initiating 

ability of EMT-undergoing cells peaks when cells acquire an intermediate phenotype. Figure 

adapted from (Shibue and Weinberg, 2017).  

 

A recent study showed that DTPs exploit the conserved developmental program of the 

“embryonic diapause”, defined as the paused state of embryonic development triggered by 

unfavorable environmental conditions including nutrient deprivation. The implication of the 

embryonic diapause has been demonstrated in in breast cancer (Dhimolea et al., 2021) and 

colorectal cancer (CRC) (Rehman et al., 2021). In response to cytotoxic drugs, cells 

undergoing diapause suppress MYC and mTOR pathways, slow the biosynthetic and 

metabolic activities, limit oxidative stress, and reduce the pro-apoptotic signalling, favoring 

the survival of these cells.  

Besides the relevance in the acquisition of chemo-tolerant phenotypes the mechanisms here 

presented show how cancer cells can adapt and survive to changing circumstances by 

orchestrating complex changes in their metabolism and phenotypes. These changes are 

dynamic and transient and often occur through the out-of-context expression of pre-existing 

pathways. Such events can be explained by the acquisition of epigenetic and transcriptional 

plasticity.  

In normal cells, gene expression is tightly regulated by the coordinate activity of gene-

regulatory elements, such as promoters and enhancers, that are spatially and functionally 

engaged in topologically associating domains (TAD) (Dixon et al., 2016). TADs are 

independently regulated regions restricted by the binding of CTCF and cohesin at insulator 

regions, that avoid promiscuous co-regulation of nearby genes (Figure 8).  

The activity of a locus depends on its accessibility to transcription factors (TF) and the 

transcriptional machinery. Therefore, active genes are placed in regions of “open” chromatin 

whereas genes not expressed are retained in inaccessible regions of highly compact 

chromatin. The chromatin status is defined by the deposition of histone marks: active regions 

are enriched in H3K27ac and H3K4me3 while, compact repressed regions are characterized 
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by H3K27me3, H3K9me3 and DNA methylation (Margueron and Reinberg, 2010). During 

development, the deposition of hereditable repressive chromatin marks by the Polycomb 

repressive complex 2 (PRC2) allows the establishment of cellular lineages (Comet et al., 

2016). The commitment through specific lineages restricts the gene expression to lineage-

specific genes, despite preserving a degree of plasticity responsible for homeostasis and 

physiological processes such as tissue regeneration (Rajagopal and Stanger, 2016) (Figure 

8).   

In cancer, the chromatin regulation can be compromised at every level. Mutations that impair 

the activity of epigenetic remodeling complexes (e.g. loss-of-function mutation in PRC2 

components and SWI/SNF nucleosome remodeling complexes) (Hodges et al., 2016; Kim 

and Roberts, 2016), or mutations occurring in regulatory regions (e.g. impaired binding of 

CTCF at insulators due to mutations in its binding motif) (Hnisz et al., 2016) are among the 

most frequently occurring in cancer. The loosening of regulatory boundaries collectively 

contributes to the establishment of a more “permissive” chromatin status that allows cell-to-

cell variabilities in gene expression and the interaction among genes normally not expressed 

from a specific cell type (Flavahan et al., 2017). The aberrant expression of genes and 

pathways in epigenetically and transcriptionally plastic cells might confer an adaptive 

advantage in specific contexts.  
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Figure 8: Epigenetic alterations favor the acquisition of epigenetic and transcriptional 

plasticity – A) Schematic representation of regions of open and closed chromatin showing 

main epigenetic regulators of chromatin. B) In normal cells, chromatin networks establish 

specific cell states. Plastic cells transition through different cellular states thanks to 

mutations impairing chromatin regulation.  Figure adapted from (Flavahan et al., 2017).  

 

Plasticity is not a uniquely cell-autonomous condition but different stimuli collaborate in 

establishing this status. The metabolic condition of cells influences the availability of 

intermediates necessary for the epigenetic regulation (Shyh-Chang et al., 2013). 

Microenvironmental clues collaborate in corrupting the epigenetic regulation. For instance, 

hypoxia suppresses DNA de-methylases thus promoting hypermethylation (and therefore, 

repression) of tumor suppressors in breast cancer (Thienpont et al., 2016).  

Despite providing potential harm for patients, increasing evidence suggests that plasticity 

can be favorably exploited in therapies. For instance, in the context of breast cancer, it has 

been shown that inhibition of the pro-mitogenic signal through MEK inhibitor trametinib, 

favors the acquisition of a pEMT state in DTPs through the upregulation of different 

epigenetic modifying enzymes including BET proteins. The contextual targeting of BET 

proteins and MEK-pathway promotes cell-death (Risom et al., 2018).   
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1.2 Regulatory functions of lncRNAs  
 

1.2.1 A non-coding perspective  

 

The past decades have been years of huge changes in our understanding of RNA-based 

mechanisms (Figure 9).  RNA has been detached from the “protein-centric” view of being 

solely responsible for shuttling the information from genes to proteins, with the discovery of 

catalytic functions of RNA in splicing, of regulatory RNAs such as Xist (Brockdorff et al., 

1992; Brown et al., 1992) and of the RNA interference pathway (Fire et al., 1998).  

The introduction of high-throughput technologies and the development of bioinformatic 

strategies allowed the comprehension that eucaryotic genomes are largely transcribed 

(Carninci et al., 2005; Guttman et al., 2009; Mercer et al., 2011) and in this multitude of 

transcripts, just a small proportion encodes for protein coding genes (PCGs) (1.5%) 

(Michelini et al., 2018).  The transcriptome includes several non-coding RNAs with 

recognized features and a plethora of different functions; just to mention some: small nuclear 

RNAs (snRNAs) take part in the formation of the Spliceosome; small nucleolar RNAs 

(snoRNAs) guide the maturation of ribosomal RNAs (Peculis, 2000); microRNAs (miRNA) 

represent cytoplasmic regulators of mRNAs expression (Ghildiyal and Zamore, 2009).  

Discovering new functions of RNAs unveils intricate regulatory schemes in gene regulation 

in which non-coding RNAs are undiscussed players.   

 

 
Figure 9: Breakthroughs in the discovery of RNA functions  - Figure adapted from 

(Rinn and Chang, 2012). 
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1.2.2 Features of lncRNAs  

 

Long non-coding RNAs (lncRNAs) are broadly defined as RNA molecules longer than 200 

bp with no or limited coding potential (Kopp and Mendell, 2018); lncRNAs are ubiquitously 

transcribed from more than 50000 loci in the human genome (Hon et al., 2017; Iyer et al., 

2015).  

LncRNAs share some features with PCGs. At the epigenetic level, lncRNAs loci respond to 

the same histone code of PCGs, with peaks of H3K4me3 in promoter regions and activation 

by H3K27Ac (Guttman et al., 2011). Being transcribed by RNA polymerase II, lncRNAs 

most often are capped, spliced (despite less efficiently) and polyadenylated (Kopp and 

Mendell, 2018). LncRNAs are generally shorter than PCGs and exons in lncRNAs are 

usually less but longer compared to PCGs (Cabili et al., 2011; Derrien et al., 2012). Usually, 

lncRNAs are expressed at lower levels compared to PCGs (Kopp and Mendell, 2018), 

frequently in a cell-type specific fashion (Cabili et al., 2011; Hon et al., 2017). LncRNAs 

represent a class of newly evolved transcripts as they are poorly conserved outside mammals 

(Derrien et al., 2012; Djebali et al., 2012). Instead, lncRNAs promoters show the same 

conservation compared to PCGs and are potentially similarly regulated in the response of 

transcriptional programs of the cell (Carninci et al., 2005; Derrien et al., 2012).The majority 

of lncRNAs are retained in the nucleus (Werner and Ruthenburg, 2015),  or otherwise 

exported in the cytoplasm or in specific subcellular compartments (Derrien et al., 2012; 

Gudenas and Wang, 2018), and exosomes (Li et al., 2018);  their localization is closely 

linked to their function (see next paragraph).  

Some lncRNAs fold into secondary structures important for their function, however they are 

not predicted to be more structured transcripts compared to PCGs and they can indeed play 

many structure-independent functions (Managadze et al., 2011). 

The most common way to refer to lncRNAs is their location relative to PCGs (Figure 10). 

Thus, lncRNAs can be classified as “antisense” when they are transcribed from the opposite 

strand of a PCG, “intronic” when the sequence of the lncRNA is entirely embedded in an 

intron of a PCG, “divergent” when the transcription of the lncRNA is initiated by a shared 

promoter with a PCG, from the opposite strand. Lastly, “intergenic” or “intervening” 

lncRNAs (sometimes referred to as “lincRNAs”) have independent promoters and do not 

overlap the sequence of a PCG (Rinn and Chang, 2012). However, this classification is 

obsolete and misleading as the RNApol2 transcription generates different classes of short-

lived bidirectional RNAs, as well as lncRNAs can be transcribed from enhancers (Wu et al., 

2017). Perhaps the most faithful definition of lncRNAs is the one based on their function.  
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Figure 10: Organization of lncRNAs loci – LncRNAs can be classified taking into account 

their relative position to neighbor PCGs. Figure adapted from (Rinn and Chang, 2012). 

 

1.2.3 Functions of lncRNAs  

 

The information about the functional role of the vast majority of lncRNAs is still missing. 

Nevertheless, the knowledge about few hundreds of well-characterized lncRNAs pictures a 

heterogeneous group of transcripts with a plethora of functions and involves them in fine 

regulatory mechanisms of gene expression.  

One of the challenges in understanding lncRNAs mechanisms is that multiple features can 

drive the lncRNA function. Indeed, the act of the transcription or RNA processing itself 

might influence the nearby genes; a lncRNA can interact with other transcripts or DNA 

through base-paring and cooperate with proteins through secondary folding. Alternatively, 

a DNA regulatory element might confer the functional properties to a specific locus and the 

transcription of the lncRNA can be irrelevant (Paralkar et al., 2016).  

The activity of lncRNAs usually occurs in cis or in trans. The activity of a cis-acting lncRNA 

depends on the locus of their transcription and influences other elements in proximity, while 

trans-acting lncRNAs, resembling more closely mRNAs, regulate genes in loci distant from 

their site of transcription (Gil and Ulitsky, 2019). Executing their function in the vicinity of 

the locus of their transcription, cis-acting lncRNAs are usually expressed at very low levels, 

even few copies per cell (Derrien et al., 2012).  
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One of the most extensively studied lncRNAs is Xist. Xist is a 17 kb transcript, responsible 

for dosage compensation through X chromosome inactivation. Upon its allele-specific 

expression, Xist coats the X chromosome to be inactivated, and recruits the transcriptional 

repressors SPEN and PRC2 complex, leading to the deposition of H3K27Me3 and driving 

heterochromatin spreading and repression of the whole chromosome. In addition, Xist tethers 

the inactive X chromosome to the nuclear periphery via direct interaction with the nuclear 

membrane protein laminin B (Chen et al., 2016). In this scenario, Xist acts as “guide” for the 

repressive complexes through specific repeats in its sequence (Rinn and Chang, 2020). Xist 

can be considered a cis-acting lncRNAs (as it is usually defined), as its activity influences 

the expression of genes nearby its locus but also influences the activity of genes at Mb 

distance and importantly, the repressive activity of Xist is maintained when the lncRNAs is 

ectopically expressed from another locus (Engreitz et al., 2013), failing one of the definitions 

of cis-acting lncRNAs. This is just an example of how the functions of lncRNAs elude strict 

definitions and one transcript may have multiple properties difficult to discern.  

LncRNAs are involved in different mechanisms depending also on their localization. In the 

nucleus, the activity of lncRNAs is mainly devoted to transcription regulation and 

organization of nuclear functionally distinct domains, while, in the cytosol, lncRNAs are 

engaged in various post-transcriptional regulatory mechanisms. Here are presented some of 

these mechanisms.  

 

Transcription regulation  
  

The transcriptional-regulatory activity of lncRNAs interest the activation as well as the 

repression of other units occurring in physiological conditions, development, and disease 

(Perry and Ulitsky, 2016; Schmitt and Chang, 2016).   

One example is the involvement of lncRNA Airn in the genomic imprinting of the Igf2r 

locus in mouse Embryonic Stem Cells (mESC). Airn is transcribed antisense of Igf2r in the 

paternal allele. Its transcription produces transcriptional interference by steric hindrance that 

impairs the assembly of the RNApol2 complex at the Igf2r locus that results repressed. 

Moreover, Airn transcript recruits PRC2 complex and guides the repression of two distally 

imprinted loci (Scl22a2 and Slc22a3) (Latos et al., 2012; Schertzer et al., 2019).  

LncRNAs can coordinate multiple chromatin regulatory activities in one locus. One leading 

example is the activity of HOTAIR in the repression of HOX genes, crucial regulators of 

development. HOTAIR is transcribed from the HOXC locus, and it is responsible of the 

repression of the distal HOXD genes in trans. The silencing of HOTAIR by siRNAs is 

associated to decreased repressive chromatin mark H3K27me3 in the HOXD locus 
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corroborating its RNA-dependent function (Rinn et al., 2007). HOTAIR coordinates two 

repressive activities: the demethylation of the activating H3K4me3 histone mark and 

deposition of H3K27me3 by contextual interaction with PRC2 and KDM1A (histone 

demethylase), realizing the repression of the HOXD locus (Figure 11). Importantly, the 

exact mechanisms of PRC2 recruitment remains to be fully elucidated (Almeida et al., 2020).  

LncRNAs can act also as positive regulators of expression: for example, genes in the HOXA 

cluster are regulated by the lncRNA HOTTIP. HOTTIP locus is located 40 kb away from 

the HOXA cluster. HOTTIP interacts with MLL1 complex through an adapter protein and 

drives the specific deposition of H3K4me3 and HOXA transcription (Wang et al., 2011).  

Other lncRNAs influence gene expression by recruiting inhibitory proteins in favor of the 

expression of PCGs. This is the case of the lncRNA PACER that recruits the transcriptional 

repressor p50 avoiding the inhibition of COX2.  

 

 

Figure 11: Transcriptional repression by lncRNAs – A) Coordinate activity of PRC2 

(deposition of H3K27me3) and KDM1A-coREST-REST complex (removal of H3Kme3, 

activator histone mark) realizing the repression of the HOXD locus. Figure adapted from 

(Ransohoff et al., 2017). B) Contextual cis and trans repressive activity of Airn. Airn is 

responsible of transcriptional interference in cis towards the imprinted Igf2r locus and 

epigenetic repression in trans of Slc22a3 and Slc22a2 loci. Figure adapted from (Statello et 

al., 2021). 
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As mentioned before, the activity of a lncRNAs is led by multiple features. The presence of 

the transcriptional machinery and spliceosome influences nearby genes (Ali and Grote, 

2020; Gil and Ulitsky, 2019). This is the case of the transcription of the lncRNA gene Blustr.  

The premature abrogation of Blustr transcription by insertion of a PolyA signal impairs the 

expression of the nearby gene Sfmbt2, associated with an increased deposition of the 

repressive chromatin mark H3K27me3 and a reduced level of the activating mark H3K4me3. 

The effect is independent of Blustr sequence (Engreitz et al., 2016) (Figure 12). This effect 

can be explained by lncRNAs participating in enhancer activities. Active enhancers are 

transcribed in short, bidirectional enhancerRNAs (eRNAs), as well as longer, unidirectional 

spliced transcripts, sometimes referred to elncRNAs, acting as potential mediators of 

enhancers long-range activity and interaction with chromatin (Kim et al., 2018b; Statello et 

al., 2021).  

 

Figure 12: Cis-activating effect of Blustr transcription – Transcription and/or splicing of 

a lncRNA locus influence the activity of neighboring genes. In this example, the expression 

and processing of the lncRNA Blustr is associated with the epigenetic regulation and 

expression of the PCG Sfmbt2.  Figure adapted from (Engreitz et al., 2016). 

 

One example of such association of enhancer and lncRNAs is the regulation of the locus of 

Hand2, a TF important for the heart development, whose expression needs to be finely dosed 

to avoid heart malformations. Adjacent to Hand2 locus there are two lncRNAs: Upperhand 

(Uph), transcribed bidirectionally from the same promoter of Hand2 and Handsdown (Hdn), 

located 7.2 kb downstream. Uph sustains the expression of Hand2 thanks to the presence of 

an enhancer element in its sequence. Alteration of Uph expression by insertion of premature 

polyadenylation signal impairs the epigenetic activation of the locus and Hand2 expression, 

supporting the Uph transcriptional-dependent regulation of the gene. Nonetheless, the 

genetic ablation of Uph promoter abrogates Uph transcription but just mildly affects Hand2. 
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The downstream Hdn instead, competes with Hand2 for the interaction with upstream 

regulatory elements. The activation of Hdn promoter leads to chromatin looping that place 

Hdn close to these elements, thus, excluding Hand2 from their activity and reducing its 

expression (Figure 13) (Anderson et al., 2016; Ritter et al., 2019). The effect of the removal 

of Uph promoter might argue against the involvement of the transcript in the regulatory 

functions mentioned. Other studies though, highlights the importance of the transcript itself 

in mediating enhancer-activities. This is the case of the lncRNA A-ROD and its down-stream 

spatially associated gene DKK. It has been demonstrated that impairing the dissociation of 

A-ROD from chromatin negatively impacts on DKK expression. The dissociation of 

lncRNAs from chromatin depends on the complete processing of lncRNAs through 

transcription and splicing (Ntini et al., 2018). Indeed, the activity of enhancers appears to be 

correlated to these two processes (Tan et al., 2020).  

The precise involvement of transcription in enhancer activity is still a matter of discovery. 

However, the fact that lncRNAs loci are frequently overlapping enhancer regions, their cell-

type specific expression and the examples just shown suggest lncRNAs to be close 

participant in enhancer regulatory functions.  

 

 

Figure 13: Multiple lncRNAs regulating the same locus – Different lncRNAs contribute 

to the expression of the Hand2 transcription factor during mouse cardiac development. Uph 

transcription, from a bidirectional promoter with Hand2 triggers the expression of the TF 

thanks to a DNA regulatory element in its sequence (e). Hdn instead, restricts the expression 

of Hand2 through promoter competition of Hand2 regulatory elements. Figure adapted from 

(Statello et al., 2021).  
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Organization of nuclear architecture  

 

Some lncRNAs are abundantly expressed in the nucleus and coordinate the activity of 

functionally distinct nuclear compartments. This is the case of NEAT1 and MALAT1. These 

two lncRNAs are transcribed from proximal loci but then localized in separate 

compartments. MALAT1 localizes in speckles, where components of the spliceosome 

concentrate (Spector and Lamond, 2011). The suggested function for MALAT1 in this 

compartment is allowing the positioning of the paraspeckles towards actively transcribed 

genes (West et al., 2014). NEAT1 instead, is localized in paraspeckle, a dynamic 

compartment responsible of transcription and RNA processing. Like MALAT1, NEAT1 

associates with actively transcribed genes (West et al., 2014). While MALAT1 is dispensable 

for speckle organization, NEAT1 is essential for the assembly of paraspeckles. Thanks to 

different protein interacting domains, NEAT1 realizes the precise localization of proteins in 

the compartment (West et al., 2016).  

Furthermore, in response to heat and chemical stress, the highly repetitive lncRNA HSATII, 

is transcribed and together with heat-shock transcription factor 1, drives the formation of 

nuclear stress bodies. These condensates retain transcription factor and splicing factors and 

promote stress-induced intron retention (Ninomiya et al., 2020).   

Alternatively, the lncRNA Firre is expressed from the X chromosome and interacts with the 

nuclear membrane protein hnRNPU at the level of repeat regions in its sequence,  

establishing trans-chromosomal interactions that are abrogated upon Firre knock-down 

(KD) (Hacisuleyman et al., 2014).  

 

 
Figure 14: lncRNAs in sub-nuclear domains – LncRNAs MALAT1 and NEAT1 (left) 

contribute to the function and organization of speckles and paraspeckles, respectively. 

Nuclear domains responsible for RNA splicing and processing; Firre lncRNA establishes 

trans-chromosome interaction and the nuclear membrane. Figure adapted from (Kopp and 

Mendell, 2018). 
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Post-transcriptional regulation  

 

On the other hand, the features of lncRNAs allow multiple post-transcriptional regulatory 

activities in the cytoplasm, that exploit the ability of lncRNAs of interacting both with other 

nucleic acids and proteins.  

One well-characterized cytoplasmic lncRNA is NORAD. The sequence of NORAD contains 

multiple PUMILIO-responsive elements (PREs).  PUMILIO proteins (PUM1 and PUM2) 

are RNA binding proteins (RBP) that triggers the degradation and translational inhibition of 

their targets. PUMILIO targets are involved in mitosis and genomic stability. In this context, 

NORAD functions as a molecular decoy for PUMILIO proteins, limiting their availability in 

the cytoplasm. Repression of NORAD releases PUMILIO proteins and triggers the 

degradation of their targets, leading to chromosomal instability and aneuploidy. For this 

reason, PUMILIO levels needs to be strictly regulated. NORAD is the primary target of 

PUMILIO and it is regulated by different stress stimuli such as DNA damage and hypoxia 

(Lee et al., 2016; Tichon et al., 2016) (Figure 15A). 

Besides regulating PCGs, lncRNAs interact with miRNAs as competing endogenous RNAs 

(ceRNA). miRNAs bind precise miRNA Responsive Elements (MRE) in the 3’ end of their 

targets, leading to mRNA degradation. Often, miRNA targets are functionally linked, so 

their activity orchestrates networks of post-transcriptional regulation. ceRNA regulate 

miRNA availability through multiple MRE embedded in their sequence. This is the case of 

linc-ROR. MiR-145 targets key factors involved in the maintenance of pluripotency such as 

SOX2, OCT4 and Nanog. Linc-ROR exerts its ceRNA activity by reducing the availability 

of miR-145, allowing complete expression miR-145 targets. Linc-ROR expression decreases 

during differentiation, allowing activation of miR-145,  degradation of its targets and a shift 

towards more differentiated states (Wang et al., 2011)(Figure 15B).  

Moreover, lncRNAs controls stability of mRNAs. Mammalian cells regulate the expression 

of mRNAs containing repeats through Stau-mediated mRNA decay. STAU1 protein 

recognizes the presence of double-strands RNA in the 3’ end of transcripts and triggers 

mRNA degradation. During epidermal differentiation, the lncRNA TINCR binds specific 

regions in epidermal differentiation genes avoiding STAU1-mediated degradation and 

stabilizing these genes (Kretz et al., 2013)(Figure 15C). 

LncRNAs activity may also impact on translation. The AS-Uchl1 is a SINEB2 containing 

transcript, produced antisense to Uchl2 and has sequence-complementarity with the 5’ end 

of Uchl2 mRNA. The pairing of the lncRNA and mRNA enhances the association with 

polysomes and Uchl2 translation. Importantly, AS-Uchl1 shuttles from the nucleus to 

cytoplasm in response to different stress stimuli such as the inhibition of mTORC nutrient 
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pathway (Carrieri et al., 2012). Moreover, the presence of functional translation-enhancing 

domains is a shared feature with other lncRNAs highlighting a common mechanism of 

regulation (Zucchelli et al., 2015) (Figure 15D). 

 

 

Figure 15: Post-transcriptional regulatory functions of lncRNAs – A) Model of NORAD 

decoy of PUMILIO proteins. NORAD has multiple PRE binding sites and regulates levels 

of available PUM1 and PUM2 proteins. Figure adapted from (Ransohoff et al., 2017). B) 

ceRNA activity on miR-145 of linc-ROR maintains a pluripotent state during differentiation. 

Figure adapted from (Ransohoff et al., 2017). C) TINCR lncRNAs stabilizes the 

mRNAthrough paring at the TINCR-box of epidermal-differentiation genes. Figure adapted 

from (Statello et al., 2021). D) Pro-translation activity of the lncRNA AS-Uchl1 through 5’ 

paring with Uchl1.  Figure adapted from (Statello et al., 2021). 

 

1.3 LncRNAs in cancer  
 

LncRNAs exert both oncogenic and tumor-suppressor activities. It is not surprising that 

cancer cells exploit the functions of lncRNAs to sustain tumor growth. One example is 

represented by the regulation of MYC locus. MYC is a master regulator of cell proliferation 

and one of the main oncogenes. MYC expression is regulated by the lncRNA CCAT1-L 

which is expressed from an enhancer region 500kb distant from MYC locus. CCAT1-L 

comes in contact with MYC promoter through chromatin loops between the two regions that 

enhance MYC expression. This looping also involves the promoter of another lncRNA called 

PVT1. PVT1 is frequently co-amplified with MYC in breast cancer. Indeed, PVT1 has 

oncogenic functions by stabilizing MYC protein in trans (Tseng et al., 2014). However, this 

is contrasting with the fact the PVT1 locus harbors structural rearrangements that abrogate 
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the expression of the lncRNA. Similarly to the regulation of the Hands2 locus (see 

Transcription regulation), PVT1 promoter competes with MYC for the binding of 

enhancer elements able to regulate MYC as well. Therefore, the loss of PVT1 has a pro-

proliferative effect due to enhancer rewiring towards MYC (Cho et al., 2018). This example 

shows the contextual presence of enhancer-like functions of lncRNAs, the trans-activity of 

PVT1 transcript as well as the contribution of a DNA-regulatory element.  

As MYC, also many other oncogenes and cancer pathways are regulated by intricated 

networks of coding and non-coding elements.  

 

 

Figure 16: lncRNAs regulators of MYC expression – Regulation of the MYC locus is 

dependent on different non-coding activities. CCAT1-L promotes chromatin looping through 

the interaction with CTCF and hnRNPK. PVT1 competes with MYC for the activity of 

enhancers. Cancer cells suppress PVT1 promoter to favor the rewiring of these enhancers 

towards MYC. Figure adapted from (Statello et al., 2021).  

 

Another example of a pro-tumorigenic lncRNA activity is the expression of the lncRNA 

PNUTS. The sequence of this transcript contains multiple MRE for miR-205, responsible for 

the silencing of ZEB1 and ZEB2, key regulators of the EMT. Upregulation of PNUTS 

sequesters miR-205 from the cytoplasm resulting in upregulation of these genes and their 

pro-invasive, pro-metastatic activity (Grelet et al., 2017).  

LncRNAs expression can be triggered by specific environmental stimuli. For instance, GAS5 

is a lncRNA induced in cell-cycle arrested cells. GAS5 interferes with glucocorticoid 

response, forcing the expression of pro-apoptotic signals. Breast cancer cell, undergoing 

nutrient deprivation, suppress the expression of GAS5 to elude its anti-proliferative activity 

(Hudson et al., 2014).  
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Being ubiquitous regulators of gene expression, lncRNAs have been involved in the 

acquisition of all the hallmarks of cancer (Hanahan and Weinberg, 2011; Schmitt and Chang, 

2016).  

Besides being adjuvant in the establishment of cancer phenotypes, lncRNAs may represent 

biomarkers of disease states (Bhan et al., 2017) and a therapeutic opportunity. RNA is, by 

nature, easier to target and degrade compared to protein and the high tissue-specificity of 

their expression, makes lncRNAs suitable for targeted approaches (Statello et al., 2021).   

 

 
 

Figure 17: lncRNAs and the hallmarks of cancer – LncRNAs, participating in several 

regulatory pathways have been involved in cancer phenotypes through the acquisition of all 

the hallmarks of cancer. Figure adapted from (Schmitt and Chang, 2016). 
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1.4 Understanding lncRNAs function  
 

LncRNAs have heterogenous functions, that depends on different features and localization 

of the lncRNA. Therefore, techniques to investigate lncRNAs functions must take into 

consideration this diversity. One first assessment of lncRNAs functions depends on 

evaluating their cis- and trans- activity. This can be done by perturbing the lncRNA and 

evaluating the effect on genes nearby.  The different techniques to perturb lncRNAs 

expression are distinct depending on the feature targeted (Figure 18). In this context, 

CRISPR/Cas9 techniques find large use. The CRISPR/Cas9 is composed of an endonuclease 

(Cas9) and a single-guide RNA (sgRNA) composed of a constant region and a variable 

region. The RNA-protein complex can be driven to virtually any genomic locus thanks to 

the complementarity between the variable region in the sgRNA and a 20 bp region adjacent 

to a short 3-nucleotide motif called protospacer-adjacent motif (PAM). When correctly 

positioned, the Cas9 produces a double strand cut of the DNA, in proximity of the PAM 

(Dominguez et al., 2015; Sander and Joung, 2014).  

In the lncRNAs investigation, the native CRISPR/Cas9 system can be used to achieve the 

ablation of the locus, producing a dual cut around the lncRNA sequence (usually across the 

first exon). The opposite ends of the cut are re-joined through the DNA repair systems. In 

this way, potentially all functions of the locus are abrogated. The CRISPR/Cas9 system has 

been also advanced by producing inactive versions of the protein Cas9 thanks to inactivating 

mutations in the catalytic site. This “dead-Cas9” (dCas9) retains the same binding 

specificities of the native Cas9 but binds the DNA without cutting. The protein has been 

functionalized through fusions with effector domains, producing the CRISPRactivation 

(CRISPRa) and CRISPRinterference (CRISPRi) systems. In CRISPRactivation, the dCas9 

carries to its target sites activator domains. Different versions have been proposed of the 

CRISPRa system, one of these is the VPR. In this system, the dCas9 is fused with a tripartite 

domain composed of VP64 (a synthetic tetramer of the herpes simplex VP16 transcriptional 

activator domain), p65 (subunit of NF-kB) and Rta (Epstein Barr virus transactivator 

protein) (Chavez et al., 2016). In the CRISPRi system instead, the dCas9 protein is fused 

with a Kruppel-associated box (KRAB) repressive domain. The CRISPRi system repress 

transcription by provoking steric hindrance to RNApol2 elongation and by the deposition of 

H3K9me3 chromatin repressive marks through the recruitment of KRAB-Associated Protein 

1 (KAP1),  Heterochromatin Protein 1-Alpha (HP1α) (Gilbert et al., 2013; Larson et al., 

2013).  

The sgRNAs target a narrow window close to the transcription start site (TSS) and realize 

site-specific control of gene expression. Both the activity of CRISPRi and CRISPRa interest 
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the activation/repression of the entire locus and thus, simultaneous modulation of DNA and 

RNA dependent functions.  

