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Motion analysis is used to study the functionality or dysfunctionality of the neuromuscular

system, as human movements are the direct outcome of neuromuscular control.

However, motion analysis often relies on measures that quantify simplified aspects

of a motion, such as specific joint angles, despite the well-known complexity of

segment interactions. In contrast, analyzing whole-body movement patterns may offer

a new understanding of movement coordination and movement performance. Clinical

research and sports technique evaluations suggest that principal component analysis

(PCA) provides novel and valuable insights into control aspects of the neuromuscular

system and how they relate to coordinative patterns. However, the implementation

of PCA computations are time consuming, and require mathematical knowledge and

programming skills, drastically limiting its application in current research. Therefore,

the aim of this study is to present the Matlab software tool “PManalyzer” to facilitate

and encourage the application of state-of-the-art PCA concepts in human movement

science. The generalized PCA concepts implemented in the PManalyzer allow users to

apply a variety of marker set independent PCA-variables on any kinematic data and

to visualize the results with customizable plots. In addition, the extracted movement

patterns can be explored with video options that may help testing hypotheses related to

the interplay of segments. Furthermore, the software can be easily modified and adapted

to any specific application.

Keywords: sensorimotor control, motion analysis, clinical gait analysis, postural control, coordination, principal

component analysis PCA

INTRODUCTION

Sensorimotor control of movements is one of the most important functions of the nervous system.
It involves detecting the physical state which the biomechanical system is in; processing this
information to determine which changes to the system are desired or need to be opposed; and
activating the motor system to generate the forces that produce the required changes to the system.
From a biophysical viewpoint, the state of the biomechanical system is fully described, when the
position and velocity of the body segments are known. Thus, full-body motion analysis offers an
approach for studying the function of the nervous system by determining, on the one hand, the
state of the system and thus the input to the various sensory systems, and, on the other hand, the
accelerations of the body segments and thus the resultant output of the neuromuscular system.

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2019.00024
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2019.00024&domain=pdf&date_stamp=2019-04-05
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:thomas.haid@uibk.ac.at
https://doi.org/10.3389/fninf.2019.00024
https://www.frontiersin.org/articles/10.3389/fninf.2019.00024/full
http://loop.frontiersin.org/people/475979/overview
http://loop.frontiersin.org/people/638591/overview
http://loop.frontiersin.org/people/634133/overview
http://loop.frontiersin.org/people/424637/overview
http://loop.frontiersin.org/people/294436/overview


Haid et al. Principal Movement Analyzer

However, multi-segment human movements allow many
degrees of freedom DOF and typically allow a large variety
of different movement strategies to successfully achieve a goal
(Bernstein, 1967), i.e., human movements are mechanically
complex. Therefore, conventional movement analyses often
look into specific, pre-determined aspects of a motion. Such
analyses often neglect important information about segment
interactions; and the complex nature of these interactions makes
a priori variable determination prone to false identification
of important aspects. That is why other approaches quantify
whole body kinematics (Honegger et al., 2013; Boström et al.,
2018). Nevertheless, most of these approaches still rely on pre-
defined aspects of specific movements such as angles, torques, or
segment trajectories.

In the past two decades several principal component analysis
(PCA) based approaches were developed for various applications
in kinematic data analysis (Sadeghi et al., 1997; Troje, 2002;
Daffertshofer et al., 2004; Wang et al., 2014), with the aim of
determining relevant aspects of a motion in an unbiased and
data driven way. One of these approaches identifies whole-
body movement components (Troje, 2002; Daffertshofer et al.,
2004), later called principal movements PMk (Federolf et al.,
2012), thus reducing data complexity without neglecting segment
interactions. In this framework, a PCA yields eigenvectors PCk,
eigenvalues EVk and score time-series called principal positions
PPk(t). Each PCk defines one type of movement or movement
strategy that the respective PMk describes, while each EVk

determines the amount of total variance in the data explained
by the respective PMk. Furthermore, the scores PPk(t) determine
the evolution of the respective PMk over time.

Among the first papers applying PCA in this sense were
studies on walking patterns and gait forms (Troje, 2002;
Daffertshofer et al., 2004; Verrel et al., 2009). In these studies,
a separate PCA was conducted for each trial and the individual
EV-spectra characterizing the amount of contribution of each
individual postural strategy were compared. On the one hand,
this approach allowed programming a motion synthesizer that
displays gait forms according to different classifiers such as
gender, weight, and emotional condition (Troje, 2002). On the
other hand, it could be shown that gait regularity is not only
affected by cognitive dual-tasking, but that different age groups
display different changes in regularity (Verrel et al., 2009).

These results established PCA as a useful tool to analyze
human movements. However, only EV-spectra describing the
contribution of trial specific movement patterns could be
compared, thus the comparison of movements between subjects
or trials remained unsolved. Soon after, it was shown that one
PCA could be conducted on several trials of various participants
simultaneously, if the datasets were normalizing appropriately
(Federolf P. et al., 2013). This approach enabled the comparison
of the movement executions PPk(t) between trials. Furthermore,
the relative contribution of each PMk to a trial’s overall variance
(corresponding to the EVk) was quantified with the variable
rVARk computed on the PPk(t).

