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We derive fundamental bounds on the maximal achievable precision in multiparameter noisy quantum
metrology, valid under the most general entanglement-assisted adaptive strategy, which are tighter than the
bounds obtained by a direct use of single-parameter results. This allows us to study the issue of the optimal
probe incompatibility in the simultaneous estimation of multiple parameters in generic noisy channels,
while so far the issue has been studied mostly in effectively noiseless scenarios (where the Heisenberg
scaling is possible). We apply our results to the estimation of both unitary and noise parameters and indicate
models where the fundamental probe incompatibility is present. In particular, we show that in lossy
multiple-arm interferometry the probe incompatibility is as strong as in the noiseless scenario, reducing the
potential advantage of simultaneous estimation to a constant factor. Finally, going beyond the multi-
parameter estimation paradigm, we introduce the concept of random quantum sensing and show how the
tools developed may be applied to multiple-channel discrimination problems. As an illustration, we provide
a simple proof of the loss of the quadratic advantage of the time-continuous Grover algorithm in the
presence of dephasing or erasure noise.
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I. INTRODUCTION

Precise characterization of the parameters of physical
systems is an important task, both from a technological as
well as a purely scientific perspective. Understanding the
limits on how precisely the parameters can be estimated,
given the most general estimation protocols admitted by
quantum mechanics, touches also upon the foundations of
quantum mechanics itself. When it comes to single-param-
eter quantum metrology, both the theory and practical
applications are now in their maturity stage. The theory
provides not only the fundamental bounds that indicate in
which models one may expect the most promising quantum
enhancements [1–5], but it also provides explicit protocols
based on the use of squeezed states and quantum-error-
correction ideas to reach these limits [1,5–8]. The most
spectacular application is the use of squeezed states of light
in modern gravitational-wave detectors [9,10], which
operate surprisingly close to the fundamental limits [6],
taking into account the level of optical losses present in the
devices.

Multiparameter estimation problems are abundant, e.g.,
vector field estimation [11], multiarm interferometry [12],
waveform estimation [13], etc., and this research domain
has rightfully attracted an increasing amount of attention in
recent years [14,15]. The aim of multiparameter quantum
metrology is to obtain the most precise estimates of several
parameters simultaneously, i.e., within a single experimental
configuration. A quantum-metrology experiment can sche-
matically be divided in three stages: the preparation of a
probe state, the sensing stage when the probe’s evolution is
affected by the parameters of interest, and finally, the
measurement. Assuming that the evolution of the probe is
fixed by the physical nature of the problem, the final goal is to
find a combination of probe state and measurement that
achieves the best possible precision of estimating unknown
parameters of the evolution. As such, ametrological problem
may be regarded formally as a quantum-channel estimation
problem. The multiparameter character, however, adds
another layer of complexity on top of single-parameter
scenarios, and the identification of fundamental bounds
and optimal protocols becomes much more challenging.
In many practical situations, the channel can be probed

many times, and the actual optimal protocols may be
adaptive. Evaluating the power of adaptive strategies,
especially in the presence of a noisy environment, is a
challenging task appearing in various contexts throughout
thewhole field of quantum-information theory [16–18]. It is
remarkable that this problem has been completely resolved
in the case of single-parameter quantum metrology
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[3–5,7,8], proving the effectiveness of the theoretical meth-
ods developed. The main goal of this paper is to generalize
these methods to the multiparameter scenario.
The most intriguing aspect of multiparameter quantum

metrology is the existence of protocols for simultaneous
estimation that achieve a better overall precision than
estimating each parameter separately, given the same
amount of resources (e.g., number of particles, total sensing
time). Indeed, several theoretical [11,12,19–23] and exper-
imental [24–27] studies have shown such an advantage in
noiseless and error-corrected [28] scenarios. In the best
case, it may be possible to estimate all parameters in a
single experiment with the same precision obtainable in
separate experiments for each parameter. The conditions for
such a maximal advantage, known as compatibility con-
ditions, are laid out in Ref. [29]. We report them here:
“(i) existence of a single probe state allowing for optimal
sensitivity for all parameters of interest, (ii) existence of a
single measurement optimally extracting information from
the probe state on all parameters, and (iii) statistical
independence of the estimated parameters.” These three
aspects are pictorially represented in Fig. 1.
The impossibility to satisfy condition (ii) is known as

measurement incompatibility, and it boils down to the fact
that the optimal observables to estimate different param-
eters might not commute. This issue has always been
central in quantum estimation theory [30–34]: from the
seminal studies of almost half a century ago [35–37] to
recent developments [38–46]. An important and relatively
new observation is that measurement incompatibility will at
most double the total mean-squared error on the parame-
ters’ estimates [47,48] when a large number of identical
copies of the probe state can be measured collectively
[49–51]. Importantly, for the generic noisy protocols that

are the main focus of this paper, the maximal quantum
enhancement amounts to a constant factor gain, and the
optimal probe states may be effectively approximated by
product states of finitely entangled groups of particles [52,53].
As such, the argument on the impact of measurement
incompatibility being at most a factor of 2 applies also to
the asymptotically optimal strategies for noisy metrology.
Out of the compatibility conditions (i)–(iii) stated above,

the most relevant one is actually condition (i) being the only
one responsible for a different scaling of the asymptotic
precision with the number of parameters involved, when
comparing optimal protocols for simultaneous estimation
with separate ones. We refer to the violation of condition
(i) as probe incompatibility (for convenience, we keep the
same name also when considering more general probing
strategies with multiple uses of the channel), and it is the
main focus of our analysis. When it comes to condition
(iii), statistical independence of parameters can always be
assured by a proper reparametrization; hence, provided one
starts with a natural parametrization for a given model, this
aspect of incompatibility can be avoided.
In this paper, we focus primarily on generic noisy

channels, where the noise cannot be completely removed
without hindering the parameter-encoding process. In this
case, the asymptotic precision follows the so-called stan-
dard quantum limit (SQL) and quantum-enhanced strate-
gies provide at most a constant gain [1,2]. Such noisy
models, while generic and ubiquitous in practice, are much
less studied in the multiparameter literature. A few par-
ticular instances have been examined, e.g., Refs. [54–59],
but theoretical tools to identify fundamental bounds with-
out neglecting the multiparameter character of the problem,
especially probe incompatibility, are missing. We aim to
close this gap.

A. Summary of results

First, in Sec. II we set the stage by defining a new figure
of merit to quantify incompatibility in multiparameter
quantum metrology. While this figure of merit takes into
account all conditions (i)–(iii) (see Fig. 1), in the rest of the
paper we focus on lower bounds that consider only
condition (i), probe incompatibility.
To this end, in Sec. III we derive a new class of

multiparameter precision bounds that hold for the most
general adaptive strategy depicted in Fig. 2(a), extending
previous single-parameter results [1–3,60]. In particular,
we derive bounds that apply to various scenarios, as
summarized in Table I. These represent our main technical
contribution and, conveniently, the optimal bounds in this
class can be evaluated with semidefinite programs pre-
sented in the Appendix F.
The idea behind the derivation is simple but powerful,

and for a single-parameter it has proven to be the most
powerful and widely applicable approach. A noisy channel
can always be purified (formally) as a unitary interaction

FIG. 1. Three potential sources of incompatibility in multi-
parameter quantum metrology. (i) Different input probe states
may be optimal to estimate different parameters. This may in the
worst-case lead to a p-fold increase in the resources consumed,
compared with the best case where a single-probe state is optimal
for estimating all parameters. (ii) Different incompatible mea-
surements may be optimal for extracting information about
different parameters. In generic noisy metrological models, this
will require at most double the required resources in the
asymptotic regime, where many probes may be used. (iii) If
the chosen parametrization is not “natural” for the problem at
hand, the resulting estimators will manifest correlations, and the
imperfect knowledge of some parameters will have an impact on
the effective estimation uncertainty of the remaining ones.
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between the system and an inaccessible environment. By
choosing purifications that contain as little information as
possible about the parameters, one can obtain tight bounds
on the metrological precision. Thanks to a few technical
adjustments, existing single-parameter derivations can be
extended to multiple parameters in a way that takes into
account probe incompatibility. Actually, these bounds are
more general and apply also to a scenario that we call
random quantum sensing depicted in Fig. 2(b) in which
different channels chosen at random must be probed by the
same state.
After introducing these tools, we then apply them to

study probe incompatibility for a few paradigmatic models
of noisy multiparameter quantum metrology in Sec. IV.

Finally, in Sec. V we show how multiparameter metro-
logical bounds can be used to assess the ultimate perfor-
mance of adaptive strategies in the task of discriminating
between multiple quantum channels, sketched in Fig. 2(c).
This approach allows us to close a conjecture presented in
Ref. [61] and show that the quantum-computational speed-
up of the Grover search is ruined by dephasing and
erasure noise.

1. Relation to previous works

A multiparameter bound for noisy channels and adaptive
strategies was recently obtained without relying on puri-
fication arguments [62]. Despite being simple to evaluate,
it is both less general and less tight than the optimal
purification-based bounds we introduce here. Indeed, in
Appendix E 2 we show that the class of bounds we
introduce includes also the one of Ref. [62], which is
generally suboptimal and might not give complete insight
into probe incompatibility. Moreover, a purification-based
methodology was introduced in Ref. [63], yet by con-
struction it does not take into account probe incompati-
bility, since it requires performing a different convex
optimization for each parameter. Finally, multiparameter
bounds for paradigmatic models in optical metrology with
losses have been obtained by purifying the dynamics
[54,55] but without considering the possibility of adaptive
strategies.