The direct targeting of the RNA transcript can be done at different levels. For instance, with 

minimal alteration of the lncRNA, it is possible to induce premature transcription 

termination by inserting a transcriptional-terminating sequence, such as a polyA sequence 

or the insertion of a self-cleaving ribozyme, the latter having the advantage of being 

reversible. This approach preserves putative DNA regulatory elements included in the 

lncRNA sequence, while abrogating lncRNA transcription and processing.  

Other approaches involve direct RNA targeting, such as the use of Antisense 

Oligonucleotides (ASOs), RNAinterference and the application of CRISPR-Cas13. 

Antisense Oligonucleotides (ASOs) are DNA oligos that pair with RNA through formation 

of an heteroduplex DNA:RNA which triggers the activity of RNase H. Conversely to 

RNAinterference-based approaches, ASOs realize an equivalently efficient knock-down of 

the RNA pool both in the nucleus and cytosol (Goff and Rinn, 2015; Liang et al., 2017). 

Recently, the tools for direct targeting of RNA expanded with a new tool in the CRISPR 

box. The Cas13 indeed targets directly the RNA, thanks to a complementary sequence of 60 

bp to it guide RNA. Cas13-mediated repression is highly specific and targets the mature 

RNA. However, a complete set of design tools and reagents is still missing compared to 

other techniques (Gil and Ulitsky, 2019). 

 

 

 

 

Figure 18: Tools for lncRNAs investigation – Different features are responsible for 

lncRNAs activities and different techniques are needed to define their specific function. 

CRISPR/Cas9 genome editing, by producing genetic ablation of a lncRNA locus impairs 

functions depending on DNA elements, transcription initiation, elongation, and the mature 

transcript. CRISPRi/a are CRISPR/based genomic tools for sequence-specific modulation of 

gene expression. The activity interest the locus, not only the transcript. Alternatively, the 

lncRNA locus can be modified through the insertion of a short polyA sequence or ribozyme. 

Both tools allow transcriptional initiation, namely the assembly of the transcriptional 

machinery but avoid transcriptional elongation. ASOs, siRNAs and Cas13 target the nascent 

RNA (mostly ASOs) and mature transcript. Figure adapted from (Gil and Ulitsky, 2019). 
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Figure 19: CRISPRi/a tools for modulating lncRNAs expression – The fusion of dCas9 

with effector proteins allows the sequence-specific modulation of gene expression.  These 

systems have the same requirements of native CRISPR/Cas9 system. The specificity 

depends on the presence of a PAM site and sequence complementarity of the sgRNA with 

the target region within a narrow window from the TSS. For CRISPRi this genomic window 

is located from -50 to +300 bp from the TSS; while, for CRISPRa is from -300 to +50 bp 

from the TSS. Figure adapted from (Morelli et al., 2021).               
 
 

 

1.5 Screening-based approaches for the functional investigation of lncRNAs  
 

 

Genetic screenings represent a forward-genetic unbiased approach to understand which 

genes contribute to a specific phenotype. Screenings allow to multiplex perturbation of 

multiple genes at the same time, up to genome-wide approaches. Usually, the perturbation 

is delivered to the cells in forms of lentiviral libraries containing a pool of constructs, such 

as sgRNAs in the case of CRISPR/Cas9 screenings, thus generating a population with 

multiple different genetic backgrounds. Lentiviral libraries have the advantage that can be 

calibrated to introduce just one perturbation per cell. Once the phenotype of interest has been 

observed, the sequence of the perturbation is traced back to identify genes influencing that 
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phenotype. The representation of sgRNAs is calculated by sequencing the integrated cassette 

before and after the screening. The statistical significance of the observations in the 

screening, depends on reaching the correct library coverage. Each construct must be carried 

by an adequate number of cells in the starting population (hundreds to thousands) so that it 

is possible to identify significant fluctuation in their representation and the same effect must 

be scored by multiple independent constructs targeting the same gene.  

In a classic setting, cellular subpopulations carrying different constructs, are in competition 

with each other and at the end of the screening, some subpopulations will be over-

represented (DROP-IN), meaning that the perturbation delivered to these cells has positive 

effects towards the selected phenotype. In the case of CRISPR/Cas9 screenings, the 

identification of DROP-INs points out putative negative regulators of the selected 

phenotype. Conversely, under-represented subpopulations (DROP-OUT) carry a 

perturbation that is detrimental towards the selected phenotype and the corresponding 

DROP-OUT genes should be considered as positive regulators of the phenotype. For 

instance, in the context of cell proliferation, cells carrying perturbations in tumor-suppressor 

genes are expected to proliferate more and these genes will be identified as DROP-INs. 

Instead, upon the perturbation of oncogenes, cells will proliferate less and the genes will 

behave as DROP-OUTs.   

The perturbation of genes of interest can be delivered by RNAi, thanks to the delivery of 

lentiviral libraries of short hairpin RNAs (shRNAs) or by delivering the CRISPR/Cas9 

system and pools of different sgRNAs. The Cas9 delivers the perturbation by cutting the 

target sequence that gets repaired introducing mutations that affect the function of PCGs or 

allow the degradation of the mRNA through non-sense mediated decay (NMD).  

These approaches are functional in characterizing PCGs but quite limited in functional 

studies for lncRNAs. While the shRNAs offer the advantage of being selective for RNA-

dependent phenotypes they are not effective in targeting nuclear-retained lncRNAs (a 

possible solution is to use ASOs, but in this case the approach is only suitable for arrayed 

screens (Ramilowski et al., 2020). Classic CRISPR/Cas9 systems are difficult to apply to 

lncRNAs because of the lack of functional targetable domains. One possibility to overcome 

this issue is by targeting the locus with two sgRNAs and delete larger fractions of the gene. 

This approach has proven useful in functionalizing lncRNAs that impar cell growth (Zhu et 

al., 2016). However, the effect of the deletion might preserve some transcription, responsible 

for the function of the locus. One alternative possibility is the targeting of lncRNAs 

promoters. However, this approach is dangerous and often unfeasible due to the targeting of 

embedded elements as well as affecting other genes sharing the same promoter. 
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One possible alternative is to apply the targeting of splice-sites in lncRNAs sequences. In 

this screening setting, the targeting of >10000 lncRNAs identified 2% of targets that impact 

cell growth (Liu et al., 2018b). This approach despite being quite specific, relies on the 

presence of PAMs around splicing sites and furthermore, the activity of the transcript might 

be not affected. Finally, the CRISPRi/a system offers a complementary approach to target 

lncRNAs, as they rely on the same specificity of CRISPR/Cas9 system and allows 

repression/activation of lncRNAs from their endogenous loci. These techniques are not 

devoid of problems since they can affect overlapping genes and highlight functions which 

are not dependent on the lncRNA transcription, but rather due to the activation/repression of 

other features (including DNA elements) embedded in their sequence. However, the 

targeting of lncRNAs by CRISPRi successfully identified genes involved in proliferation 

and allowed an unprecedent understanding of lncRNAs essentiality and cell-type specificity 

for a wide set of targets (>16000) in a large panel of different cells lines (Liu et al., 2017a).  

The possible phenotypic outputs of a screening are multiple. Beside the effect on 

proliferation, which is easy to carry out by passing cells in culture, other screenings have 

been effective in functionalizing lncRNAs in drug resistance (Bester et al., 2018; Esposito 

et al., 2019; Szlachta et al., 2018) and for their effect in vivo (Bossi et al., 2016; Han et al., 

2020; Michels et al., 2020). Competitive screenings are more and more challenging at 

increasing level of selective pressure imposed by the phenotype. This is particularly true for 

in vivo settings. In vivo screenings have the advantage of recapitulating more faithfully the 

interactions within a specific organ, highlighting specific biological processes impossible to 

be properly captured in vitro, and allow the identification of therapeutic relevant targets. 

Usually, in vivo screening assessing the tumor initiating process are performed by 

transplanting a pool of human cells in immunocompromised animals. This process is usually 

highly selective and dramatically challenges the library coverage requirements.  

Recently, screenings have found a new application by coupling specific perturbation with 

scRNA-seq technologies, allowing the dissection of the molecular mechanisms driving a 

specific phenotype. This technological advancement has been possible thanks to the 

introduction of techniques that allow the capture of sgRNAs in single-cell frameworks, such 

as CROP-seq (Datlinger et al., 2017). This approach make possible the definition of 

regulatory networks for protein coding genes as well as other regulatory elements, such as 

enhancers (Gasperini et al., 2019; Lopes et al., 2021). 
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Aim of the project 
 

Non-genetic mechanisms of cancer adaptation allow cells to acquire the biological properties 

needed to survive in hostile conditions. The phenotypic adaptation often occurs in rare 

population of cells and depends on the acquisition of a plastic state in which cancer cells are 

able to exploit pre-existing transcriptional programs, pathways and developmental strategies 

to cope with the challenging environment. For instance, cancer cells exploit the epithelial to 

mesenchymal transition to shift between these two states and acquire CSCs properties and 

drug-tolerance. This dynamic shift requires a tight but flexible control of gene expression.   

LncRNAs represent a large fraction of the mammalian transcriptome still not entirely 

characterized. Nonetheless, lncRNAs have been functionally implicated in mechanisms of 

chromatin, transcriptional and post-transcriptional regulation and they are generally 

considered as fine tuners of gene expression. Their role as oncogenes and tumor suppressors 

has been validated in different types of cancer.  

In this project we aim at identifying lncRNAs that have a role in the acquisition of adaptive 

phenotypes in breast cancer; a malignancy characterized by high heterogeneity and inherent 

plasticity. We propose multiple screenings to test how the perturbation of lncRNAs impact 

on adaptive properties in the TNBC cell line SUM159PT.  

Give the large number of lncRNAs, the application of genome-wide libraries is unfeasible 

when investigating phenotypes occurring in rare populations. For this purpose, we selected 

a list of lncRNAs according to their positive association in models displaying features of 

adaptation. Specifically, we evaluated the expression of adaptive response signatures in 

primary tumors, modeled the chemo-tolerance to the NACT drug Paclitaxel and evaluated 

the plasticity of the MaSC-like population of the HMLE cell line. Overall, from this analysis 

we selected 620 lncRNAs.  

We used NET-Cage data produced in SUM159PT to refine the annotation of the TSS of 

candidates and designed a compact library of sgRNAs to test the function of these lncRNAs 

by means of multiple pooled CRISPRi screenings. The library also included 23 protein 

coding genes, mostly essential genes, and reporters of dCas9-KRAB activity as well as non-

targeting controls for a library complexity of 3451 sgRNAs.  

We tested how the perturbation of these genes modulate the adaptive properties of the cell 

line by testing the ability of the parental population to adapt its proliferation in 2D, 3D, in 

response to Paclitaxel and when injected in the mammary fat pad of NSG mice. In these 

conditions cells must adapt different strategies to survive.  



 38 

We aim at identifying lncRNAs common and specific modulators of these phenotypes and 

ultimately provide the molecular characterization of their perturbation to find clues about 

their function and the mechanisms in which they are involved in.  
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2. Results 

2.1  Transcriptional characterization of lncRNAs associated with breast 

cancer adaptative mechanisms  
 

We defined a set of lncRNAs based on their transcriptional association with models of 

adaptive phenotypes in breast cancer that have been developed in the lab. Namely, we 

included as potentially relevant targets the lncRNAs that were highly expressed in: i) primary 

tumors characterized by high activity of “adaptive pathways” (2.1.1), ii) the 

CD44High/CD24Low “stem-like” population of the normal-mammary epithelial cell line 

HMLE (2.1.2) and iii) chemo-tolerant colonies of SUM159PT (2.1.3).  

 

2.1.1 Adaptive responses in primary tumors  

 

Cancer datasets such as The Cancer Genome Atlas (TCGA) are usually obtained using 

tumour biopsies that often containing a relevant proportion of immune and stromal cells, 

which particularly impact the analysis of low-expressed transcripts, such as lncRNAs, and 

on the analysis of pathways related to EMT and inflammation.  

We evaluated the expression of lncRNAs in a panel of 26 breast primary cultures obtained 

in the lab of prof. Pier Paolo Di Fiore at IEO. The culture were established from 26 primary 

tumors from different histological subtypes and grading (Figure 20), which were was 

digested, dis-aggregated and cultured in adhesion for short-term (48h) (Figure 2). Non-

epithelial contaminants such as fibroblast, endothelial and inflammatory components, were 

also removed to obtain a population of pure-epithelial breast cancer cells that we 

characterized by strand-specific RNA-sequencing. This dataset is extremely relevant for 

lncRNA expression analysis in breast cancer as it is kept pure in the epithelial composition 

and, at the same time, close to original tumour context (short term culture).  

 

 

Figure 20: Subtypes and Grading of the 27 breast primary tumors employed in this 

study 
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Tumor samples were stratified according to the expression of signatures of “adaptive 

response pathways” that have been associated with transcriptional plasticity, namely the 

acquisition of an EMT/partial EMT signature (Kim et al., 2018a; Kröger et al., 2019), 

hypoxic response (Rohwer and Cramer, 2011), stemness(Shibue and Weinberg, 2017), 

inflammation (Bhola et al., 2013) and Unfolded Protein Response (UPR) (Wang and 

Kaufman, 2016). For each signature, we calculated a scoring system (based on the sum of 

the Z-scores of the genes in the signature, see Methods for details), that was used to stratify 

tumor samples into three groups with “high”, “mid”, “low” signature score, respectively. 

Two sets of tumors coordinately displayed a consistent “high” or “low” activation score for 

most of the adaptive signatures (Figure 21). Of note, even if we noticed an association of 

“high” tumors with G3 grade and TNBC/basal classification and “low” with G1/G2 grade 

and Luminal, the separation was not perfect (Figure 21), reflecting either heterogeneity of 

patients or the effect of culturing in 2D or both. 

We found a total of 1348 coding genes and 285 lncRNAs (padj <0.05 and log2FC >0.5). 

Using Gene Set Enrichment Analysis (GSEA), we confirmed a strong enrichment for all the 

hallmark pathways of adaptation, as expected (EMT, Hypoxia, Inflammation, Stemness; 

data not shown). In addition, we found strong enrichment for genes involved in invasive 

breast cancer, multi-cancer invasion and extra-cellular matrix remodeling, but not for genes 

related to tumor cell growth (Figure 22). This finding is consistent with our initial hypothesis 

to enrich for features of high tumor aggressiveness, which are mostly not related to 

proliferation capacity in basal-like breast cancer. Following a “guilty-by-association” 

approach, we imputed that the set of 285 co-associated lncRNAs might be involved in the 

same pathways. 
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Figure 21: Classification of primary tumors according to Adaptive Response signatures 

– Outline of the experimental procedure for tumors short-term culture and cancer cells 

purification. Below representation of activation scores for all the adaptive signatures 

considered. Tumor subtype and grading are indicated. Data produced by Chiara Tordonato 

(Di Fiore Lab, Istituto Europeo di Oncologia, IEO) and Matteo Marzi (Nicassio Lab, Istituto 

Italiano di Tecnologia, IIT).  
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Figure 22: Enriched signatures in “High” vs “Low” tumors – Selected enriched sets by 

GSEA analysis of top 500 PCGs DEGs in “High” vs “Low” tumors.  

 

2.1.2 Mammary Stem Cell (MaSC) -like population in HMLE 

 

The HMLE is a breast normal epithelial cell line characterized by features that recall the 

heterogeneity of the mammary gland. The vast majority of HMLE cells (>90%) is 

immunophenotypically characterized by CD24high/CD44low profile and resembles luminal 

progenitors and differentiated cells, as they express epithelial markers (such as cytokeratins, 

E-cadherin and EpCAM,) and are unable to grow in non-adherent conditions. A small 

fraction of the bulk population (0,4 – 2%) is CD24low/CD44high and resembles mammary 

stem cells (MaSC-like cells), as they express high levels of mesenchymal markers (N-

cadherin, Vimentin) and can survive in non-adherent conditions forming spheroids called as 

“mammospheres” (Al-Hajj et al., 2003) (Figure 23). The molecular and phenotypic 

properties of this sub-population have been widely investigated in the past and often 

correlated to aggressive properties of tumours, as the proportion of cells within this sub-

population increases during oncogenic transformation and correlates with in vivo 

tumorigenesis, highlighting a parallelism between the normal and the cancer counterpart of 

stem cells (CSCs) (Chaffer et al., 2011).  

With the aim of characterizing transcripts (coding and lncRNAs) associated to MaSC-like 

features, we isolated by cell-sorting the MaSC-like CD24low/CD44high population as opposed 

to the more differentiated luminal-like CD24high/CD44low population and performed strand-

specific RNA-sequencing from three independent biological experiments. Using DESeq2, 

we found a total of 341 coding genes and 82 lncRNAs significantly enriched in the 
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“CD24low/CD44high” group (padj <0.05). We observed a good overlap of the CD44high 

signature with the Adaptive Response signature described above (overlap of 114/341, 

33.4%, expected overlap 11.8%, pval<0.05 by Fisher’s test). Coherently, we also observed 

enrichment for signatures related to invasive breast cancer and extra-cellular matrix 

remodeling (Figure 24). Among the hallmark pathways, EMT was the most prominently 

enriched (p=6.8e-40), as expected by previous literature (Mani et al., 2008). In conclusion, 

the “CD44high” signature captures similar transcriptional features of the “Adaptive” one, but 

also provides a different perspective and several additional lncRNA candidates. 

 

 
Figure 23: Differential properties of CD24low/CD44high vs CD44low/CD24high 

subpopulations of HMLE cell line – Dot plots of flow-cytometric analysis of the CD24 vs 

CD44 profile of the HMLE cell line. CD24low/CD44high represents a smaller fraction of the 

bulk population. When sorted, only this fraction of cells forms countable mammospheres 7 

days after seeding in a 3D matrix.  These cells maintain sphere-forming capability after the 

first generation of mammosphere. Data by Chiara Tordonato (Di Fiore Lab, Istituto Europeo 

di Oncologia, IEO)  
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Figure 24: Enriched signatures of DEGS  in CD24low/CD44high vs CD44low/CD24high  - 

Selected enriched sets by GSEA analysis of 341 PCGs in The CD24low/CD44hi (stem-like) 

vs CD24high/CD44low (differentiated epithelial cells).  

 

2.1.3 Model of chemo-adaptation  

 

The persistence of cancer cells after treatments represents a major challenge in the therapy 

of breast cancer, especially for women suffering of TNBC. To study the transcriptional and 

epigenetic mechanisms associated to drug tolerance, we generated a model of chemo-

adaptation by exposing the cell line SUM159PT, a highly aggressive claudin-low TNBC cell 

line, to Paclitaxel, a G2M-blocker commonly used in Neoadjuvant Chemotherapy regimens 

(NACT). Specifically, we treated cells with 50nM Paclitaxel for 72h, a dose that kill most 

cells but allows the emergence of rare drug-tolerant colonies. Upon treatment, cells stop 

proliferating and die due to mitotic catastrophe in a try to escape from the G2-M block 

induced by the drug. Only a small fraction of the cells (3%) survives and after few days 

reinstate proliferation growing into clonal colonies (Figure 25A). The chemo-adapted 

population emerges typically at 10-14 days from the treatment, and it shows biological 

properties typical of aggressive cancer cells, with an increased expression of markers and 

features of stemness (increased ALDH+ cells and increased frequency of cells capable of 

mammosphere formation, Figure 25C). Of note, the drug-tolerant state of SUM159PT is 
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transient and totally reversible. After 21-25 days from the treatment, cells spontaneously 

revert to their original state, losing all the properties (molecular and phenotypic) which were 

acquired along the adaptation. Such behavior is highly reproducible in SUM159PT and 

suggests that in this model system the acquisition of drug tolerance is mostly dependent on 

transcriptional/epigenetic reprogramming, a contention which is in line with recent findings 

obtained by others while investigating drug-adaptation mechanisms in TNBC (Echeverria et 

al., 2019; Kim et al., 2018a). 

With the aim of characterizing transcripts (coding and lncRNAs) associated to the 

transcriptional/epigenetic reprogramming of drug tolerant cells, we compared the expression 

profiles of SUM159PT drug-tolerant colonies (at D12) with their parental counterpart (D0). 

To overcome the intrinsic experimental variability, we analysed 8 replicates per sample type 

(16 samples in total) and, then, identified 459 protein coding genes (>1 FPKM) and 152 

lncRNAs (>0.1 FPKM) in the “Pacli-resistance” signature (padj < 0.05 and log2FC >0.5). 

Also in this case, the most enriched hallmark pathways were linked to adaptive pathways 

such as inflammation, EMT, Hypoxia, plus KRAS signalling and apoptosis. Furthermore, 

we found an overlap with basal breast tumours, invasive ductal carcinoma, cancer stem cells 

and invasiveness among cancer signatures (Figure 26). We also found a significant overlap 

with the other two sets (overlap with “Adaptive”=104/459, 22.7%; expected 

1348/11357=11.8%) (observed overlap with “CD44”=50/459, 10.9%, expected 

341/11357=3.0%).  
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Figure 25: Emergence of Paclitaxel-tolerant SUM159PT – A) Time-course showing the 

extensive cell-death after the treatment with 50 nM of Paclitaxel and growth of colonies. 

Pictures acquired by EVOS, scale bar= 1000 μm. B)  Plot showing the numbers of total and 

live cells during the paclitaxel response. C) Features of Paclitaxel-tolerant SUM159PT. 

Tolerant cells show boosted CSCs properties as measured by increased numbers of cells 

positive for the de-toxifying protein ALDH and increased SFE. Error bars represents SEM 

(n=3), statistical significance by Student’s t-test. Data by Paola Bonetti and Maria Pirra 

Piscazzi (Nicassio Lab, IIT).  
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Figure 26: Enriched signatures of DEGS  in Paclitaxel-tolerant vs Parental SUM159PT 

- Selected enriched sets by GSEA analysis of 459 PCGs upregulated in Paclitaxel-tolerant 

colonies of SUM159PT.  

 

 

2.1.4 Selection of lncRNAs candidates  

 

All the different models we used are capable of capturing transcriptional features of breast 

cancer adaptation starting from different perspectives: the intrinsic plasticity of MaSC-like 

cells (HMLE model), the transcriptional adaptation occurring upon acute drug treatment and 

the emergence of chemo-tolerant cells (SUM159PT Paclitaxel model) and the activity of 

adaptive-response signatures in primary tumors. We therefore combined the lists of 

candidate lncRNAs to obtain a final set to be subjected to functional analysis. Furthermore, 

we exploited scRNA-seq profiles generated in the lab from both i) CD24low/CD44high HMLE 

cells and ii) Paclitaxel tolerant SUM159PT (data not shown); to provide additional lncRNAs 

candidate associated to specific subpopulations. Finally, we complemented our dataset by 

selecting lncRNAs with literature-supported role in drug-resistance, EMT, survival and 

metastasis in breast cancer or multi-tumor as annotated in Lnc2Cancer (Ning et al., 2016) or 

by the analytical framework “Longhorn” (Chiu et al., 2018). 

In all the above-mentioned analyses, we focused only on those candidates positively 

associated to phenotypes (DEG-UPs), whose ablation by dCAS9-KRAB was expected to 

negatively impact on mechanisms of cancer adaptation. Additionally, to maximize feasibility 
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in the screenings, we filtered out those candidates that could not be tested in the cellular 

model of the screenings (i.e. lncRNAs which are not detected in SUM159PT). Below is 

reported the final composition of the lncRNA candidates, while the complete list of lncRNAs 

candidates is provided in Addendum.  

 

 

 

Figure 27: LncRNAs candidates – Bar chart showing the 620 candidates lncRNAs with 

indication of the models of their selection. The larger fractions of lncRNAs candidates were 

chosen from the analysis of adaptive response signatures in primary tumors (25%) and 

adaptation to Paclitaxel (39%). Only 3% of candidates lncRNAs was specific of 

CD24low/CD44high, while 8.7% of the selected genes was common to more than one model 

(“shared”); the group “others” collects lncRNAs selected for their single-cell expression;  

4.8% lncRNAs have a literature-supported role in cancer.  
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2.2 A CRISPRinterference platform 
 

2.2.1 SUM159PT: a versatile TNBC model system 

 

The first step to perform a screening is the selection of an appropriate model system, 

recapitulating the biological properties under investigation. Breast cancer is a widely studied 

malignancy and multiple cell lines have been stabilized during the years, representative of 

the many sub-types and heterogeneity of this tumor (Dai et al., 2017; Neve et al., 2006). Our 

lab has acquired long-standing experience in breast cancer cellular models and in particular 

of TNBC cell lines, among which SUM159PT represents a versatile and useful model for 

cancer studies. This cell line was initially isolated from a primary anaplastic breast tumor 

and belongs to the claudin-low subtype, a particularly aggressive form of Triple Negative 

Breast Cancer (TNBC) (Ethier et al., 1993; Flanagan et al., 1999). These cells indeed, lack 

the expression of Estrogen Receptor (ER), Progesterone Receptor (PR) and HER2 receptor 

(Bianchini et al., 2016). Genetically, the main mutations borne by SUM159PT interest 

HRAS, PIK3CA, TP53 and MYC amplification, mutations common in breast cancer, which 

sustain both the indefinite growth and the aggressive phenotype of these cells (Saunus et al., 

2018). SUM159PT cells, as evidence of their epithelial origin, express low levels of 

cytokeratin 18 but they retain no expression of the epithelial cell-junction protein E-cadherin. 

In fact, they show high expression of the intermediate filament protein vimentin, displaying 

a mesenchymal-like phenotype (Figure 28A). Moreover, SUM159PT cells are highly 

tumorigenic in vivo. When injected in mammary fat pads of immunodeficient mice they form 

primary tumours with high efficiency and also produce distant metastasis (Flanagan et al., 

1999). SUM159PT cells display also an intrinsic heterogeneity, being composed of different 

subpopulations described by their surface markers: a CD44low/CD24high  population, 

expressing genes of luminal differentiation and a large fraction (~90%) of CD44high/CD24low 

population, expressing markers of basal lineage (Fillmore and Kuperwasser, 2008). The 

latter population appears as enriched in Cancer Stem Cells (CSCs), as it is able to form 

tumours in vivo, re-create all the different subpopulations when isolated by FACS-sorting 

and it shows a higher degree of resistance to chemotherapeutics (Fillmore and Kuperwasser, 

2008; Gupta et al., 2011).  

A frequently used in vitro assay to monitor the number of CSCs in cancer cellular population 

(i.e. a cancer cell line) is the mammosphere assay. (Dontu et al., 2003; Tordonato et al., 

2021). In such assay, cells are plated non-adherently in methylcellulose matrices in absence 

of serum. In these conditions, only cells with stem-like features exploit their self-renewal 

ability and grow in clonal spheroids (Figure 28B). Therefore, the Sphere-Forming 

Efficiency (SFE), defined as the ratio between the number of spheroids obtained and the 
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number of seeded cells, is considered a proxy of the number of CSCs in the original 

population. When calculating the SFE of various breast cancer cell lines, we observed that 

SUM159PT cells showed the highest SFE (about 20%), maintained in multiple generations 

of mammosphere growth (Bonetti et al., 2019; Tordonato et al., 2021). These and other 

features, such as easy growing conditions and fast doubling time (21h, see Figure 28C), 

together with the intrinsic heterogeneity and plasticity, made this cell line a largely studied 

model in our lab and a suitable candidate for our CRISPRinterference screening to probe 

lncRNA function in breast cancer adaptation phenotypes. Furthermore, our lab performed 

several molecular characterizations of SUM159PT exploiting multiple high resolution-omic 

approaches, including strand specific total RNA sequencing, small RNA sequencing, single-

cell RNA sequencing, single-cell Assay for Transposase-Accessible Chromatin (ATAC) 

sequencing, native elongating transcript–cap analysis of gene expression (NET-CAGE) 

(Hirabayashi et al., 2019) and Nanopore direct RNA sequencing. The sum of these molecular 

characterizations provided an extremely helpful resource to map the transcriptional and 

epigenetic blueprint of these cells and to precisely characterize the type of lncRNAs and 

their expression regulation in this system. 

 

 

Figure 28: Properties of SUM159PT- A) Mesenchymal morphology of SUM159PT in 2D 

adherent culture. Pictures acquired by EVOS. Scale bar 1000 µm. B) First generation of 

SUM159PT spheroids in 3D non-adherent methylcellulose culture. Pictures acquired by 

Nikon SMZ25 stereomicroscope. Scalebar 200 µm. C) Growth curve of SUM159PT. Line 

shows average N of cells in 3 technical replicates. Error bar=SD. (Growth curve by Carmela 

Rubolino, Nicassio Lab, IIT). 

 

2.2.2 Delivery of dCas9-KRAB 

 

The completion of the adaptation screenings requires the silencing of the expression of 

candidates lncRNAs robustly and continuously throughout the assay using a reliable 

CRISPRi system. We sought an inducible system in which the expression of the dCas9-

KRAB can be turned ON and OFF, as it offers the advantages of i) obtaining an acute 

repression of the targeted genes limited to the experimental setting; ii) avoiding unwanted 

or uncontrolled phenotypic effects when handling the cellular population before the 



 51 

screening, and iii) decreasing chances of silencing and counterselection of the transgene 

during culture. To this end, we tested both a lentiviral and a transposable system. In the 

lentiviral system (pHage TRE dCas9-KRAB, Addgene #50917, (Kearns et al., 2014)), the 

expression of the dCas9-KRAB fusion protein occurs upon the Doxycycline-dependent 

binding of the transactivator protein (rtTA) to the upstream TRE promoter. In the 

transposable system, a PiggyBac transposon contains the dCas9-KRAB fusion protein, 

similarly regulated by a TRE promoter, and Hygromycin resistance gene, surrounded by 

Inverted Terminal Repeats (ITRs). (Figure 30, see Methods).  

 

  

Figure 29: Schematic of constructs for dCas9 delivery - Dotted lines represents mutations 

inactivating the endonucleolytic sites of the Cas9 protein. Black arrows represent the 

location of qPCR primers for transgene detection.  