Amongst others, the rVARk and PPk(t) have provided new
insights into the execution of sports techniques in alpine skiing,
cross-country skiing, karate, dancing, cycling and race-walking

(Donà et al., 2009; Moore et al., 2011; Masurelle et al., 2013;
Federolf et al., 2014; Gløersen et al., 2017; Zago et al., 2017a).
Moreover, related variables such as residual variances RVk or
relative standard deviations rSTDk have been used to quantify
the dimensionality of coordinative tasks such as juggling or
balancing (Zago et al., 2017b; Haid and Federolf, 2018).

While the studies discussed so far applied the PCA method
to compare movements, they have not calculated velocities
or accelerations, and thus have not studied the control of
movements. Only in 2016 it was suggested to differentiate
the PPk-time series to obtain principal velocities PVk and
principal accelerations PAk (Federolf, 2016). Since then, PAk

and variables based on PAk have been used to study differences
in movement control due to aging (Haid et al., 2018) or leg
dominance/laterality (Promsri et al., 2018a). The PPk and PPk-

variables were also applied in postural control research and linked
to COP-time-series (Federolf, 2016), which are analyzed in a
range of clinical applications that investigate impairments due
to aging, overweight, back pain, concussion, multiple sclerosis,
autism spectrum disorders, or Parkinson’s disease (Fino et al.,
2016; Huisinga et al., 2017; Lim et al., 2017; Yamagata et al., 2017;
Han et al., 2018; MacRae et al., 2018; Nikaido et al., 2018). A
recent study evaluated COP-irregularity by linking it to PPk(t)
irregularity and to the complexity of the movement structure as
defined by rSTDk (Haid et al., 2018).

Variables computed on PM time-series contain information
about whole-body positioning, which allows studying the
movements of the human body as a system, while preserving
or possibly enhancing (Federolf P. A. et al., 2013) the ability
to discriminate groups. Therefore, the PCA approach is well-
suited for addressing any research questions where coordination
or the interplay of segment movements is of importance.
However, despite its research potential the implementation of
PCA approaches requires a fair amount of programming and
mathematical skills, and can be very time consuming. Therefore,
the development of new PCA based variables and research
output validation comparing different computational options is
severely hampered.

The main goal of this paper is to present the PManalyzer-
software. It generalizes many of the existing PCA concepts
and was designed to motivate the development and validation
of kinematic PCA related variables and methods within a
user-friendly graphical environment. On the one hand, the
software will allow researchers and clinicians without extensive
programming or mathematical skills to perform PCA on
kinematic data; on the other hand, it will allow users with more
advanced knowledge in the area to adapt and further develop
the software.

MATERIALS AND METHODS

The software was designed to pre-process the kinematic input
data and then compute a PCA on it. Furthermore, the
PManalyzer can compute a range of PCA variables. In this section
the mathematical background of kinematic feature extraction
and some of the most important variables are explained.
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General Data Model and Data
Pre-processing
Typical kinematic data consists of 3D positions in time obtained
by tracking the motion of n anatomical landmarks; either
utilizing a motion capture system or video-tracking (Figueroa
et al., 2003). The kinematic data is then available in matrix
form in which the N = 3 · n columns represent the time-series
si(t) (i ∈ {1, 2 . . . , N}) of the respective x-y-z-coordinates of
each anatomical landmark. Each row contains the measured 3D
positions of all markers at one time-point:

D =











s1(t1) · · · sN(t1)
...

. . .
...

s1(tT) · · · sN(tT)











,

Where T equals the number of measured time-points. The
application of PCA to human movement is based on the idea of
identifying linear whole-body movement patterns that dominate
the recorded movements. However, when identifying movement
patterns within a group of several subjects, both the mean
positioning of a participant and anthropometrical differences
distort the results. To reduce such distortions, the data of each
subject can be centered, weighted and normalized (Federolf P.
et al., 2013; Zago et al., 2017b; Haid et al., 2018).

The data is centered by subtracting the mean < si > of
each individual time-series si (each column) from the respective
time-series sc

i
= si− < si >:

D
c =











s
c

1
(t1) · · · s

c

N
(t1)

...
. . .

...
s
c

1
(tT) · · · sc

N
(tT)











,

preventing differences in mean marker positioning in space to
affect the results. Furthermore, a participant’s weight distribution
can influence marker movements. As an example, when moving
a hand, less mass has to be accelerated and controlled, in
comparison to moving a thigh. Therefore, each of the N time-
series can be scaled according to the weightwi (i ∈ {1, 2 . . . , N}),
that the respective marker represents:

D
c, w = D

c·











w1 · · · 0
...

. . .
...