II. MULTIPARAMETER QUANTUM ESTIMATION

A. Quantum Fisher information matrix

We consider a vector θ ¼ ½θ1;…; θp�T of p real param-
eters that are encoded on a quantum state ρθ ¼ EθðρÞ via
the parameter-dependent quantum channel Eθ acting on
the initial state ρ. In this work, we consider only finite-
dimensional systems.
A generic measurement is described by a positive-

operator-valued measure (POVM), i.e., a set of positive
operatorsΠω ≥ 0 satisfying

P
ω Πω ¼ 1. We take the set of

possible outcomes ω to be finite dimensional without
loss of generality. The parameter-dependent classical
probability distribution is obtained from the Born rule
pθðωÞ ¼ Tr½Πωρθ�.
An estimator θ̃ðωÞ is a function that maps the random

outcomes to estimated parameters values. The precision of
the estimator is quantified by the mean-square-error matrix:

Σθ̃ ≔
X
ω

pθðωÞ½θ̃ðωÞ − θ�½θ̃ðωÞ − θ�T: ð1Þ

In particular, we consider locally unbiased estimators
that satisfy

P
x pθ�ðωÞθ̃ðωÞ ¼ θ� and

P
ω ∂θipθðωÞjθ¼θ�×

θ̃jðωÞ ¼ δij; i.e., they are unbiased locally around the true
value θ� of the parameter vector. In the following, we
implicitly take all the derivatives with respect to the

FIG. 2. Schematic representation of the three operational tasks
considered in this paper. (a) Estimation of the parameters θ ¼
ðθ1;…; θpÞ appearing in the quantum channel Eθ under the most
general entanglement-assisted adaptive strategy with N uses of
the channel. (b) Random quantum sensing, where a single
parameter θ is encoded by a channel Ex;θ randomly chosen from
p channels with probability qx, and the extracted x is revealed
only before the measurement stage. (c) Channel discrimination
under the most general strategy with N uses of the channel.

TABLE I. Summary of the bounds on the total QFI obtained in
this paper. The SDPs can be found in Appendix F.

Case Equation SDP

Single-channel use (N ¼ 1Þ (12) Yes
Parallel strategy, finite N (C2) Yes
Adaptive strategy, finite N (19) No
Parallel and adaptive, asymp. SQL (20) Yes
Markovian noise, adaptive, asymp. SQL (in T) (D5) Yes
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parameters θj evaluated at the true value and for simplicty
of notation we write θ instead of θ�. For this class of
estimators, the mean-square-error matrix is equal to the
covariance matrix, and for any POVM, it satisfies the
quantum Cramér-Rao bound (QCRB) [30–33]

Σθ̃ ≥ F−1ðρθÞ; ð2Þ

i.e., Σθ̃ − F−1ðρθÞ is positive semidefinite, where we
introduce the quantum Fisher information (QFI) matrix

F ijðρθÞ ≔ ReðTr½ρθLiLj�Þ ð3Þ

written in terms of the symmetric logarithmic derivatives
(SLDs) defined by the equations

∂θiρθ ¼
1

2
ðLiρθ þ ρθLiÞ: ð4Þ

For single-parameter problems (p ¼ 1), it is always pos-
sible to find a POVM and a locally unbiased estimator to
attain the QCRB (formally, at a given operation point θ�, or,
more practically, uniformly in the asymptotic limit [64]). A
possible choice for the optimal measurement is a projective
measurement on the eigenbasis of the SLD operator. The
multiparameter matrix bound (2), however, is not always
attainable due to the possible noncommutativity of the
SLDs [31,34,64].

B. Lower bounds on the total variance

In an experiment that aims to estimate multiple param-
eters, in general there exists no strategy yielding a minimal
covariance matrix [65]. A common choice is to quantify the
overall error with a scalar, which we call the total variance

Δ2
W θ̃ ≔ tr½WΣθ̃�; ð5Þ

where W > 0 is a positive cost matrix (when W ¼ 1p we
simply writeΔ2θ̃). Every cost matrix can be decomposed as
W ¼ Pp

k¼1 wkekeTk , where ek are orthonormal vectors and
wk > 0 are strictly positive weights. A choice of cost matrix
distinguishes a particular set of parameters associated with
the eigenvectors of W for which the estimation cost is
determined by the corresponding eigenvalues wk. In a
sense, the cost matrix determines which parameters we
regard as “separate.” Without loss of generality, in what
follows we assume to be working in the parametrization
induced by W, so we need only to take into account the
eigenvalues wk.
From the matrix QCRB (2), we can lower bound the total

variance as

Δ2
W θ̃ ≥

Xp
x¼1

wx½F−1�xx ≥
Xp
x¼1

wx

F xx
≥

p2Pp
x¼1 w

−1
x F xx

; ð6Þ

where we write the Fisher information matrix elements F xx
in the W eigenbasis.
The first inequality Δ2

W θ̃ ≥ trWF−1 is generally not
attainable due to measurement incompatibility. A more
fundamental bound is the Holevo Cramér-Rao bound,
which is asymptotically attainable [34,51]. However, the
Holevo Cramér-Rao bound is at most 2trWF−1 [48];
therefore, the asymptotic effect of incompatibility on the
total variance is at most a factor 2. As we argue in the
Introduction, in this paper we are not concerned about
measurement incompatibility, and we consider only bounds
obtained from the QFI matrix.
The second inequality in Eq. (6) is a property of positive

matrices, and it means that statistical correlations among
the parameters, i.e., a nondiagonal F , increase the error on
the xth parameter with respect to the single-parameter
QCRB 1=F xx, i.e., assuming all other parameters are
known. This inequality will be tight, provided the param-
eter basis choice induced by the cost matrix W coincides
with the parameter basis in which the QFI matrix is
diagonal (we refer to this as a natural parametrization).
The third inequality is obtained from the Cauchy-Schwarz
inequality (or equivalently, from the inequality between
harmonic and arithmetic mean) and is saturated when the
diagonal elements are all equal. In multiparameter quantum
metrology, the weaker bound (6) has often been used to
avoid computing the inverse and simplify calculations; see,
e.g., Refs. [21,62,66,67].

C. Total QFI and random quantum sensing

The multiparameter bounds we have discussed so far are
defined for a p-parameter quantum channel Eθ (locally
around the true value θ�). For the sake of greater generality
and anticipating the application in quantum-channel dis-
crimination problems in Sec. V, we define instead a figure
of merit for p different single-parameter quantum channels
fEx;θxgpx¼1 as

FqðρÞ ≔
Xp
x¼1

qxF(Ex;θxðρÞ); ð7Þ

which we call the total QFI; qx are arbitrary positive
weights. Clearly, the weighted trace of the multipara-
meter QFI matrix in Eq. (6) is also the total QFI of the
single-parameter channels Eθx defined by fixing the
other p − 1 parameters of Eθ to the true value, with weights
qx ¼ w−1

x .
When the channels Ex;θx do not originate from the same

multiparameter channel, there is no clear operational link to
multiparameter estimation. Instead, we relate the total QFI
to an operational task that we call random quantum sensing,
formally described as single-parameter estimation of the
channel ρ ↦

Pp
x¼1 qxEx;θðρÞ ⊗ jxihxj, where we also

assume that qx are probabilities
Pp

x¼1 qx ¼ 1 and to have
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a classical register of orthonormal states at the output
hxjx0i ¼ δx;x0 . For the general case of multiple uses of
the channel, as shown in Fig. 2(b), the classical register is
not available after each use but only at the end of the
protocol; formally, we deal with output states of the formPp

x¼1 qxE
N
x;θðρÞ ⊗ jxihxj. For such “quantum-classical”

channels, the single-parameter QFI is the average QFI of
the different channels and thus corresponds to the total
QFI with θx ¼ θ, which is thus a tight bound on the
precision without the additional saturability issues in
Eq. (6) affecting the multiparameter setting.
More practically, we can think of random quantum

sensing as follows. Alice sends a probe state ρ through a
θ-dependent channel Ex;θ selected randomly according to
the θ-independent probability qx from the ensemble of p
channels. Alice does not know which channel x is selected
and has to choose a unique state ρ to send in all runs. At the
other end of the channel, Bob knows both Alice’s probe
state ρ and the random value x, so each time he can
implement an optimal measurement and estimator for the
parameter θ. Alice’s goal is to help Bob estimate θ as
precisely as possible; therefore, she has to prepare a state
that is sensitive to θ for all different channels according to
their probability. The quantity FqðρÞ quantifies the pre-
cision that Bob obtains in estimating θ when Alice chooses
to send ρ. This task, though different, is reminiscent of the
quantum random-access-codes protocols [68,69] in a sense
that the sender must prepare a quantum state so that the
information is extracted optimally even though it is a priori
not clear how the information will be encoded (random
quantum sensing) or which bit of information will be read
out (random-access codes).
Interestingly, in a recent study of the relation between

quantum steering and metrology [70], a multiple generator
steering scenario was considered, which according to our
definition was in fact a random sensing scenario. Moreover,
the figure of merit considered there was exactly the total
QFI. This strengthens the statement on the relevance of
the random sensing scenario and indicates another inter-
esting field of application for the methods developed in
this paper.