The CRISPRi/a systems were tested by measuring the level of expression and inducibility 

of the transgenes (dCas9-VPR or dCas9-KRAB) and the effects on representative target 

genes. In case of the CRISPRa system, dCas9-VPR was highly induced upon Doxycycline 

treatment, producing a robust upregulation of CXCR4, targeted with a combination of 

validated sgRNAs (Chavez et al., 2016) (Figure 30). In case of the CRISPRi, the two 

systems were compared by measuring the transgene expression and the effects on the 

expression of the lncRNA PVT1, using previously validated sgRNAs (Cho et al., 2018). As 

expected from literature (Chavez et al., 2016; Chen et al., 2015), the dCas9-KRAB was 

expressed by both systems, resulting in the repression of the target PVT1. However, the 

transposable system reached both higher levels of expression of the transgene and stronger 

repression of the target as compared to the lentiviral system, where we measured a limited 

repression of the target gene (Figure 30). Hence, the PB-TRE-dCas9-KRAB CRISPRi 

system was selected and several stocks of SUM159PT were generated to perform the 
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lncRNA screenings (hereafter named SUM-dCas9-KRAB). It is worth mentioning that a 

degree of leakiness was observed, as dCas9-KRAB was expressed (at low level) in absence 

of doxycycline treatment resulting in a partial repression of the target in absence of induction 

(Figure 30). 
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Figure 30: Performance of CRISPRi/a constructs – qRT-PCR expression data showing: 

A) Expression of dCas9-VPR from PiggyBac transposable construct and induced expression 

of target gene CXCR4 (25X expression). B) Expression of dCas9-KRAB from lentiviral 

pHage contruct and expression of target gene PVT1 (50% residual RNA expression 

compared to average WT). C) Expression of dCas9-KRAB from PiggyBac construct and 

expression of target gene PVT1 (1% residual RNA expression). Bars show average; error 

bars=SD (n in figure). Data normalized vs RPLP0. Expression measured after 48h 

Doxycyline treatment. (sgRNAs were cloned in LentiGuide-Puro sgRNA backbone, see 

Methods).  
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2.2.3 Biological properties of the SUM-dCas9-KRAB CRISPRi system 

 

Before using the SUM-dCas9-KRAB cell line in the screenings, a series of experiments were 

performed to test robustness of dCas9-KRAB expression in different conditions and verify 

that the biological properties of the parental SUM159PT were preserved in this subline. A 

possible issue with Doxycycline-based inducible systems is represented by the alteration of 

the cellular metabolism and the slower proliferation of mammalian cells induced by 

Doxycycline per se (Ahler et al., 2013). For this reason, it is advisable to use Doxycycline 

at low concentrations to limit side-effects, while maintaining the effects on target genes. We 

calibrated the dose-response of dCas9-KRAB upon decreasing Doxycycline concentrations 

and measured the effect on the targeted gene PVT1. We observed that all tested doses were 

adequate to induce the expression of dCas9-KRAB at a sufficient level to repress PVT1 

(Figure 31).  

 

Figure 31: Dose response of dCas9-KRAB – qRT-PCR measuring the expression of 

dCas9-KRAB upon 48h induction with different concentration of Doxycyine and effect on 

target gene PVT1. Data normalized vs RPLP0. 

 

Next, we checked that some peculiar biological properties of the parental SUM159PT were 

preserved in the SUM-dCas9-KRAB CRISPRi system. Specifically, we measured i) the 

content and the properties of CSCs by performing a mammosphere assay and measuring the 

Sphere Forming Efficiency (SFE %) and ii) the drug-sensitivity in response to paclitaxel 

measuring the IC50 (Figure 32). In both cases, we observed similar SFE% and IC50 when 

comparing SUM-dCas9-KRAB with parental cells. In summary, we are confident that SUM-

dCas9-KRAB are truly mirroring the properties of their parental counterpart.  
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Figure 32: Properties of SUM-dCas9-KRAB - A) SFE % measured at the first 

generation (F1) of parental SUM159PT and SUM-dCas9-KRAB (Bars=average, 

error bars= s.e.m. from three replicates), p-values by Student’s t-test; B) Cell 

viability was measured by ADP-Glo Max Assay in SUM159PT/SUM159-dCas9-

KRAB cells treated for 3 days with Paclitaxel at different concentrations (1000-

0.1 nM). Shown is a single representative experiment.  

 

 

2.2.4 Modulation of lncRNAs expression by CRISPRi 

 

Our next goal in setting up the system for the adaptation screenings was the design and 

production of sgRNAs able to interfere with the expression of the target.  

We selected 7 lncRNAs from the list of candidates (See 2.1) and STAT3, a pro survival 

transcription factor, involved in cell transformation and a key player in the maintenance of 

a stem identity. We exploited the interference of this PCG for proof-of-principle experiments 

that will be discussed later on. SUM-dCas9-KRAB cells express these genes at different 

basal levels (Figure 33). We selected as guide design tool the CRISPick from the Broad 

Institute. This web tool is optimized for the different CRISPR/Cas9 applications including 

CRISPRi. The tool searches for PAM sites in the genomic region that goes from -50 to + 

300 bp from the annotated TSS or the corresponding genomic coordinates of the selected 

gene. The picking algorithm (Doench et al., 2016), searches for the sgRNAs that have the 

best on-target score and the lowest off-target effect, returning a ranked list of the best 20-bp 

protospacers. Using this tool, we designed 6-8 sgRNAs per gene, for a total of 55 guides that 

were individually cloned in the PerturbSeq sgRNA backbone (pBA439, Addgene #85967, 

(Adamson et al., 2016), (Dixit et al., 2016)). We measured the expression of the target genes 

after 72h of 100 ng/mL Doxycycline treatment for dCas9-KRAB induction. Of the tested 

sgRNAs, 37 guides (67%) produced a KD of the target genes to 20% or less of their 

expression in non-targeting controls cells; for 14 guides (25%) we measured a residual RNA 

expression between 20 and 80%, 4 guides (7%) failed to yield a KD of the target gene. 

Overall, we measured a mean residual RNA expression of 25% and for each tested gene but 

https://portals.broadinstitute.org/gppx/crispick/public
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one (RP-1154H7.4), we were able to identify at least 2 sgRNAs able to KD the expression 

of the target gene to a residual 20% (i.e. a repression of 80%). We concluded that the selected 

design tool and CRISPRi system are reliable tools to induce strong KD of targeted lncRNA 

genes.  

 

 

Figure 33: Baseline expression of genes tested in CRISPRi – qRT-PCR for relative RNA 

levels of genes KD by CRISPRi (below) measured in non-targeting control cells. Bars show 

mean (n=2), error bar= ± SD. Normalization vs RPLP0. 

.  

 

Figure 34: KD by CRISPRi of lncRNAs and the transcription factor STAT3 – Bars 

represents residual RNA expression in each sample as % of the average of the non-targeting 

controls. The cartoons show the location from the TSS of sgRNAs employed for this test. 

sgRNAs for this experiment were cloned in Perturb-Seq backbone (see Methods).  
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Figure 35: Summary of CRISPRi KD efficiency for lncRNAs targeting – Bar chart 

summarizing the effect of 55 sgRNAs tested.  
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2.3 LNC-Library design and production of reference P0s 
 

2.3.1 Definition of a Transcription Start Site  

 

The CRISPRi system relies on the targeting of gene promoters by sgRNAs. The most active 

sgRNAs are located just after the TSS, where the sgRNAs-dCas9-KRAB complex most 

efficiently interferes with transcription initiation and elongation (Gilbert et al., 2013; 

Horlbeck et al., 2016; Qi et al., 2013).   

 

 

Figure 36: Multiple TSS for one lncRNA – Screenshot of the UCSC genome browser 

showing the locus of the lncRNA PVT1 and the different transcripts produced. The 

expression of this gene is known to be initiated from distant alternative promoters (Cho et 

al., 2018).  

 

LncRNAs are often transcribed in multiple transcripts, which might originate from different 

promoters that act in a tissue- or cell line-specific fashion (Liu et al., 2017b; Mattioli et al., 

2019). Distinguishing which of these transcripts are expressed in our model system is 

mandatory for an efficient perturbation of the target gene. For this purpose, we exploited in-

house data of native elongating transcript–cap analysis of gene expression (NET-CAGE), 

obtained in SUM159PT to precisely define the TSS of our candidate lncRNAs. This dataset 

was produced in collaboration with the lab of Yasuhiro Murakawa at the RIKEN institute. 

NET-Cage is a strand-specific 5’ mapping technique that combines the isolation of 

chromatin-retained nascent transcripts with cap-trapping allowing precise detection of 5’ 

transcription start site of PCGs and lncRNAs (Hirabayashi et al., 2019). With the help of 

these data, we refined the TSS of the candidate genes in our library based on two approaches 

that are summarized below (see also Figure 37 and Methods):  

1) Approach 1: we used the annotation of the TSS defined by the RIKEN NET-Cage 

pipeline (Hirabayashi et al., 2019), where each peak is connected to an ENSG_ID or 

ENST_ID. Unfortunately, this approach provided an association only for a limited 

fraction (10%) of the lncRNAs candidates.  

2) Approach 2: we defined a genomic window of 3kb around the TSS (-2kb; +1kb) of 

the candidates, based on their annotation (Gencode Release 26 was used for 
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consistency with the analysis performed for selecting the candidates (See 2.1). We 

intersected these genomic windows with the NET-cage peaks and selected as TSS 

the one that was closest to the Gencode Basic annotation (GC26).  This approach 

allows the selection of peaks quite distant from the annotated locus but could lead to 

the incorrect annotation of a distinct gene if it is overlapping in the same genomic 

region.  

 

 

Figure 37: Schematic of TSS definition and library design – Workflow of TSS definition 

for lncRNAs candidates. Box summarizes the number of lncRNAs candidate with TSS 

defined by CAGE or their annotation and the tool used for guide design.  
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For 57.7% of lncRNA candidates we could identify a NET-Cage supported TSS and, for 

most of them, the NET-cage confirmed the TSS in a position very close to the original 

Gencode annotation. On the contrary, for 20% of them the NET-Cage pointed out a TSS 

more than 350 bp distant. In those cases, guide design would have been significantly 

affected, leading to inefficient targeting (Figure 38). For the remaining 41% of the lncRNAs 

candidates we could not associate any NET-Cage peak and thus, we designed guides for 

these genes keeping the original annotation.  

In order to further support the procedure, we compared the NET-CAGE refined TSS list with 

an external reference, i.e. the one used for the design of the CRISPRi Non-Coding Library 

(CRiNCL), a large genome-wide library targeting 16401 TSS of lncRNAs genes (Liu et al., 

2017b). In that paper, the authors exploited CAGE to define TSSs: we found that in 57% of 

the cases the two CAGE peaks (in house and external) overlapped (195/342). Besides 

validating these 195 TSS, this analysis also allowed us to pick sgRNA from the CriNCL 

library.  The CRiNCL library was designed using the hCRISPRi-v2.1 algorithm, an 

optimized tool for the design of CRISPRi-specific guides that integrates different type of 

data, including the FANTOM5 TSS annotation (Andersson et al., 2014), chromatin 

accessibility, sequence content and sgRNAs position to design guides highly active in 

repressing the target gene and that were extensively validated (Horlbeck et al., 2016). In 

conclusion, when the TSS were overlapping, we picked sgRNAs targeting candidates from 

this library. Conversely, if the gene was not present in the CRiNCL library or the TSS were 

differently annotated, we designed the sgRNAs using the CRISPick tool (Figure 37).  
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Figure 38: TSS definition by CAGE assisted guide design – A) Ranked representation of 

all 341 sgRNAs defined by CAGE data (in house NET-cage or available). B) Representative 

image of the locus of the candidate lncRNA S3GAL4-DT and the location of CAGE-defined 

TSS. Below, the RNA-seq track in SUM159PT confirms transcription starting several 

hundred base pairs upstream of the GENCODE annotated TSS (in green).   

 

2.3.2 Modules of the Library  

 

We aimed at designing a compact library, a necessary requirement when screening for 

phenotypes with strong selection, such as drug resistance.  It was demonstrated that compact 

libraries with 5 highly active sgRNAs per target gene are equally performing to larger 

libraries targeting each gene with 10 different sgRNAs (Horlbeck et al., 2020). The 37% of 

the sgRNAs in our screening were previously validated in (Liu et al., 2017b) and we 

measured an efficient KD for most of the guides that we designed with the CRISPick tool 

(See 2.2.4). Overall, the library (hereafter referred to as “LNC-library”) has a designed 

library size of 3451 different sgRNAs that represents the complexity of the system (Figure 

39).     
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The design of the library included the following modules:  

 

 

Candidates lncRNAs   

The sgRNAs targeting the TSS of the 620 lncRNA candidates, selected in the models of 

adaptive responses in breast cancer, represent the majority of the guides in the library. (583 

DEGs and 37 lncRNAs selected from literature).  

 

Essential genes  

We selected 23 genes reported to be essential in a genome-wide CRISPRi screening 

(Horlbeck et al., 2020). Some of the genes in this module have a direct role in basal properties 

of the cell (e.g. cell cycle, DNA replication) while others impact cell proliferation in specific 

contexts (e.g. STAT3, specific inhibitor of 3D growth). The targeting of these genes acts as 

proxy of the function of the dCas9-KRAB. During the experimental framework, the activity 

of dCas9-KRAB towards the promoter of these genes should lead to a decreased proliferation 

rate and consequently to a progressive reduction of the representation of these guides.  

 

Non-Targeting controls  

The outcome of the screenings can only be evaluated with the help of non-targeting controls. 

These guides were selected from (Horlbeck et al., 2020; Liu et al., 2017b) and have no targets 

in the human genome or target desert regions. Their representation should remain unchanged 

throughout the screening. The non-targeting guides (NTCs) represent a considerable fraction 

of the library (236 guides, 7% of the total) and their distribution helps calling hits in the 

screening.  
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Figure 39: Composition of the LNC-library  

 

2.3.3 Construct for sgRNA library delivery   

  

We externalized the synthesis and cloning of the LNC-Library to Cellecta. We selected as 

sgRNA delivery system the pRGScribe1, a 3rd generation lentiviral plasmid, developed by 

the company for CROP-Seq approaches (Datlinger et al., 2017) (Figure 40). Briefly, this 

type of plasmid allows two levels of analysis. The expression of the sgRNA cassette is 

orchestrated by the U6 promoter. On the other side, the transcript encoding the RFP 

fluorescent reporter and Puromycin resistance genes embeds the sgRNAs cassette before 

its polyA tail. In this way, the sgRNAs cassette operates also as cellular barcode, allowing 

the recovery of sgRNAs identity and transcriptional perturbation of each cell in sc-

RNAseq settings.    

Details about amplification of the sgRNA cassette, sequencing and sgRNAs deconvolution 

are provided in the Methods section. 

 

Figure 40: Schematic of plasmid for LNC-Library delivery 

https://cellecta.com/collections/crispr-seq-barcoded-sgrna-libraries-perturb-seq-crop-seq
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2.3.4 Library quality controls    

 

Cellecta synthetized the pool of oligos and cloned them in the pRGScribe1 plasmid 

producing a pooled lentiviral DNA library. The performance of competition screenings 

depends in the first place, on the equal representation of all sgRNAs in the parental 

population, which is dictated by a similar representation of sgRNAs in the pooled DNA 

library. Cellecta sequenced the DNA pool by NGS and provided quality controls indicating 

that i) 3450 sgRNAs could be detected (3450/3451 designed sgRNAs); ii) the 90% of the 

sequences were equally represented (Figure 41). They also picked random clones that were 

individually sequenced by Sanger Sequencing and estimated that >95% of them have no 

mutation in the sgRNA insert (calculated mutation rate <0.25%).  

 

 

Figure 41: Cumulative distribution of sgRNAs in the LNC-library DNA – The plasmid 

LNC-library DNA was sequenced by Cellecta (Illumina Next-Seq 500) obtaining a total of 

17196386 reads. Plot shows cumulative frequency and summary of sgRNAs distribution.  

 

2.3.5 Production of P0s  

 

Given the correct representation of sgRNAs in the pooled DNA library, we had to secure a 

similar equal representation of the sgRNAs in the parental population (P0). To do so, there 

are two interconnected considerations that need to be done. First, each cell must carry a 

single sgRNA: multiple integrations increase chances of unwanted insertions in relevant 
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genomic loci (e.g., insertions disrupting the sequence of oncogenes or tumor-suppressors); 

even more importantly, multiple integrations might lead to ambiguous interpretation of 

screening results. Secondly, each sgRNA needs to be represented multiple times in the P0 

so that the interpretation of screening data is statistically supported. For these reasons, when 

producing the P0 the appropriate Multiplicity of Infection (MOI) must be set, guaranteeing 

single lentiviral integration and an appropriate number of cells must be infected, reaching 

the planned library coverage (i.e., the number of cells carrying a specific sgRNA in the P0). 

MOI is an empirical parameter that illustrates the ratio between the viral particle and the 

target cells. To obtain cells carrying only one construct we transduced cells at low MOI. MOI 

can be empirically monitored by transducing cells at different dilutions of the viral stock and 

analyzing by cytofluorimetry the percentage of cells expressing the fluorescent reporter. 

Thus, to produce the P0 we infected cells at serial dilutions of the lentiviral stock and 

measured the percentage of RFP+ cells at 36h post infection. We selected a dilution that 

gave us ~10% of RFP+ cells (1:100). To gain the planned library coverage (>1000 cells for 

each single sgRNA), we transduced 60 million cells. So, with 10% infection rate, around 6M 

cells were transduced and each construct was represented in the P0 >1500 times. Finally, we 

produced two independent P0s (these parental populations will be referred to as LNC1-P0 

and LNC2-P0). We sequenced the two P0 parental population by NGS and observed the 

distribution of sgRNAs: similarly to the pooled library DNA, most of the constructs were 

similarly represented (Figure 44).  
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Figure 42:  MOI test – The lentiviral particles encapsulating  the LNC library were used to 

transduce SUM-dCas9-KRAB at different dilutions. Percentage of RFP+ cells were 

monitored 36h post infection by flow-cytometry. Flow cytometry by BD Facs Celesta.  

 

Figure 43: %RFP+ cells in LNC1-P0 and LNC2-P0 – Dot plots showing % of RFP+ cells 

36h post infection in P0s before selection. Flow cytometry by BD FACS Celesta.  
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Figure 44: Distribution of sgRNAs in LNC1-P0 and LNC2-P0 – A) Ranked 

representation of sgRNAs in DNA library and LNC1-P0  and LNC2-P0. B) Scatter plot 

showing correlation of distribution of sgRNAs in the DNA library and parental reference 

population. C) Summary of the distribution of sgRNAs in LNC1-P0 and LNC2-P0.  
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2.4 2D Proliferation Screening  
 

2.4.1 2D proliferation screening set-up  

 

 

Figure 45: Outline of the proliferation screening – Cells were kept in culture for 24 days 

with regular split 3 times per week. We collected cell pellets from the reference (P0) and 

after 10 days Doxycycline treatment (P3), 17 days (P6) and 24 days (P9). In the cartoon 

representing population at P9, the enriched sgRNAs are highlighted while the depleted 

guides are shaded.  

 

We analysed the growth modifying properties of the perturbation of the genes in the LNC-

library in cells plated in a 2D monolayer. We performed the 2D screening for the following 

reasons: i) it was less difficult to set-up and helped us gather information about the correct 

performance of the CRISPRi model; ii) it was used as a reference to interpret the results of 

subsequent screenings, as alterations of the basal growth are a proxy of altered key cellular 

functions (e.g. cell cycle regulation, basal metabolism, etc…; (Liu et al., 2017b)).  

We propagated the LNC1-P0 and LNC2-P0 cells (i.e. two biological replicates) for 24 days 

under continuous supplement of Doxycycline to induce the expression of dCas9-KRAB 

(Figure 45). We analysed the baseline (P0) and three different time points (P3, P6, P9; P = 

”passages”). We extracted gDNA from 3.5M cells (library coverage=1000X) and amplified 

the sgRNAs cassette to analyse enriched and depleted guides compared to the P0. First, as a 

quality control step, we analysed the distribution of non-targeting guides and of those 

targeting essential genes (See 2.4.2 and 2.4.3). Then, we searched for hits by modelling the 

collective behaviour of sgRNAs at gene-level with the widely used tool MAGeCK (Li et al., 

2014) (see 2.4.5).  

 

2.4.2 Analysis of non-targeting controls 

 

The module of non-targeting guides (236 sgRNAs) should be consistently represented across 

the screening time-points. Large variation of their representation is indicative of a reduced 

library coverage due to several reasons, such as cells undergoing strong selective pressure 

or incorrect amplification of the sgRNAs cassette. We measured the Log2FC of the sgRNAs 

distribution compared to the respective P0 (LNC1-P0 and LNC2-P0). We observed that the 
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distribution of non-targeting guides remains unaltered across time points and biological 

replicates, with a median value proximal to zero. The 75% of non-targeting guides was 

consistently distributed with Log2FC values ranging from 0.2 to -0.1 Log2FC with only a 

few outliers guides more strongly and conservatively depleted (Figure 46). Overall, given 

the small variation of non-targeting guides across all timepoints, we concluded that the 

screening was performed with an adequate coverage and that the library was correctly 

amplified and faithfully sequenced.   

 

 

Figure 46: Distribution of 236 non-targeting guides in throughout the proliferation 

screening – Box plot showing the distribution of non-targeting guides in each time point 

(P3, P6, P9) and biological replicate of the proliferation screening (LNC1 and LNC2).  

 

 

2.4.3 Analysis of depletion of sgRNAs targeting essential genes  

 

The analysis of the behavior of non-targeting guides gives no actual clue about the correct 

interference on target genes. For this purpose, we analyzed the behavior of the “Essential 

genes” module (115 sgRNAs). The abrogation of the expression of these genes should 

strongly impair the fitness of the cells and hence, the representation of these guides should 

be progressively depleted. The boxplot in Figure 47 describes the distribution of Log2FC of 

the sgRNAs targeting essential genes. When compared with non-targeting controls, it is 

immediate that, in both replicates, the median value for this group of guides decreases across 

the analyzed time points (e.g., at P9 Log2FC -1.8 for Exp1 and -1.76 for Exp2). Overall, the 
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“Essential genes” distribution at P9 in LNC1 and LNC2 samples was significantly different 

to the distribution of non-targeting guides (p-value<0.0001*, Student’s paired t-test).  

 

 

Figure 47: Distribution of guides targeting essential genes throughout the proliferation 

screening - Box plot showing distribution of guides targeting essential genes in each time 

point (P3, P6, P9) and biological replicate of the proliferation screening (LNC1 and LNC2).  

 

 

We also noticed that not all the sgRNAs targeting “Essential genes” were depleted. This 

might be the consequence of two different scenarios: i) the gene annotated as “essential” was 

not behaving as such in SUM159PT; ii) the sgRNAs were not functioning in repressing the 

target gene. Therefore, we referenced the activity of each sgRNA to their target gene and we 

exploited the distribution of non-targeting controls to identify a confidence interval to 

properly call the guides as DROP-OUTs or DROP-INs. We defined as confidence interval 

at each time point, a range that covered the 5th – 95th percentile of the distribution of non-

targeting guides and called hits in the “Essential gene” set with an empirical False Discovery 

Rate (FDR) of 10%. Those guides showing a Log2FC value that fell below or above this 

interval were respectively called DROP-OUTs or DROP-INs. We noticed a highly 

reproducible behavior of the sgRNAs in the two independent experiments.                          
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Figure 48: Confidence Intervals – Box plot showing the distribution of modules of the 

LNC-library in all samples of 2D proliferation screening. Grey area represents the calculated 

confidence interval for each sample (5th – 95th percentile of non-targeting distribution).  
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Figure 49 – Cell plot of Essential Genes sgRNAs – Digital map of sgRNAs targeting 

essential genes. Each cell summarizes the behavior of sgRNAs at every time point (P3, P6, 

P9) in the two biological replicates (LNC1 and LNC2).  
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We identified 14 genes that had multiple guides DROP-OUT at all time points.  We 

compared their annotation in the DepMap portal, a repository of genome-wide genetic 

screening data in multiple cell lines (Meyers et al., 2017). Some of them are annotated as 

common essential genes (BUB3, BUD31, MCM6, MTOR, MYC, NFYB, PCNA, PLK1, 

POLD2, POLE, RPA1, TOP2A, CENPA-P2). We also defined as DROP-OUT hit the kinase 

JUN, reported in DepMap as selectively essential.  Importantly, the genes that were not 

identified as DROP-OUT hits in this screening (AGO2, FOS, NOTCH1, LEF1, TNPO1) are 

reported to have a cell-line dependent selectively essential phenotype and were not reported 

to be essential in SUM159PT. Among the not-significantly depleted hits we also found 

STAT3 and MTHFD1, genes regulating other features of cancer cells (Tordonato et al., 

2021; Yu et al., 2014) and dispensable during proliferation in 2D. In conclusion, these data 

soundly suggest that the CRISPRi system is correctly perturbing the expression of target 

genes.  

 

2.4.4 Reproducibility of biological replicates  

 

We evaluated the reproducibility of the two biological replicates, performed with LNC1-P0 

and LNC2-P0 (Figure 50). We calculated the Log2FC per each time point by normalizing 

to the representation of each guide in their respective P0. We correlated the Log2FC at each 

time point in the two replicates. Non-targeting guides reproducibly clustered towards 

Log2FC values close to zero, while essential genes were reproducibly and progressively lost 

during passages. Overall, the samples displayed a good correlation in Log2FC values, with 

an R2 of 0.63 at P3, 0.74 at P6 and 0.72 at P9.  

 

Figure 50: Correlation of biological replicates of 2D proliferation screening – Scatter 

plot showing the Log2FC of the 3450 sgRNA of the LNC-library in the two biological 

replicates of the screening. Black dots=NTCs, green dots=sgRNAs targeting PCGs of the 

essential genes set.  

 

https://depmap.org/portal/
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2.4.5 Analysis of the screening: MAGeCK  

 

In 2.4.3 we showed that it is possible to take advantage of the non-targeting distribution to 

define confidence intervals to call hit genes. In Figure 51, we see highlighted the distribution 

of Log2FC at P9 of the sgRNAs targeting the lncRNAs genes PVT1 (literature), CKMT2-

AS1 (LNC candidates) and the essential gene MYC. All the five sgRNAs targeting PVT1 

are clustered together in the upper right corner of the plot and would be consistently called 

as DROP-INs, when considering the non-targeting distribution. For the other two genes, only 

two sgRNAs out of five would be called as DROP-OUTs. To bypass the arbitrary selection 

of screening hits based on a certain number of significant sgRNAs, we decided to model the 

collective behavior of all sgRNAs for a specific gene as summarized by their -score 

calculated by MAGeCK. This tool applies a Maximum-Likelihood-Estimation (MLE) 

algorithm that, by taking into consideration the distribution (read counts) of non-targeting 

guides, sgRNAs targeting a specific gene in the P0 and each condition of the experiment, 

computes a unique -score (and paired statistical analysis) that expresses the degree of 

selection of each gene. The -score is corrected by calculating the KD efficiency of each 

sgRNA and thus, minimizing the effect of inefficient sgRNAs. This algorithm is also suitable 

for complex experimental designs that include multiple biological replicates and multiple 

time points, such as the 2D proliferation screening. (Figure 52).   

 

 

Figure 51 : Examples of depleted genes at LNC1 and LNC2 – Scatter plot of LNC1 and 

LNC2 Log2FC at P9. Highlighted the distribution of guides targeting PVT1, CKMT2-AS1 

and MYC. Black bars represent the 5th – 95th percentile of non-targeting distribution 

(confidence interval) in each sample. 
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Figure 52 – Raked -score for 2D proliferation screening. Ranked representation of -

scores for the 643 genes in the LNC-library. The blue area represents genes with negative -

score (negative selection), in red genes under positive selection. Grey area indicates genes 

under “neutral” selection. 

 

With the analysis by MAGeCK we selected DROP-OUT and DROP-INs gene hits (p<0.05). 

We found, as the strongest depleted genes (with the highest negative -score), the essential 

genes that we already characterized as DROP-OUTs in 2.4.3. Conversely, the gene with the 

highest -score was PVT1. The CRISPRi towards the promoter of PVT1 has been reported 

to increase the expression of MYC and therefore boosts its pro-proliferative activity (Cho et 

al., 2018) (Figure 53). Therefore, this observation and the depletion of essential genes made 

us confident the screening is measuring biological properties of the perturbed genes. In 

conclusion, we identified 32 DROP-OUT and 11 DROP-IN lncRNA hits that are potential 

modifiers of SUM159PT growth in 2D. 
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Figure 53: Hits of 2D proliferation screening by MAGeCK-MLE – A) Ranked list of -

score for all genes, highlighted hit genes, in grey area of non-significant -scores. B) 

Heatmap of -scores of all essential genes. C) Heatmap showing -scores of all lncRNAs 

hits. D) Heatmap legend. Green: DROP-OUTs hits in “Essential Genes” set; Blue: DROP-

OUTs lncRNAs Red: DROP-INs LNCRNAs. 
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2.5 3D growth screening  
 

2.5.1 3D Screening set-up  

 

 
 

 

Figure 54: Outline of 3D growth screening – Before starting the 3D culture, we plated 

SUM159PT in presence of Doxycycline in 2D for 72h to obtain a pre-repressed state of the 

target lncRNAs once the non-adherent growth started. In each generation we collected data 

from separate pools of samples with the aim of evaluating potential issues with library 

coverage.  

 

We assayed the effect of the perturbation of the genes in the LNC-library in modifying the 

ability of SUM159PT to grow in 3D. Non-adherent 3D growth, as monoclonal spheroids, 

more closely resembles primary tumors and enriches for cells with TIC properties (Dontu et 

al., 2003). In this screening, we activated the CRISPRi system in 2D for 72h (P0’) and then 

we seeded cells in single cell suspension in a matrix of 1% methylcellulose in absence of 

serum. In these conditions, cells exploit their self-renewal ability and grow in spheroids. 

After one week, the spheroids were disaggregated and replated, for a total of 4 generations 

(F1, F2, F3, F4).  In each generation, we produced 6 experimental groups (“sub-pools”) to 

gain information about the correct library coverage.  At each generation, after collection of 

the cells required for gDNA extraction, sub-pools were pooled in equal ratios to produce a 

representative pool for re-plating. This screening was performed with the LNC1-P0.  