0 · · · wN











,

Weighting has been applied in literature (Federolf P. et al., 2013;
Gløersen et al., 2017; Haid et al., 2018; Promsri et al., 2018a),
often considering gender-specific mass distributions (Defense
Technical Information Center, 1988; de Leva, 1996; Gallagher
and Heymsfield, 1998).

Another important aspect to be considered when comparing
trials is that anthropometric differences can influence the amount

of movement produced. Therefore, each data-set should be
normalized according to application specific criteria:

D
c, w,n = D

c,w ·
1

dnorm

Normalization factors dnorm such as the mean Euclidean distance
(MED) (Federolf P. et al., 2013; Zago et al., 2017b) or the body
height (Haid and Federolf, 2018; Haid et al., 2018) have been
proposed to reduce anthropometric differences. In detail, the
MED ensures that all subjects contribute equally to the overall
variance, while the body height normalization scales the data to a
trial-independent anthropometric parameter.

Once the data sets of each participant are centered, weighted
and normalized1, one large datamatrixDall is formed, containing
all data sets of all X trials concatenated vertically (with index
1..X representing different subjects and/or several trials of
different subjects):

D
all =







D
c, w,n
1

...
D
c, w,n
X







Feature Extraction—PCA
After pre-processing, the eigenvectors PCkand eigenvalues EVk

of the covariance matrix of Dall are computed [implemented
as SVD (Shlens, 2014)]. The eigenvectors PCk form a new
orthonormal basis that spans posture space (Federolf P. et al.,
2013), a space in which each of the axes determines one specific
linear, one-dimensional whole-body movement. Furthermore,
scores S can be obtained by projecting the data onto the new
PCk basis:

S = D
all · PCk (1)

The k-th column of the score matrix S can be interpreted as time-
series PPk(t) that quantitatively describes the evolution over time
of the respective principal movement PMk, i.e., the manifestation
of the one-dimensional PMk defined by the corresponding PCk:

S =







PP1(t1) · · · PPN (t1)
...

. . .
...

PP1(tT) · · · PPN (tT)







In addition, the eigenvalues EVk describe the amount of variance
(or movement) explained by each PMk and are typically
presented as percentages or relative eigenvalues rEVk

2.
To compute one PCA on each trial separately can be done

by running the software for each trial separately. However,

1The default order in the software is centering, then weighting and finally

normalizing the individual data sets. Depending on the pre-processing selection,

the order might influence the results.
2In literature the “relative eigenvalues” rEVk are sometimes referred to as EVk out

of simplicity. In addition, the term “relative eigenvalues” may refer to the “trial

specific relative variances” as described in the following section. In this manuscript

we aim at consistency.
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this feature is not explicitly supported, because the authors
recommend only comparing trials with respect to one PCA
basis that describes the group as a whole. The benefit of the
current procedure—being able to compare the PPk(t) of trials—
outweighs the benefit of obtaining several, trial-specific PCA-
bases that only allow comparisons of rEVk-spectra, but not of
PPk (t) . Moreover, the PPk(t) can be used to compute variables
that describe the subjects specific variance explained by each PMk

and further variables that quantify the additional aspects of a
movement or of neuromuscular control.

Interpretation of the
Movement Components
As mentioned in the previous section, the PCk form a basis
of the posture space. Moreover, they have the property that
they point in the direction of the largest correlated variance
expressed in the data. Therefore, they point in the direction of
the most common patterns of correlated marker movements.
As a consequence, the PMk are linear approximations of the
analyzed movements and interpreting them as real movements
should be done with caution. For example, to explain non-linear
movements such as rotations at least two linear components are
needed. Nevertheless, for movements with small perturbations
such as static balancing tasks (tandem, bipedal, one-legged) past
research has found the PMk to describe themain dynamics of well
established, nonlinear movement strategies, e.g., ankle sway or
upper body rotation (Haid and Federolf, 2018; Haid et al., 2018;
Promsri et al., 2018a). Moreover, also for movements with higher
amplitudes the PMk have been found to reflect the main the
dynamics of established movement strategies, such as isolated leg
or arm swinging, trunk leaning, or coordinated multi-segment
movements (Troje, 2002; Verrel et al., 2009; Eskofier et al., 2013;
Gløersen et al., 2017; Zago et al., 2017a,b).

Advantages of analyzing the movement with PMs are that
few variables are needed to approximate the movement to great
detail and obtaining the PMs is data-driven—not postulated from
subjective observations. Moreover, the PMs can be visualized
which improves interpretation of results. In the current paper
we further propose that movement analysis involving rotational
movements of large amplitudes could additionally benefit from
non-linear coordinate transformations. To the best of our
knowledge, there is no literature to support this assumption,
therefore, a motivational example will be presented.

PCA Variables
In the following some of the most common kinematic PCA
variables in literature are described. These, amongst others, are
pre-implemented in the software.