D. Incompatibility measures

Here we introduce a quantity that captures the incom-
patibility of a given multiparameter quantum-channel
estimation problem. We aim at a quantity that is 1 whenever
there are no incompatibility issues and increases to some
maximum value when the optimal probe for estimating a
given parameter gives no information on the remaining
ones. Moreover, we would like the quantity not to
depend on the choice of the cost matrix or on the particular
parametrization. The following natural quantity, which we
refer to as the incompatibility measure of a multiparameter
quantum channel, satisfies these requirements:

I�ðEθÞ ≔ max
fwxg

�
minρ;Π;θ̃Δ2

W θ̃P
x minρx w

T
xF−1(EθðρxÞ)wx

�
; ð8Þ

where θ̃ are locally unbiased estimators (equivalently, we
could define this quantity in terms of the classical Fisher
information matrix associated with a POVM without
explicit reference to estimators), and the arbitrary (not
necessarily orthogonal) vectors wx determine the effective
cost matrix for the multiparamter estimation problem
W ¼ P

x wxwT
x . Vectors wx may be understood as repre-

senting a certain scalar function of θ to be estimated,
corresponding to a choice of a rank-1 cost matrix Wx ¼
wxwT

x . For a given ρx, the quantity wT
xF−1(EθðρxÞ)wx

appearing in the denominator is an attainable bound on the
minimal error of estimating the function when the remain-
ing parameters are treated as nuisance parameters [48,71]
(due to the effectively scalar nature of the estimation
problem, measurement incompatibility does not affect
attainability of the bound in this case).
Intuitively, the incompatibility measure captures the

worst-case scenario where the ratio between the cost of
estimating p scalar functions simultaneously is the largest
compared with the cost of estimating them separately
with the optimal probes. Note that I� is parametrization
independent, since for any reparametrization θ → Aθ
(where A is some invertible matrix), we obtain the identical
formula by the following change of the cost vectors
wx → ATwx. Moreover, this quantity is indeed 1 when
there is a single state ρ that gives minimal cost for all x.
Admittedly, this quantity is challenging to compute,

especially for multiparameter metrological models in the
presence of noise. Therefore, in this paper we use an
efficiently computable lower bound, the probe incompat-
ibility measure based on the total QFI:

I�ðEθÞ≥IðEθÞ≔ p

�
maxρ

Xp
x¼1

F xx(EθðρÞ)
maxρxF xx(EθðρxÞ)

�−1

ð9Þ

where some natural parametrization is fixed; see
Appendix A for the derivation of the bound. This way,
we obtain a quantity that takes values in the range
1 ≤ IðEθÞ ≤ p, where again 1 indicates perfect compati-
bility and p maximal incompatibility (when the best
strategy is to estimate the parameters separately and the
state that maximizes the QFI for a given x yields zero
QFI for all other x). In what follows, instead of
maxρxF xx(EθðρxÞ) we also write maxρxF(EθxðρxÞ) with
a single scalar parameter θx to indicate that this quantity
refers to essentially a single-parameter problem, where all
other parameters can be regarded as perfectly known.
Unlike the original incompatibility measure defined in

Eq. (8), the lower bound (9) is in general parametrization
dependent (though it is invariant under rescaling of para-
meters). For the lower bound (9) to hold, one must choose a
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natural parametrization, such that the QFI matrices corre-
sponding to the optimal states argmaxρxF xx(EθðρxÞ) are
diagonal. Nonetheless, we argue that IðEθÞ is meaningful
to study on its own for any given parametrization. While
I�ðEθÞ takes into account all conditions (i)–(iii) stated in
the Introduction, the probe incompatibility measure IðEθÞ
singles out the effect of (i), as the name suggests. In
principle, one can check a posteriori if the QFI matrices of
the optimal states are diagonal to gauge the “naturalness” of
the chosen parametrization.
Finally, let us note that when the probe incompatibility

measure is applied to the random sensing scenario, the
quantity (9) is actually the true incompatibility cost and not
a lower bound, as there is a clear distinction between the
parameters of different channels, unlike in the genuine
multiparameter scenario.

III. BOUNDS ON THE TOTAL QFI

In this section, we study the total QFI in the most
general case, considering a collection of p quantum
channels, i.e., completely positive trace-preserving
(CPTP) maps acting on the same input Hilbert space
Ex;θxðρÞ ¼

Prx
j¼1Kx;θx;jρK

†
x;θx;j

, where the Kraus operators

of each channel satisfy
Prx

j K†
x;θx;j

Kx;θx;j ¼ 1. The channels
are labeled by x ¼ 1;…; p, and each one depends on a
parameter θx and can have a different number of Kraus
operators rx and a different output dimension. We also
introduce the column vectors of Kraus operators
Kx ¼ ½Kx;θx;1;…; Kx;θx;rx �T , which allows us to write sums

over Kraus operators more compactly, e.g., K†
xKx ¼ 1. To

ease the notation, we usually suppress the label x and
identify the different channels only through their parameter
θx as Eθx , while leaving the dependence on θx of the Kraus
operators implied.
Depending on the physical context, the resulting bounds

will have applications either in the standard multiparameter
estimation setting or in the random sensing scenario. In the
multiparameter case, x labels only the different parameters
of the same quantum channel; thus, there is no explicit
channel dependence on x, i.e.,Kx ¼ K and rx ¼ r, and the
notation Eθx means that we are considering the xth single-
parameter submodel, as we explain in Sec. II C. On the
other hand, for random sensing there are multiple channels
but only one parameter θx ¼ θ, so the notation Eθx becomes
shorthand for Ex;θ.
In this section, we derive an attainable bound for a single

use of the channel and an upper bound for generic strategies
with N uses of the channel. In Appendix E, we also show
that some previously known results, including the bound of
Ref. [62], can be obtained within our approach. For
practical applications, it is crucial to note that all bounds
we derive [the single-use boundFq (12) and the asymptotic
channel boundBq (20)] can be computed with semidefinite

programs (SDPs) similar to their single-parameter counter-
parts [2,4,72]; see Appendix F. A MATLAB implementation
can be found in Ref. [73]. A summary of all bounds derived
in this paper is shown in Table I.

A. Single use of the channel

Here we focus on the total channel QFI, i.e., the optimal
total QFI:

Fq ≔ max
ρ

FqðρÞ ¼ max
ρ

Xp
x¼1

qxF(EθxðρÞ): ð10Þ

One can also consider a more general entanglement-
assisted strategy corresponding to the extended channels
Eθx ⊗ IA (IA denotes the identity channel on an auxiliary
Hilbert space) so that the maximization runs over bipartite
states ρ ∈ SðHS ⊗ HAÞ, where SðHÞ denotes the space of
density matrices over H. The total channel QFI for this
extended channel is always an upper bound on Fq. In this
work, we do not investigate the difference between assisted
and unassisted strategies; therefore, the distinction between
the two cases is not crucial and will not be made explicit
unless necessary, even if the bounds are actually derived for
the extended channels.
The most straightforward way to upper bound the total

channel QFI is to use the single-parameter channel QFI Fx
for each parameter:

Fq ≤
Xp
x¼1

qxmax
ρx

F(EθxðρxÞ) ¼
Xp
x¼1

qxFx: ð11Þ

This upper bound, however, does not take into account
potential probe incompatibility, and indeed, when it is
attained the incompatibility cost takes its minimal
value IðEθÞ ¼ 1.
In order to obtain a tighter bound, we revisit and

generalize the derivation of the single-parameter channel
QFI ([60] Theorem 4), which results in the following.
Theorem 1: The total channel QFI of a collection of

quantum channels is upper bounded as

Fq ≤ 4min
h

����
Xp
x¼1

qxαx

����; ð12Þ

where k · k denotes the operator norm (maximal singular
value), αx ≔ ∂θxK̃

†
x∂θxK̃x with ∂θxK̃x ≔ ∂θxKx − ihxKx.

and h ¼ fhxgpx¼1 is a collection of p Hermitian matrices,
each of dimension rx × rx. Equality in Eq. (12) is attained
when considering the extended channels Eθx ⊗ IA.
Proof.—We consider the extended channels Eθx ⊗ IA,

which will give an upper bound for the unextended ones.
First, we note that the total QFI is maximized by a pure
state jψi ∈ HS ⊗ HA because of its convexity. Each single-
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parameter QFI in the sum can be written as a minimization
over a Hermitian matrix hx [2,60]:

F(Eθx ⊗ IðjψiÞ) ¼ 4min
hx

hψ j∂θxK̃
†
x∂θxK̃x ⊗ 1jψi

¼ 4min
hx

Tr½ρ∂θxK̃
†
x∂θxK̃x�; ð13Þ

where ρ ¼ TrAjψihψ j, and we use shorthand notation
EðjψiÞ≡ Eðjψihψ jÞ. Therefore, it is equivalent to maxi-
mize the lhs of Eq. (13) over pure bipartite states and the rhs
over the convex set of mixed states SðHÞ. The minimum of
the sum of functions of the independent variables hx is
equal to the sum of the minima; thus, we obtain

max
jψi

Xp
x¼1

qxF(Eθx ⊗ IðjψiÞ) ð14Þ

¼ 4 max
ρ∈SðHÞ

min
h

Tr

�
ρ
Xp
x¼1

qx∂θxK̃
†
x∂θxK̃x

�
ð15Þ

¼ 4min
h

max
ρ∈SðHÞ

Tr

�
ρ
Xp
x¼1

qx∂θxK̃
†
x∂θxK̃x

�
ð16Þ

¼ 4min
h

����
Xp
x¼1

qx∂θxK̃
†
x∂θxK̃x

����: ð17Þ

The conditions to interchange max and min in Eq. (15)
are the convexity and compactness of the set SðHÞ, the
concavity of the cost function in ρ, and its convexity in the
variables hx ([74] Corollary 37.3.2). These conditions are
satisfied since the function is linear in ρ, each term in the
sum is convex in the matrix hx, and the sum of convex
functions with positive coefficients is convex. ▪

Since the bound (12) is the norm of a sum of operators,
Eq. (11) immediately follows from the triangle inequality,
whereFx ¼ 4minhx k∂θxK̃

†
x∂θxK̃xk is the single-parameter

extended channel QFI [60]. The bound (12) with weights
qx ¼ 1=Fx is used to evaluate the probe incompatibility
cost (9) for the (extended) channel. Finally, as a consis-
tency check, we can see that for factorized channels of the
form E1;θ1 ⊗ � � � ⊗ Ep;θp where each parameter is encoded
independently from the others, the triangle inequality is
always saturated because each αx acts nontrivially only
on a single subsystem and thus, kPx αxk ¼
kPx 1 ⊗ … ⊗ ∂xK

†
x∂xKx… ⊗ 1k ¼ P

x k∂xK
†
x∂xKxk.