 

2.5.2 3D Screening set-up 

 

Expression of dCas9-KRAB in 3D 

During the 2D proliferation screening we plated cells in fresh Doxycycline at every passage 

(every 2 – 3 days). In 3D culture, after seeding cells needs to stay still for 7 days to avoid 

aggregation, thus media replenishments are unadvisable. We wondered if the progressive 

decreased availability of Doxycycline in the culture media would lead to a decreased 
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expression of dCas9-KRAB. We examined this issue by measuring the expression of the 

transgene in four different conditions in 3D culture (Figure 55A). We plated cells at two 

different dilutions (10000 and 20000 cells/mL) and with two different Doxycycline 

concentrations (200 ng/mL and 500 ng/mL). We observed that, indeed, in all tested 

conditions, there was a strong decrease in dCas9-KRAB expression moving from 2D to 3D 

(Figure 55B).  

 

 

Figure 55: Expression of dCas9-KRAB in 3D culture – A) schematic representation of 

the evaluation of dCas9-KRAB expression in different 3D culture setting. B) Quantification 

of dCas9-KRAB expression by RT-qPCR. Error bar=standard error (n=8). Data normalized 

vs RPLP0. 

 

Taking this into consideration, we wished to validate if the CRISPRi mediated knock-down 

of genes was preserved. We compared the expression of the LINC01605 (a 2D hit) in non-

targeting cells (NT8) and in cells carrying the sgRNA LINC01605 d214 that we previously 

validated for producing a strong KD of the target gene (See 2.2.4). We first induced the 

expression of dCas9-KRAB in 2D for 72h and propagated spheroids for two generations in 

media containing 200 ng/mL Doxycyline. After collecting the 2nd generation, we re-plated 

cells in 2D to evaluate if the expression of dCas9-KRAB was re-established (Figure 56A), 

proving that the 3D culture was not selecting sub-populations of cells expressing lower basal 

level of dCas9-KRAB. As observed before, moving from 2D to 3D culture the expression 

of dCas9-KRAB decreased (Figure 56B), but LINC01605 was still repressed at all 
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considered time-points (Figure 56C) and the expression of dCas9-KRAB was re-boosted 

(even if, not at the same level as the first time point) once re-plated in 2D (Figure 56B).  

 

 

Figure 56: KD of target gene in 3D culture – A) Scheme representing validation of KD of 

LINC01605 in 3D culture. Expression of B) dCas9-KRAB and C) LINC01605 in NT8 and 

LINC01605 d214 cells in 2D before 3D culture, for two generations in 3D and upon re-

plating in 2D.  

 

Library coverage  

The 3D growth introduces a new parameter to take into consideration when setting-up the 

screening: the selective pressure of this specific kind of growth. As previously described 

(See 2.2.1), SUM159PT is a heterogeneous cell line and not all cells have the same capability 

of clonal growth. Normally, the SFE of SUM159PT ranges from 10 to 20% depending on 

the conditions of the assay. In other words, only 1:10 – 1:5 cells are able to grow. This factor 

affects the complexity of the system and therefore the number of cells screened must be 

increased from 5 to 10 times. We previously established that in a 2D setting, 3.5M cells, 

represent our preferential library coverage of 1000X (Library size=3450). In spheroids with 

an SFE of 20%, we expect that 18M cells (3.5M X 5) would allow to maintain the same 
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representation of sgRNAs. Furthermore, to assure clonal growth it is essential to limit cell 

aggregation. For this reason, cells are usually seeded in sphere-forming assays at a very low 

concentration (e.g. 200 cells/mL). Of course, these conditions are experimentally unfeasible 

for our coverage needs. Thus, we tested the cell aggregation at higher cell concentrations, 

by plating equal ratios of RFP and GFP expressing cells at a concentration of 10000 cells/mL 

and 20000 cells/mL in 15cm dishes (for a total of 250K and 500K seeded cells) (See 

Methods). We counted the number of RFP+, GFP+ and mixed spheroids. We observed that 

the spheroids in both conditions were mostly single-colored, with a percentage of mixed 

spheroids of 6% at 10000 cells/mL (Figure 57B) and 21%  at 20000 cells/mL (Figure 57C). 

This approach does not take into account the aggregation of cells of the same colour.  We 

decided to perform the screening at 20000 cells/mL for feasibility reasons, even if we 

observed some aggregation at this concentration. We had the additional accuracy to divide 

the cells in six sub-pools for parallel analysis (See Figure 54 and Figure 62), allowing a 

better resolution of the actual coverage needed for future experiments and the dissection of 

the possible noise due to cell-aggregation.  
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Figure 57: Evaluation of clonality of spheroids – A) Outline of the experiment; B) Left: 

Spheroids seeded at the density of 10000 cells/mL. The magnification is showing 

monoclonal or mixed spheroids (arrowhead). Right: Quantification of RFP+, GFP+ and 

mixed spheroids. C) Left: Spheroids seeded at the density of 20000 cells/mL, as in B. 

Pictures acquired by Nikon SMZ25 stereomicroscope. 
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2.5.3 Quality controls of 3D growth screening  

 

 

Distribution of non-targeting guides  

 

Similarly to the 2D screening, the distribution of non-targeting controls provides an 

indication that the library coverage has been preserved in this screening. We calculated the 

Log2FC of non-targeting guides in pooled samples compared to the LNC1-P0 and we 

observed that NTC guides are distributed with median values proximal to zero (P0’=0.01; 

F1=0.01, F2=0.025; F3=-0.02; F4=-0.035). When compared to the 2D proliferation 

screening, we observed limited but increased variability across generations. This is 

indicative of the stronger selective pressure.    

 

 
Figure 58: NTC distribution in pools of 3D screening – Box plot showing the distribution 

of 236 non-targeting guides at P0’ (72h Doxycycline treatment in 2D) and for subsequent 

generation of 3D spheroid (F1, F2, F3, F4).  

 

Distribution of guides targeting essential genes 

 

As previously described, the 115 guides targeting essential genes represent an internal 

control for the activity of the dCas9-KRAB. As for the non-targeting controls, we calculated 

the log2FC for this sgRNA module at all time points of the screening. We saw that, as 

expected, the median log2FC decreases through generations (P0’=0; F1= -0.87, F2= -1.92; 

F3= -2.09; F4= -2.16).  
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Figure 59: Distribution of guides targeting Essential Genes in 3D screening – Box plot 

showing progressive depletion of 115 guides targeting essential genes at P0’, F1, F2, F3, 

F4.  

 

2.5.4 Analysis of the 3D screening by MAGeCK 

 

We applied MAGeCK to compute the -score for each gene through the screening in pooled 

samples. We selected genes with significant -score (p-value <0.05) as DROP-OUT or 

DROP-IN hits (Figure 60). We identified as DROP-OUT 17 of the 23 “Essential genes”. 

While 14 of those genes were common hits also in the 2D screening, 3 were specific of the 

3D setting (Figure 61A). Importantly, these 3D specific hits included STAT3 and MTHFD1, 

which were previously reported to have a role in stem-cell biology (Tordonato et al., 2021; 

Yu et al., 2014). These two genes show a sensible shift in rank from 2D to 3D (Figure 60C 

e D). Furthermore, we demonstrated that the KD by CRISPRi of STAT3 in SUM159PT 

caused a strong significative reduction of the SFE (Figure 60E). Overall, these data are 

indicative that the 3D screening can identify relevant genes that selectively control such kind 

of growth.  Among the lncRNAs genes we identified 71 lncRNAs hits (25% of the tested 

lncRNAs): 48 lncRNAs were DROP-OUTs and 23 DROP-INs.  26 DROP-OUTs and 3 

DROP-INs were in common with the 2D screening (Figure 61B).  
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Figure 60: MAGeCK analysis of pools of the 3D growth screening – A) Ranked 

representation of -scores. Grey range identifies non-significant -scores. B) Scatter plot of 

2D screening -scores and 3D screening -scores. C) Ranked representation 2D -scores. 

D) Ranked representation of 3D -scores. The position of MTHFD1 and STAT3 is 

highlighted.  E) Reduced SFE in cells KD for STAT3. (Error Bars = standard error, N=2, p-

value by Student’s unpaired t-test). Figure legend: in blue significant lncRNAs DROP-

OUTs; in red significant lncRNAs DROP-INs. Essential genes DROP-OUTs in green. 
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Figure 61: Cell plot of -scores in 2D and 3D of 3D screening hits – A) -scores for all 

essential genes. B) -scores for lncRNAs (only hits). C) Figure legend. Genes are ordered 

from highest to lowest 3D -score. Grey circles indicate common hits in 2D and 3D 

screening.  



 86 

2.5.5 Sub-pool analysis of the 3D screening 
 

The 3D screening was performed with a total of 18M cells, plated in 36 different dishes. 

This setting is laborious and demanding in terms of time and cost. To gain additional 

indications about the minimum library coverage that is required in order to perform a 3D 

screening, we isolated and sequenced the gDNA also from sub-pools of 3M cells (1/6 of the 

original coverage; sequencing strategy summarized in Figure 62,  see Methods). An 

insufficient coverage would result in stochastic drop in complexity in the sub-pools, with 

poor reproducibility of the results obtained from sub-pools. When we analyzed the 

correlation of pools and sub-pools, as log2FC Vs P0 cells (Figure 63), we observed a strong 

correlation (average R2 value = 0.77). Furthermore, the NTC guides were similarly 

distributed around zero either in pools or sub-pools. A multivariate analysis of the 

correlations between all the 3D screening samples clearly shows a high degree of similarity 

between samples of the same time point, regardless to the different coverage (Figure 64). 

Moreover, this plot gives some information about the biology of the system. Indeed, we can 

appreciate that the greatest differences are established from P0 to F1 and from F1 to F2. 

Samples of F3 and F4 resemble F2. In conclusion, for future 3D screenings, we can conclude 

that i) library coverage would be guaranteed also by processing samples derived from the 

plating of 3M cells and ii) most of the biological conclusions would be acquired by 

propagating spheroids for only two generations (F1, F2).   

 

 

 

Figure 62: Sequencing strategy of pools and sub-pools of 3D screening – The samples of 

the 3D growth screening were sequenced in four pools. In each pool we sequenced P0 and 

pooled samples from previous generation to allow comparisons.  
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Figure 63: Distribution of NTCs in subpools vs pooled samples in F1 and F2 – 

Scatterplot showing that NTCs (black dots) are similarly distributed in pools and subpools 

with Log2FC values around zero in F1 and F2 samples.  
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Figure 64: Clustered correlations on 3D screening samples – The heatmap displays the 

clustered correlations between all 3D samples, as estimated by the Row-wise method (JMP). 
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2.6 Paclitaxel screening  
 

2.6.1 Outline of the Paclitaxel screening  

 

 

 
Figure 65: Outline of the Paclitaxel screening – A) Bulk analysis of the Paclitaxel 

screening by MAGeCK-MLE. B) Parallel analysis of clonal composition from 18 individual 

samples of 6x106 cells treated with the drug.  

 

Paclitaxel is a drug used in neoadjuvant chemotherapy that impairs mitotic spindle assembly 

and blocks cells in G2-M. SUM159PT cells are sensitive to this drug, with an IC50 value of 

8nM (see 2.2.3). We performed a drug screening with both P0s of the LNC-library in order 

to isolate modifiers of the response after treatment. The standard analysis of replicate 

screenings highlighted an intrinsic noise in the results, due to the strong biological selection 

applied which led to a stochastic loss of library complexity (See 2.6.3). For this reason, we 

also developed a new analytical strategy based on parallelized observations of sgRNAs 

occurrence in multiple independent samples at  low coverage, coupled with a novel 

analytical framework inspired by Gene-Set Enrichment Analysis (GSEA), in which the 

ranked observations of sgRNAs frequencies in each sample are used to determine enriched 

and depleted guides (See 2.6.5).  
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2.6.2 Set-up of the screening  

 

As described in (See 2.1.3), we previously modeled the response to Paclitaxel of 

SUM159PT. In this screening, we pre-activated the CRISPRi system for 72h and then, we 

treated cells acutely with Paclitaxel (IC97=50nM) or DMSO (See Methods) for 72h and 

waited for the emergence of drug-tolerant colonies.  

In the set-up of the Paclitaxel screening, we need to take into consideration the strong drop 

of complexity induced by the drug (if 3% of cells survive, then the expected drop is ~33X). 

Therefore, in order to preserve the library coverage, we increased the number of cells treated 

to 120M cells, factoring the drop due to cell death (3.5M X 33 = 115.5M) and in theory 

preserving a 1000X library coverage.  We checked the expression of the dCas9-KRAB at 

the end of the experiment and observed that, despite the strong treatment, LNC1 and LNC2 

cells were still expressing the transgene even if at a slightly lower levels compared to the 

respective P0 after 72h of Doxycyline treatment.  

 

 

 

Figure 66: Expression of dCas9-KRAB in Paclitaxel screening – Expression of dCas9-

KRAB in the LNC1 and LNC2 cells after 72 hours treatment with 100 ng/mL doxycycline 

before the drug-treatment and at the end of the screening.   
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2.6.3 Reproducibility of the Paclitaxel screening 

 

 

Figure 67: Reproducibility of the Paclitaxel Screening – Scatter plot of the Log2FC of A) 

DMSO and B) Paclitaxel samples for both LNC1 and LNC2 biological replicates. Figure 

legend: Black dots=NTC guides; green dots=sgRNAs targeting essential genes; grey 

dots=sgRNAs targeting lncRNA genes.  

 

We compared the log2FC for both biological replicates (with LNC1 and LNC2 cells) of the 

two branches of the experiment (DMSO and Paclitaxel). We observed that in DMSO-treated 

cells, the sgRNAs behaved as expected from previous screenings, with NTC guides tightly 

distributed with median log2FC values close to zero (LNC1=0.05; LNC2=0.07). Conversely, 

in Paclitaxel-treated cells, we observed that the NTC were more dispersed and less 

consistently distributed in the two biological replicates, with a negative median Log2FC 

values (LNC1= -0.25; LNC2= -0.47) (Figure 68). This is symptomatic of a noisier system 

due to the strong selection applied and occurred regardless of our attempt to increase the 

coverage. We observed that, despite the noise, several guides were coherently depleted in 

the two replicates. Most of these guides targeted essential genes that indeed resulted depleted 

as a category (Median Log2FC LNC1= -1,5; LNC2= -1.75). This observation is indicative 

of an overall integrity of the CRISPRi system (Figure 69).   
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Figure 68: Distribution of NTC in Paclitaxel screening – Boxplot showing distribution of 

236 NTC guides in both biological replicates. The paclitaxel-treated cells show larger 

dispersion compared to DMSO-treated cells.  

 

 
Figure 69: Distribution of sgRNAs targeting Essential Genes  in Paclitaxel Screening 

– Distribution of 115 sgRNAs targeting the “essential genes” module in both biological 

replicates of the paclitaxel screening.  
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2.6.4 MAGeCK analysis of the Paclitaxel screening 

 

We applied MAGeCK to model the gene-level effect of the perturbation of the genes in the 

LNC-library upon Paclitaxel treatment and called as hits those genes with significant p-value 

(p<0.05). The tool identified as depleted 13 of the 23 Essential genes called as hits in the 2D 

screening. Moreover, we identified 8 lncRNAs genes as DROP-INs and 26 lncRNAs genes 

as DROP-OUTs. Among the DROP-INs, the gene with the highest β-score was PVT1, 

further validating the pro-proliferative effect of the perturbation of this gene. Among the 

DROP-OUTs 10 were previously called as HITs in the 2D screening (Figure 71).     

 

 

Figure 70: β-scores of Paclitaxel screening by MAGeCK – A) Ranked representation of 

β-scores for all genes in the LNC-library. B) Scatter plot of β-scores for 2D and paclitaxel 

screening for all genes in the LNC-library. Figure legend: green dots= all essential genes; 

Red dots= significant lncRNAs DROP-INs. Blue dots: Significant lncRNAs DROP-OUTs. 

Gray area identifies ranges of non-significant β-scores (p-value>0.05) 
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Figure 71: Cell plot of -score values of Paclitaxel screening hits in 2D and Paclitaxel 

screening - A) -scores for all essential genes (in green essential genes with significant -

score). B) -scores for lncRNAs (hits only) (in blue DROP-OUT lncRNAs, in red DROP-

INs). C) Figure legend. Genes are ordered from lowest to highest -score in Paclitaxel 

screening. Grey circles indicate common hits in 2D and 3D screening.  
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2.6.5 Increasing the resolution of the screening 

 

Altough MAGeCK identified genes with significant -scores, we wondered if we 

approached this screening with the right perspective. Indeed, the trend of the NTCs 

highlighted that we have stochastically lost some library coverage. The computation of -

scores by MAGeCK starts from the raw counts of sgRNAs: the growth of colonies is a clonal 

phenotype (see 2.8.6) and therefore the final frequency of sgRNAs is strongly influenced by 

their association with large monoclonal colonies. Thus, even if 3% of cells survives, only a 

fraction of these cells enters a highly proliferative state while other cells survive, but, at least 

initially, they display a low proliferation rate. In conclusion, the results obtained from 

pooling cells from many dishes are biased by the differential proliferative capacity of the 

colonies (Figure 72). We reasoned that, to properly dissect the biological outcome of the 

perturbations, we could i) increase the number of statistical observations and ii) apply an 

analytical framework that is not based on sgRNAs frequency but on sgRNAs ranking. To 

this aim, we repeated this screening with the LNC1-P0 but this time, we divided the samples 

in 18 pools of 6M cells that were independently processed during treatment and production 

of gDNA libraries. We observed that the frequency of sgRNAs in the pools closely mirrored 

the number of large clonal colonies, with an average of 227 highly frequent (dominant) 

sgRNAs (SD=13.5) (>1000CPM) (Figure 73A), that accounted for 40% of the total 

normalized reads. The remaining reads were assigned to >1000 guides that were associated 

with small colonies (Figure 73B). To limit this issue, we ranked the sgRNAs by their 

frequency in each of the 18 separate pools and then we merged these ranked lists in a unified 

overall list, which contained each sgRNA a number of times equal to the number of 

experimental observations (in this case 18). Then we performed the analysis with a GSEA 

approach (Subramanian et al., 2005) (“Phenotype-GSEA”, see Methods) in which “gene 

sets”, instead of being composed of different genes, are composed of sgRNAs targeting the 

same gene. In summary, per each gene, we created a “gene-set” composed of 90 observations 

(5 sgRNAs per each gene*18 samples= 90 Gene Set length). We called as DROP-INs and 

DROP-OUTs the genes showing a Normalized Enrichment Score (NES) of respectively >2 

or < -2 and we further filtered the hits based on a 5% FDR, as calculated by the GSEA 

algorithm. We also calculated an empirical FDR based on 46 randomly created gene-sets of 

5 NTCs of which only 2 fulfilled the criteria for DROP-OUTs and 0 those for DROP-INs 

(see Methods).  
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Figure 72: Influence of large colonies on the outcome of the screening – Scheme 

explaining a possible problem when performing the Paclitaxel Screening in bulk. A) and B) 

are representative cartoons of clonal growth for cells carrying 2 sgRNAs. In A) sgA grows 

in two large colonies in plates 1 and 6. SgB grows in small colonies in all plates. In B) sgA 

is present in a large colony only in plate 1, while sgB proliferates in small and medium size 

colonies in all plates. C) Scatter plot representing the log2FC of the two sgRNAs, compared 

to the P0, in the bulk analysis of the experiments pictured in A) and B). The bulk analysis of 

the two experiments would lead to different and discordant results among the two 

experiments, due to the leading effect of the larger sgA colonies in the experiment 1. If the 

results of the experiment are expressed digitally, as presence/absence of colonies per each 

sgRNA, the phenotype of the guides is clearer and more reproducible among the different 

experiments with sgA depleted and sgB enriched in all samples. 
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Figure 73: Clonal composition of pools upon Paclitaxel treatment – A) Bar chart showing 

the number of detected sgRNAs at >10 CPM; >100 CPM; >1000 CPM (CPM, copies per 

million reads). B) Percentage contribution of each sgRNA class to the total read count. C) 

Cumulative distribution of sgRNAs frequency in P0 and pools. All these plots show that 

there is a selection of clones that, from being equally distributed in the P0, become strongly 

skewed after treatment.  
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2.6.6 Analysis of screening hits by phenotype-GSEA  

 

For each gene, the GSEA software produces enrichment plots that illustrate the profile of the 

“genes” (in our case, “sgRNAs”) in the set (Figure 74 B, C, D).  

For instance, considering the enrichment plot of the essential gene PLK1 (Figure 74B), a 

negative ES was observed, with the leading edge sgRNAs skewed towards the bottom of the 

ranked list. This means that the sgRNAs for PLK1 were positioned low in the ranked lists of 

each experimental pool. Similar conclusions can be driven for the lncRNA DROP-OUT 

TBILA (Figure 74C). Conversely, the lncRNA gene LINC01194 was the gene with the 

highest positive NES and displayed a leading-edge distribution of the sgRNAs shifted 

towards the top of the ranked list.  

Overall, the phenotype-GSEA analysis led to the identification of 52 HIT genes, 18 DROP-

INs and 34 DROP-OUTs (Figure 74A). Although very intuitive and powerful, a limitation 

of this this analysis is that it does not take into consideration the distribution of the sgRNAs 

in the LNC1-P0. Even if we clearly showed that P0s are very well balanced (See 2.3.5), yet 

there are a few sgRNAs that are under-represented from the beginning. To monitor the 

possible confounding action played by the starting representation, we measured the average 

initial representation of the sgRNAs for each gene and compared this value with the NES 

(Figure 75). We observed that for a few hits (either DROP-INs or DROP-OUTs) the 

behavior might be ascribable to their representation in the P0 (respectively higher and lower 

than the average). It is worth mentioning that the top-represented gene is only 2-fold more 

represented than the lowest-represented gene.  In any case, we suggest that the interpretation 

of these hit genes should be carefully evaluated. 

Overall, we identified 22 DROP-OUT hits and 16 DROP-INs among the candidates set. 

Among the DROP-OUT genes, 7 were similarly identified by the initial MAGeCK analysis 

(See 2.6.4). Of the essential gene set, 11 genes were called as DROP-OUTs. Within the 

essential genes set, the behaviour of MYC dragged our attention. MYC has been called as 

DROP-OUT in the 2D and 3D screening while, despite a negative β-score, it failed to reach 

a significative level in the MAGeCK analysis. On the same line the lncRNA PVT1, negative 

regulator of MYC expression, has been called as DROP-IN in 2D, 3D and Pacli-MAGeCK 

analysis. With the phenotype-GSEA analysis, MYC and PVT1 displayed an opposite 

behavior, with MYC behaving as a DROP-IN and PVT1 as a DROP-OUT. This result might 

be suggestive of the capacity of the Phenotype-GSEA approach to capture different 

biological phenomena. In fact, MYC suppression has been recently observed in chemo-

persister cells, which survive by reducing redox stress and apoptotic priming (Dhimolea et 

al., 2021).  
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Figure 74: Normalized Enrichment Scores (NES) of Paclitaxel screening –A) Ranked 

representation of NES for all genes in the LNC-library (643) and 46 sets of NTC. In green 

highlighted essential genes. In blue DROP-OUT lncRNAs, in red DROP-IN lncRNAs. NTC 

sets in grey. Shaded area represents the area of non-significant NES. Two NTC sets are 

below the 5% FDR threshold. Enrichment plots for B) PLK1; C) TBILA; D) LINC01194. 

The upper part of the plot shows the running sum of the ranked list in which a positive value 

is given every time an sgRNA is over-represented and a negative value when the sgRNA is 

under-represented. The Enrichment Score (ES) is defined as the value most distant from 

zero. The bar below pictures the leading-edge sgRNAs namely the position in rank of the 

sgRNAs that contribute the most to the ES for that set. The NES is calculated from the actual 

ES normalized by mean ES calculated from 1000 permutations of the ranked list. The NES 

is the appropriate statistical measurement to compare analysis for different gene-sets (i.e. 

lncRNAs). 
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Figure 75: Impact of sgRNAs representation in LNC1-P0. Scatter plot showing the 

average gene-level representation of genes in the LNC-Library and relative NES value. Bars 

show 2.5-97.5 percentile of the distribution. Shaded area non-significant NES. Figure 

legend: Green= Essential Genes; Blue= lncRNAs DROP-OUT; Red= lncRNAs DROP-IN; 

Purple= lncRNAs DROP-OUT with low average CPM in the LNC1-P0. Pink= lncRNAs 

DROP-IN with high average CPM in the LNC1-P0. 
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Figure 76: Hits by GSEA analysis – Representation of NES scores vs A) 2D -scores or 

B) Paclitaxel -scores. C) Comparison of -scores and NES for C) all “Essential genes” set 

and D) only hits defined by phenotype-GSEA. Figure legend: green dots= essential genes; 

blue dots= lncRNAs DROP-OUT, in red= lncRNAs drop-in by phenotype-GSEA. Purple 

dots= DROP-OUT hits with low average CPM in the LNC1-P0. Pink= lncRNAs DROP-IN 

with high average CPM in the LNC1-P0. 
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2.7 In vivo screening  
 

2.7.1 Outline of the in vivo screening  

 

 
Figure 77: Outline of the in vivo screening – We injected NSG mice with 500000 cells of 

the LNC1-P0 after 72h doxycycline induction in 2D. We injected orthotopically 29 mice 

and we produced 22 libraries from the purified xenograft, representative of sgRNAs 

distribution in individual tumor.  
 

In the last screening presented, we aimed at identifying lncRNAs whose perturbation impact 

the TIC properties of the cell line. To this purpose, we injected LNC1 cells intra-nipple in 

the mammary fat pad of NSG mice. This kind of xenograft more precisely recapitulates the 

location of the disease, and more accurately describes the challenges of growing in the 

mammary gland. We injected a total of 29 mice, and we manage to produce 22 representative 

gDNA libraries. We evaluated the drop of complexity of the system, and we computed 

DROP-OUTs and DROP-INs genes by evaluating their ranked representation in each tumor 

with the same phenotypic-GSEA approach presented for the Paclitaxel screening.   
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2.7.2 Analysis of clonal composition of tumors  

 

 

SUM159PT is a tumorigenic cell-line, with the potential to generate solid tumors in vivo. 

This feature has been established in literature (Fillmore and Kuperwasser, 2008) and in the 

lab, the Tumor-Initiating Frequency of the cell line has been defined by limiting-dilution 

experiments (Figure 78).  

 

Figure 78: TIC Frequency of SUM159PT – TIC frequency of SUM159PT by limiting 

dilution experiments. Data from (Tordonato et al., 2021). 

 

The limiting-dilution experiments address the capacity of a cellular population to form a 

tumor but gives no indication about the clonal composition of the mass. In the lab, we also 

previously established tracking approaches based on passive barcodes to define the clonality 

of solid tumors. We labelled SUM159PT with a barcode library of ~5000 barcodes (BCs) 

and transplanted intra-nipple 100.000 cells of the barcoded population in 6 mice. We waited 

for the development of palpable tumors of the maximum diameter of 1-1.2 cm, that grew 

with a median latency of 40 days. Mice were sacrificed and tumors purified from mice cells. 

We amplified the barcode cassette by PCR and sequenced the libraries. We normalized the 

total reads in CPM to describe the tumor as a “virtual mass” of the size of a million counts. 

In each tumor, we detected an average of 760 BCs (15.2% of the library). A subset of these 

BCs (average 100 BCs, ~3%) were classified as dominant barcodes (>1000CPM), 

accounting for most of the virtual tumor mass (Figure 79B). In particular, the TOP3 

barcodes often occupied a sensible fraction of the virtual tumor mass (up to 60%). 

Taken as a whole, these data show that tumor initiation process by SUM159PT cells is 

characterized by a strong selective pressure, with only few cells that can seed, proliferate, 

and contribute to the tumor mass. Stochastic events lead to the outgrowth of very large 

clones, in a process which is, in some way, reminiscent of that described for highly 

proliferative clones after paclitaxel (See 2.6.5).  
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Figure 79: Clonal composition of SUM159PT xenograft  - A) Number of barcodes 

detected at >1000 CPM or more than >100 CPM. B) Clonal composition expressed in 

percentage. The plot shows that a sensible portion of tumors is occupied by the top 3 most 

frequent sgRNAs. Data by Patricio Fuentes and Matteo Marzi, Nicassio Lab, IIT.  

 

2.7.3 In vivo pilot experiment  

 

 

We performed a pilot experiment in which we injected 100K, 500K and 1M cells of the 

LNC1-P0 in the mammary fat pad of 12 NSG mice. Prior to the injection, cells were treated 

with Doxycycline for 72h in 2D in order to induce the expression of dCas9-KRAB and start 

the repression of the target genes. We evaluated the latency of the tumor development, and 

we sampled the expression of the transgene from the collected tumors (mice were fed with 

Doxy-food). We observed an average latency of 47 days for the tumors (SD ±4.96 days), 

slightly longer than the latency compared to the passive barcodes experiment. The injection 

failed to form a tumor in only one mouse. Tumors were restricting the expression of dCas9-

KRAB to lower levels compared to the expression in 2D (Figure 80B). We had previously 

measured that the KD is preserved at a similar expression levels in 3D (See 2.5.2).  No 

difference in latency was observed with different number of cells, therefore we performed 

the rest of injections with 500K cells. Based on the clonal diversity assayed by passive-
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barcodes, we injected a total of 29 mice, with an expectation of observing a total of 3450 

(sgRNA number) * 0.15 (engraftment frequency) * 29 (mice) = 15000 clones. 

 

 
Figure 80: Pilot in vivo experiment – A) Tumors latency for pilot experiment. B) dCas9-

KRAB expression from SUM-dCas9-KRAB- NC1 xenografts.  

 

2.7.4 Clonal composition of SUM-dCas9-KRAB-LNC1 tumors 

 

Of the 29 injected mice, 24 developed a tumor with similar latency to the pilot experiment. 

The LNC1 cells were purified from mouse tissues, and we experienced different recoveries, 

with an average 2.66 x106 cells (SD±2.47x106) (Figure 81) (tumor latency and N of human 

cells recovered per each tumor are reported in the Methods section). However, for two 

tumors, we failed to produce a PCR product probably due to residual mouse gDNA and 

overestimation of the actual SUM-dCas9-KRAB gDNA content. When possible, we 

produced technical replicates, observing very good reproducibility and limited noise (Figure 

82). We analysed the clonal composition of tumors, and we monitored a similar trend 

compared to the passive barcode experiment with a clonal drift that led to the accumulation 
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of dominant sgRNAs that mainly contribute to the virtual tumor mass. Specifically, we 

detected an average of 1784 sgRNAs in every tumor (>10 CPM), representing only the 

51.7% of the library. This means that, within each tumor, half of the library sgRNAs could 

not be detected due to the intrinsic selection of the process. We found an average of 122 

dominant barcodes (>1000 CPM) in each tumor. For some samples, only few sgRNAs 

contributed to the “virtual tumor mass”. Given the very low N of clones detected in mouse 

M3H3 and the different cumulative distribution of sgRNAs for mouse M3C we excluded 

these samples from further analysis (Figure 83).  