Trial Specific Movement Structure or Composition

The rEVk determine the overall variance explained by each PMk

either in the respective trial—if one PCA is computed for one
trial—or in the overall variance produced by all trials—if one
PCA is computed for the concatenated trials-matrix. In the
latter, trial-specific relative variances rVARk can be computed that
represent the explained variance of each PMk (Federolf P. et al.,
2013), analogously to the rEVk for applications in which one PCA

is computed for each trial. Therefore, the sum of all variances of
each trial’s individual PPk(t) ∼ time-series

totVARtrial :=
∑

k
VARtrial

k
:=

∑

k
VAR

(

PP
trial

k
(t)

)

,

can be computed. The subject specific relative variances are then
defined by

rVARtrialk =
VARtrial

k

totVARtrial
· 100.

To obtain a similar variable that quantifies the movement
structure and explains the relative contributions to a movement,
but scales as the original movement, the variance in the rVARk

computation can be replaced by the standard deviation to
compute trial-specific relative standard deviations rSTDk (Haid
and Federolf, 2018; Haid et al., 2018).

When the dimensionality of a movement is of interest,
it makes sense to define subject specific cumulative relative
variances as

CUM_rVARk :=
61≤n≤kVAR

trial
n

totVARtrial
· 100,

or analogously CUM_rSTDk, which explain the cumulative
contribution of the respective component order. This can further
be used to compute subject specific residual variances

RV3
:= 100− CUM_rVARm =

∑

k>m VARtrial
k

∑

k VAR
trial
k

· 100

where m is the highest PC-order included (Zago et al., 2017b,c).

Kinematics in Posture Space and Measures of

Postural Control

Similarly to conventional kinematics in biomechanics (Federolf,
2016) the PPk(t) time-series can be utilized to analyze the
execution of movements with respect to their PMk. Different
trajectories or performances can therefore be directly compared
to another if the PPk(t) of all trials are coordinates in the same
posture space, i.e., if one only one PCA was computed.

Furthermore, the PPk(t) can be utilized to compute
principal velocities PVk(t) and principal accelerations PAk(t)
by differentiating the PPk once and twice, respectively.
The dynamics of all three PM time-series can be studied
using conventional time-series analysis. For example, postural
reconfiguration can be ascribed to acting external forces, such
as gravity, and internal forces, such as acting muscle forces.
Therefore, the PAk(t) can be used to compute variables that
characterize the neuromuscular control of movement, as they
represent the acceleration of the postural movements. For
example, it has been shown that the PAk can be used to quantify
the amount and the variability of the neuromuscular control, by
further defining variables Nk and σk (Haid et al., 2018; Promsri
et al., 2018a), which represent the number of PAk -zero-crossings
(changes in the direction in which the neuro-muscular control

3Residual variances can also be computed for the overall contributions by

substituting the rVARk with the rEVk.
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system influences the current motion) and the time-variability
between the zero-crossings, respectively.

Table 1 contains a summary and a description of these PCA
variables. However, any other type of time-series analysis that fits
the research question may be applied to the three PM time-series.

PCA Validity Considerations
To quantify whichPCk basis is adequate to describe the group as a
whole, a leave-one-out cross-validation can be performed (Diana
and Tommasi, 2002; Bro et al., 2008; Camacho and Ferrer, 2012).
Therefore, the PCk are computed several times, while omitting
one trial each time. The changes between the used PCk and the

newly obtained PC
′

k
can be quantified as angles and serve as a

PM-inclusion criterion (Federolf, 2016; Haid and Federolf, 2018;
Haid et al., 2018).

RESULTS—THE PMANALYZER SOFTWARE

The Interface
As depicted in Figure 1, the PManalyzer interface is organized
into five main panels with red margin and font: 1. “Input data,”

TABLE 1 | Summary and description of the variables.

Abbreviation Variable name Description

PCk Principal

components/eigenvectors

Contains the information about the

marker movements that define the PMk

EVk Eigenvalues Absolute contribution of PMk to overall

variance

PPk (t) Principal positions Time-series that quantifies the evolution

of the posture with respect to PCk

PVk (t) Principal velocities Time-series that quantifies the velocity

of the postural changes defined by PMk

PAk (t) Principal accelerations Time-series that quantifies the

acceleration of the postural changes

defined by PMk

rEVk Relative eigenvalues Relative contribution of PMk to overall

variance

rVARk Relative variances Relative contribution of PMk to variance

produced by trial.

rSTDk Relative standard

deviations

Relative contribution of PMk to

movement of trial.

CUM_rEVk Cumulative relative

eigenvalues

Cumulative relative contribution of PMk

to overall variance.

CUM_rVARk Cumulative relative

variances

Cumulative relative contribution of PMk

to variance produced by trial.

CUM_rSTDk Cumulative relative

standard deviations

Cumulative relative contribution of PMk

to movement in trial.

RVm Residual variance Unexplained variance after setting

threshold of PM-order m.