B. Asymptotic bound for the most general strategy

Now we move to a metrological strategy with N uses of
the channel Eθx . We consider the most general adaptive
strategy, allowing for arbitrary auxiliary systems and
unitary control operations ViðρÞ ¼ ViρV

†
i , as depicted in

Fig. 2(a). The overall channel is thus, EN
θx
¼ VN∘ðEθx ⊗

IÞ∘VN−1∘…∘V1∘ðEθx ⊗ IÞ (when the input and output
dimensions of the channels are different, unitaries and
auxiliary systems are used to make them compatible), and
we want to upper bound the total QFI of the sequential
scheme

FN
q ≔ max

ρ;fVig

Xp
x¼1

qxF ðEN
θx
ðρÞÞ: ð18Þ

We stress that the optimal strategy, i.e., not only the initial
state but also the control unitaries, cannot use any infor-
mation about which channel x is appliedN times. The main
result for the general strategy is the following.
Theorem 2: The total channel QFI for an adaptive

strategy with N uses of the channel satisfies the bound

FN
q ≤ 4min

h

�
N

����
X
x

qxαx

����þ NðN − 1Þmax
x

ðkβxkÞ
�����

Xp
x¼1

qxβx

����þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Xp
x¼1

qx

�����
Xp
x¼1

qxαx

����
vuut �	

; ð19Þ

where αx ¼ ð∂θxKx − ihxKxÞ†ð∂θxKx − ihxKxÞ and
βx ¼ ð∂θxKx − ihxKxÞ†Kx.
The proof is relegated to Appendix B. For p ¼ 1, one

obtains the known single-parameter bound [3,8,75].
The parallel strategy corresponding to the channel E⊗N

θx
is

less powerful than a sequential one since it can be obtained
by choosing swap operations as the control unitaries. For
completeness, we provide a complete derivation of the
tighter bound for the parallel strategy in Appendix C. Note
that the two bounds differ asymptotically only when
Heisenberg scaling is allowed. However, since we are
mostly interested in noisy channels that satisfy the

conditions βx ¼ 0 ∀ x ¼ 1;…; p, this distinction will
not be relevant. In this case, the optimal upper bound in
Eq. (19) is asymptotically linear in N:

FN
q ≤ NBq; Bq ≔ 4 min

h;βx¼0

����
Xp
x¼1

qxαx

����: ð20Þ

We call Bq the asymptotic SQL bound, since in the limit
N ≫ 1 the optimal variables hx in Eq. (19) must make the
quadratic term vanish. Furthermore, in Appendix D, we
provide a time-continuous variant of the bound that applies
to general Markovian noise, where the duration of a single
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probing step may be adjusted arbitrarily. In this case, it is
the total interrogation time that is treated as a resource, and
the bound is a direct generalization of the single-parameter
bounds derived in Refs. [4,5].
The condition βx ¼ 0 is dubbed the “Hamiltonian in the

Kraus span” (HKS) condition:

βx ¼ 0 ⇔ i∂θxK
†
xKx ∈ spanRðK†

x;iKx;j; ∀ i; jÞ; ð21Þ

where we introduce the so-called Kraus spans [8] of the
channels Eθx . Here, i∂θxK

†
xKx is not a real Hamiltonian but

an effective generator for the parameter θx. In the simple
case of parameter-independent noise following a single-
parameter unitary, we have the Kraus operators Kje−iθH

and indeed H ¼ i∂θK†K. For an arbitrary parameter of a
full-rank channel, this condition is always satisfied, thus
ruling out Heisenberg scaling N2 for almost all (in a
measure-theoretical sense) quantum channels [60].
Just like in the single-use case, the sum of single-

parameter bounds is an upper bound that does not take
into account probe incompatibility and the triangle inequal-
ity implies Bq ≤

Pp
x¼1 qxBθx , where Bθx ≔ 4minhx kαxk

subject to βx ¼ 0. Following this observation, we introduce
an asymptotic probe incompatibility measure that general-
izes Eq. (9). In the SQL case, it is obtained by evaluating
Bq with weights qx ¼ 1=Bθx :

I∞ðEθÞ ≔ p

�
4min

h
fβx¼0g

����
Xp
x¼1

αx
Bθx

����
�

−1
: ð22Þ

Since the single-parameter bounds Bθx are asymptotically
attainable [8], the quantity I∞ is a computable lower
bound on the actual asymptotic incompatibility.

C. Purification-based definition of the QFI matrix

In the proof of Theorem 1, we use the established
purification-based definition of the single-parameter QFI.
Since we work assuming that each channel Eθx can be
different, the purifications pertaining to different parame-
ters need not be related. However, in the case of multiple
parameters and a single channel, the need to choose a
different purification for each parameter would entail that
the bound is not tight. In other words, the upper bound (12)
would not necessarily correspond to the weighted trace of
the QFI matrix of the optimal probe state on which the
channel acted upon.
In this section, we show that this is not the case and that

the purification-based definition of the scalar QFI is easily
generalized to the matrix-valued case (a similar statement
appeared in Ref. [55] without explicit proof), meaning that
each choice of the matrices h corresponds to a unique
purification.

For notational convenience, we introduce the d × p
Jacobian matrix of a d-dimensional pure state jΨθi: ∇Ψθ ¼
½j∂1Ψθi;…; j∂pΨθi� so that we can write the p × p QFI
matrix compactly as

F ðjΨθiÞ ¼ 4Re½ð∇ΨθÞ†∇Ψθ − ð∇ΨθÞ†jΨθihΨθj∇Ψθ�;
ð23Þ

and clearly F ðjΨθiÞ ≤ 4Re½ð∇ΨθÞ†∇Ψθ� since the term
subtracted is a positive-semidefinite matrix. We can thus
formulate the result as follows.
Theorem 3: The QFI matrix of a mixed state ρθ is equal

to the minimal (in the positive-semidefinite sense) QFI
matrix of its purifications

F ðρθÞ ¼ min
Ψθ

F ðjΨθiÞ ¼ 4min
Ψθ

Re½ð∇ΨθÞ†∇Ψθ�: ð24Þ

Proof.—Starting from an arbitrary fixed purification
jΨθi, such that ρθ ¼ TrEjΨθihΨθj, all other purifications
of the quantum statistical model are obtained by acting
with a parameter-dependent unitary on the environment
jΨ̃θi ¼ 1 ⊗ uθjΨθi. If we consider the matrix ð∇Ψ̃θÞ†∇Ψ̃θ,
we see that the unitary uθ enters only through the quan-
tities u†θ∂juθ ¼ −ihj, where hj are Hermitian matrices.
Crucially, the matrices hj are independent variables [76].
From the purification-based definition of the single-
parameter QFI [60,72] F jjðρθÞ ¼ minhjh∂jΨθj∂jΨθi ¼
F jjðjΨ�

θiÞ, we know that for each parameter there exists
an optimal matrix hj such that the pure state model jΨ�

θi
satisfies j∂jΨ�

θi ¼ 1
2
Lj ⊗ 1jΨ�

θi, where Lj is the SLD of
the original mixed state [60,77], also implying
h∂jΨ�

θjΨ�
θi ¼ 0. Therefore, for this purification we obtain

the equality

Tr½ρθLiLj� ¼ 4h∂iΨ�
θj∂jΨ�

θi ⇒ F ðρθÞ ¼ F ðjΨ̃θiÞ; ð25Þ

where the QFI matrix is the real part of the complex matrix
on the left. Finally, thanks to the monotonicity of the QFI
matrix [33,78], we have the matrix inequalities

F ðρθÞ ≤ F ðjΨ̃θiÞ ≤ 4Re½ð∇Ψ̃θÞ†∇Ψ̃θ�; ð26Þ

which hold for arbitrary purifications jΨ̃θi since partial
tracing is a CPTP map. This shows that the matrix-valued
minimization in the statement of the theorem is well posed
and closes the proof. ▪
We remark that when ImðTr½ρθLiLj�Þ ¼ 0 ∀ i; j, the

bound Tr½WF ðρθÞ−1� is equal to the Holevo Cramér-Rao
bound and thus asymptotically attainable [29,79]. Therefore,
thanks to the equality between the complex matrices (25),
this condition can be checked from the optimal purification.
By solving the minimization (12), one obtains the

maximal value of the trace of the QFI matrix, but the
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optimal state is not identified and it is not immediate to
retrieve the full QFI matrix. In Appendix G, we present an
algorithm that finds an optimal state by enforcing that a
solution of the minimax problem in Eq. (15) must be a
saddle point in the variables ρ and h, analogous to the
single-parameter case [8]. The same approach can be
applied to the asymptotic SQL bound (20), but the meaning
of the obtained ρ is unclear, unlike for single-parameter
problems where it is connected with the approximate error
correction strategy to attain the bound [8]. Once an optimal
state is found, it is easy to obtain its full QFI matrix using
the purification-based definition.

IV. APPLICATIONS TO MULTIPARAMETER
QUANTUM METROLOGY

In this section, we apply the theory we developed to
physical problems schematized in Fig. 3. First, we study the
paradigmatic problem of characterizing the Hamiltonian of
a d-dimensional quantum system, i.e., Hamiltonian tomog-
raphy, in which the number of parameters scales quadrati-
cally with the dimension of the Hilbert space. We consider
the effect of erasure noise, and we show that asymptotic
probe incompatibility is identical to the noiseless case.
Focusing on the submodel with only commuting gener-
ators, the problem is equivalent to multiphase estimation in
the presence of optical losses, a widely studied task for
which we confirm and strengthen existing results. Then, we
consider the estimation of multiple optical losses, for which
our bound is tight. Finally, we focus on the estimation of a
phase and a noise parameter for photon loss and phase
diffusion. In these instances, we see no asymptotic probe
incompatibility, matching physical intuition, numerical
evidence, and previous results.