 

 

Figure 81: SUM-dCas9-KRAB tumors – Representative pictures of resected tumors.  

 

 

 

Figure 82: Reproducibility of technical replicates – Data shows the correlation of the 

distribution of raw sequencing reads in two technical replicates for two tumors.  
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Figure 83: Distribution of sgRNAs in SUM-dCas9-KRAB-LNC1 tumors - A) N of 

sgRNAs detected >10 CPM, >100 CPM and >1000 CPM. B) Contribution of sgRNAs to the 

tumor mass. C) Cumulative distribution of sgRNAs frequencies in each tumor. Stars 

indicates excluded samples.  
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2.7.5 In vivo hits by phenotype-GSEA 

 

With this level of selective pressure, it is not possible to maintain sufficient library coverage 

unless pooling samples from many different mice, as it is customary in in vivo screenings 

(Han et al., 2020). We previously showed that the selective pressure induced by Paclitaxel 

increases the noise of the system. To overcome this issue, we applied a phenotype-GSEA 

approach to model the drop-of-complexity observed (See 2.6.6). In the in vivo screening we 

experience a similar need, and we applied the same analytical framework. We parallelized 

the analysis of the in vivo screening by calling DROP-IN and DROP-OUT genes based on 

their NES, calculated from the ranked frequencies of sgRNAs in every tumor (Figure 84). 

The behavior of NTCs was defined by creating 46 random sets of NTCs each composed by 

5 non-targeting sgRNAs. We called DROP-IN and DROP-OUT hits based on their NES >2 

or < -2 and a 5% FDR as computed by the GSEA tool. With these thresholds, we called 2 

NTC sets as DROP-OUT and 4 NTC sets as DROP-INs, leading to an empirical FDR of 4% 

for DROP-OUTs and 8.7% for DROP-INs. We called as DROP-OUTs 13 of the Essential 

Genes and 55 lncRNAs genes and as DROP-INs 78 genes. Compared to the other screenings, 

we identified many hit genes, in particular in the DROP-IN class (see Discussion). We 

evaluated the representation of lncRNAs DROP-INs and observed that, similarly to the 

Paclitaxel screening, there is a limited effect of hist called as DROP-OUTs or DROP-INs 

that were under- or over- represented in the P0 (Figure 84B).   
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Figure 84: NES of the in vivo screening – A) Ranked representation of NES score. B) 

Scatter plot showing the average gene-level representation of genes in the LNC-Library and 

relative NES value in vivo. C) Scatter plot showing the average gene-level representation of 

genes in the LNC-Library and relative NES value. Figure legend: Bars show 2.5-97.5 

percentile of the distribution. Shaded area non-significant NES. Figure legend: 

Green=Essential Genes; Blue=lncRNAs DROP-OUT; Red= lncRNAs DROP-IN; Light 

blue=lncRNAs DROP-OUT with low average CPM in the LNC1-P0. Pink=lncRNAs 

DROP-IN with high average CPM in the LNC1-P0. 
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Figure 85: In vivo hits by GSEA analysis – Heatmaps showing comparison of -scores 

and NES for A) all “Essential genes” set (green= genes of the set DROP-OUT in this 

screening) and B) only DROP-OUT hits defined by phenotype-GSEA; C) DROP-IN hits by 

phenotype GSEA. D) Cell legend. In blue= lncRNAs DROP-OUTs; light blue= DROP-OUT 

with low average CPM in the LNC1-P0. Red= lncRNAs DROP-IN; Pink= lncRNAs DROP-

IN with high average CPM in the LNC1-P0. 
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2.8 Hits characterization & Validation  
 

2.8.1 Summary of screenings hits 

 

In this work we presented an approach aimed at identifying lncRNAs acting as regulators of 

adaptive phenotypes through the exploitation of multiple CRISPRi-based functional 

screenings. In particular, we tested 620 lncRNAs for their ability to modulate context-

specific growth and/or survival under increasingly stringent growth conditions (2D, 3D, 

chemo-response, in vivo). 

The LNC-library included also 23 coding genes picked as controls for the phenotypes under 

investigation (essential genes and cancer genes). As expected, most of the control coding 

genes (82%) were also found as hits, with 11 out of 23 of the “essential” genes  found as 

common DROP-OUTs in all screenings. Figure 86 summarizes the hits obtained through 

the different screenings. Overall, 253 genes were found as hits in at least one phenotypic 

screen (39%). 9.5% genes were found as hist in multiple screenings (>1), of which only a 

small part (10 genes, 1.6%) were incoherent. 14 hits were common to all screenings (2.1%). 

Usually, hits were shared between 3D and 2D. For DROP OUTs most of the hits were called 

in 3D and in vivo screens, while for the DROP INs the majority were called in the in vivo 

screening. Several hits were found in just one screening (29.5%). In next the paragraphs we 

present a preliminary characterization of hits and the first step towards the validation of the 

results obtained in the screenings. 
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Figure 86: Summary of screening hits – Scheme summarizing all hit genes (PCGs and 

lncRNAs). Circles express the percentage of overall DROP-OUTs and DROP-INs with 

indication of hit genes behaving incoherently in different screenings. Below the 

representation of % of DROP-OUTs and DROP-INs in each screening. Reported hits by 

phenotype-GSEA in Paclitaxel and in vivo screening. Venn diagram showing overlap of hits 

among screenings. 
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2.8.2 Features of hit genes  

 

TSS definition and sgRNAs guide design 

 

Having defined the hits, we checked for possible correlation that may support the approach 

we used for the TSS definition and for the sgRNA design. Indeed, efficacy of CRISPRi-

based screenings may depend on the design of the guides and on the precise identification 

of TSS of target genes, which is not trivial for lncRNAs. As said in previous section (see 

2.3.1), we could use CAGE data (in house generated and publicly available) to define the 

TSS. Interestingly, we observed an enrichment in DROP-OUTs for lncRNAs that were 

defined in such way (69% of Hits as compared to 55% of the starting library) (Figure 87A). 

However, we did not observe a similar behavior for DROP INs, which were in similar 

proportion with the library (58%) (Figure 87A).  

 

 
 

Figure 87: Hits by TSS definition and sgRNA design: A) Proportion of TSSs supported 

by CAGE in LNC-library and in DROP-IN and DROP-OUT hits. B) Hits by design strategy.  

 

Structure and genomic features  

Our lncRNAs candidates are also characterized by different genomic features. According to 

their GENCODE definition, we broadly defined lncRNAs into categories, as antisense 

lncRNAs (AS, 30% of the library) or intergenic lncRNAs (50%), with remaining transcripts 

(Others, 11%) having a different genomic organization (e.g. intronic or overlapping-

transcript lncRNAs). We observed that these proportions were generally maintained in 

DROP-IN and DROP-OUT hits (Figure 88A), suggesting that such genomic features are 
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not segregating with the functions investigated through the screening. Next, we stratified 

lncRNA hits with their exon composition, as it might hint to the selection of specific 

functions (mono-exonic lncRNAs are often considered as a separate class). We observed no 

major changes in the proportion of mono-exonic and multi-exon lncRNAs in hit genes 

(Figure 88B).  

 

 

Figure 88: Genomic features and structure of hits – A) Genomic organization of genes 

in the LNC-library as AS, intergenic or “other”, PCGs included are also displayed and 

represent, as expected, a fraction of the DROP-OUTs. B) Structure of genes in the LNC-

library as “Monoexonic” or “multi-exon”.  

 

Distance from PCGs  

The CRISPRi effect is unavoidably bi-directional and involves genes near the target. There 

is therefore a possibility that some of the lncRNA hits have been selected due to local 

repression of essential genes in the proximity. Therefore, we examined more into details the 

existing spatial relationships between lncRNAs and PCGs. We retrieved from ENSEMBL 

the list of all PCGs located within 1Mb from the TSS of lncRNAs (-500kb; +500kb) and 

annotated essential genes in this set according to their definition in DepMap. We split the 

guides according to the hit categories (DROP IN, DROP OUT, Incoherent and No effects) 

and measured their distance to PCGs and essential genes. Results are summarized in Figure 

89. Overall, we did not find a clear skewing of Essential Genes for the DROP OUT category 

as compared to “No effects”, discouraging the possibility of a major bias in the screening 

results. However, we could notice specific cases where essential genes are proximal to 
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guides. We found nine essential genes overlapping the window of sgRNAs design (~500 

bp). These genes are likely to be directly affected by the activity of the dCas9-KRAB. In two 

cases (ZCCHC9 and EIF6), we also could confirm that guides directed towards the TSS of 

lncRNAs CKMT2-AS1 and FAM83C-AS1 exert a co-repressive effect on these genes (See 

2.8.3). We haven’t checked for the other 7 genes, but we can assume that even in these cases 

a co-repression is occurring. Furthermore, we found four essential genes located between 

500 and 2000 bp from the TSS of DROP-OUT lncRNA hits, a range where the activity of 

dCas9-KRAB cannot be excluded (Gilbert et al., 2014; Nuñez et al., 2021) and deserve 

further investigation. Of note, we also found eight essential genes that mapped in close 

proximity of lncRNAs whose perturbation showed no effect (4 within 500 bp and 4 within 

2000 bp, respectively; Figure 89). In conclusion, the analysis of distance from essential 

genes revealed that only a minority of DROP OUTs are in proximity of essential genes (their 

identity is reported in the table below). These hits deserve more attention as it is reasonable 

to assume that phenotypes scored for guide RNAs targeting their genomic loci are likely due 

to the combined targeting of both the coding and the non-coding gene. 
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Figure 89: Distance of lncRNAs in the LNC-Library from PCGs – A) Plot showing 

distance of all lncRNA genes of the library from protein coding genes. Red crosses= essential 

genes, black dots = not essential PCGs according to their definition in DepMap. In bold 

essential genes whose KD has been validated by qRT-PCR. B) Summary of essential protein 

coding genes located within 500 bp from the TSS of lncRNAs hits.  

 

Cellular Localization  

Often the function of lncRNAs is linked to their cellular localization. Information on 

localization helps also in the selection of other approaches rather than CRISPRi (such as 

ASOs or shRNAs), necessary to address functional analysis of specific lncRNAs. We 

distinguished lncRNAs into broad cellular categories (nuclear vs cytoplasmic) by exploiting 

in house data produced by the sequencing of RNA isolated from cellular fractionation in 

SUM159PT cells, in a chromatin and cytoplasmic fraction (See Methods). Fractionation 

was performed in three experimental replicates. As quality control, we evaluated the relative 

proportion of markers of fractions by qRT-PCR (Figure 90), including i) well known nuclear 

transcripts, such as primary miRNA transcripts (which are short-lived and chromatin 

retained) and NEAT1 lncRNA; or ii) frank cytosolic RNAs, such as mRNAs of PCGs 
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(RPLP0 and GAPDH) and H19 lncRNAs. Using RNA-seq data, we calculated the total 

FPKMs per each detected transcript in every replicate and defined the average percentages 

per each fraction. Overall, lncRNAs showed an intermediate distribution between nucleus 

and cytoplasm and were slightly more nuclear than PCGs (Figure 91A). Of the 620 lncRNAs 

in the LNC-Library we could detect 410 lncRNAs in all the replicates (66%) (Figure 91B). 

To classify their localization, we deemed as nuclear those species with an average nuclear 

distribution >60% and cytoplasmic those <40%. In total we classified 80 lncRNAs as nuclear 

(13%), and 260 (42%) as cytoplasmic while the remaining 233 (37%) showed no clear 

preference but were similarly distributed between nucleus and cytoplasm. When looking at 

the lncRNA hits in the screening,  we noted that most hits were classified as cytoplasmic 

lncRNAs, in particular those from the 2D and 3D screenings (Figure 91C, D). 

 

 

Figure 90: Quality control of cellular fractionation – Representative qRT-PCR showing 

the distribution of markers of nuclear and cytoplasmic fraction. Pri-miRNAs and the 

structural lncRNA NEAT1 are enriched in the nuclear fraction while the ribosomal RNA 

RPLP0, the metabolic gene GAPDH and the lncRNA H19 are enriched in the cytoplasmic 

fraction.  
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Figure 91: Cellular localization of library lncRNAs – A) Box plots showing the 

percentage distribution in the nuclear fraction of AS or intergenic lncRNAs, miRNA 

precursors and PCGs. The distribution is separately represented for genes expressed <1 or 

>1 FPKM. B) Ranked representation of percentage distribution in the nuclear fraction of all 

lncRNAs detected by RNA-seq of fractions. Blue dots and red dots indicate respectively 

DROP-OUTs and DROP-INs lncRNAs in any screen. In purple area of “Nuclear” genes and 

in yellow “cytosolic” genes. C) Stacked bar chart showing the distribution of all lncRNAs 

in the LNC-library, only lncRNAs DROP-OUTs or lncRNAs DROP-INs in any screen. D) 

Detailed distribution of lncRNAs hits in every screen. Data by Chiara Tordonato (Di Fiore 

Lab, IEO and Matteo Marzi, Nicassio lab, IIT).  
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Hits by model of selection  

 

We also checked for any potential preference for lncRNA hits with respect to the breast 

cancer model that we used for the selection of lncRNA candidates (See 2.1). Results are 

summarized in Figure 92, with hits stratified according to the model. Overall, the average 

rate of hit calling of DROP-OUT and DROP-IN hits were quite similar for all sets and not 

far from the original representation in the LNC-Library with just few exception that will be 

directed in discussion.   

 

 
 

Figure 92: Hits by selection model – A) Percentage composition of DROP-IN hits 

lncRNAs genes in every screening according to the selection model. B) Percentage 

composition of DROP-OUT hit lncRNAs genes in every screening according to the selection 

model. C) Percentage of DROP-IN hits lncRNAs per selection model. D) Percentage of 

DROP-OUT hits lncRNAs per selection model in every screening.  
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Expression of hit lncRNAs in cell lines and primary tumors  

 

To provide an expression map of the lncRNAs hits, we exploited in house RNA-sequencing 

data produced from different breast cancer cells and conditions. In details, we characterized 

the expression transcripts in SUM159PT during unchallenged proliferation, 3D 

mammosphere growth, upon Paclitaxel treatment in acute conditions (50 nM for 72h) or 

after long-term adaptation (~100 days with cells treated with increasing concentration up to 

100 nM of Paclitaxel). Moreover, we examined the expression of lncRNAs hits in the HMLE 

cell line (a stable human mammary epithelial cell line) during unchallenged proliferation, 

3D mammosphere growth; and in other different breast cell lines, comprising all the 

molecular subtypes of mammary tumors, including: i) quasi-normal mammary cell lines 

(MCF10A) and their HRAS (Gly12Val) derivative (named MCF10A-DCIS), ii) luminal-

type breast cancer cell lines (MCF7, MDA-MB-175-VII, TD47D, BT483); and basal-like 

breast cancer cell lines (BT549, MDA-MB-231, MDA-MB-436). Furthermore, we included 

also RNAseq data from primary cultures from 26 breast tumors, displayed as average 

expression (ALL) or 90th percentile value of the expression in the dataset (90%). Figure 93 

summarizes these results of lncRNA expression as an heatmap, highlighting for each hit the 

specific patterns of expression in the models.  Overall, most lncRNA display a low but 

consistent expression in most cellular models, with some expression peaks in some 

conditions or cell lines. Some lncRNAs show higher expression in basal-like as compared 

to luminal models and other lncRNAs peaked in conditions associated to drug treatment. Of 

note, most lncRNAs showed higher expression in primary samples, suggesting that their 

expression is not limited to cell culture models, but their expression could be a common 

feature of breast cancer. 

 



 121 

 

Figure 93 : Expression of hit lncRNAs in breast cell lines and primary tumors – 

Heatmaps showing the expression of DROP-OUT (left) and DROP-IN hits (right). The 

digital maps show the results of the screening per each gene displayed. Maps are divided by 

model of selection (others = single-cell DEGs). Primary tumor data are displayed as average 

expression in 26 breast tumors or 90th percentile value of the expression in the dataset. TPM 

values are ranked according to the expression levels in native SUM159PT. 
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2.8.3 KD validation of screening hits  

 

So far, we have discussed the overall features of the lncRNA hits that we have identified 

through the screenings. In this section, instead, we want to provide details on the validity of 

the results obtained. Hence, we selected guides targeting several hits of the screenings, 

cloned them individually and tested experimentally both to confirm the specificity of the 

knock-down and to subsequently validate the phenotype (See 2.8.4).  

Initially, we selected 8 lncRNA gene hits identified in multiple screenings (summarized in 

Figure 94) and checked the on-target knock-down. We also included the PCG MTHFD1. 

For each target, we selected two independent sgRNAs from those used in the screening. We 

evaluated knock-down measuring the expression of the target gene/lncRNA. Furthermore, 

for antisense lncRNAs, we also measured the expression of the matched sense coding genes 

(data are summarized in Figure 95 and extensively shown in Figure 96). 

 

 
Figure 94: Summary table of lncRNAs candidates selected for validation.  

 
 

Figure 95: KD of screening hits – Residual RNA expression as % of the average expression 

assayed in two NTC samples. KD measured 72 upon induction of dCas9-KRAB by 

Doxycycline treatment. 
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Figure 96: Relative RNA expression of target genes and closest antisense PCGs - 

Analysis of gene expression by qRT-PCR of target lncRNAs (in black) and genes in 

proximity (in grey, green bars highlights essential genes). The upper box shows genome 

browser screenshots of the genomic organization of genes with location of sgRNAs (in red 

sgRNAs tested for KD). Data normalized vs RPLP0. 

 

We observed that in most cases (7 out of 8 of the tested target genes) we could effectively 

reduce the RNA expression with both guides. On average, we achieved a knock down 

efficiency of >80%. Only in one case, the mono-exonic lncRNA TBILA, we obtained a 

knock down of 50%. Only one lncRNA (AC016596.1) was unaffected, likely due to a miss-

annotation of the transcription start site. Indeed, the guides were still able to repress the PCG 

IL6ST, which is close to the A016596.1 locus. As expected, we noticed that the repression 

effect induced by KRAB also involved to the nearby genes, when present. It is worth 

mentioning that for the CKMT2-AS1 locus, we observed the repression of the target lncRNA 

(CKMT2-AS1) together with repression of the sense transcript (CKMT2) and the divergent 

gene ZCCHC9, an essential gene according to the reference (DepMap). Similarly, guides 

directed to the lncRNA FAM83C-AS1 induced the repression of FAM83C and of the 

essential gene EIF6. Therefore, as anticipated in the previous section (Distance from PCGs), 
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the interpretation of the phenotypes deserves particular attention as it might be due to a 

combination of effects of lncRNAs and their neighboring essential genes. 

 

2.8.4 Validation of effects in 2D proliferation  

 

We set up competition assays comparing over time two cell populations grown in the very 

same experimental setting, one population (marked in red) bearing the targeting sgRNA and 

one population (marked in green) bearing a non-targeting control. In particular, we aimed at 

confirming the hits and, at the same time, at understanding how much the screening results 

are reliable in terms of hits definition and of size effects. For each target gene, we measured 

the effect of individual sgRNAs in terms of log2FC and, then, selected for validation 2 NTCs 

controls and 2 sgRNAs per target gene (Figure 97). We cloned guides in the same library 

plasmid (Cellecta pRGSCribe1) expressing fluorescent markers (RFP for targets and GFP 

for controls) and transduced SUM-dCas9-KRAB cells. To perform the competition, we 

mixed equal amounts of RFP+ and GFP+ cells at the starting time and then monitored the 

proportion of cells at 10 days of culture (Figure 98 and Figure 99). When using only non-

targeting controls, we observed that the two populations did not change their representation 

over time (average delta start-end at 10 days NT113= -1.30%, NT154= -1.50%). Conversely, 

when using sgRNAs targeting DROP-OUT hits, we observed that the GFP population was 

underrepresented after 10 days of culture. The sgRNAs behavior confirmed the one 

measured at P3 (10 days) in proliferation screenings. For instance, in case of AC245014.3, 

we observed, in the competition, the very same behavior in terms of size effect for both the 

two sgRNAs (Figure 97), with sgRNA4 strongly depleted at P3 (10 days) while sgRNA5 

depleted with a modest effect. In the competition experiment, sg4 RFP+ cells decreased 

down to 1.44% (strong effect), while sg5 RFP+ cells decreased to 38.4% (modest effect). In 

case of lncRNA EPB41L4A-AS1 and AC093157.1, we could also reproduce, in the 

validation experiment, this slower depletion kinetics observed in the screening (Figure 99).  

Overall, these data strongly support the results from the screening in 2D conditions, as we 

could validate not only the phenotype of target genes, but also the magnitude and the 

difference in the kinetics of individual sgRNAs.  
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Figure 97: Log2FC of genes selected for validation - Figure expressing the log2FC of 

sgRNAs targeting genes for single competition experiments at every time point and 

biological replicate of the 2D proliferation screening. Highlighted sgRNAs selected. 

CKMT2-AS1 and AC016596.1 were not yet tested in this framework.  
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Figure 98: Single Competition experiment (P3 - 10 days) – A) Outline of the competition 

experiments. B) Representative pictures at day 10 of the competition experiment for samples 

NT113, NT154, TBILA sg4, TBILA sg5. C) Percentage quantification of GFP+ and RFP+ 

positive cells. All samples were tested also for the KD of the target gene (see above). For 

genes SH3PXD2A-AS1 and RASSF8-AS1 we are currently developing qRT-PCR assays 

(Box shows location of sgRNAs). Figure legend: grey bar indicates % of GFP+ cells, red bar 

indicates % of RFP+ cells with % indicated inside the bar.  
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Figure 99: Single Competition experiment (P9 - 25 days) - Percentage quantification of 

GFP+ and RFP+ positive cells at 10 days (P3), 17 days (P6) and 24 days (P9). Samples were 

tested for the KD of the target gene (see above).  

 

2.8.5 Validation of hits in 3D growth 

 

Next, we moved to the 3D screening, using a similar approach aimed at confirming the hits 

and the screening results. We selected the PCG MTHFD1, which resulted DROP OUT in 

the 3D screening (and in vivo) but without any effect in 2D, a suitable case to evaluate if the 

differential effects in 3D vs 2D are confirmed using the experimental setting of single 

competition assays (see 2.8.4). The sgRNAs used are highlighted in Figure 101A. We used 

two approaches to monitor the 3D growth: i) we measured the proportion of RFP+ and GFP+ 

cells in disaggregated spheroids by flow-cytometry (i.e., Total Cell Number); ii) we counted 

the number of spheroids by microscopy (i.e., Total Sphere Number and Size). We observed 

that the guides targeting MTHFD1 were not depleted during 2D growth, while both sgRNAs 

showed a decrease in their representation in the 3D growth (delta F2 – START: sg1 RFP+ 

cells -16.06% and sg2 RFP+ -17.08%). The non-targeting control RFP+ cells instead showed 

an increased percentage representation (delta F2 – START: sg1= +9.01%; sg2= +13.34), 
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which suggest that the effect size of MTHFD1 KD could be even greater. In conclusion, this 

experiment demonstrates that the perturbation of MTHFD1 selectively impairs 3D growth. 

 

 
Figure 100: Competition assay of 3D growth – Representative pictures of the 2nd 

generation of spheroids (F2) produced in competition assays. Red spheroids express NTCs 

(NT113 or NT154) or sgRNAs targeting MTHFD1 (sg1 and sg2). Images acquired by Leica 

Thunder fluorescence widefield microscope, 10X magnification. Scale bar 250 μm. (Data in 

collaboration with Virigina Brancato, Nicassio Lab, IIT). Automatic counting of spheroids 

with ImageJ is ongoing.  
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Figure 101: Specific effect of MTHFD1 pertubation in 3D – A) Log2FC values for 

sgRNAs targeting MTHFD1 in 2D and 3D growth screening. Highlighted sgRNAs 

employed in single competition experiments. B) Percentage quantification of GFP+ and 

RFP+ cells in 2D and 3D for MTHFD1 samples. C) Percentage quantification of GFP+ and 

RFP+ cells in 3D for NTC controls NT113 and NT154. Samples were tested for the KD of 

the target gene MTHFD1 (See above).   
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2.8.6 Set-up of competition experiments for drug-tolerance phenotypes  

 

We wish to validate the impact of lncRNAs perturbation on drug-tolerant surviving cells 

upon Paclitaxel treatment by competition assays. As the adaptation to Paclitaxel is a process 

with intrinsic noise, a classic “single-colored” colony competition might result inconclusive 

for validation. Therefore, we focused on developing a competition assay similar for the 2D 

and 3D phenotypes. We performed a set-up experiment, mixing equal ratios of NTCs RFP+ 

and GFP+ cells (the same used before) and treating with Paclitaxel 50 nM for 72h. Then, we 

measured the proportion of GFP+ and RFP+ cells after replating, by flow cytometry. We 

observed a slight variation in the replicates for the negative controls NT113 and NT154 

(Figure 102A). In addition, we monitored surviving colonies by imaging. We designed a 

macro (using ImageJ) with the help of the Imaging Unit at the European Institute of 

Oncology to obtain the automatic count of RFP+ and GFP+ colonies. This analysis measured 

no significant differences between RFP+ and GFP+ cells in terms of number of colonies, 

mean area and total area in 6 technical replicates (Figure 102B, C).  

This competition assay provides multiple readouts and offers the advantage of an internal 

control represented by the rate of survival of GFP+ cells and an external control represented 

by the RFP+ NTCs, therefore we are confident that we can monitor true differences in drug 

response by lncRNA perturbation.  
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Figure 102: Competition assays to monitor the survival upon Paclitaxel treatment -   

A)  Percentage quantification of GFP+ and RFP+ cells upon Paclitaxel treatment by flow-

cytometry (see Methods). B) Representative pictures of Paclitaxel-tolerant colonies. Picture 

shows that large colonies are either GFP+ or RFP+. Images acquired by Leica Thunder 

fluorescence widefield microscope, 4X magnification. Scale bar 1000 μm. C) Quantification 

of total number of colonies, average area, and sum of total area of GFP+ or RFP+ colonies. 

Error bars represent mean ±SD (n=6, technical replicates). P value by unpaired Student’s t-

test.  
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2.8.7 Set-up of lncRNA perturbation in other cell lines  

 

In the next future, we wish to further investigate lncRNAs hits also in other cell lines, in 

order to understand if the phenotypes observed as result of their perturbation is specific for 

SUM159PT or could be reproduced in other TNBC cell lines (and more generally any other 

breast cancer cell line). Hence, we generated a series of 7 breast cancer cell lines, from 

different sub-types of breast cancer, bearing the PB-TRE-dCas9-KRAB system. In the figure 

below, the expression of dCas9-KRAB was evaluated in all cell lines, and it was found in 

the range of dCas9-KRAB activity (See 2.5.2). 

 

 
 

Figure 103: Expression of dCas9-KRAB in a panel of breast cancer cell lines – 

Expression of dCas9-KRAB measured by qRT-PCR. Data show expression of the transgene 

in untreated (-) and in cells treated with 1 μg/mL doxycycline for 72h. Data normalized vs 

RPLP0. 

 

2.8.8 Transcriptomic effects of lncRNAs perturbation  

 

To provide hints into their mechanism of action, we plan to perform a characterization of the 

transcriptional effects resulting from the perturbation of each lncRNA hit. The 

transcriptional fingerprint associated to each lncRNA hit will help i) to investigate 

transcriptional mechanisms related to lncRNA expression (i.e. the definition of cis- or trans- 

gene-regulatory functions) or more generally related to the repression of the lncRNA locus; 

and, at the same time, ii) to group into functional groups lncRNAs that share similar 

transcriptional endpoints. 
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Of note, we cloned the lncRNA library in a CROP-seq compatible backbone that allows to 

capture at the same time both sgRNA sequence and the transcriptome of individual cells by 

single cell RNA-sequencing (Datlinger et al., 2017). We can, therefore, map the 

transcriptional effects following the perturbation of lncRNA also at the single cell level, 

which may be critical to distinguish their effects on different or specific cellular 

subpopulations, such as cancer stem cells.  

As a preliminary test, we analyzed by bulk and single cell RNAseq the transcriptional 

response following the perturbation by CRISPRi system of two DROP-OUT hits: STAT3 (a 

PCG and a transcription factor) and LINC01605 (Figure 104A). We used multiple 

independent sgRNAs targeting STAT3 or LINC01605 and different non-targeting sgRNAs. 

For bulk sequencing, we prepared a different RNA-seq library from each sample and defined 

the differentially expressed genes (DEGs) as usual, comparing expression data of targets vs 

controls (non-targeting sgRNAs) (Figure 104A). For sc-RNAseq, we mixed in the same 

single cell library equal numbers of cells carrying non-targeting sgRNAs, sgRNAs targeting 

STAT3 and the lncRNA LINC01605 and retrieved the type of perturbation of each 

individual transcriptome during data analysis (Figure 104B). We grouped the transcriptome 

according to the type of perturbation to measure transcriptional effects. As expected, we 

could detect a strong and specific silencing of STAT3 in those cells carrying the 

corresponding sgRNAs (Figure 104C, D), validating the procedure. Analysis on lncRNA 

LINC01605 effects at single cell level are still ongoing. 
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Figure 104: Transcriptomic effects of lncRNAs perturbation - A) Transcriptomic effect 

of the knock-down by CRISPRi of LINC01605 and STAT3 measured by bulk RNAseq. 