Nk number of PA zero

crossings

Number of interventions of the control

system with respect to the movement

defined by PMk

σk Standard deviation of

times between zero

crossings

Standard deviation of times between

the interventions of the control system

with respect to the movement defined

by PMk

2. “Computation and output,” 3. “Plots,” 4. “Videos” and 5.
“Save/Load interface settings.” Following the subpanels one by
one allows the user to move through the conventional steps for
a PCA applied to kinematic data as described in the section
Materials and methods. The block scheme in Figure 2 visualizes
the steps of the parameter selection when using the PManalyzer.

Once the computational options are selected, the user can save
interface settings and reload them later if needed. To improve
efficiency when repeating calculation steps, computed data can
also be saved, and loaded. The compatibility of the computing
vs. loading vs. disabling options is regulated over the interface to
avoid the selection of incompatible features.

Note: The interface was created with the “guide” tool in
“MATLAB 2015a” in “Windows 10” on a screen with a 1,920
× 1,080 resolution. Both “Units” and “FontUnits” were set to
“normalized” with respect to screen size. For other software
or hardware configurations (for example on Mac books) some
adaptations may be necessary. Also, some of the plotting features
may produce errors if the PManalyzer is run on earlier versions
of MATLABTM.

Code Structure and Computation
The source code is built upon the structure of the user interface
and kinematic PCA described in the methods. To monitor
the code activity a text describing the current computational
step is printed in the output-console. Furthermore, the code
is documented by comments to identify the task of each code
section and help identifying important computational variables
and their respective role in the code. Despite the self-regulating
interface, it is possible to select options that do not match the
data. The code has implemented fail-safes to identify obvious
selection errors and forward them to the user, e.g., when users
choose to make video files of data that was not read in.

Functions containing computational options meant for the
user to customize (pre-processing, coordinate transformations,
normalizations, weighting, variables on PM time-series, video-
coloring and creating additional plots) are contained in the
PManalyzer subfolder “FunctionsToEdit.” Users can follow the
descriptions and the examples provided inside each function
to implement their new options. When starting, the GUI
automatically loads all functions contained in subfolders and
updates the interface with the available options.

Application Example
In this section, an example computation will be presented to
highlight the flexibility of the software. Then, a standard PCA-
analysis procedure is outlined. The input is a data subset taken
from a previously published tandem stance study that served as
template for the PManalyzer (Haid et al., 2018).

Computational Parameters and Modifications

For the sample tandem-stance data the first two columns
containing time-frames and the headers were deleted. Then
gap-filling (Gløersen and Federolf, 2016) was performed on
each data set if needed, and a pre-processing option was
created that mirrors specific data to make it comparable
(unsymmetrical markers were deleted and data with left foot
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FIGURE 1 | General user interface (GUI) of the PManalyzer. The input settings shown here were used for the computation of the example discussed in the

current paper.

FIGURE 2 | Block-scheme of the PManalyzer computation options. Gray fields describe essential parameter selections. White field represent optional GUI features

(Welch’s PSD-estimation can be used to estimate the power spectral density of data and to determine a plausible cut-off frequency).

in front was mirrored). The data was then centered, weighted
to standard human mass distribution (Defense Technical
Information Center, 1988) and normalized with the height of
the participants. We also filtered the data with a low-pass

filter of 7Hz, since Fourier analysis suggested signal power
up to this frequency. As this example shows, standard pre-
processing options can be performed on all of the data by simple
parameter selection.
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Another interesting pre-processing option that is rarely
taken advantage of in kinematic PCA-research is a coordinate
transformation. The PManalyzer has two types of coordinate
transformations pre-implemented (spherical and cylindrical).
Hence, we recomputed the analysis twice using the same
parameter selection as described above, but transforming the data
either into spherical or cylindrical coordinates, respectively.

Moreover, we selected several of the standard plotting options
for the standard PCA variables (rEVk, rSTDk, rVARk, PP, PV ,
PA). Further variables such asNk or σk (Haid et al., 2018; Promsri
et al., 2018a) can be computed by selecting “Compute selfdefined
variables” and can either be analyzed via Excel output or plotted
by defining plots in the function personalizedPlots.m. In addition,
we selected several video options (2D, 3D, and three different
coloring choices. The Supplementary Files contain a summary
of the important results of these computations, which we will
discuss in the following section.

PCA Results

As a common first step, the overall eigenvalues were analyzed
to see how much overall variance can be explained by
the components (individually or cumulatively). These results
(Figure 3) show that using spherical or cylindrical coordinate
transformations would allow to explain more variance with fewer
components. Therefore, we chose to continue the analysis with
the results obtained by using spherical coordinates.