An additional example, the estimation of the two noise
parameters of a generalized amplitude damping channel,
is studied in Appendix H 1. For this channel, as well as
for the multiple-loss channel, there is no advantage in
using advanced strategies, since the asymptotic SQL
bound coincides with the single-use one, analogous to
several single-parameter noise estimation problems with
qubits [72].

A. Hamiltonian tomography with erasure noise

Before focusing on this specific model, we start with
a more general consideration for the estimation of the

parameters θ of a unitary Uθ ¼ e−i
P

p
x
θxGx with the

Hermitian generators Gx, when the noisy channel acts
after the unitary encoding. The Kraus operators are thus,
K0

i ¼ KiUθ, where Ki is the Kraus operator of the noise
only, and its derivatives are ∂xK0

i ¼ −iK0
iGx since we

assume to work at the true value θx ¼ 0 ∀ x. Under these
assumptions, the SQL bound (20) can be simplified using
the HKS conditions:

Bq ¼ 4min
hx

βx¼0

����−
�Xp

x¼1

qxG2
x

�
þK†

�Xp
x¼1

qxh2x

�
K

����: ð27Þ

Hamiltonian tomography of a d-dimensional quantum
system amounts to the estimation of the d2 − 1 parameters
of a SUðdÞ transformation. This problem, or slight varia-
tions, has been studied in the noiseless and error-corrected
scenario [19,21,28,80–82]. It has been shown that an
advantage of Oð ffiffiffi

p
p Þ ¼ OðdÞ is possible using a simulta-

neous adaptive estimation strategy.
Here, for simplicity we consider the p ¼ d2 parameters

of a UðdÞ transformation. This choice makes the QFI
matrix singular, but it is not a problem when using the total
QFI as a figure of merit. Concretely, we choose the
following generators:

Gdiag
j ¼ jjihjj; Gre

jk ¼
1

2
ðjjihkj þ jkihjjÞ;

Gim
jk ¼ i

2
ðjjihkj − jkihjjÞ; ð28Þ

where we separate the three submodels with d diagonal,
dðd − 1Þ=2 real, and dðd − 1Þ=2 imaginary off-diagonal
generators. For the noise, we consider a qudit erasure
channel, i.e., EðρÞ ¼ ηρþ ð1 − ηÞjdþ 1ihdþ 1j, descri-
bed by the following dþ 1 Kraus operators:

K0 ¼
ffiffiffi
η

p �
1d

0;…; 0

�
Ki ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
jdþ 1ihij ð29Þ

for i ¼ 1;…; d; the output Hilbert space contains an
additional dimension that represents the system in the
“lost” state jdþ 1i, as shown in Fig. 3(a).

FIG. 3. Schematic representation of the tasks considered in this
section: simultaneous estimation of (a) the parameters of an
arbitrary UðdÞ transformation with erasure noise; (b) multiple
phases in the presence of uniform loss on all modes; (c) multiples
losses; (d) phase and loss imprinted by a sample in a two-arm
interferometer; (e) phase and dephasing in a two-arm interfer-
ometer.
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The asymptotic SQL bound on the total QFI is the
following (more details in Appendix H 2):

B ¼ η

1 − η
ðFdiag þFreal þFimagÞ; ð30Þ

Fdiag ¼
4ðd − 1Þ

d
; Freal ¼ Fimag ¼ d − 1; ð31Þ

where the weights are qi ¼ 1 (in this case, we drop the
weight index), and F are the noiseless bounds for a single
use of the channel for the three submodels (attained by
considering the extended channel and a probe state max-
imally entangled with the auxiliary system [19]). This
means that probe incompatibility exists only inside the
three submodels.
The single-parameter bounds are identical for all param-

eters: Bx ¼ ½η=ð1 − ηÞ�, equivalent to the estimation of a
qubit rotation with erasure noise [1–3]. This means that the
asymptotic probe incompatibility cost is simply obtained
by rescaling the bound (30), and it is identical to the
noiseless case I∞ ¼ fd3=½2ðd2 þ d − 2Þ�g ¼ Oð ffiffiffi

p
p Þ,

which is an intermediate scaling between the two extremal
scalings Oð1Þ (compatibility) and OðpÞ (maximal
incompatibility).

B. Multiple phases with loss

Estimating multiple optical phases simultaneously is a
paradigmatic task in multiparameter quantum metrology
[12,20,22,66,83–88] also realized experimentally [24,89].
In the noiseless scenario, Humphreys et al. [12] argued that
a simultaneous estimation strategy provides an advantage
in the total variance over individual quantum estimation
schemes that scales as OðpÞ. However, the apparent
advantage is actually a pitfall in the application of the
QCRB. A minimax analysis taking into account the total
number of photons shows that no advantage in scaling with
p is present [90]. Fortunately, asymptotic discrepancies
between the minimax, Bayesian, and QCRB predictions
may appear only in the Heisenberg scaling scenarios and
disappear when the optimal scaling corresponds to the
SQL, and this issue will not have any impact on our results.
Here we study the problem in the presence of optical

losses that forbid Heisenberg scaling. This setting was first
studied in Ref. [55] with a purification-based bound, and
the problem was also studied treating the transmissivity as a
nuisance parameter [51]. In previous works, lossy inter-
ferometers were modeled in a “second quantization”
description where each mode is treated as a quantum
subsystem. We take a different approach and consider
photons as the elementary subsystems using a “first
quantization” formalism which treats photons as formally
distinguishable particles [91]. This can describe, e.g.,
photons prepared in nonoverlapping time bins. In this
picture, each mode represents a dimension of the single-

photon Hilbert space, and the fundamental object is thus the
qudit channel describing the evolution of a single photon.
While in practice the mode description is well suited to
describe optical interferometers, from a formal and funda-
mental point of view it models only parallel strategies in
which single-photon channels are probed in parallel by
permutationally symmetric multiphoton states. By working
in a more general scenario and treating the photons as
distinguishable, we can investigate the possible usefulness
of adaptive strategies. In this picture, the erasure channel
(29) describes photon losses happening with equal prob-
ability 1 − η in each mode.
Mathematically, this problem is described by a commut-

ing submodel of the full UðdÞ model we introduced before.
We consider only p ¼ d − 1 parameters corresponding to
all diagonal generators in Eq. (28) except one representing
the reference arm of the interferometer with a known phase,
as shown in Fig. 3(b). Since the generators commute, the
bound (27) now holds for all values of the parameters. We
obtain the following bound on the total variance:

Δ2θ̃ ≥
1 − η

η

p3

4Nðp − 1Þ ≥
1 − η

4η

p2

N
; ð32Þ

valid for p > 1 (d > 2), since the total QFI is identical to
the bound (30) on diagonal parameters, with the substitu-
tion d → d − 1, for d > 2. As we explain in more detail in
Appendix H 2 a, when the same p diagonal generators act
on higher-dimensional systems, the optimal total QFI is
unchanged. This means that adding additional reference
modes does not improve the bound. The rightmost quantity
in Eq. (32) corresponds to the bound obtained in Ref. [55]
for simultaneous estimation of the p phases with N total
indistinguishable photons in the limit N ≫ 1, p ≫ 1,
N=p ≫ 1. Our result shows that the same bound holds
even for the most general adaptive strategy acting on
distinguishable photons.
The asymptotic probe incompatibility cost is almost

maximal I∞ ¼ fp2=½4ðp − 1Þ�g ¼ OðpÞ, and it is again
identical to the noiseless case. This means that little can be
gained from simultaneous estimation. Indeed, the asymp-
totic variance for a single-phase estimation in an interfer-
ometer with two arms, both with transmissivity η, is
½ð1 − ηÞ=η�ð1=NÞ. Thus, the asymptotic total variance for
the separate estimation of p phases with N total photons isPp

x¼1½ð1 − ηÞ=η�ð1=nÞ ¼ ½ð1 − ηÞ=η�ðp2=NÞ, where n ¼
ðN=pÞ photons are allocated to each phase. This means
that our multiparameter bound imposes a strong limitation:
Even the most general strategy allowed by quantum
mechanics can give at most a factor 4 improvement in
the asymptotic total variance.
This potential advantage granted by simultaneous esti-

mation comes from not needing separate reference beams
for measuring each phase. Indeed, a simple calculation
shows that if we assume to have a free external phase
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reference [92], the single-phase variance obtained with
a squeezed coherent state is optimal, yielding ½ð1 −
ηÞ=4η�ð1=n̄Þ in the limit of a large average number of
photons n̄; see also Ref. [94]. The bound (32) is therefore
equivalent to having a free phase reference and estimating
each phase with a mean photon number n̄ ¼ N=p. This
observation is similar to the one made in Ref. [90], where
the advantage of simultaneous over separate strategies was
studied in idealized lossless models where asymptotic
Heisenberg scaling is achievable. Furthermore, in the
lossless scenario restricted to classical light (thus, with
SQL precision), simultaneous estimation gives again a
factor 4 advantage for p ≫ 1, as shown by explicitly
finding the optimal probe state [87]. While practical
schemes to attain the bound (32) asymptotically (both in
N and p) are currently not known for the lossy case, the
physical motivation of the advantage we discussed suggests
that the bound should be attainable, similar to the loss-
less case.