Cartoons above show the location of sgRNAs used. B) t-SNE showing the UMI counts for 

cells expressing STAT3 sg1. C) Expression of STAT3 in 9 groups of cells used for this 

experiment. Knock-down of STAT3 is specific in STAT3 sgRNAs cell populations. D) 

Expression of STAT3 sg1 is limited to one cell population.  
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3. Discussion 
 

3.1 Challenges in lncRNAs characterization  

 

In the last few years, new technological tools allowed an unprecedent understanding of 

complex biological phenomena and provided evidence about the pivotal regulatory role of 

non-coding RNA and DNA elements. Even if much effort has been put by the FANTOM 

and ENCODE projects to define the functional units in the genome (Abugessaisa et al., 2017; 

Carninci et al., 2005; Harrow et al., 2012), the interpretation of the massive transcriptional 

diversity is still a complicated issue, as pervasive transcription is also the source of non-

functional transcripts (Guttman et al., 2009). LncRNAs are involved in a great spectrum of 

functions but regardless of the vast number of transcripts included in this class, the definition 

of their functional implication a priori is limited to few hints, such as the presence of 

conserved sequences at promoters or splice sites (Carninci et al., 2005; Derrien et al., 2012; 

Schlackow et al., 2017) or their cellular localization (Djebali et al., 2012). In absence of clear 

information about the relationship between structure and function, the identification of 

candidate lncRNAs involved in a selected phenotype can be extremely difficult and it is 

usually driven by selecting molecules according to their expression level. In general, this is 

a reasonable approach, since lncRNAs are expressed in a highly specific cell-type fashion. 

Furthermore, the high level of intra-sample heterogeneity that is typically observed in tumors 

or during the activation of adaptive processes (e.g., chemotolerance), strongly suggests the 

use of experimental approaches able to dissect their intrinsic heterogeneity, such as the 

characterization of transcriptional and epigenetic blueprints that are activated even in rare 

cellular sub-populations. Thus, even if large multiomics datasets are already available from 

international consortia (like TCGA, FANTOM or ENCODE), they show some limitations: 

the cell purity of bulk samples is variable, RNA-seq data is usually unstranded (e.g. those of 

TCGA) and cell sub-populations are not considered. For example, in several cancer types, 

samples display a variable level of infiltrate (stromal and immune cells), which can act as a 

confounding factor in the analysis of low expressed molecules, such as lncRNAs.  

Taking all these points together, in this work we have generated in-house a series of 

transcriptomic profiles either characterizing at high-resolution specific cell populations (e.g. 

cancer stem cells; chemo-adapted clones, tumors showing high-activity of adaptive 

pathways), or directly resolving sample heterogeneity by single-cell analysis. Consistent 

literature supports the notion that cancer evolution occurs through genetic and non-genetic 

driving events (Marine et al., 2020). The non-genetic component of tumor progression is 

multilayered (epigenetic, transcriptional, metabolic components) and collectively define cell 

plasticity (da Silva-Diz et al., 2018; Gupta et al., 2019). Plasticity allows the adaptive 
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features of cancer cells. In this context, we selected lncRNAs positively associated with 

transcriptional determinants of adapted states in breast cancer.  

We did so, by integrating the transcriptional output in models that approach the adaptation 

of breast cancer cells from different perspectives: the heterogeneous adaptive strategies of 

primary tumors, the innate adaptive properties of MaSC and the in vitro adaptation to the 

NACT drug Paclitaxel, deriving a list of candidates lncRNAs. The models selected are not 

comprehensive of the possible adaptive response that breast tumors accomplish. This 

analysis does not take into consideration the function of negative regulators of these 

phenotypes or incoherent activities among different models and most importantly, the 

expression level in a specific context is not necessarily predictive of functional engagement.  

However, regardless of their diversity, the models show a functional convergence towards 

pathways of stemness, EMT, hypoxia and inflammation and might hide common regulatory 

mechanisms in which lncRNAs take part. Furthermore, the selection of lncRNAs expressed 

across different models has practical implication as one possible long-term goal of this 

project is identifying markers and therapeutically exploitable targets.  

 

3.2 Functional screening to assay adaptive properties  

 

Genome-wide screenings can be seen as favorable approaches for the functional study of 

lncRNAs, applying an unbiased and high-throughput strategy for dissecting their biological 

relevance. Such screenings have been already successfully used to study lncRNAs involved 

in growth phenotypes (Liu et al., 2017b) and drug resistance (Bester et al., 2018).  LncRNAs 

functions are critical in establishing complex phenotypes that require fine-tuning of gene 

expression as other works highlight (Guttman et al., 2011; Kretz et al., 2013; Loewer et al., 

2010). These phenotypes are often occurring in rare population of cells and therefore, the 

application of large genome-wide libraries results unfeasible due to the large number of cells 

required to maintain the correct library representation. In this project we tried to conciliate 

the investigation of a conspicuous number of lncRNAs (620) in complex settings related to 

the acquisition of adaptive phenotypes in breast cancer cells. To this end, we exploited a 

pooled CRISPRi screening. CRISPRi simultaneously abrogates transcription and interferes 

with the function of DNA regulatory elements (Gilbert et al., 2013).  

We applied NET-Cage data produced in our model system to precisely refine the TSS of 

candidates lncRNAs. This allowed us to design a compact library in which each candidate 

was targeted with 5 different sgRNAs, for an overall library size of 3451 sgRNAs. The 

design of the library was supported by evaluating the KD on target genes and exploiting 

sgRNAs previously validated in a different study (Liu et al., 2017b). We retrospectively 
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checked the efficiency of KD of 9 target genes in the LNC-library that were called as hits in 

one or multiple screenings.  We observed that all sgRNAs elicited the repression of the 

expected target, that, for 12/18 sgRNAs tested was above 80% (See 2.8.3). Therefore, on 

average, we expect that 3 out of 5 sgRNAs that we designed should be able to produce strong 

on target effects. 

The model system selected for the screenings is the TNBC cell line SUM159PT, known for 

being composed of heterogeneous populations of cells and displaying phenotypic plasticity 

(Gupta et al., 2011). We tested how the perturbation of the 620 lncRNAs affected growth 

and/or survival in context-specific conditions, including permissive growth on plastic dishes 

and with complete medium (2D)  and more challenging conditions related to cancer 

adaptation (3D growth, chemo-response, in vivo tumor growth).  For the sake of clarity, 

many issues of the set-up and analysis of the screenings have been addressed in each chapter. 

To sum up, in each system we characterized the drop-of-complexity introduced by the 

selective growth and suggested tailored approaches to interpret it. The screening pointed out 

common and specific hits for each screening. 11 of the PCGs included were depleted in 

every screening and appeared as “common essential genes” in our system. This is true also 

for some lncRNAs (AC128688.2, AL4050998.2, AC245014.3, TBILA). Across screenings, 

the observed rate of DROP-INs and DROP-OUTs was similar, and this was quite unexpected 

given the criteria of inclusion for lncRNAs (see 2.1). Nonetheless, most of the DROP-INs 

were called only by the phenotype-GSEA analysis as in vivo hits (64/114) (See below).  

 

2D and 3D screenings 

The lncRNAs called as DROP-OUTs in 2D and 3D were largely shared (40/49 of the 2D 

hits were also 3D hits), underlying a possible common effect on proliferation for these 

transcripts. Nonetheless, the guides targeting the two protein coding genes MTHFD1 and 

STAT3 were selectively depleted in 3D and in vivo. We showed that the CRISPRi towards 

STAT3 severely impairs the sphere forming efficiency of SUM159 in the mammosphere 

assay (See 2.5.3); furthermore STAT3 and MTHFD1 have a literature-supported role in 

stem-cell biology (Tordonato et al., 2021; Yu et al., 2014). In conclusion, the specific capture 

of STAT3 and MTHFD1 as hits in 3D and in vivo suggests that our screenings can also 

identify context-specific phenotypes. Intriguingly, two lncRNAs show the same specific 

behavior as these two PCGs. It will be interesting to address if they play a a similar function 

in maintenance of stem-identity.  

From a technical point of view, we demonstrated how, for the 3D experiment, we largely 

covered the complexity of the library. Given that a certain level of cell aggregation was 
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observed at the used cell density (Figure 57) we speculate that replicating the 3D experiment 

with a lower cellular density might intensify the observed phenotypical effects. 

Notably, we validated the growth modifying properties of a set of individual sgRNAs 

identified in 2D and 3D screening. In each and every case, we could precisely recapitulate 

the effects measured in the screening. This data, even if not formally providing an 

independent validation of the effects measured, as we used the same reagents of the 

screening, recapitulates in single the effects observed in the multiplexed setting of the 

screenings, supporting the soundness of MAGeCK β-scores and allowing to establish a 

parallelism between β-scores and biologically measurable effect sizes.   

 

Chemo-tolerance screening 

In the Paclitaxel screening, we observed that that the selective pressure introduced by the 

drug caused a strong drop of complexity and a less reproducible behavior of sgRNAs (See 

2.6). The drug-tolerant phenotype is led by the proliferation of clonal colonies (Oren et al., 

2021) that can be stochastically selected regardless of the effect of the carried sgRNA. To 

overcome this issue, we modified the screening to increase the number of observations 

collecting multiple individual samples (N=18). At the level of individual plates, we observed 

that a few sgRNAs became prevalent (from 6x106 cells plated we retrieved 227 dominant 

sgRNAs on average). We built ranked sets for each gene, considering the contribution of 

each sgRNA in every sample in a GSEA-based analytical framework (phenotype-GSEA) 

(Subramanian et al., 2005). The “phenotype-GSEA” preserves the information of the 

contribution of each sgRNA in the clonal composition of parallel samples although 

bypassing differences in proliferation rates, dimming the effect of random large colonies that 

increase the noise of the system but rather defining hits on how often sgRNAs have “high” 

rank (large and small colonies) Vs “low” rank (individual cells or depletion).  

It was very interesting to notice that PVT1 and MYC showed an opposite behavior in the 

Paclitaxel screening compared to the other screenings, with PVT1 acting as DROP-OUT and 

MYC as DROP-IN. This apparently incoherent behavior can be explained by the detrimental 

effect of MYC activity during chemo-adaptation. It has been described that cells undergoing 

a “diapause-like” state shut down MYC expression (Dhimolea et al., 2021). Therefore, 

CRISPRi-mediated inhibition of MYC might act favourably in the acquisition of the 

quiescence state to overcome the G2M block induced by Paclitaxel. In our CRISPRi system, 

the inhibition of the PVT1 promoter elicited a pro-proliferative effect in 2D, 3D and in vivo, 

due to an enhancer rewiring occurring to sustain the activity of MYC promoter (Cho et al., 

2018). The behaviour of PVT1 as a DROP-OUT in the Paclitaxel screening further sustains 

the noxious effect of high MYC activity in the response to the drug.  
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Despite the need of a comprehensive validation, this observation encourages the idea that 

the phenotype-GSEA analytical framework provides an accurate description of the 

Paclitaxel screening data.  

 

In vivo screening 

The in vivo screening measures the TIC properties and more faithfully recapitulates he 

different adaptation mechanisms occurring during tumorigenesis (e.g., activation of the 

hypoxic response due to decreased oxygen availability compared to in vitro culture). The in 

vivo screening challenges the experimental reproducibility due to the strong selective 

pressure occurring, of which we were educated from previous clonal tracking data produced 

in the lab. Therefore, we decided to keep separated the gDNA of individual tumors (instead 

of pooling, as it is often done for such screenings), using the same phenotype-GSEA as in 

the Paclitaxel screening.  

Overall, in this setting we called 13 genes of the “essential genes” set as DROP-OUTs. Of 

those, 11 were common with the 2D screening. We identified 55 DROP-OUT genes and 78 

DROP-INs. The in vivo screening scored the highest number of DROP-INs compared to the 

other screenings. The empirical FDR, calculated on NTCs random sets, suggest that we 

experienced the stochastic DROP-IN of guides that were not-influencing TIC properties of 

the cell line and whose accumulation probably only reflects the strong pressure to lose guides 

that are detrimental for tumor growth.  

 

Literature supported lncRNA hits 

Overall, the soundness of our screening results is sustained by the identification of lncRNAs 

with a literature supported role. For instance, DANCR is a lncRNA DROP-OUT in 2D, 3D 

and in vivo screening. Studies involve this transcript in proliferation and stem-like properties 

in cell lines and xenograft models (Hu et al., 2020; Ramilowski et al., 2020; Zhen et al., 

2018). TBILA (TGFb-induced lncRNA) was a common DROP-OUT in every screening and 

was reported as an oncogenic lncRNA in lung cancer through the activation of pro-survival 

pathways of the inflammatory response (Lu et al., 2018). The lncRNA EPB41L4A-AS1 is a 

DROP-OUT in 2D and 3D screening and the KD of this gene has been reported to inhibit 

proliferation, migration and EMT in colorectal cancer. LINC01605 is a 2D and 3D common 

DROP-OUT and literature shows that this lncRNA is involved in DNA-damage response 

and its KD sensitizes cells to apoptotic signals in colorectal cancer (Forrest et al., 2018).  
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Features of lncRNA hits 

 

We looked at the expression of hit genes in a panel of breast cell lines and primary tumors 

to highlight possible specificities. Overall, most lncRNA hits display a low but consistent 

expression in most cellular models, Some lncRNAs show higher expression in basal-like 

lines as compared to luminal models, while other lncRNAs peaked in conditions associated 

to drug treatment.  

The localization is a useful indication for lncRNAs function. We provide a global 

characterization of the nuclear or cytoplasmic retention of lncRNAs, as quantified from 

cellular fractionation. We could find lncRNAs hits that were localized either in the 

cytoplasmic or in the nucleus, with a slight enrichment in the case of 2D and 3D hits for the 

cytoplasmic compartment, which might relate to specific functions (e.g., ceRNA activity). 

CRISPRi has bidirectional effects (Gilbert et al., 2013; Qi et al., 2013). The observed 

lncRNAs hits were both intergenic and antisense. A selection of mostly anti-sense lncRNAs 

would have been indicative of phenotypes potentially depending on the perturbation of 

cognate PCGs to target lncRNAs. As mentioned before, we checked the KD of some 

lncRNAs hits. For those lncRNA that were in proximity with PCGs, we checked the effect 

on these genes as well, and observed co-repression in most cases (See 2.8.3). Two of these 

genes (ZCCHC9 and EIF6) are defined as essential in DepMap (DepMap, 2019). In this 

regard, we checked the distance of lncRNAs hits from any PCGs. We observed that 10 

lncRNAs DROP-OUTs are in the proximity of essential genes and we speculate that their 

phenotype might be ascribable to the targeting of these genes. However, we observed that 

not all PCGs that were supposed to be essential acted as such in all or some screenings, 

suggesting that essentiality is context-dependent and that lncRNAs proximal to putative 

essential PCGs does not have the be excluded a priori from further characterization. 

 

3.3 Limitations of the study and future perspectives 

 

Conversely to other interference techniques, such as antisense oligonucleotides (ASOs) that 

target the RNA and abrogates RNA-dependent functions of lncRNAs (Ramilowski et al., 

2020; Roux et al., 2017), the simultaneous action of CRISPRi towards RNA and DNA-

dependent functions, can be considered as a drawback and a limitation in the interpretation 

of the screening results. However, the functions of lncRNAs are often intimately connected 

to the activity of the locus from which they are transcribed (Gil and Ulitsky, 2019). Thus, 

picturing the effect of their perturbation might highlight novel functions of that locus that 

involve either the lncRNA or nearby genes. Therefore, at this stage we better refer to the 
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phenotypic characterization produced as generally dependent on the activity of the locus. 

We provided an extensive characterization of lncRNAs in models of adaptive phenotypes in 

breast cancer. Currently our observations are limited to phenotypes related to the ability of 

cells of selectively proliferate in specific contexts. In the future it will be intriguing to 

challenge less proliferation-dependent phenotypes such as the selection of cells expressing 

markers of MaSCs (e.g. CD44) in basal and in transforming conditions, for instance by TGFb 

exposure or by testing their invasive capacity. Approaches based on cell sorting have been 

used in other contexts (Liu et al., 2017a; 2018a; Torre et al., 2021) but are equally 

challenging in preserving library complexity. A possible practical solution in order to further 

investigate lncRNA hits in more sophisticated biological assays would be to create a smaller 

sub-library containing only the relevant sgRNAs. Such sub-library might be used also to 

extend the results beyond the SUM159PT cell line. To this respect, we have already set-up 

a panel of breast cancer cell lines modified for CRISPRi where we can recapitulate the 

screenings or define the cell-type specificity of our screening hits.  

We set up competition assays to measure in single sgRNA assays the effect that the lncRNAs 

perturbation have on 2D proliferation, 3D growth and Paclitaxel response. The advantage of 

these type of approach is that it is easily scalable thanks to imaging, and it can be used as 

well with orthogonal techniques of lncRNAs interference (e.g. ASOs). The panel of 

CRISPRi breast cancer cell lines can be used also to validate some of the results obtained in 

SUM159PT by these single-candidate assays. 

Finally, the data here reported show that some lncRNAs are involved in the processes 

screened but gives no indication about their function. Our next goal is providing 

transcriptomic profiles upon the perturbation of selected lncRNAs, exploiting either bulk or 

scRNA-seq, according to the specific features of each hit. We will also characterize the 

corresponding genomic loci by in house available ATAC-seq/scATAC-seq data produced in 

SUM159PT as well as publicly available multicancer ATAC-seq data (Corces et al., 2018).  

This kind of molecular characterization will provide indications about the effect of the 

lncRNA perturbation at the level of local (within the area of activity of the dCas9-KRAB), 

regional or distal genomic level, allowing a better understanding of the lncRNA function 

within its locus as well as a deeper picture showing how the phenotypes observed are 

established, underling novel networks in control of breast cancer cell adaptation. 

The scientific community has done great efforts in mapping genes causally implicated in 

cancer (e.g., DepMap). These genes are potential cancer vulnerabilities and promising 

therapeutic targets, but often they are not directly 'druggable'. Therefore, it is important to 

map their regulatory elements, which are currently largely unknown. In this scenario, 
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lncRNAs would be not only promising markers but also potential therapeutic molecules, 

whose modulation should increase the potency and specificity of other more generic 

treatments (like chemotherapy or epigenetic drugs). 
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4. Materials and Methods  
 

4.1 Cell culture  
 

4.1.2 SUM159pt  

 

SUM159PT (triple negative human primary breast cancer cell lines) cells were cultured in 

Ham’s F12 medium, supplemented with 5% Fetal Bovine Serum (FBS, South American 

origin), 2mM Glutamine, 5 μg/mL insulin, 1 μg/mL hydrocortisone, 10mM HEPES, 100 

μg/mL of Penicillin/Streptomycin and and were cultured under an atmosphere of 10% CO2 

at 37°C.  

 

4.1.3 SUM-KRAB  

 

SUM159pt carrying the PB-TRE-dCas9-KRAB construct, referred in the text as SUM-

KRAB (see PiggyBac transposition) were cultured in the same media of parental SUM159pt 

with 5% TETFREE FBS and 100 μg/mL Hygromycyn B.  

 

4.1.4 Other lines  

 

HMLE cells were cultured at 37°C with 5% CO2 in MEGM diluted 1:2 with Ham’s F12 

medium added L-Glutamine, 0.5 μg/mL Hydrocortisone, 10 μg/mL Insulin, 

Penicillin/Streptomycin, and 10 ng/mL of fresh EGF. 

 

Cell lines PB-TRE-dCas9-KRAB transposed:  

 

FBS was substituted with TETFREE FBS after transposition. 
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4.2 Production of stable dCas9-KRAB cell line 
 

pHAGE-KRAB 
 

The lentiviral delivery of dCas9-KRAB system was performed by infections with the pHage 

TRE-dCas9-KRAB (Addgene #50917), according to the lentiviral productions and 

transduction protocols provided below. Upon lentiviral infection, the construct is stably 

integrated. Transduced cells are selected by Neomycin resistance. 

 

Cloning of PB-TRE-dCas9-KRAB  

 

For the generation of the PB-TRE-dCas9-KRAB plasmid, the DNA sequence of KRAB 

repressor domain was amplified by PCR from the pHAGE TRE dCas9-KRAB  (Addgene 

plasmid #50917) and cloned in frame into the PB-TRE-dCas9-VPR backbone (Addgene 

plasmid #63800) within the AscI/AgeI sites.   The cloning was sequence-verified by Sanger 

Sequencing.  

 

PiggyBac Transposition  

 

Cells were seeded at 60-70% confluency the day before transposition in 6well plates. The 

following day, cells were transfected according to Lipo3000 transfection protocol 

(ThermoFisher Scientific) with 500 ng of transposon DNA (PB-TRE-dCas9-KRAB or PB-

TRE-dCas9-vpr) and 200 ng of SuperPiggyBac transposase helper plasmid (Systems 

Bioscience).  Specifically, the DNA was diluted in 125μL of Opti-MEM (ThermoFisher 

Scientific) and 5μL of P3000 transfection reagent (DNA mix), 7.5 μL of Lipofectamine3000 

were diluted in 125 μL of Opti-MEM and vortex thoroughly (Lipo Mix). The DNA mix and 

Lipo mix were mixed 1:1 and incubated for 20 min at room temperature, then added 

dropwise to cells with fresh media. After at least 72h from transfection, cells were selected 

with 200 μg/mL Hygromycin B.  

 

4.3 Single sgRNAs delivery  
 

Lentiguide cloning  

 

LentiGuide Puro (Addgene#52963) cloning occurs within the BsmBI (Esp3I) sites. 

Restriction digestion was performed as follows:  
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The reaction was incubated for 2h at 37°c. Digested plasmid was purified from a 1.5% 

agarose gel and dephosphorylated as follows:  

 

35°c 10 min, 75°C 2 min, 4°c 

 

sgRNAs oligos were purchased as oligos with compatible ends for BsmBI cut sites by 

Sigma-Aldrich. Forward and Reverse oligos were annealed:  

 

 

 

Annealed Oligos were diluted in H2O 1:200 for subsequent ligation.  

The ligation reaction was set-up as:  

 

RT for 5 min. 

2 μL of ligation mix were then used for subsequent transformation in Stbl3 cells. Cloning 

was sequence-verified by Sanger Sequencing.  
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PerturbSeq Cloning  

 

The PerturbSeq GBC library couples a tracking system of passive barcodes with a sgRNAs 

scaffold (Addgene #85968, (Adamson et al., 2016; Dixit et al., 2016)). SgRNA cloning 

occurs within BlpI – BstxI sites. Restriction digestion was performed as follows: 

 

 

 

Oligo annealing, plasmid dephosphorylation and ligation followed the same protocol as the 

LentiGuide Cloning.  

 

pRGScribe1 Gibson cloning  

 

We modified the library plasmid provided by Cellecta for single-sgRNAs delivery (see 

below). We re-transformed the library and isolated a single colony. Restriction digestion was 

set as follows:  

 

2h at 37°c 

 

The ligation occurs by Gibson cloning. We purchased by IDT eBlocks of dsDNA of 300 bp 

that contain the sequence of the sgRNA and 50 bp at both ends of overlapping region with 

the linearized plasmid. The Gibson reaction was:  

 

50°c for 15 min.  

1/10 of the reaction is then used for subsequent transformation in Stbl3 cells. Each plasmid 

was sequence-verified by Sanger Sequencing.  
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Lentiviral production 

 

HEK293T cells were seeded roughly 24 hours before transfection at 70-80% confluency in 

6well plates in DMEM media with Glutamax, supplemented with 10% TET FREE FBS and 

100 μg/mL of Penicillin/Streptomycin. The sgRNAs were packaged with psPAX2 

(gag&pol) and VSV-G (envelope) plasmid transfected according to Lipofectamine3000 

protocol. Below are indicated the quantities for the transfection of a well of a MW6 plates:  

 

Lipo Mix 

 
 

DNA Mix 

 
 

Lipo and DNA mixes were united 1:1 and incubated at room temperature (RT) for 20 min. 

Mix was then added dropwise to cells with 1.5 mL of fresh media that was replaced after 12-

16 hours. Supernatant was collected 24 hours after media replacement and centrifuged to 

remove cell debris, filtered through 0.22 μm syringe filters and used for subsequent infection.  

 

Lentiviral transduction 

 

150000 SUM-KRAB cells were seeded per well of 6W plates 12-16 hours prior to 

transduction. Polybrene was added to the undiluted lentiviral supernatant to a final 

concentration of 1 μg/mL. Transduction was usually carried out over-day and then media 

was changed. Selection was started 24 hours after the end of infection.  

 

4.4 Evaluation of gene expression levels 
 

Total RNA extraction  

Total RNA extraction was performed with miRNeasy Micro Kit (Qiagen). Samples were 

prepared according to recommendations in the miRNeasy Micro Handbook. Cells were spun 

down and resuspended in 700 μL of QIAzol Lysis Reagent and incubated at RT for 5 min; 
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then 140 μL of Chloroform were added. The solution was then vortexed for 15 s and 

incubated at room temperature for 2-3 min. Each sample was centrifuged for 15 min at 

12,000 x g at 4°C and the upper aqueous phase was transferred into a new collection tube. 

Then 1.5 volumes of 100% ethanol were added. Samples were transferred to RNeasy 

MinElute spin column and centrifuged at ≥8000xg for 15 s. The flow-through was discarded. 

Columns were washed with 350 μL of RWT buffer. DNase treatment was performed on 

columns. DNase I was prepared diluting 10 μL of DNase I (Qiagen) in 70 μL of RDD buffer 

and incubated at RT for 15 min. 350 μL of RWT were used for washing. Columns were 

further washed with 500 μL of RPE buffer in two centrifugation steps at ≥8000xg of 15 s 

and 2 min. Empty columns were further centrifuged to remove residual ethanol. RNA was 

extracted in RNase free H2O and quantified by NanoDrop UV-Vis Spectrophotometer 

(Thermo Scientific). RNA was stored at -80°c.  

mRNA retrotranscription  

Total RNA was retro-transcribed in cDNA according to SuperScript VILO cDNA synthesis 

kit. The reaction was set-up as follows:  

 

Retro-transcription reaction was carried-out in a thermal cycler with the following 

conditions:  

 

cDNA was stored at -20°c for subsequent amplification.  

Real time quantitative PCR  

 

Expression levels of target lncRNAs or protein coding genes were detected by Real-Time 

quantitative PCR (RT-qPCR) with Fast SYBR Green reagents (Life Technologies). For each 

cDNA sample, a reaction was set-up as follows:  
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Reactions were carried out in BIORAD CFX Real-Time PCR detection system under the 

following cycling conditions:  

 

 

Reactions were performed in triplicates. Rough data in terms of Ct were analyzed with 

Microsoft Excel (Microsoft). Data were normalized on Ct values of the housekeeping gene 

Rplp0 by calculating their ΔCt. Data in the text are expressed in Relative RNA expression 

calculated according to the formula 2^-ΔCt. Primer pairs were designed through computer 

assisted primer design software (Primer3). For lncRNAs, primer pairs were tested for the 

linear amplification of their target with serial dilutions of cDNA.  

4.5 sgRNAs Library Design  
 

The sgRNAs in the library come from 3 different sources:  

1) sgRNAs targeting the “essential genes set” were picked from published sgRNAs 

libraries (Horlbeck et al., 2016);  

2) lncRNAs with CAGE peaks overlapping the annotation provided in (Liu et al., 

2017b) were selected from their sgRNAs set;  

3) Otherwise, we designed sgRNAs with the CRISPick tool by providing genomic 

coordinates of the predicted TSS using standard parameters and selecting sgRNAs 

among the first 10 defined by the tool.  

 

4.6 LNC-library common protocols   
 

Production of lentiviral particles of the LNC-library  

 

HEK293T cells were seeded in DMEM media with Glutamax, supplemented with 10% TET 

FREE FBS and 100 μg/mL of Penicillin/Streptomycin roughly 24 hours before transfection 

in 4x10cm plates.  The sgRNAs library was packaged with psPAX2 (gag&pol) and VSV-G 

https://portals.broadinstitute.org/gppx/crispick/public
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(envelope) plasmids and transfected according to Lipofectamine3000 protocol, as suggested 

by the manufacturer, Cellecta. Two mixes were prepared:  

 

Lipo Mix 

 

 

DNA Mix 

 
 

Lipo Mix and DNA Mix were mixed 1:1 and incubated at RT for 20 min. The mix was then 

added to HEK293T cells with fresh media dropwise (1547 μL per 10cm dish). The following 

day, 6 mL of media were replaced per dish. Media was supplemented with DNase I 1U/mL. 

24 hours after media replacement, supernatant was collected and filtered through 0.22 μm 

syringe filters and ultracentrifuged at 50000xg for 2h and 10 minutes at 4°c. The final viral 

stock was resuspended in 240 μL of Phosphate Buffer Saline (PBS) (100X), aliquoted in 20 

μL and stored at -80°c.  

MOI test of the lentiviral stock  

 

150000 SUM-KRAB cells were seeded in 6 well plates 16 hours before infection and 

transduced with different dilutions of the viral stock starting from the undiluted lentiviral 

particles (20 μL of the stock diluted in 2 mL of media to restore the original concentration), 

which was further diluted 1:10, 1:50, 1:100 and 1:200. The expression of tagRFP was 

checked 36 hours later by cytofluorimetry with BD FACSCelesta Cell analyzer.  

 

Production of LNC1-P0 and LNC2-P0 cells  

60 million SUM-KRAB cells were seeded 16 hours before infection in 15 cm dishes at a 

density of 3M cells per dish. Library infection was carried out in two independent events ( 

LNC1-P0 and LNC2-P0). Cells were transduced for 7 hours in 15 mL of media per dish, 

with a 1:100 dilution of the stock with 1 μg/mL of polybrene to enhance infection. After 36 

hours, one of the dishes was detached to check the expression of the reporter gene by 
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cytofluorimetry. Cells were then selected with 2 μg/mL of Puromycin, amplified and stocked 

in identical vials of 5M cells. P0s were always handled and stocked to maintain an average 

representation that guarantees a library coverage of 1000X. Practically, this means that no 

less than 3.5M cells were ever frozen or split (1000 cells x sgRNA, library size=3450 

sgRNAs).    

gDNA extraction of screening samples  

 

For all screenings (when not otherwise indicated) each sequencing sample gDNA was 

collected from a frozen cell pellet of 5M cells (which was stored at -80°c until processing). 

gDNA extraction was performed with NucleoSpin Tissue gDNA extraction kit (Macherey-

Nagel). Specifically, pellets were equilibrated at RT and resuspended in 180 μL of buffer T1 

and 25 μL of Proteinase K. Samples were vigorously vortexed before overnight incubation 

at 56°c in thermomixer with mild shaking. 200 μL of B3 buffer was then added to samples 

and vortexed before incubation for 10 minutes at 70°c. Samples were then centrifuged 

(11000xg) to remove insoluble particles. Supernatant was collected and 210 μL of 100% 

ethanol were added. The sample was then placed in an extraction column and gDNA bound 

by centrifugation at 1100g. The membrane was washed in two subsequent centrifugation 

steps (11000g) with 500 μL of Buffer BW and 600 μL of buffer B5. Membrane was cleared 

from residual buffers in an additional centrifugation step at 11000xg. DNA was eluted in 

100 μL of pre-warmed (70°c) buffer BE that was placed on column for 3 min before 

centrifugation. Elution was carried out in two steps to increase yield.  
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Amplification of the sgRNA cassette  

 

 

 

Figure 105: Schematic of sgRNAs cassette amplification from gDNA. A) and B) show 

details of the pRGScribe1 construct in which the library is cloned. C) The first PCR occurs 

in 4 parallel reactions, products are then mixed and an aliquote of the mixed products is used 

as the substrate for the 2nd round PCR. D – F) Representative PCR from one of the replicates 

of the proliferation screening: D) 1st Round PCR; E) 2nd Round PCR; F) 2nd round PCR after 

cycles optimization.  