As a next step, the PM-movies can be used to describe the
movement components to form a better understanding of the
extracted movements (compare “ColoringNone_2D_PM1-
5_vis.mp4”). It is often helpful to implement specific coloring
options (compare “Coloring1_2D_PM1-5_vis.mp4” and
“Coloring1_2D_PM1-5_vis.mp4”). For this sample data, the
first principal movement resembled an anteroposterior ankle
sway. The second PM resembled an upper body retraction
accompanied by front knee flexion, etc. The amplification
factors displayed in the titles can be adjusted individually for
every PMk. This is helpful when identifying movements of
different magnitudes.

Furthermore, PM time-series plots show the execution of
the individual trials with respect to the extracted movements
(see Figure 4) and the PP activity over time can also be
displayed in the video option (“Subject1_2D_PM-5.mp4” and
“Subject1_3D_PM-5.mp4”). Both can be useful developing
hypotheses related to the dynamics of PMs or their interplay.
Users may define any sort of variable in the function
optionsVariablesComp.m. These variables can then be computed
on PPk -, PVk- and PAk-time-series, thus describing specific
aspects of movement components that were not a priori defined,
but play an important role producing the observed variance.
As an example, we plotted the trial specific relative variances
rVARk and standard deviations rSTDk that have been very useful
when comparing movement structures amongst various groups
(Federolf, 2016; Haid et al., 2018; Promsri et al., 2018a). In
the current example it can be observed that while the overall
movement of subject 2 is dominated by anteroposterior ankle
sway, subject 3 has a more balanced movement structure, where
several movements contribute effectively (Figure 5).

DISCUSSION

Application of PCA-Variables
In human movement analyses, one of the most important steps
is the reduction of the numerous degrees of freedom. Several
approaches have been proposed in order to reduce the DOFwhile
capturing the most important dynamics of human movements.
For example, in static balance research, one of the most common
approaches is to quantify the center of pressure movement,
reducing the complex whole-body kinematics to the resultant
point where the vertical ground reaction forces act. Indeed, COP
based variables proved to be effective at distinguishing different
pathological groups and different balancing conditions. However,
literature findings are inconsistent and some interpretations
are controversial. For example, COP-irregularity has been
interpreted as a sign of very active and effective postural control
(Cavanaugh et al., 2006; Donker et al., 2007; Haran and Keshner,
2008; Stins et al., 2009; De Beaumont et al., 2011), but also as a
sign of a disordered and less effective control (Donker et al., 2007;
Stins et al., 2009; Borg and Laxåback, 2010; Gao et al., 2011).

Reducing the DOF via PCA has helped to address some
of the inconsistencies in COP literature. As a first step it was
shown that the information contained in the COP-excursion
should also be contained in PCA variables, since the COP-
trajectories can be calculated from the PPk and PAk time series
(Federolf, 2016). Then, follow-up research found that COP-
irregularity correlates with both the mechanical complexity of
the movement, as quantified by the movement structure rSTDk,
and the irregularity of the neuromuscular control as quantified
by PPk-irregularity (Haid and Federolf, 2018). Hence, these
findings suggest that COP-irregularity depends on more than
one interacting phenomenon, possibly explaining some of the
controversial results.

As another example, in research areas that involve postural
control and motor control theories, e.g., neurosciences,
distinguishing movement strategies can be of great importance.
For example, the minimal intervention principle MIP, as
discussed in the context of the optimal feedback control theory
(Todorov and Jordan, 2002), states that postural control focuses
on task relevant movements, while allowing variability in
redundant ones. Furthermore, evidence suggests that ankle,
knee and hip strategies dominate the whole-body kinematics
of balancing tasks (Gage et al., 2004; Kuznetsov and Riley,
2012). In addition, coherence analyses of respective joint angles
(Kilby et al., 2015; Masumoto and Inui, 2015) and muscle-EMGs
(Alfuth and Gomoll, 2018; Pollock et al., 2019) suggest that these
strategies are coordinated (Huisinga et al., 2017; Shahvarpour
et al., 2018). Nevertheless, further evidence suggests that when
modeling the dynamics according to these segment interactions
(Oliveira et al., 2017; McNair et al., 2018), the models seem
unable to explain the full extent of the movement dynamics
(Hume et al., 2019). Hence, since these studies depend on only a
few pre-selected muscles and DOF they might be limited when
testing hypotheses related to the MIP.

The advantage of the PCA approach is that the extracted
principal movement components are inherent in the data.
They represent coordinated marker movements that generate
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FIGURE 3 | Eigenvalue and cumulative eigenvalue spectra obtained from three coordinate systems (standard kinematic PCA applications use Cartesian-coordinate

systems). To explain roughly 98% of the variance it takes 9 PMs using Cartesian, 8 PMs using polar and 6 PMs using spherical coordinates.