C. Multiple losses

Estimating optical losses is another paradigmatic task
where quantum light offers an advantage over classical
light, even if not in terms of scaling with the total number of
photons. In real-life applications, multiple losses must be
estimated simultaneously, e.g., for the imaging of absorb-
ing samples or in absorption spectroscopy. This problem
has been studied in Ref. [95] where it was proven that
simultaneous estimation offers no advantage over estimat-
ing each parameter individually. However, similar to the
situation discussed in Sec. IV B for multiple phases,
previous results are based on a mode description (thus, a
parallel strategy) and, citing Ref. [95], “it remains to be
seen if sequential adaptive estimation strategies can yield
still more quantum enhancement.” Using our tools, we
answer this question and show that sequential adaptive
schemes do not yield any additional enhancement.
In a particle description we can model multiple losses

with the following Kraus operators:

K0 ¼
�
diagð ffiffiffiffiffi

η1
p

;…; ffiffiffiffiffi
ηp

p Þ
0;…; 0

�
Ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηi

p
jpþ 1ihij:

ð33Þ

Since each loss can be thought of as a beam splitter, as
shown in Fig. 3(c), it is natural and useful to parametrize the
problem in terms of the mixing angles ϕ instead of the
transmissivities η, these parameters are related as
cosðϕjÞ ¼ ffiffiffiffi

ηj
p . With this parametrization and these

Kraus operators, we obtain the bounds B ¼ F ¼ 4 for
hx ¼ 0 ∀ x, which correspond to TrF ≤ 4N for N uses of
the single-photon channel. This upper bound on the trace is
saturated by the optimal QFI matrix obtained in Ref. [95]
from a mode description: 4diagðn̄1;…; n̄pÞ where n̄x is the

average number of photons used to probe each parameter
ϕx (for probe states without a fixed photon number, the
SQL bound applies to each sector so that N can safely be
substituted by the average photon number [6]). Since there
is no measurement incompatibility, the QFI matrix gives in
turn an attainable Cramér-Rao bound, and when photons
are evenly distributed as n̄x ¼ ðN=pÞ ∀ x, all inequalities
in Eq. (6) are tight.

D. Phase and loss

Here we consider the problem of simultaneously esti-
mating the phase shift and the loss (absorption) induced by
a sample in one arm of a two-arm interferometer (the case
of symmetric loss in both arms is simpler and fully solved
in Ref. [29]). This problem is a paradigmatic example of a
trade-off between the errors on the two parameters [57]. On
the one hand, this problem shows measurement incompat-
ibility, making an analysis in terms of the QFI not
complete; for particular probe states and low photon
numbers, the fundamental Holevo Cramér-Rao bound is
studied in Refs. [40,45]. On the other hand, the problem
shows also probe incompatibility: Single-mode Fock states
are optimal for loss estimation [96] but phase insensitive.
Again, we model this metrological problem using a

particle description of photons so that we can describe a
single photon as a qubit [91]. The channel experienced by a
single photon is thus described by the following Kraus
operators:

K0 ¼

2
64

ffiffiffi
η

p
e−iθ 0

0 1

0 0

3
75; K1 ¼

2
64

0 0

0 0ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
0

3
75; ð34Þ

where the extra output dimension accounts for lost photons,
and we want to estimate the phase θ and the transmissiv-
ity η.
As intuitively expected, with a single use of the channel

there is indeed probe incompatibility and we obtain

I ¼ 2

�
1 − η

ηþ ffiffiffi
η

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ ffiffiffi

η
p Þp

�
2

; ð35Þ

a strictly increasing function of η in the range 0 ≤ η ≤ 1

that spans the values 1 ≤ I ≤ 32
25
. Alternatively, probe

incompatibility can be observed from the fact that the total
channel QFI with qi ¼ 1 is equal to the optimal QFI about
the transmissivity F ¼ Fη ¼ f1=½ηð1 − ηÞ�g.
On the contrary, the asymptotic bound indicates that

there is no incompatibility as we have I∞ ¼ 1 and
B ¼ Bθ þBη. Further evidence of a reduction of
probe incompatibility as N increases is obtained by a
numerical evaluation of the single-use bound for N-photon
channels. More details on these calculations are found in
Appendix H 3.
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E. Phase and dephasing

Simultaneous estimation of an optical phase and its
phase-diffusion coefficient is another well-known two-
parameter problem [56,97,98]. At the single-photon level,
the evolution is described by the following Kraus operators:

K0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ η

2

r �
eiθ 0

0 1

�
; K1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

2

r �
eiθ 0

0 −1

�
:

ð36Þ

It is known that there is no probe incompatibility for
N ¼ 1, while it reappears for N ≥ 2 and then again
decreases with N [29] and vanishes asymptotically [97].
Our bounds (20) and (12) show that both with a single use
of the channel and asymptotically there is no probe
incompatibility: I ¼ I∞ ¼ 1. Details on this calculation
are presented in Appendix H 4. This asymptotic disappear-
ance of incompatibility agrees with the results of a direct
QFI maximization in parallel strategies reported in
Refs. [29,97].

V. APPLICATION TO QUANTUM-CHANNEL
DISCRIMINATION

In this section, we draw a connection between bounds on
the total QFI introduced in Sec. III and the problem of
discriminating between several channels. First, we general-
ize the framework to arbitrary quantum-channel discrimi-
nation tasks. This approach is particularly suited to those
problems where there is some reference channel to which
the channels are naturally related. In this framework, we
derive an inequality that we call a speed limit for the
discrimination of multiple noisy channels. As an applica-
tion, we derive bounds on the performance of a time-
continuous version of Grover’s algorithm in the presence of
noise, revisiting the approach of Ref. [61]. Our new bounds
allow us to close a gap in the proof that was left open as a
conjecture.

A. Background notions

1. Probability of error

The error in discriminating among p states ρn with prior
probability px is given by [99]

PHðfρx; pxgÞ ≔ 1 − maxP
x

Πx¼1

Xp
x¼1

pxTrðρxΠxÞ; ð37Þ

where H stands for the “Helstrom error” and fΠxg is a
p-outcome POVM. For p ¼ 2 and equal priors p1 ¼
p2 ¼ 1=2, it reduces to

PHðρ1; ρ2Þ ¼
1

2
½1 −Dtrðρ1; ρ2Þ�; ð38Þ

where

Dtrðρ1; ρ2Þ ≔
1

2
kρ1 − ρ2k1 ð39Þ

is the trace distance, and kAk1 ¼ Tr
ffiffiffiffiffiffiffiffiffi
A†A

p
is the trace

norm, i.e., the sum of the singular values of A. It is useful to
introduce the Fuchs–van de Graaf inequalities between the
trace distance and the fidelity [100]

1 − Fðρ1; ρ2Þ ≤ Dtrðρ1; ρ2Þ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Fðρ1; ρ2Þ2

q
; ð40Þ

where we define the fidelity as

Fðρ1; ρ2Þ ≔ k ffiffiffiffiffi
ρ1

p ffiffiffiffiffi
ρ2

p k1 ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1

p
ρ2

ffiffiffiffiffi
ρ1

pq
: ð41Þ

There is no closed-form solution for the generic multi-
hypothesis problem, but it is possible to find upper and
lower bounds. A lower bound in terms of binary discrimi-
nation is the following [101]:

PHðfρx; pxgÞ ≥
1

2

�
1 −

1

p − 1

X
1≤x<y≤p

kpxρx − pyρyk1
�
:

ð42Þ

2. Bures angle

The angular Bures distance or Bures angle is defined in
terms of the fidelity [102]

DAðρ1; ρ2Þ ≔ arccosFðρ1; ρ2Þ; ð43Þ

and in particular, the infinitesimal version is related to the
QFI

DAðρθ; ρθþdθÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρθÞ

p
dθ; ð44Þ

where we introduce a suitable smooth parametrization.
Crucially, DAðρ1; ρ2Þ is the length of a geodesic path
between ρ1 and ρ2 with respect to this infinitesimal metric
[103,104]; thus, for any smooth parametrization such that
ρ1 ¼ ρθ¼0 and ρ2 ¼ ρθ¼θ� , we have

DAðρ1; ρ2Þ ≤
1

2

Z
θ�

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρθÞ

p
dθ: ð45Þ

We use the second inequality (40) to upper bound the
trace distance with the Bures angle

Dtrðρ1; ρ2Þ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2½DAðρ1; ρ2Þ�

q
≤ DAðρ1; ρ2Þ; ð46Þ

ALBARELLI and DEMKOWICZ-DOBRZAŃSKI PHYS. REV. X 12, 011039 (2022)

011039-12



where we use the inequality cos2 ξ ≥ 1 − ξ2 for
0 ≤ ξ ≤ π=2.