 

The readout of the screening(s) is the evaluation of differences in sgRNAs frequency 

compared to the respective P0. This is done by amplifying the cassette from the gDNA of 

the screening samples. As in the handling of the library, it is important to maintain the correct 

library coverage when amplifying the sgRNAs cassette to faithfully represent the occurrence 

of sgRNAs from the culture dishes to the sequencing data. Each cell carries on average 6.6 

pg of gDNA, thus we calculated that 3.5M cells (library coverage =1000X) carry around 24 

μg of gDNA. The amplification of the sgRNAs cassette occurs through 2 PCR steps (Figure 

105). For the first PCR (1st Round PCR), the 24 μg of gDNA are divided in 4 identical 

reactions with a fixed N of cycles. For the second PCR (2nd Round PCR), the products of the 

1st Round PCRs per each sample, are joined and serve as template. The 2nd Round PCR 

introduces the Illumina adapters for NGS sequencing. After few cycles (8) the intensity of 

each band is evaluated by gel-electrophoresis to optimize the number of cycles needed to 
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reach similar intensities and avoid over-cycling. After cycles optimization, the PCR products 

are gel-purified, and samples are pooled together equimolarly, thanks to a sample barcode 

present in the P7 adapter.  

 

1ST Round PCR 

For the 1st amplification step, for each sample, 4 equal PCR reactions were set as follows:  

 

Reaction was performed in a thermal cycler with the following cycling conditions: 

 

At the end of the reaction, the 4 PCRs of each sample were pooled and 10 μL (1/10 of the 

single reaction) were run on a 2% agarose gel to check the presence of a band at 420 bp 

which is usually faint (see Figure 105). After this quality control, 5 μL of the 1st Round 

PCRs served as templated for the 2nd Round PCR.  

2nd Round PCR 

This PCR step introduces the Illumina Adapters and ensures equal representation of each 

sample. After 8 cycles, the thermocycler is paused, and samples are placed on ice. An aliquot 

(5 μL) of each reaction is run on a 2% agarose gel. Additional PCR cycles are defined 

evaluating the intensity of each band. The reaction is set as indicated below:  
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Thermal profile: 

 

The oligo used for these PCRs are reported below, red highlights sample indexes:  

 

 

Gel extraction & pooling of screening samples  

Purification of libraries occurs by gel extraction. Half of the volume of each 2nd round PCR 

(50 μL) is run on a 2% agarose gel. The band at 350 bp is excised and gel extracted with 
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Qiagen Gel Extraction Kit. Specifically, the band was weighted and 6X volumes of the band 

weight of QG buffer were added (e.g. 0.6 μg → 360 μL of buffer QG). Samples were 

incubated on a thermomixer at 50°c for 10 minutes with mild shaking. Then, one gel volume 

of isopropanol was added, the mix was loaded on a column and centrifuged at 17900xg for 

1 min and flow-through discarded. 500 μL of QG buffer were placed on column and 

centrifuged (17900xg, 1 min). 750 μL of PE buffer were then loaded on column and 

incubated at RT for 5 min and then centrifuged and discarded. Samples were then centrifuged 

to remove residual buffer. For the elution step, 30 μL of samples were then placed on column 

and incubated for 4 min. Samples were then centrifuged (17900xg, 1 min) and the eluted 

volume was used for a new round of elution with the same incubation and centrifugation. 

Eluted samples were then quantified by Qubit in duplicate and samples were pooled 

equimolarly to 10 nM (corresponding to a concentration of 1.42 ng/μL).  

 

NGS & sgRNAs deconvolution  

 

sgRNAs libraries were sequenced Paired-End by Novaseq 6000 with a sequencing depth of 

10M reads/sample. Raw reads were processed with a custom pipeline in bash that is 

illustrated here step by step.  

1) Given that the amplified sgRNA cassette does not contain canonical Illumina indexes, the 

demultiplexing step was performed manually. In order to do so, “undetermined” R1 and R2 

reads were aligned side by side with the following command:  

paste <(cat Undetermined_R1_.fastq|paste - - - -) <(cat 

Undetermined_R2_001.fastq|paste - - - -) > all_samples.txt  

 

2) The reads of each individual sample were retrieved by identifying its specific barcode 

(GCATCA in the shown example) within the R2 reads, and then saving the corresponding 

R1 reads, which contains the sgRNA sequence:  

awk '{if ($8 == 

"GCATCAAGAGTGGTCTAACCAGAGAGACCCAGTACAAGCAAAAAGCAGACC") {print 

$3}}' all.txt > P0_sgRNA_reads.txt  

 

3) The identical unique reads were then counted, and the counted_list of all samples were 

merged. Finally, low counts sgRNAs were filtered out (in the proposed example those with 

less than 5 raw reads):  

sort P0_sgRNA_reads.txt| uniq -c > counted_P0_sgRNA.txt  

grep "" *.txt > all_count.txt  
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awk '$2>=5' all_count.txt > filtered.txt  

 

4) The filtered list at this point contained all the detected sequences, including those 

originating from PCR or sequencing errors. Therefore, as a final step, we retained only the 

reads corresponding with sgRNA annotated in the lncRNA library. Typically, more than 

80% of the raw reads could be correctly assigned to expected sgRNAs.   

 

4.7 Screenings  
 

Proliferation Screening  

 

LNC1-P0 and LNC2-P0 cells were thawed and seeded in SUM-KRAB media with 100 

ng/mL of Doxycycline to induce the expression of dCas9-KRAB. The screening started with 

3X107 cells that were split regularly 3 times per week. Multiple cell pellets of 5x106 cells 

were collected after 10 days (P3), 17 days (P6), 24 days (P9). Pellet were processed at the 

end of the screening as reported above (Amplification of the sgRNA cassette). Here is a 

list of all samples sequenced for either biological (EXP1 and EXP2) and technical (e.g. P0_1 

and P0_2) replicates of the screening, with the number of mapped reads obtained:  

 
 

After verifying that technical replicates were nearly identical, they were merged and the 

resulting merged reads were used for MAGeCK analysis. β-scores for each gene were 

modeled by MAGeCK according to the following design matrix in a paired statistical 

analysis:  
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Samples Baseline time EXP1_vs_EXP2 

P0_exp1 1 0 0 

P3_exp1 1 1 0 

P6_exp1 1 2 0 

P9_exp1 1 3 0 

P0_exp2 1 0 1 

P3_exp2 1 1 1 

P6_exp2 1 2 1 

P9_exp2 1 3 1 

 

3D growth screening  

 

Preparation of methylcellulose 2% 

10g of Methylcellulose powder (Sigma) were autoclaved and dissolved in MEBM (Lonza) 

base medium for 2 hours on a warm magnetic stirrer (37°c). Solution was then polymerized 

on ice for 30 min. Methylcellulose was then transferred in 50 mL tubes and centrifuged at 

2700xg to remove fibers and then divided in 25 mL aliquots and stored at -20°c.  

 

 

 

Seeding of F1 cells 

LNC1-P0 cells were thawed and amplified. Cells were treated in 2D with 100 ng/mL of 

Doxycycline for 72h before 3D plating to allow an initial repression of library target genes. 

Cells were then detached, centrifuged, and washed with PBS before resuspension in STEM 

medium 2X. Cells were then filtered through a 40 μm cell strainer. Cells were mixed with 

the methylcellulose aliquots 1:1 to a final concentration at plating of 20000 cells/mL and 1% 

Methylcellulose. 5x105 cells were seeded in 36 polyhema dishes (15cm) for a total of 1.8x107 

cells.  
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Collection of spheroids and propagation  

In each generation a total of 36 dishes were plated. Groups of spheroids from 6 dishes (i.e. 

“sub-pools” corresponding to 3x106 seeded cells, 1000x coverage) were joined before 

dissociation and processed separately until plating. Briefly, each plate was diluted with 25 

mL of PBS and spheroids were collected in falcon tubes. Plates were washed with additional 

50 mL of PBS (methylcellulose remains attached to the dishes). After centrifugation 

spheroids of the same sub-pool were resuspended in 1 mL of PBS, joined in the same falcon 

tube and re-centrifuged. Pellet was resuspended in 1mL of Trypsin diluted 1:10 in PBS and 

incubated for 5 minutes at 37°c. After this time, spheroids were mechanically dissociated by 

pipetting gently up and down with a P200 micropipette for 3 min and placed back at 37°c. 

Mechanical dissociation was repeated for 1 minute and incubated for 2 more minutes at 37°c. 

At this point, spheroid dissociation was checked under the microscope and trypsin activity 

was inhibited with Trypsin inhibitor (1:1). Cells in each sub-pool were precisely counted 

and 2 cell pellets (5x106 cells) were collected per each sub-pool. (E.g. F1A, F1B, F1C, F1D, 

F1E, F1F). Subpools were finally joined in order to get a single “pool”, by mixing 5x106 

cells from each subpool. Cell pellets were collected also from the joined pool. Cells were 

then filtered through 40 μm cell strainers and plated for the subsequent sphere generation, 

as before. The same procedure was repeated at every passage, until F4.  

 

Sequencing and analysis of 3D samples  

Samples were processed in four rounds according to the sequencing strategy shown in (See 

2.5). In each sequencing round, we re-sequenced P0, P0’ (i.e. cells after 72h of doxy) and 

the pooled sample of the previous generation (marked by “Pre” below), in order to monitor 

the reproducibility of the library generation and sequencing steps. Here is a list of all samples 

sequenced and reads obtained:  
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β-scores for each gene were modeled by MAGeCK according to the following design 

matrixes (here is shown the analysis for pool samples):  

 

Samples Baseline time 

F1_P0 1 0 

F1_P0_first 1 0 

F1_F1_pool 1 1 

F2_P0 1 0 

F2_P0_first 1 0 

F2_F1pre 1 1 

F2_F2_pool 1 2 

F3_P0 1 0 

F3_P0_first 1 0 

F4_P0 1 0 

F4_P0_first 1 0 

F3_F3_pool 1 3 

F4_F4_pool 1 4 

F3_F2pre 1 2 

F4_F3pre 1 3 

Paclitaxel screening 
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Paclitaxel screening in bulk  

LNC1-P0 and LNC2-P0 cells were thawed and seeded in SUM-KRAB media with 100 

ng/mL of Doxycycline to induce the expression of dCas9-KRAB for 72h. After that, cells 

were detached and plated in 15 cm culture dishes at a density of 3x106 cells per dish (for a 

total of 120 x106). Cells were treated with 50 nM Paclitaxel or DMSO 24 hours after seeding. 

After 72h media was changed and replenished regularly with fresh doxycycline. Paclitaxel-

tolerant colonies were detached at day 12 and replated. This step was performed in order to 

remove the remaining dying cells. After 48 h cells were collected and stored for subsequent 

sgRNAs cassette amplification. DMSO treated cells were collected after 7 days, a period of 

time corresponding to a proliferative-window equivalent to that of Paclitaxel treated cells.  

 

 

 

β-scores for each gene were modeled by MAGeCK according to the following design 

matrixes:  

 

 

 

Paclitaxel screening in pools  

The seeding of cells and treatment was performed just like the previous paragraph. At day 

12 when colonies were detached, cells from two dishes were joined, for a total of 18 

independent pools. Cells were grown for 48h and representative pellets were recovered from 

each pool for parallel processing. PCR amplification and preparation of samples for 

sequencing were performed as before. Samples were sequenced in two batches, including 

the same reference P0 to allow comparison. Here is a list of all samples sequenced for this 

experiment:  
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Data analysis 

 

In order to apply the GSEA framework to this context, we first produced ranked lists of 

sgRNAs in each sample, ordering sgRNA from low to high reads count (rank1 was given to 

all the sgRNA without any read; a rank3450 was given the sgRNA with the highest read 

count). This choice was done in order to obtain in the GSEA analysis a positive NES for 

sgRNAs behaving as Drop-Ins and a negative NES for sgRNAs behaving as Drop-Outs. 

After, the 18 individual ranked lists (one for each sample, pool1-pool18) were merged into 

a single dataset. A unique name was attributed to each sgRNA in a given sample (e.g. 

sgRNA1_pool1; sgRNA1_pool2, etc…). This unique name was used in order to create the 

“gene-set”, which included all the sgRNA targeting a given gene in all the samples. For 

example, in this particular experiment, having 5 sgRNA per each gene and 18 different 

samples, each gene-set had a size of 5*18=90. The phenotype-GSEA was finally performed 

by exploiting the GSEA v4.1.0 java application, using the GSEApreranked tool and using 

as “gene-set database” a file containing all the sgRNA defined gene-sets and as “ranked list” 

the merged ranked list of sgRNAs in all samples. As for non-targeting sgRNAs, given that 

their number was vastly exceeding that of targeting sgRNAs (i.e. 236 NTC vs 5 TC), we 

created 47 random subsets of NTCs of size 5. Having multiple gene-sets corresponding to 

negative controls allowed us to empirically measure the FDR, by counting the number of 

NTC sets that were considered at varying thresholds of the NES and of the FDR calculated 

within the GSEA framework. 

 

 

In vivo screening   

 

Intra-nipple injection  
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For the in vivo screening we injected NSG mice (NOD-scid IL2Rgammanull). The final set 

of 22 tumors is the result of three independent injections performed with LNC1-P0 cells 

which were thawed from identical cryovials. Cells were cultured for one passage after 

thawing and then dCas9-KRAB was induced with 100 ng/mL doxycycline in 2D for 72h. 

The day of the injection cells were harvested and counted. 500000 cells per mouse were then 

resuspended in 14 μL of PBS and mixed with 7 μL of Matrigel.  Mice were anesthetized 

with Avertin and prepared for injection that occurred in the 4th nipple with a Hamilton 

syringe. The tumor development was monitored by frequent caliper measurements.  

 

Tissue harvest and dissociation  

 

Mice were euthanized with CO2 when the tumor reached the approximate diameter of 1-1.2 

cm. The solid tissue was rinsed with PBS, minced with a scalpel, and dissociated in digestion 

mix (DMEM+F12 1:1, supplemented with collagenase, hyaluronidase, 5 μg ml-1 insulin, 10 

mM Hepes, 1 μg/mL hydrocortisone) for 2h on a rotating wheel at 37°c. Following a wash 

with base medium (DMEM:F12, 5 μg ml-1 insulin, 10 mM Hepes, 1 μg/mL hydrocortisone), 

cell suspension was consecutively passed through 100, 70 and 40 μm filters to remove any 

undigested tissue. Primary tumor cells were treated with ACK lysis buffer (Lonza) followed 

by resuspension in 1% BSA/PBS and processed using the Mouse Cell depletion kit 

(Miltenyi).  

 

Processing of tumor samples  

 

We obtained different numbers of cells and gDNA from each tumor (see table below). PCR 

were performed taking into consideration the quantity of gDNA (i.e., when we eluted >5 μg 

of gDNA we produced technical replicates, when we eluted less than 5 μg of gDNA we 

optimized the PCR cycles to obtain similarly intense PCR products (e.g., for mouse M3B, 

we extracted 5.97 μg of gDNA from 438000 cells. In the first round PCR we increased cycles 

from 8 to 12 and proceeded with 2nd round PCR as previously described). 

 

Data Analysis 

 

We obtained successful gDNA libraries from 24 out of 29 injected animals. We assessed 

the complexity of each tumor by normalizing sgRNA reads as copies-per-million and then 

counting the number of sgRNA detected at different CPM thresholds (>10, >100, >1000). 
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Mice M3C and M3H3 were excluded from the analysis since they behaved as outliers in 

the cumulative distribution of the sgRNAs. 

As for the phenotype-GSEA analysis, it was performed from raw counts, similarly as 

described for the Paclitaxel screening (see above). 

 

 

4.8 Competition Assays 
 

 

2D competition  
 

SUM-dCas9-KRAB cells were infected with a modified version of the Cellecta pRGScribe1, 

in which the tagRFP cassette was substituted with a EGFP cassette by Gibson cloning.  

We separately thawed and amplified RFP+ cells (sgTEST) and GFP+ cells (NT221 control). 

Cells were counted and mixed in equal ratios. Relative proportion of RFP and GFP+ cells 

were measured by FACS to define starting proportions. Cells were seeded in 6W plates, 

100000 cells/well and split regularly. Proportions of RFP+ and GFP+ cells were monitored 

by FACS and EVOS at 10 days (P3), 17 days (P6), 24 days (P9).  

 

3D competition  
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RFP+ (sgTEST) and GFP+ (NT221 control) were separately treated with 100 ng/mL 

doxycycline for 72h. Then cells were mixed in equal ratios and plated in 10 cm polyhema 

dishes for FACS analysis and replating at the density of 10000 cells/mL. Cells were also 

seeded in 24W plates for imaging (6000 cells/mL). For each condition and timepoint, 12 

well were seeded. Initial proportion of RFP/GFP cells was acquired by FACS. 

Mammosphere were allowed to grow for 7 days. Spheroids from the 10 cm dishes were 

recovered and dissociated for replating (F2), 24W dishes were used for imaging. 3D 

culturing conditions and F2 propagation performed according to the protocol above. 

24 well dishes were acquired by fluorescence widefield microscope (Thunder, Leica) and 

representative images of each condition were acquired at 10x magnification.  

 

Paclitaxel competition  

 

RFP+ (sgTEST) and GFP+ (NT221 control) were separately treated with 100 ng/mL 

doxycycline for 72h, cells were then mixed and seeded in 10 cm dishes (2x106 cells) and 6W 

(250000 cells/well). For each condition 2x10 cm and 6 wells were seeded. Proportion of 

RFP and GFP+ cells were acquired by FACS. The day after seeding, cells were treated with 

50 nM Paclitaxel for 72h. At day 12, colonies in MW6 plates were acquired by fluorescence 

widefield microscope (Thunder, Leica) while colonies in 10 cm dishes were detached and 

replated in 6 wells separately from the two dishes to allow technical replicate for subsequent 

FACS analysis (48h later).  

 

4.9. Cell viability analysis (IC50 estimation)  
 

Cells were plated in 96-well plate, treated with paclitaxel (1000 nM, 100 nM, 10 nM, 1 nM, 

0.1 nM) and analysed 72 hours later by measuring drugs sensitivity with ADP-GloTM Max 

Assay (promega, V7001) following the manufacturers‘ instructions. Luminescence was read 

using a luminometer and correlated to ADP concentrations by using an ATP- to-ADP 

conversion curve. Measurement of absorbance was plotted against drug concentration in a 

logistic regression curve. The inflection point of the curve was used to calculate the IC50 

value. 

 

 

4.10 Cell fractionation  
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This protocol was adapted from (Bhatt et al., 2012). Cells were initially harvested by 

removing the cell culture medium, washed once with PBS 1X and dissociated from the 

plates with Trypsin-EDTA solution. After detachment, cells were resuspended in culture 

medium and centrifuged at 1400 rpm for 5 min at 4°C. Cell pellets were then washed once 

with PBS 1X and resuspended with 1 volume of cytoplasmic lysis buffer. Samples were 

incubated on ice for 10 minutes and then laid on top of a chilled sucrose cushion (24% 

w/v sucrose dissolved in cytoplasmic lysis buffer without NP-40). Afterwards, samples 

were centrifuged at 13.000 rpm for 10 minutes at 4°C and the supernatants containing the 

cytoplasmic fractions were collected on fresh Eppendorf tubes. A 10% aliquot of the 

cytoplasmic fractions was taken for subsequent protein analysis. The nuclei pellets were 

then resuspended in cold glycerol buffer followed by the addition of cold nuclei lysis 

buffer. The samples were vortexed, incubated on ice for 1 minute and centrifuged at 

13.000 rpm for 2 minutes at 4°C. Afterwards, the supernatants containing the nuclear 

fractions were collected in fresh Eppendorf tubes and 10% of nuclear extracts was taken 

for subsequent protein analysis. Finally, the resulting pellets were resuspended in 1 

volume of cold PBS pipetting up and down. In this case, 10% of the solutions was taken 

for protein analysis.  The other 90% of the resuspended chromatin pellets were prepared 

for RNA analysis and eventually RNA sequencing. At least one volume of TRIzolTM LS 

reagent (ThermoFisher Scientific) was added to the samples and the RNAs extracted 

according to the RNA extraction protocol above.  

Buffers:  
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4.11 Sequencing  
 

NET-Cage  

Library preparation and sequencing were performed in the lab of Yasuhiro Murakawa and 

peaks were called according to the published pipeline (Hirabayashi et al., 2019). 

 

 

Bulk RNA-seq – Illumina (Cell fractionation and Models sequencing)  

Libraries were generated according to TruSeq® Stranded Total RNA Sample Preparation 

Guide (Illumina), quantified by Qubit™ 2.0 Fluorometer (Invitrogen) and validated by 

High Sensitivity DNA Assay (2100 Bioanalyzer Instrument, Agilent), verifying samples 

goodness in terms of concentration and length of the fragments. RNA-sequencing 

(RNAseq) was performed on an Illumina HiSeq 2000 at 50 bp single-read mode with a 

depth of 30 million reads. Reads were then aligned to the gh38 human reference genome 

and differentially expressed genes identified using the Bioconductor package DESeq2 

(Love et al., 2014). In order to stratify primary tumors according to the activity of “adaptive 

response pathways” we calculated a score for each signature that we considered. First, we 

downloaded the list of genes from Hallmark GSEA gene-sets.  The “partial-EMT” set was 

derived from Puram et al. (Cell 2017), while the “stem” set was obtained from Lawson DA 

et al. (Nature 2015). Gene expression was transformed in a Z-score matrix and a score was 

obtained based on the sum of the Z-scores of the genes in each signature. Of note, the 

biological role of individual genes was considered whenever possible: the Z-score of 

positive regulators (e.g. EMT: CDH2, ZEB1, SLUG, etc…) was kept unchanged, while the 

sign of Z-score of negative regulators was changed (e.g. EMT: CDH1, EPCAM, etc…).  

 

Bulk RNA-seq Quant-Seq Lexogen (CRISPRi KD) 
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RNA-seq libraries were prepared according to manufacturer’s protocol. Endpoint PCR was 

exploited to precisely determine cycles for library amplification. Samples were sequenced 

on Novaseq 6000 at 50 bp pair-end. Differentially expressed genes were called according to 

Bluebee pipeline.  

 

scRNA-seq  

2000 cells for each condition (3 separate sgRNAs for CTRL, STAT3 KD and Linc-01605 

KD), for a total of nine samples and 18000 cells, were subjected to the 10X Single Cell 

Protocol for transcriptome determination through droplet-based single-cell RNA-seq 

methodology (10X Genomics Chromium). Cells were separated into droplet emulsion using 

the Chromium Single Cell 3’ Solution (V3.1) and Single-cell RNA-seq libraries were 

prepared according to the Single Cell 3' Reagent Kits User Guide (V3.1). Libraries were 

sequenced on a Novaseq 6000 flowcell (Illumina), with a minimum depth of 50K reads/cell.  

FASTQ reads were aligned, filtered and counted through the Cell Ranger pipeline (v4.0). 

using standard parameters. In order to specifically enrich for the sgRNA expressed by each 

cell population we amplified by PCR the sgRNA cassette from the library cDNA, following 

the protocol provided by Cellecta as follows: 

1. Split in half the adaptor-ligated cDNA products generated after the adaptor ligation 

step.  

2. Use the one half of the adaptor-ligated reaction to amplify cDNA with the P5 and 

P7 indexed primers following the standard scRNA protocol.  

3. Use the other half of the adaptor-ligated cDNA to amplify only the CloneTracker 

barcoded cDNA product. Use the CloneTracker P7-Index-Adapter-FBP1 primer 

sequence in combination with the P5-Read1 primer. Run the same number of 

cycles as for the standard cDNA reaction, plus an additional 4 cycles. The 4 

additional PCR cycles will increase the yield of the CloneTracker barcoded cDNA 

sequences to approximately 16-fold higher levels than other transcripts in the 

scRNA reaction.  

P7 i7 index Adapter 5’-

CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGA

CGTGTGCTC  

 

Addendum  

 
lncRNAs target (LNC-library) 
 

GENE NAME ENSG stable ID Model of selection 

ABCA9-AS1 ENSG00000231749 SHARED 

AC000403.1 ENSG00000278727 ADAPTIVE 
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AC002398.1 ENSG00000267049 PACLI 

AC002401.4 ENSG00000276851 SHARED 

AC003092.1 ENSG00000236453 SHARED 

AC003092.2 ENSG00000236938 PACLI 

AC004585.1 ENSG00000266088 SHARED 

AC004812.2 ENSG00000277283 ADAPTIVE 

AC004817.3 ENSG00000269927 SHARED 

AC004825.2 ENSG00000274818 ADAPTIVE 

AC004982.1 ENSG00000272732 PACLI 

AC005046.1 ENSG00000273055 SHARED 

AC005224.3 ENSG00000266709 SHARED 

AC005280.1 ENSG00000251393 PACLI 

AC005332.1 ENSG00000265100 PACLI 

AC005381.1 ENSG00000267243 ADAPTIVE 

AC005387.2 ENSG00000269191 PACLI 

AC005476.2 ENSG00000259146 PACLI 

AC005498.3 ENSG00000269696 PACLI 

AC005534.1 ENSG00000224903 PACLI 

AC005840.3 ENSG00000256433 PACLI 

AC005899.8 ENSG00000279762 single cell DEGs 

AC006017.1 ENSG00000229591 PACLI 

AC006058.1 ENSG00000261786 ADAPTIVE 

AC006058.3 ENSG00000272121 ADAPTIVE 

AC006159.1 ENSG00000235427 PACLI 

AC006333.2 ENSG00000272686 PACLI 

AC006538.2 ENSG00000261342 ADAPTIVE 

AC007064.2 ENSG00000237689 PACLI 

AC007278.2 ENSG00000236525 PACLI 

AC007389.5 ENSG00000281920 ADAPTIVE 

AC007405.3 ENSG00000239467 ADAPTIVE 

AC007773.1 ENSG00000267213 SHARED 

AC007849.1 ENSG00000242795 ADAPTIVE 

AC007952.4 ENSG00000262202 PACLI 

AC008014.1 ENSG00000257261 PACLI 

AC008063.2 ENSG00000233397 ADAPTIVE 

AC008115.3 ENSG00000275560 PACLI 

AC008147.2 ENSG00000257298 ADAPTIVE 

AC008267.5 ENSG00000237310 single cell DEGs 

AC008632.1 ENSG00000253141 PACLI 

AC008708.2 ENSG00000254187 SHARED 

AC008937.1 ENSG00000225230 PACLI 

AC009021.1 ENSG00000260905 PACLI 

AC009053.3 ENSG00000261170 PACLI 

AC009093.6 ENSG00000277999 SHARED 

AC009152.1 ENSG00000275927 ADAPTIVE 

AC009171.2 ENSG00000263105 PACLI 
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AC009269.2 ENSG00000259532 PACLI 

AC009509.4 ENSG00000276261 ADAPTIVE 

AC009549.1 ENSG00000270607 ADAPTIVE 

AC010173.1 ENSG00000258101 PACLI 

AC010327.4 ENSG00000267577 ADAPTIVE 

AC010420.1 ENSG00000251206 SHARED 

AC010618.4 ENSG00000269439 single cell DEGs 

AC010768.1 ENSG00000254693 PACLI 

AC010884.1 ENSG00000224509 PACLI 

AC010967.1 ENSG00000228033 ADAPTIVE 

AC011468.1 ENSG00000260160 PACLI 

AC012213.4 ENSG00000271830 ADAPTIVE 

AC012462.3 ENSG00000230695 SHARED 

AC012640.2 ENSG00000259802 PACLI 

AC013400.1 ENSG00000271991 SHARED 

AC015912.3 ENSG00000274213 SHARED 

AC015967.1 ENSG00000274400 CD44 

AC015987.1 ENSG00000224746 CD44 

AC016394.1 ENSG00000227540 single cell DEGs 

AC016596.1 ENSG00000227908 PACLI 

AC016924.1 ENSG00000250934 ADAPTIVE 

AC016999.1 ENSG00000229915 PACLI 

AC018647.1 ENSG00000227544 PACLI 

AC018845.3 ENSG00000261173 PACLI 

AC019117.2 ENSG00000236318 PACLI 

AC019186.1 ENSG00000234584 PACLI 

AC019205.1 ENSG00000229852 ADAPTIVE 

AC019209.3 ENSG00000256686 PACLI 

AC020611.2 ENSG00000255886 PACLI 

AC020910.4 ENSG00000274104 PACLI 

AC020916.1 ENSG00000267519 PACLI 

AC020978.4 ENSG00000261469 PACLI 

AC022537.1 ENSG00000231132 PACLI 

AC022613.2 ENSG00000259523 PACLI 

AC023421.2 ENSG00000267193 PACLI 

AC023509.3 ENSG00000270175 PACLI 

AC023830.3 ENSG00000278434 ADAPTIVE 

AC023906.5 ENSG00000259712 PACLI 

AC024230.1 ENSG00000248515 PACLI 

AC024243.1 ENSG00000272969 ADAPTIVE 

AC024909.1 ENSG00000274021 SHARED 

AC025031.1 ENSG00000257496 PACLI 

AC025031.4 ENSG00000275481 PACLI 

AC025048.2 ENSG00000267248 ADAPTIVE 

AC025181.2 ENSG00000272086 single cell DEGs 

AC025822.2 ENSG00000236990 PACLI 
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AC026124.1 ENSG00000250280 ADAPTIVE 