FIGURE 4 | Exemplary PP-, PV- and PA-time-series produced by the PManalyser. This specific data was recorded from a subject performing a tandem stance

balance trial. The number of trials, subjects and PMs displayed per figure can be selected in the interface. Units are arbitrary (AU), since they represent a combined

motion of all markers and may depend on pre-processing options.

quantifiable amounts of the overall variance produced by the
analyzed movement. This allows categorizing them with respect
to their relative contribution to the overall movement and to

determine a movement’s composition of PM, i.e. the movement
structure (rSTD). Furthermore, the respective PM-time-series
can be used to quantify novel aspects of postural control, such
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FIGURE 5 | Subject specific relative variances and standard deviations (rSTD and rVAR) for five subjects performing a tandem stance, using spherical coordinates.

These eigenvalues are useful to compare the coordinative structure of a movement. In a similar fashion to Figure 3 the cumulative versions of the variables can also

be plotted with the software.

as how tight a movement is controlled (how often the control
system intervenes (Nk) and how variable the control (σk) of
the respective PMk is). As an example, in accordance with the
MIP the tandem stance study mentioned in the results of this
paper (Haid et al., 2018) found that aging effects emerged in
the movement structure and control of specific, task relevant
components, but did not affect other movement components. In
detail, the movement component with the least base of support
exhibited less relative contribution and tighter control in the
younger age group. Also leg dominance was studied in a similar
fashion (Promsri et al., 2018b) revealing differing movement
control characteristics in different movement components.

In addition, the PCA variables were used in several studies
with clinical purposes, or for fundamental research. Specifically,
they were helpful to classify gait patterns that are a result of
spastic diplegia (Zago et al., 2017c), affect (Karg et al., 2010),
gender or age (Troje, 2002; Verrel et al., 2009; Eskofier et al.,
2013), or shoe material (Maurer et al., 2012; von Tscharner
et al., 2013). Principal movements were also calculated as pre-
processing step in research on work-related musculoskeletal
disorders that aimed at characterizing the variability and
the local dynamic stability of the movements (Longo et al.,
2018a,b). The PM calculation allowed distinguishing cycle-
to-cycle variability from changes in the overall postural
configuration—a prerequisite for the calculation of non-linear
variables such as the largest Lyapunov exponent in this context.
In sports, coordinative strategies were studied, by identifying and
quantifying PCA-eigenvectors, eigenvalues and score time-series,
for example in alpine skiing (Federolf et al., 2014), cross-country
skiing (Gløersen et al., 2017), Karate (Zago et al., 2017a), dancing

(Masurelle et al., 2013), cycling (Moore et al., 2011), diving
(Young and Reinkensmeyer, 2014), and race-walking (Donà
et al., 2009).

In summary, literature suggests that kinematic PCA can
be an effective tool to study pathological conditions or sport
performance, and to address unsolved problems of motor control
theories such as the minimal intervention principle. The basic
code structure of the PManalyzer was originally developed for
the tandem stance study (Haid et al., 2018). Later, the code was
further developed to be applicable in a wider range of static
balancing tasks. However, as discussed in the following section,
it is also modifiable to be used in other application areas.

Computational Features and Advantages
of the Software
The main purpose of the PManalyzer software was to make PCA
computations more easily accessible for users, particularly for
users less familiar with programming or with the mathematical
background of PCA applications. The PManalyzer offers the
broad spectrum of available computational options and the large
variety of easily customizable visualization options. It also allows
a user to perform pre-processing steps like PCA-based gap-filling
(Gløersen and Federolf, 2016), deleting markers, columns or
rows, or to integrate any other self-defined data pre-processing
steps. Additionally, the PManalyzer can transform data from
a Cartesian into a spherical or polar coordinate system. Users
with more advanced mathematical knowledge can implement
further coordinate transformations. Moreover, a number of pre-
defined normalization options are available, of which two have
been validated (mean Euclidean distance and height) through
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previous research (Federolf P. et al., 2013; Zago et al., 2017b; Haid
et al., 2018; Promsri et al., 2018a), while others (such asmaximum
movement range in x, y, or z direction) have yet to be explored.
Also the weighting options for the standard 39 and 37 (no fingers)
plug-in gate marker systems are pre-implemented, as well as the
specialized 28 marker system (only symmetric markers) used in
the tandem stance study of the results (Haid et al., 2018).

Furthermore, new variables can easily be implemented to be
computed on all PM-time-series. If selected, they will be saved
with the other variables on the PP-, PV- and PA-time-series
(rVAR, rSTD, N, σ, RMS, mean, standard deviation, amongst
others). For users not familiar with Matlab programming, the
results of all computed variables can be exported to an Excel
spread sheet. Moreover, users can create customized plots that are
directly integrated into the interface. Finally, any video coloring
option can be added to the software without extensive Matlab
skills, saving programming time and effort.

To validate the obtained basis PCk, a leave one out
cross-validation has been implemented that produces a figure
displaying the angle-changes as described in section PCA validity
considerations. Furthermore, a figure containing aWelch’s power
spectral density estimate can be created to help determine a
suitable filtering frequency. Moreover, specifying a vector of
cut-off frequencies will run the selected PCA-computations
consecutively with different filtering cut-off frequencies and
saving the results in separate folders. This is particularly useful,
in order to conduct a frequency analysis to ensure that statistical
results are stable for various cut-off frequencies (Haid and
Federolf, 2018; Haid et al., 2018; Promsri et al., 2018a).