B. Reference-state bound for state discrimination

Thanks to inequality (46) and the triangle inequality, the
trace distance can be upper bounded as

Dtrðρx; ρyÞ ≤ DAðρx; ρ0Þ þDAðρy; ρ0Þ; ð47Þ

where we introduce an arbitrary reference state ρ0. Now we
make the crucial assumption that the states ρx and ρy are
parametrized by a parameter θ such that ρx ¼ ρx;θ¼θ� ,
ρy ¼ ρy;θ¼θ� , and ρ0 ¼ ρx;θ¼0 ¼ ρy;θ¼0, and thanks to
Eq. (45), we have

Dtrðρx; ρyÞ ≤
1

2

�Z
θ�

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρx;θÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρy;θÞ

q �
: ð48Þ

The intuition of using the geodesic and the triangle
inequalities is pictorially represented in Fig. 4.
Now we focus on discriminating p states with uniform

prior qx ¼ ð1=pÞ and apply Eq. (42) to find a lower bound
on the error from pairwise discrimination. Thanks to
Eq. (48), the sum appearing in Eq. (42) is upper bounded
as follows:

X
1≤x<y≤p

Dtrðρx; ρyÞ ≤
ðp − 1Þ

2

Z
θ�

0

dθ
Xp
x¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρx;θÞ

q

≤
ðp − 1Þ ffiffiffi

p
p

2

Z
θ�

0

dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
x¼1

F ðρx;θÞ
vuut ;

ð49Þ

where first we use the identity
P

1≤x<y≤pðqx þ qyÞ ¼
ðp − 1ÞPx qx and then the Jensen inequality

Pp
i¼1

ffiffiffiffi
qi

p ≤ffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1 qi

q
. Using Eq. (49) in conjunction with Eq. (42),

we obtain

Z
θ�

0

dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp
x¼1

F ðρx;θÞ
vuut ≥ 1 − 2PHðfρx; p−1gÞ: ð50Þ

C. Speed limits for discriminating noisy
quantum channels

The derivations of the previous section have limited
utility for discriminating an ensemble of quantum states. In
general, for a fixed set of states the sum

Pp
x¼1F ðρxÞ ¼

OðpÞ, since there are no issues with probe incompatibility.
Thanks to the additivity of the QFI, we thus get a trivial
bound (constant in the number p of states) on the number of
copies N needed to discriminate with fixed accuracy
N ≥ Oð1Þ. This is a weak and noninformative bound,
since it is known that the dependence on p should be
logarithmic [105]. However, such bounds reveal their
usefulness when applied to channel discrimination,
where we can take advantage of general and powerful
upper bounds on the total QFI that we introduced. In
particular, we focus on the case when the HKS conditions
are satisfied for all channels, which is always true for full-
rank channels.
We consider the discrimination of an ensemble of channels

fExgpx¼1 with uniform prior, assumingN repeated uses and a
general adaptive strategy with auxiliary systems. We fix a
target error ε, and we find a lower bound on the numberN of
uses of the channel (i.e., channel queries) needed to go below
the error threshold. The problem amounts to identification of
the minimal value of N for which

min
ρ0;fVig

PHðfEN
x ðρ0Þ; p−1gÞ ≤ ε; ð51Þ

where EN
x ðρ0Þ is the overall channel of the adaptive strategy,

as defined in Sec. III.
Instead of a reference state, we now introduce a reference

channel E0 and a suitable parametrization such that Ex ¼
Ex
θ¼θ� and E0 ¼ Ex;θ¼0, as depicted in Fig. 4. In this way, we

can apply Eq. (50) and obtain

Z
θ�

0

dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p
min
ρ0;fVig

Xp
x¼1

F(EN
x;θðρ0Þ)

vuut ≥ 1 − 2ε: ð52Þ

Here we see that the bounds on the total QFI FN that we
derive in Sec. III are useful even when considering different
channels. In particular, if there exists a parametrization
such that the HKS conditions are satisfied for all channels,
we obtain the following inequality:

N ≥
pð1 − 2εÞ2

(
R
θ�
0 dθ

ffiffiffiffiffiffiffiffiffiffiffi
BðθÞp

)2
; ð53Þ

FIG. 4. Intuitive representation of the geometrical argument
connecting the error in the discrimination of p quantum channels
with the precision of random sensing.
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where we highlight that the SQL bound BðθÞ generally
depends on the value θ at which it is evaluated. We call this
inequality a speed limit, a term which is more appropriate
when taking a continuous limit, as done in Appendix D for
Markovian noise.
We highlight that the speed limit (53) gives a nontrivial

result in the regime where ε is small, i.e., in the regime of
large distinguishability. On the contrary, for ε ¼ 1

2
the

bound is completely trivial, yielding N ≥ 0. We also
remark that in general it is not possible to perfectly
discriminate between noisy quantum channels with a finite
number of uses [106] (or finite time for Markovian noise
[107]), unlike for unitary channels [108].
If instead of fixing a target error (51) we require an

identical target fidelity between all pairs of final states,
which in terms of the Bures angle means

DA½EN
x ðρ0Þ; EN

y ðρ0Þ� ¼ δ; ∀ x ≠ y; ð54Þ

we can derive a slightly tighter bound similar to
Ref. [61]

N ≥
pδ2

(
R
θ�
0 dθ

ffiffiffiffiffiffiffiffiffiffiffi
BðθÞp

)2
: ð55Þ

D. Loss of computational speed-up
in the presence of noise

Following Ref. [61], we consider the time-continuous
version of Grover’s algorithm proposed by Farhi and
Gutmann [109]. The problem of finding a marked element
x of a database of size d is recast as determining which
oracle Hamiltonian Gx ¼ jxihxj generates the evolution
Ux

ω;τ ¼ e−iωτGx , where τ and ω are assumed to be known.
When the oracle is noiseless, it is possible to find the
marked element with a total runtime Oð ffiffiffi

d
p Þ instead of the

classical OðdÞ by appropriately driving the system.
It has been shown that a noisy oracle usually destroys the

quantum advantage, although this behavior was shown
only for specific noise models [110,111]. We study the
same problem, and we confirm the same loss of advantage
for a couple of new noise models, highlighting the general-
ity of the methodology employed.
In the following, we focus on noisy channels that

commute with the unitary evolution so that we can choose
Ex;ω;τ ¼ Eτ∘Ux;ω;τ where Uð·Þ denotes the map U ·U†.
Moreover we focus on Markovian noise with a semigroup
property Eτþτ0 ¼ Eτ∘Eτ0. Using the speed limit that we
introduced, we obtain a bound on the total run-time T under
the most general entanglement-enhanced adaptive strategy.
Thanks to the Markovianity assumption, the strongest
bound is obtained in the limit τ → 0, i.e., when the control
operations are applied as frequently as possible. In this
case, when invoking the metrological bound, we are in fact

using a direct generalization of the derived bounds adapted
to the estimation of multiple Hamiltonian parameters
with arbitrary Markovian noise under the most general
adaptive strategy, following the same approach used in
Refs. [4,5,75]; see Appendix D for details.

1. Uniform qudit dephasing

We consider the following uniform dephasing channel:

EðρÞ ¼ ηρþ ð1 − ηÞΔðρÞ; ð56Þ

where ΔðρÞ is the completely dephasing channel with
respect to the basis of the oracle Hamiltonians, i.e.,
ΔðρÞ ¼ diagðρÞ. We consider the total QFI of the ensemble
fEUx;θgdx¼1, where the unitaries Ux;θ ¼ e−iθGx . The corre-
sponding SQL bound (20) can be evaluated analytically

BθðηÞ ¼
4η

1 − η

d − 1

dþ 2
η

!
½d→∞�

4η

1 − η
; ð57Þ

the detailed calculation is relegated to Appendix H 5.
To apply the above result to the problem of identifying

the oracle Hamiltonian, we change the parametrization to
ω¼ θ=τ, and we choose ηγ;τ ¼ e−γτ to obtain theMarkovian
dephasing channel. For a total run-time T ¼ Nτ, the best
bound for frequency estimation is thus,

Bω ¼ lim
τ→0

τBðηγ;τÞ ¼
4ðd − 1Þ
γðdþ 2Þ ≤

4

γ
: ð58Þ

The bound Bω can alternatively be obtained directly
from the Lindblad operators fLi ¼ ffiffiffi

γ
p jiihijgdi¼1 using

the approach presented in Appendix D. Using inequality
(58) together with Eq. (55), we obtain a lower bound on the
total run-time T required to reach the desired Bures angle δ
between all possible final states:

T ≥ d
γδ2

4ω2
: ð59Þ

In particular, a successful identification of all possible
generators Gx means that all final states must be perfectly
distinguishable, thus, δ ¼ ðπ=2Þ. The corresponding bound
on the run-time is then T ≥ d½ðγπ2Þ=16ω2�. This closes the
conjecture of Ref. [61].

2. Erasure noise

We notice that the SQL bound (30) for diagonal
generators can be applied to our problem of discriminating
the oracle Hamiltonians in the presence of Markovian
erasure noise. We just need to substitute ηγ;τ ¼ e−γτ as the
noise parameter to obtain
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Bω ¼ lim
τ→0

τBθðηγ;τÞ ¼
4ðd − 1Þ

dγ
≤
4

γ
: ð60Þ

Finally, from this we get the same bound on the runtime
(59) as for qudit dephasing.

VI. DISCUSSION AND CONCLUSIONS

As multiparameter quantum metrology moves to prac-
tical applications it becomes crucial to understand its
advantages and limitations. Our first contribution in this
regard is conceptual: We define a new measure of metro-
logical incompatibility that depends only on the local
geometry of the parametric family of quantum channels.
In this paper, we evaluate lower bounds on this measure by
choosing a particular parametrization and considering only
probe incompatibility, which indeed represents the main
challenge. However, further efforts to evaluate this incom-
patibility measure are certainly needed, since it is a quantity
that captures all obstructions imposed both by quantum
mechanics and classical statistics on the task of accurately
learning multiple properties of a single quantum channel at
once. From a different point of view, quantum incompat-
ibility is understood as the impossibility to jointly imple-
ment two or more input-output devices as components of a
larger device [112], leading to a notion of incompatible
quantum channels [113,114]. Understanding possible con-
nections between these diverse notions of incompatibility is
a challenging and interesting open question.
As our main technical result, we derive widely applicable

and computable multiparameter metrological bounds that
apply to several different scenarios. On the one hand, this is
immediately useful to impose strong limitations on the best
achievable precision and to assess the optimality of feasible
protocols. Indeed, in Sec. IV we show that the advantage of
simultaneous multiphase estimation is at most a factor 4 in
the total variance, and that existing schemes for estimating
multiple losses cannot be improved upon using adaptive
strategies. On the other hand, taking into account probe
incompatibility is a fundamental first step toward a full
asymptotic theory of noisy multiparameter quantum met-
rology. However, to successfully extend the single-param-
eter analysis [8], it is crucial to investigate the attainability
of the bounds and to devise optimal asymptotic strategies.
This is the next step needed to uncover the full potential of
multiparameter quantum metrology in realistic scenarios.
Another important extension toward realistic situations is

to go beyond models where noise acts independently. In
this regard, the optimal precision for single-parameter
metrology with non-Markovian noise was studied using
the seminal purification argument of Ref. [60] that we also
use, obtaining a way to numerically evaluate it with an SDP
[115]. While work on this topic is overall still in the early
stages, we foresee that our extension to multiple parameters
will be fundamental in this scenario as well.