AC026202.2 ENSG00000233912 PACLI 

AC026401.3 ENSG00000280206 PACLI 

AC026979.2 ENSG00000271869 PACLI 

AC027097.2 ENSG00000267787 single cell DEGs 

AC027335.1 ENSG00000250001 ADAPTIVE 

AC034213.1 ENSG00000250509 single cell DEGs 

AC034223.2 ENSG00000251281 SHARED 

AC037198.1 ENSG00000276107 PACLI 

AC044781.1 ENSG00000229751 PACLI 

AC055736.1 ENSG00000257500 SHARED 

AC064801.1 ENSG00000278017 single cell DEGs 

AC064875.1 ENSG00000225649 ADAPTIVE 

AC068057.1 ENSG00000228528 ADAPTIVE 

AC068594.1 ENSG00000263718 PACLI 

AC068672.2 ENSG00000253377 PACLI 

AC068672.3 ENSG00000254095 PACLI 

AC068831.6 ENSG00000278514 ADAPTIVE 

AC069544.1 ENSG00000272853 PACLI 

AC073050.1 ENSG00000228222 PACLI 

AC073072.1 ENSG00000179428 SHARED 

AC073263.2 ENSG00000279070 SHARED 

AC073365.1 ENSG00000223812 single cell DEGs 

AC073591.1 ENSG00000257835 ADAPTIVE 

AC074351.1 ENSG00000234707 PACLI 

AC079298.1 ENSG00000278981 ADAPTIVE 

AC079949.1 ENSG00000256001 PACLI 

AC079949.2 ENSG00000278266 PACLI 

AC087257.1 ENSG00000248100 PACLI 

AC087623.3 ENSG00000272159 CD44 

AC087721.1 ENSG00000259396 PACLI 

AC089983.1 ENSG00000257732 single cell DEGs 

AC090023.2 ENSG00000256915 ADAPTIVE 

AC090152.1 ENSG00000167912 ADAPTIVE 

AC090200.1 ENSG00000254357 PACLI 

AC090220.1 ENSG00000266965 PACLI 

AC090409.1 ENSG00000267279 SHARED 

AC090559.1 ENSG00000255197 ADAPTIVE 

AC090673.1 ENSG00000256083 SHARED 

AC090825.1 ENSG00000259363 ADAPTIVE 

AC091173.1 ENSG00000251127 PACLI 

AC091182.2 ENSG00000253746 SHARED 

AC091564.6 ENSG00000255680 ADAPTIVE 

AC091588.1 ENSG00000264012 PACLI 

AC091729.3 ENSG00000229043 single cell DEGs 

AC091946.1 ENSG00000253766 PACLI 
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AC092117.1 ENSG00000276791 PACLI 

AC092168.2 ENSG00000232034 PACLI 

AC092614.1 ENSG00000227542 SHARED 

AC092718.1 ENSG00000245059 PACLI 

AC092807.3 ENSG00000282057 ADAPTIVE 

AC092910.3 ENSG00000242622 PACLI 

AC093157.1 ENSG00000233184 single cell DEGs 

AC093388.1 ENSG00000272979 PACLI 

AC093495.1 ENSG00000228242 PACLI 

AC093583.1 ENSG00000242048 PACLI 

AC093677.2 ENSG00000269559 SHARED 

AC093730.1 ENSG00000250775 PACLI 

AC093791.1 ENSG00000250038 ADAPTIVE 

AC093797.1 ENSG00000233110 PACLI 

AC096564.1 ENSG00000245293 PACLI 

AC096708.3 ENSG00000273584 CD44 

AC096733.2 ENSG00000273472 SHARED 

AC096921.2 ENSG00000261468 PACLI 

AC097451.1 ENSG00000250657 ADAPTIVE 

AC097480.1 ENSG00000250064 ADAPTIVE 

AC097634.1 ENSG00000270562 PACLI 

AC098818.2 ENSG00000260278 SHARED 

AC099066.2 ENSG00000227496 ADAPTIVE 

AC099506.1 ENSG00000260862 SHARED 

AC099518.6 ENSG00000278389 PACLI 

AC099684.2 ENSG00000262445 SHARED 

AC099753.1 ENSG00000282987 PACLI 

AC099778.1 ENSG00000260236 PACLI 

AC100786.1 ENSG00000246731 SHARED 

AC100810.3 ENSG00000282021 SHARED 

AC100858.3 ENSG00000255491 SHARED 

AC103591.3 ENSG00000273338 PACLI 

AC103706.1 ENSG00000261220 PACLI 

AC104461.1 ENSG00000230623 PACLI 

AC104779.1 ENSG00000249304 PACLI 

AC104827.1 ENSG00000250062 SHARED 

AC104971.1 ENSG00000267226 ADAPTIVE 

AC105137.2 ENSG00000276744 PACLI 

AC105206.1 ENSG00000177725 ADAPTIVE 

AC105277.1 ENSG00000232453 PACLI 

AC105389.2 ENSG00000249216 PACLI 

AC105411.1 ENSG00000259867 ADAPTIVE 

AC105935.1 ENSG00000228008 PACLI 

AC106772.1 ENSG00000249650 SHARED 

AC107029.2 ENSG00000244464 SHARED 

AC108136.1 ENSG00000255325 ADAPTIVE 
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AC108142.1 ENSG00000248266 SHARED 

AC109492.1 ENSG00000249061 PACLI 

AC109587.1 ENSG00000244513 PACLI 

AC110995.1 ENSG00000236120 ADAPTIVE 

AC112206.2 ENSG00000249364 PACLI 

AC112721.1 ENSG00000222022 SHARED 

AC112721.2 ENSG00000222032 CD44 

AC113192.2 ENSG00000255133 ADAPTIVE 

AC113346.1 ENSG00000251144 SHARED 

AC113383.1 ENSG00000250320 ADAPTIVE 

AC114284.1 ENSG00000248927 SHARED 

AC114341.1 ENSG00000278075 PACLI 

AC114760.2 ENSG00000272211 PACLI 

AC114763.2 ENSG00000230569 PACLI 

AC116366.2 ENSG00000238160 PACLI 

AC117422.1 ENSG00000248607 PACLI 

AC119674.1 ENSG00000260971 PACLI 

AC120024.1 ENSG00000260369 PACLI 

AC120049.1 ENSG00000267414 ADAPTIVE 

AC124276.2 ENSG00000255400 ADAPTIVE 

AC124798.1 ENSG00000260196 ADAPTIVE 

AC128709.3 ENSG00000237167 CD44 

AC129507.4 ENSG00000262920 PACLI 

AC131254.1 ENSG00000248964 SHARED 

AC132192.2 ENSG00000268403 PACLI 

AC135803.1 ENSG00000272864 ADAPTIVE 

AC138331.1 ENSG00000258066 ADAPTIVE 

AC144652.1 ENSG00000273117 PACLI 

AC234772.2 ENSG00000269902 PACLI 

AC239868.1 ENSG00000264207 PACLI 

AC242426.2 ENSG00000237188 ADAPTIVE 

AC244153.1 ENSG00000276170 SHARED 

AC245014.3 ENSG00000276216 PACLI 

AC245128.1 ENSG00000215765 PACLI 

AC245128.3 ENSG00000268734 PACLI 

AC245595.1 ENSG00000232527 single cell DEGs 

ADAMTSL4-AS1 ENSG00000203804 PACLI 

AF001548.2 ENSG00000263335 single cell DEGs 

AF117829.1 ENSG00000251136 single cell DEGs 

AF165147.1 ENSG00000232855 ADAPTIVE 

AF250324.1 ENSG00000272566 CD44 

AFAP1-AS1 ENSG00000272620 LITERATURE 

AGAP2-AS1 ENSG00000255737 ADAPTIVE 

AGBL1-AS1 ENSG00000260125 ADAPTIVE 

AL008726.1 ENSG00000271984 ADAPTIVE 

AL021393.1 ENSG00000226772 SHARED 
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AL021578.1 ENSG00000275894 PACLI 

AL022068.1 ENSG00000228412 PACLI 

AL023806.1 ENSG00000270638 SHARED 

AL024507.2 ENSG00000272476 ADAPTIVE 

AL031283.1 ENSG00000228140 PACLI 

AL031283.2 ENSG00000233485 PACLI 

AL031666.2 ENSG00000267882 PACLI 

AL031728.1 ENSG00000231105 PACLI 

AL031985.3 ENSG00000260920 PACLI 

AL033504.1 ENSG00000227681 ADAPTIVE 

AL033527.2 ENSG00000236546 ADAPTIVE 

AL035665.1 ENSG00000229771 PACLI 

AL049775.1 ENSG00000205562 ADAPTIVE 

AL079301.1 ENSG00000230922 PACLI 

AL096865.1 ENSG00000271857 PACLI 

AL109763.1 ENSG00000228708 PACLI 

AL117190.1 ENSG00000258399 SHARED 

AL118558.3 ENSG00000271780 PACLI 

AL121603.2 ENSG00000258738 single cell DEGs 

AL121672.3 ENSG00000273289 PACLI 

AL121772.1 ENSG00000274414 PACLI 

AL121821.1 ENSG00000258636 ADAPTIVE 

AL121972.1 ENSG00000229862 SHARED 

AL133415.1 ENSG00000234961 SHARED 

AL136146.2 ENSG00000255256 PACLI 

AL138689.1 ENSG00000274204 PACLI 

AL138789.1 ENSG00000233589 single cell DEGs 

AL138900.2 ENSG00000271736 PACLI 

AL138999.1 ENSG00000277386 CD44 

AL139220.2 ENSG00000230615 CD44 

AL157392.1 ENSG00000225112 SHARED 

AL157394.1 ENSG00000261438 SHARED 

AL157834.2 ENSG00000234026 PACLI 

AL158206.1 ENSG00000260912 ADAPTIVE 

AL160408.1 ENSG00000228044 SHARED 

AL160408.4 ENSG00000241475 SHARED 

AL161421.1 ENSG00000275202 PACLI 

AL161431.1 ENSG00000275216 SHARED 

AL162411.1 ENSG00000236924 ADAPTIVE 

AL162727.1 ENSG00000233817 SHARED 

AL353708.1 ENSG00000260360 PACLI 

AL353708.3 ENSG00000272906 PACLI 

AL353719.1 ENSG00000260475 SHARED 

AL354694.1 ENSG00000273056 PACLI 

AL355102.1 ENSG00000258412 ADAPTIVE 

AL355102.4 ENSG00000258793 ADAPTIVE 



 175 

AL355304.1 ENSG00000232618 ADAPTIVE 

AL355512.1 ENSG00000273143 ADAPTIVE 

AL355601.1 ENSG00000234692 ADAPTIVE 

AL355607.2 ENSG00000260454 SHARED 

AL355916.2 ENSG00000258926 PACLI 

AL356124.1 ENSG00000226149 PACLI 

AL356489.2 ENSG00000260947 ADAPTIVE 

AL357054.4 ENSG00000272463 PACLI 

AL357060.1 ENSG00000237499 SHARED 

AL357146.1 ENSG00000236013 SHARED 

AL358472.4 ENSG00000282386 PACLI 

AL359091.5 ENSG00000273186 PACLI 

AL359182.1 ENSG00000226334 ADAPTIVE 

AL359220.1 ENSG00000247287 PACLI 

AL359504.2 ENSG00000271576 ADAPTIVE 

AL390755.1 ENSG00000275830 ADAPTIVE 

AL391097.1 ENSG00000223492 PACLI 

AL445250.1 ENSG00000225096 SHARED 

AL445645.1 ENSG00000224992 PACLI 

AL450306.1 ENSG00000228748 PACLI 

AL450998.2 ENSG00000179743 PACLI 

AL451042.2 ENSG00000227959 PACLI 

AL513323.1 ENSG00000228560 SHARED 

AL513327.2 ENSG00000233246 PACLI 

AL513412.1 ENSG00000224972 PACLI 

AL589986.2 ENSG00000236427 ADAPTIVE 

AL590004.3 ENSG00000260604 CD44 

AL590428.1 ENSG00000231652 SHARED 

AL590617.2 ENSG00000225177 PACLI 

AL590705.1 ENSG00000203279 SHARED 

AL592430.1 ENSG00000232682 PACLI 

AL596244.1 ENSG00000261534 ADAPTIVE 

AL606469.1 ENSG00000224215 ADAPTIVE 

AL606760.1 ENSG00000226754 PACLI 

AL645608.7 ENSG00000272512 PACLI 

AL645608.8 ENSG00000273443 PACLI 

AL663074.1 ENSG00000233069 SHARED 

AL691403.2 ENSG00000273565 PACLI 

AL807761.4 ENSG00000230782 PACLI 

AP000442.1 ENSG00000255008 PACLI 

AP000692.2 ENSG00000273199 SHARED 

AP000695.1 ENSG00000230479 ADAPTIVE 

AP000755.1 ENSG00000255015 ADAPTIVE 

AP001042.1 ENSG00000205622 ADAPTIVE 

AP001542.3 ENSG00000267480 PACLI 

AP001970.1 ENSG00000254710 SHARED 
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AP002026.1 ENSG00000246090 ADAPTIVE 

AP002075.1 ENSG00000251309 PACLI 

AP002478.1 ENSG00000266401 PACLI 

AP002748.3 ENSG00000255517 single cell DEGs 

AP002884.1 ENSG00000250303 ADAPTIVE 

AP005230.1 ENSG00000263745 PACLI 

AP005436.1 ENSG00000255102 ADAPTIVE 

AP006248.4 ENSG00000279932 PACLI 

APCDD1L-DT ENSG00000231290 SHARED 

ARLNC1 ENSG00000260896 PACLI 

ASAP1-IT2 ENSG00000280543 ADAPTIVE 

ATP2B1-AS1 ENSG00000271614 PACLI 

ATXN2-AS ENSG00000258099 PACLI 

AZIN1-AS1 ENSG00000253320 PACLI 

BACH1-IT3 ENSG00000234293 ADAPTIVE 

BCYRN1 ENSG00000236824 LITERATURE 

BNC2-AS1 ENSG00000234779 ADAPTIVE 

BX571846.1 ENSG00000225393 PACLI 

C1QTNF1-AS1 ENSG00000265096 SHARED 

C8orf49 ENSG00000255394 PACLI 

C20orf197 ENSG00000176659 SHARED 

CADM3-AS1 ENSG00000225670 PACLI 

CAHM ENSG00000270419 PACLI 

CALML3-AS1 ENSG00000205488 ADAPTIVE 

CASC9 ENSG00000249395 LITERATURE 

CASC19 ENSG00000254166 PACLI 

CD44-AS1 ENSG00000255443 PACLI 

CDKN2B-AS1 ENSG00000240498 LITERATURE 

CFLAR-AS1 ENSG00000226312 PACLI 

CKMT2-AS1 ENSG00000247572 single cell DEGs 

CLDND1 ENSG00000080822 LITERATURE 

CLYBL-AS1 ENSG00000234303 PACLI 

CPNE8-AS1 ENSG00000257718 ADAPTIVE 

CPSF6 ENSG00000111605 LITERATURE 

CRIM1-DT ENSG00000279215 ADAPTIVE 

CRNDE ENSG00000245694 single cell DEGs 

CT70 ENSG00000230013 SHARED 

CYTOR ENSG00000222041 LITERATURE 

DANCR ENSG00000226950 LITERATURE 

DEPDC1-AS1 ENSG00000234264 ADAPTIVE 

DLG5-AS1 ENSG00000282770 ADAPTIVE 

DNM3OS ENSG00000230630 SHARED 

DPYD-AS2 ENSG00000235777 PACLI 

DSCAM-AS1 ENSG00000235123 ADAPTIVE 

DSCAM-IT1 ENSG00000233756 ADAPTIVE 

EFNA3 ENSG00000143590 PACLI 
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EGOT ENSG00000235947 CD44 

ELOA-AS1 ENSG00000236810 single cell DEGs 

EPB41L4A-AS1 ENSG00000224032 single cell DEGs 

ERVK-28 ENSG00000267696 PACLI 

FALEC ENSG00000228126 LITERATURE 

FAM83C-AS1 ENSG00000235214 SHARED 

FAM87A ENSG00000182366 ADAPTIVE 

FGD5-AS1 ENSG00000225733 LITERATURE 

FLG-AS1 ENSG00000237975 ADAPTIVE 

FOXC2-AS1 ENSG00000260944 SHARED 

FOXD3-AS1 ENSG00000230798 PACLI 

FOXG1-AS1 ENSG00000257126 SHARED 

FOXP1-IT1 ENSG00000242094 PACLI 

FRMD6-AS2 ENSG00000258537 SHARED 

FTX ENSG00000230590 LITERATURE 

GABPB1-AS1 ENSG00000244879 single cell DEGs 

GASAL1 ENSG00000253669 PACLI 

GHET1 ENSG00000281189 LITERATURE 

GHRLOS ENSG00000240288 PACLI 

GIHCG ENSG00000262349 ADAPTIVE 

GORAB-AS1 ENSG00000231407 SHARED 

H19 ENSG00000130600 SHARED 

HAS2-AS1 ENSG00000248690 SHARED 

HCG18 ENSG00000228894 LITERATURE 

HHIP-AS1 ENSG00000248890 SHARED 

HMGA2-AS1 ENSG00000197301 SHARED 

HOMER3-AS1 ENSG00000269019 ADAPTIVE 

HOTAIRM1 ENSG00000233429 single cell DEGs 

HOXC-AS3 ENSG00000251151 PACLI 

HSD11B1-AS1 ENSG00000227591 SHARED 

IDH1-AS1 ENSG00000231908 PACLI 

IDI2-AS1 ENSG00000232656 PACLI 

IER3-AS1 ENSG00000272273 SHARED 

IGF2BP2-AS1 ENSG00000163915 single cell DEGs 

IGFL2-AS1 ENSG00000268621 PACLI 

IQCJ-SCHIP1-AS1 ENSG00000241211 PACLI 

ITGB1-DT ENSG00000229656 ADAPTIVE 

ITPRIP-AS1 ENSG00000228261 PACLI 

KAZN-AS1 ENSG00000234593 SHARED 

KCNQ1OT1 ENSG00000269821 LITERATURE 

KDM4A-AS1 ENSG00000236200 PACLI 

KMT2E-AS1 ENSG00000239569 PACLI 

LINC00163 ENSG00000234880 ADAPTIVE 

LINC00167 ENSG00000233220 PACLI 

LINC00242 ENSG00000280868 ADAPTIVE 

LINC00294 ENSG00000280798 ADAPTIVE 
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LINC00339 ENSG00000218510 single cell DEGs 

LINC00346 ENSG00000255874 PACLI 

LINC00442 ENSG00000232685 PACLI 

LINC00460 ENSG00000233532 PACLI 

LINC00476 ENSG00000175611 SHARED 

LINC00518 ENSG00000183674 LITERATURE 

LINC00520 ENSG00000258791 ADAPTIVE 

LINC00525 ENSG00000146666 CD44 

LINC00574 ENSG00000281305 LITERATURE 

LINC00589 ENSG00000251191 CD44 

LINC00632 ENSG00000203930 ADAPTIVE 

LINC00649 ENSG00000237945 SHARED 

LINC00662 ENSG00000261824 single cell DEGs 

LINC00667 ENSG00000263753 single cell DEGs 

LINC00698 ENSG00000244342 SHARED 

LINC00702 ENSG00000233117 ADAPTIVE 

LINC00703 ENSG00000224382 CD44 

LINC00707 ENSG00000238266 PACLI 

LINC00839 ENSG00000185904 ADAPTIVE 

LINC00877 ENSG00000241163 PACLI 

LINC00882 ENSG00000242759 PACLI 

LINC00911 ENSG00000259107 ADAPTIVE 

LINC00941 ENSG00000235884 SHARED 

LINC00960 ENSG00000242516 PACLI 

LINC00964 ENSG00000249816 PACLI 

LINC01003 ENSG00000261455 PACLI 

LINC01060 ENSG00000249378 ADAPTIVE 

LINC01094 ENSG00000251442 ADAPTIVE 

LINC01111 ENSG00000254300 PACLI 

LINC01116 ENSG00000163364 ADAPTIVE 

LINC01126 ENSG00000279873 PACLI 

LINC01127 ENSG00000281162 ADAPTIVE 

LINC01133 ENSG00000224259 single cell DEGs 

LINC01151 ENSG00000253819 ADAPTIVE 

LINC01179 ENSG00000249500 SHARED 

LINC01184 ENSG00000245937 single cell DEGs 

LINC01191 ENSG00000234199 CD44 

LINC01194 ENSG00000248131 ADAPTIVE 

LINC01202 ENSG00000280776 SHARED 

LINC01291 ENSG00000204792 single cell DEGs 

LINC01293 ENSG00000230836 ADAPTIVE 

LINC01303 ENSG00000250548 PACLI 

LINC01309 ENSG00000234551 PACLI 

LINC01318 ENSG00000237790 PACLI 

LINC01322 ENSG00000244128 ADAPTIVE 

LINC01336 N/A ADAPTIVE 
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LINC01340 ENSG00000250331 ADAPTIVE 

LINC01357 ENSG00000224167 ADAPTIVE 

LINC01444 ENSG00000264301 SHARED 

LINC01460 ENSG00000205334 PACLI 

LINC01465 ENSG00000221949 PACLI 

LINC01480 ENSG00000280540 ADAPTIVE 

LINC01503 ENSG00000233901 ADAPTIVE 

LINC01546 ENSG00000228459 ADAPTIVE 

LINC01550 ENSG00000246223 ADAPTIVE 

LINC01583 ENSG00000259518 SHARED 

LINC01588 ENSG00000214900 PACLI 

LINC01605 ENSG00000253161 SHARED 

LINC01615 ENSG00000223485 ADAPTIVE 

LINC01630 ENSG00000227115 ADAPTIVE 

LINC01657 ENSG00000224718 PACLI 

LINC01679 ENSG00000237989 ADAPTIVE 

LINC01698 ENSG00000231648 ADAPTIVE 

LINC01704 ENSG00000231666 ADAPTIVE 

LINC01705 ENSG00000232679 ADAPTIVE 

LINC01748 ENSG00000226476 PACLI 

LINC01806 ENSG00000227403 PACLI 

LINC01852 ENSG00000236914 PACLI 

LINC01912 ENSG00000264699 ADAPTIVE 

LINC01940 ENSG00000227744 PACLI 

LINC01998 ENSG00000243321 ADAPTIVE 

LINC02029 ENSG00000241544 PACLI 

LINC02056 ENSG00000248371 SHARED 

LINC02057 ENSG00000249279 SHARED 

LINC02084 ENSG00000272282 ADAPTIVE 

LINC02104 ENSG00000271334 SHARED 

LINC02120 ENSG00000248279 PACLI 

LINC02154 ENSG00000235385 ADAPTIVE 

LINC02158 ENSG00000225611 LITERATURE 

LINC02241 ENSG00000251629 PACLI 

LINC02265 ENSG00000249241 SHARED 

LINC02328 ENSG00000258733 ADAPTIVE 

LINC02341 ENSG00000283554 ADAPTIVE 

LINC02376 ENSG00000256292 PACLI 

LINC02434 ENSG00000248370 ADAPTIVE 

LINC02438 ENSG00000248238 SHARED 

LINC02454 ENSG00000256268 SHARED 

LINC02475 ENSG00000251350 PACLI 

LINC02535 ENSG00000234155 ADAPTIVE 

LINC02541 ENSG00000230943 ADAPTIVE 

LINC02551 ENSG00000254842 ADAPTIVE 

LINC02577 ENSG00000228742 PACLI 
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LINC02580 ENSG00000230587 ADAPTIVE 

LINC02584 ENSG00000254417 ADAPTIVE 

LINC02595 ENSG00000231566 PACLI 

LINC02657 ENSG00000242147 ADAPTIVE 

LINC02660 ENSG00000226005 ADAPTIVE 

LINC-ROR ENSG00000258609 LITERATURE 

LINP1 ENSG00000223784 SHARED 

LIVAR ENSG00000266304 PACLI 

LIX1-AS1 ENSG00000251513 ADAPTIVE 

LNCOG ENSG00000257219 ADAPTIVE 

LNCTAM34A ENSG00000234546 single cell DEGs 

LPP-AS2 ENSG00000270959 PACLI 

LRRC8C-DT ENSG00000231999 single cell DEGs 

LUCAT1 ENSG00000248323 LITERATURE 

LURAP1L-AS1 ENSG00000235448 single cell DEGs 

MAGI2-AS3 ENSG00000234456 ADAPTIVE 

MALAT1 ENSG00000251562 single cell DEGs 

MALINC1 ENSG00000245146 LITERATURE 

MAN1B1-DT ENSG00000268996 single cell DEGs 

MANCR ENSG00000231298 ADAPTIVE 

MAST4-AS1 ENSG00000229666 SHARED 

MEG3 ENSG00000214548 SHARED 

MEG8 ENSG00000225746 SHARED 

MEG9 ENSG00000223403 SHARED 

MIAT ENSG00000225783 CD44 

MIR100HG__122101684 ENSG00000255248 PACLI 

MIR100HG__122422858 ENSG00000255248 PACLI 

MIR137HG ENSG00000225206 ADAPTIVE 

MIR155HG ENSG00000234883 ADAPTIVE 

MIR222HG ENSG00000270069 PACLI 

MIR381HG ENSG00000258861 SHARED 

MIR503HG ENSG00000223749 ADAPTIVE 

MIR4435-2HG ENSG00000172965 LITERATURE 

MSC-AS1 ENSG00000235531 SHARED 

NEAT1 ENSG00000245532 single cell DEGs 

NECTIN3-AS1 ENSG00000242242 ADAPTIVE 

NKILA ENSG00000278709 ADAPTIVE 

NNT-AS1 ENSG00000248092 single cell DEGs 

NORAD ENSG00000260032 single cell DEGs 

NRSN2-AS1 ENSG00000225377 single cell DEGs 

NSMCE1-DT ENSG00000245888 PACLI 

NUP50-DT ENSG00000226328 single cell DEGs 

ODC1-DT ENSG00000257135 PACLI 

PANTR1 ENSG00000233639 PACLI 

PPP1R26-AS1 ENSG00000225361 PACLI 

PPP4R1-AS1 ENSG00000263627 PACLI 
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PRKCQ-AS1 ENSG00000237943 SHARED 

PSMB8-AS1 ENSG00000204261 PACLI 

PVT1 ENSG00000249859 LITERATURE 

RAP2C-AS1 ENSG00000232160 LITERATURE 

RASSF8-AS1 ENSG00000246695 ADAPTIVE 

RBMS3-AS2 ENSG00000203506 SHARED 

RGMB-AS1 ENSG00000246763 SHARED 

RNF139-AS1 ENSG00000245149 PACLI 

RP11-488P3.1 N/A ADAPTIVE 

SAMSN1-AS1 ENSG00000223662 PACLI 

SBF2-AS1 ENSG00000246273 single cell DEGs 

SCAT1 ENSG00000267123 PACLI 

SCAT8 ENSG00000236345 SHARED 

SENCR ENSG00000254703 ADAPTIVE 

SFTA1P ENSG00000225383 SHARED 

SH3PXD2A-AS1 ENSG00000280693 PACLI 

SH3RF3-AS1 ENSG00000259863 PACLI 

SIX3-AS1 ENSG00000236502 CD44 

SLC25A21-AS1 ENSG00000258708 single cell DEGs 

SLIT2-IT1 ENSG00000248228 SHARED 

SMILR ENSG00000255364 ADAPTIVE 

SNHG7 ENSG00000233016 single cell DEGs 

SNHG8 ENSG00000269893 single cell DEGs 

SNHG10 ENSG00000247092 LITERATURE 

SNHG12 ENSG00000197989 single cell DEGs 

SNHG14 ENSG00000224078 LITERATURE 

SNHG15 ENSG00000232956 single cell DEGs 

SNHG18 ENSG00000250786 SHARED 

SNHG19 ENSG00000260260 LITERATURE 

SNHG26 ENSG00000228649 ADAPTIVE 

SOX2 ENSG00000181449 LITERATURE 

STARD13-AS ENSG00000236581 PACLI 

STARD13-IT1 ENSG00000230300 PACLI 

STXBP5-AS1 ENSG00000233452 SHARED 

SUCLA2-AS1 ENSG00000227848 ADAPTIVE 

TARID ENSG00000227954 SHARED 

TBILA ENSG00000261488 single cell DEGs 

TENM3-AS1 ENSG00000177822 ADAPTIVE 

TFAP2A-AS1 ENSG00000229950 PACLI 

THAP9-AS1 ENSG00000251022 single cell DEGs 

TINCR ENSG00000223573 ADAPTIVE 

TMEM147-AS1 ENSG00000236144 single cell DEGs 

TMEM202-AS1 ENSG00000261423 PACLI 

TMPO-AS1 ENSG00000257167 ADAPTIVE 

TP73-AS1 ENSG00000227372 LITERATURE 

TRHDE-AS1 ENSG00000236333 SHARED 
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TTLL11-IT1 ENSG00000237548 ADAPTIVE 

TUG1 ENSG00000253352 LITERATURE 

UBA6-AS1 ENSG00000248049 single cell DEGs 

UBAC2-AS1 ENSG00000228889 PACLI 

UCA1 ENSG00000214049 LITERATURE 

USP2-AS1 ENSG00000245248 SHARED 

VIM-AS1 ENSG00000229124 PACLI 

VPS9D1-AS1 ENSG00000261373 single cell DEGs 

Z69733.1 ENSG00000234405 PACLI 

Z98885.3 ENSG00000279345 CD44 

Z99572.1 ENSG00000213062 PACLI 

ZEB1-AS1 ENSG00000237036 single cell DEGs 

ZEB2-AS1 ENSG00000238057 PACLI 

ZFAS1 ENSG00000177410 single cell DEGs 

ZFPM2-AS1 ENSG00000251003 PACLI 

ZNF32-AS2 ENSG00000230565 PACLI 

ZNF32-AS3 ENSG00000223910 PACLI 

ZNF295-AS1 ENSG00000237232 PACLI 

ZNF385D-AS1 ENSG00000225542 SHARED 

ZNF687-AS1 ENSG00000232671 PACLI 
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