Limitations and Future Research Potential
When it comes to effectively applying kinematic PCA and
to establishing reliable norm values for a clinical and sports
related environment, several factors should be considered. First,
kinematic PCA is only one of many interesting feature extraction
algorithms. For example, independent component analysis (von
Tscharner et al., 2013), isometric feature mapping (Blackburn
et al., 2003) and linear discriminant analysis (Karg et al.,
2010) have been used as kinematic feature extraction tools and
shown to outperform PCA in specific situations. Hence, there is
tremendous potential for systematic research into the advantages
and disadvantages of PCA compared to several other feature
extraction techniques (Van Der Maaten et al., 2009).

Second, in order to establish norm values it is essential
to define standard procedures. Hence, marker systems, pre-
processing options, normalization and weighting, and coordinate
transformations must be explored and standardized for different
types of movements. Specifically, coordinate transformations are
an interesting, yet relatively unexplored feature in kinematic
PCA. As an example, the tandem-stance study analyzed nine
different ankle, knee, upper body and head strategies, explaining
98% of the overall variance. The results in this study show that
only 6 PMs would be necessary to achieve the same accuracy,
if spherical coordinates were used. Furthermore, also moving
coordinate systems offer unexplored potential. The example of
alpine skiing technique analysis (Federolf et al., 2014) shows
that body-positioning-dependent coordinate systems can help

focus the analysis by neglecting movements with respect to
specified planes. A similar, implemented pre-processing feature
in the PManalyzer is the pre-processing option that moves the
coordinate system into the center of mass, which can be used to
avoid body displacements being represented as PMs.

Third, PCA based variables described in this study have been
applied successfully to quantify movement coordination and
complexity (rEV , rVAR, rSTD, and RV), and movement control
(N, σ , PP-irregularity), amongst others. However, especially
the variables of movement control computed on the PA-time-
series (N, σ ) react sensitively to the quality of kinematic data
and filtering settings, due to double differentiation of the data.
Nevertheless, a frequency analysis of the variables of movement
control indicated that the underlying effects are robust to changes
in filtering frequency and not random artifacts (Haid and
Federolf, 2018; Haid et al., 2018; Promsri et al., 2018a). Hence,
it should be possible to use PCA variables to establish objective
norm values that describe movement performance. However,
follow-up research is needed to further validate existing variables
and possible to develop new ones.

Finally, the extracted principal movements must be carefully
interpreted. Each PM is defined by one linear movement of
each marker. Since real whole-body movements are usually not
linear, individual PMs can only approximate real movements, at
best. However, some of the PMs obtained from movements with
small amplitudes, such bipedal static balancing tasks (Federolf,
2016; Haid et al., 2018), seem to be realistic approximations
of movement strategies that were already described in the
literature, such as ankle sway and hip-strategies (Gage et al.,
2004; Kuznetsov and Riley, 2012; Kilby et al., 2015). Others,
such as certain upper body strategies have not been described
in literature but seem realistic in the author’s eyes. Furthermore,
non-linear movements with higher amplitudes would require at
least two or more PMs to be approximated in a realistic way. In
theory, this limitation could be overcome with specialized non-
linear coordinate transformations or other feature extraction
techniques. At the moment, evidence suggests that the PMs of
higher amplitude movements describe interesting features that
allow group classifications, e.g., gait recognition (Troje, 2002;
Verrel et al., 2009; Karg et al., 2010) or sport performance (Donà
et al., 2009; Federolf et al., 2014; Young and Reinkensmeyer,
2014). However, further research is needed to link specific linear
PM-combinations to realistic non-linear movements.

In terms of the PManalyzer, some of the GUI options, for
example weighing markers according to the segment masses they
represent, depend on the input data (number and distribution of
markers) and the type of movement analyzed. A flexible usage
requires the user to define these options for non-standardized
input data, since, specifically for these options, the software relies
on pre-implemented options rather than on software recognition.
However, only basic, easily acquirable Matlab knowledge is
needed to follow the templates in the editable functions and to
perform such changes in the according functions. Furthermore,
despite beta testing, bugs can never be excluded. Nevertheless, we
are confident that the software works well, as it has been tested
on various data sets (Haid and Federolf, 2018; Haid et al., 2018;
Longo et al., 2018a,b, 2019; Promsri et al., 2018a,b), yielding the
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expected results. We encourage the community to report possible
improvements to the authors.

CONCLUSIONS

We presented the PManalyzer, a software tool that is meant as a
basis code for applying PCA in the analysis of human movement
and its sensorimotor control. We hope this will encourage
colleagues to more often apply PCA in their movement control
related research. The computational options are not meant to
be complete, but rather to enable easy software modifications to
assist future users in the development of specialized applications.
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