Speaking of realistic precision bounds, a further word of
caution is in order. When Heisenberg scaling is possible, a
careful analysis of truly optimal protocols generally does not
agreewith a naive local approach (see, e.g., Refs. [116–118]),
such as the one we apply in this paper. This discrepancy
becomes even more critical for multiparameter problems,
where it might affect the scaling of the precision with the
number of parameters [90]. Luckily, in the noisy SQL
scenario there is no such problem [117], and therefore, the
analysis we present in this paper holds even for truly optimal
protocols.
On a more practical level, in the examples we consider

our bounds show that the addition of noise on top of a
unitary parameter encoding, while prohibiting Heisenberg
scaling, does not affect the amount of probe incompati-
bility. This also means that the original advantage (or lack
thereof) of simultaneous estimation strategies over sepa-
rable ones appears to be preserved. This is certainly an
intriguing observation that ought to be investigated more in
depth in the future. In particular, proving a practical
advantage of simultaneous strategies even under inevitably
noisy working conditions could have important conse-
quences for future technological applications.
Finally, as we show by studying the problem of a noisy

Grover search, the applicability of these theoretical tools
extends even beyond quantum metrology. Indeed, tools
from quantum estimation theory are now routinely used in
quantum thermodynamics [119,120], quantum speed limits
[121], quantum algorithms, and quantum machine learning
[122]. In particular, single-parameter fundamental metro-
logical bounds have recently found an application in the
theory of quantum-error correction [123–125], providing
new perspectives and results. Accordingly, we expect that
such a fertile interplay of different research fields will
become even more relevant in the future. We hope that our
results will play a role in these endeavors.
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APPENDIX A: DERIVATION OF CHANNEL
INCOMPATIBILITY BOUND (9)

The incompatibility measure (8) can be lower bounded
using the QCRB

I�ðEθÞ ≥ max
fwxg

�
minρtr½WF−1(EθðρÞ)�P

xw
T
xF−1(Eθðρ�xÞ)wx

�
; ðA1Þ

where we denote by ρ�x ¼ argminρxw
T
xF−1(EθðρxÞ)wx the

optimal input probe for estimating the xth parameter
(xth scalar function). One could also obtain a tighter lower
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bound by using the Holevo Cramér-Rao bound [31,34] on
the numerator of Eq. (8) to retain the (asymptotic) effect of
measurement incompatibility.
By rescaling the cost vectors

wx →
wxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
xF−1(Eðρ�xÞ)wx

p ; ðA2Þ

we recast the rhs of Eq. (A1) as

I�ðEθÞ ≥
1

p
max
fwxg

min
ρ

X
x

wT
xF−1(EθðρÞ)wx

wT
xF−1(Eθðρ�xÞ)wx

: ðA3Þ

We now lower bound this quantity further by restricting the
class of cost vectors wx to belong to the set of eigenvectors
of F(Eðρ�xÞ):

I�ðEθÞ ≥
1

p
max

fwx∈Wxg
min
ρ

X
x

wT
xF−1(EθðρÞ)wx

wT
xF−1(Eθðρ�xÞ)wx

; ðA4Þ

where by Wx we denote the set of eigenvectors of
F(Eðρ�xÞ). The restriction to eigenvectors of F(Eðρ�xÞ) is
a natural assumption, since when minimizing the cost for a
given single parameter the optimal state will tend to carry as
much information about the desired parameter with as little
correlations as possible with the others (as potential
correlations increase the diagonal entries of the inverse
QFI matrix). Moreover, if the minimization of the cost for a
given parameter x, leads to a QFI matrix with nondiagonal
entries (nonvanishing correlations), this indicates that the
choice of parametrization is not natural for the model
considered. We now use the eigenvector property to take
the vectors under the inverse operation and get

I�ðEθÞ ≥
1

p
max

fwx∈Wxg
min
ρ

X
x

wT
xF−1(EθðρÞ)wx

½wT
xF(Eθðρ�xÞ)wx�−1ðwT

xwxÞ2
:

ðA5Þ
We can now apply a series of inequalities analogous to

Eq. (6), and arrive at

I�ðEθÞ

≥
1

p
max

fwx∈Wxg
min
ρ

X
x

½wT
xF(EθðρÞ)wx�−1

½wT
xF(Eθðρ�xÞ)wx�−1

≥p max
fwx∈Wxg

min
ρ

1P
x½wT

xF(Eθðρ�xÞ)wx�−1½wT
xF(EθðρÞ)wx�

:

ðA6Þ
Finally, when we fix wx, i.e., choose a particular para-
metrization, we arrive at Eq. (9).

APPENDIX B: BOUND FOR THE ADAPTIVE
STRATEGY: PROOF OF THEOREM 2

To derive the bound, we need the following inequality
for the operator norm.

Lemma B.1: Given a set of p square matrices fAxgpx¼1

and p sets of rectangular matrices fLx
kx
gnxkx¼1 (with com-

patible dimensions), we have the following inequality:

����
Xp
x¼1

Xnx
kx¼1

Lx†
kx
AxLx

kx

���� ≤ max
x

fkAxkg
����
Xp
x¼1

Xnx
kx¼1

Lx†
kx
Lx
kx

����:
ðB1Þ

Proof.—Let us define two matrices

L̃† ¼ ½L1†
1 ;…; L1†

n1 ; L
2†
1 ;…; L2†

n2 ;…; Lp†
1 ;…; Lp†

np �; ðB2Þ

Ã ¼ ⨁
p

i¼1

1ni ⊗ Ai; ðB3Þ

i.e., Ã is a block diagonal matrix with each Ai repeated in ni
consecutive diagonal blocks. We have that

L̃†Ã L̃ ¼
Xp
x¼1

Xnx
j¼1

Lx†
j AxLx

j : ðB4Þ

Thanks to the submultiplicativity of the operator norm,
we get

����
Xp
x¼1

Xnx
j¼1

Lx†
j AxLx

j

���� ¼ kL̃†Ã L̃ k ≤ kL̃†kkÃkkL̃k; ðB5Þ

upon noticing that

kÃk ¼ max
x

fkAxkg; ðB6Þ

kL̃†jj2 ¼ kL̃jj2 ¼ kL̃†L̃k ¼
����
Xp
x¼1

Xnx
j¼1

Lx†
j Lx

j

����; ðB7Þ

we get the desired result (B1). ▪
When reduced to the single-parameter case, we get

����
Xn
j¼1

L†
kALk

���� ≤ kAk
����
Xn
j¼1

L†
kLk

����: ðB8Þ

With this technical tool, we can prove the main theorem.
Proof.—First, we notice from the start that the final bound

is expressed in terms of operator norms of the functionsP
x αx, βx, and

P
x βx, which depend only on the Kraus

operator of a single copy of the channels Eθx . Crucially, these
quantities are unchanged by additional unitaries applied
between each use of the channel and by trivial extensions to
auxiliary Hilbert spaces. Therefore, we derive the bound
considering Kraus operators representing a direct N-fold
sequential application of the channel: ðEθxÞN , but the results
will be valid also in the general case described in the
statement including control operations Vi.
A natural choice of Kraus operators for N sequential

applications of the channels is Kkx
¼ KkN ;…; Kk1 . This
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choice is not necessarily the optimal, but we use it to find an
upper bound to the optimal channel bound (18) as follows:

4min
Kkx

����
Xp
x¼1

qx
X
kx

∂θxK
†
kx
∂θxKk

����

¼ 4min
Kkx

����
X
x

qx
X
kx

XN
i;j¼1

× K†
k1
� � � ∂θxK

†
ki
� � �K†

kN
KkN � � � ∂θxKkj � � �Kk1

����;
ðB9Þ

each multi-index kx depends on x, yet for brevity we
suppress the dependence on x when expressing its com-
ponents ki ≔ kx;i. For additional clarity in the final expres-
sions, we reintroduce the dependence on x when the
components of the multi-indices disappear from the
calculations. It is understood that the summation over ki
is inside the summation over x and the two cannot be
exchanged, since the Kraus operators Kkx depend on x.
By splitting the sum over i, j into diagonal and off-

diagonal terms and using the triangle inequality and
Eq. (B8), we get

FN
q ≤ 4min

Kkx

�XN
i¼1

����
X
x

qx
Xrx
kx¼1

∂θxK
†
kx
∂θxKkx

����þ
XN
i<j

����
X
x

qx
X
ki���kj

∂θxK
†
ki
� � �K†

kj
∂θxKkj � � �Kki þ H:c:

����
	
: ðB10Þ

We introduce the anti-Hermitian operator

iAx
i ¼

X
kiþ1���kj

K†
kiþ1

� � �K†
kj
∂θxKkj � � �Kkiþ1

; ðB11Þ

so we can rewrite each term inside the second sum over i < j in Eq. (B10) as follows:

����
X
x

qx
X
ki���kj

∂θxK
†
ki
� � �K†

kj
∂θxKkj � � �Kki þ H:c:

���� ¼
����
X
x

qx
Xrx
ki¼1

ð ffiffiffiffi
zx

p ∂θxKkiÞ†iAx
i

�
Kkiffiffiffiffi
zx

p
�
þ H:c:

����; ðB12Þ

where we also introduce an additional set of real positive parameters zx > 0 that leaves the quantity unchanged. We can
expand this quantity further

����
X
x

qx
Xrx
kx¼1

�� ffiffiffiffi
zx

p ∂θxKkx þ i
Kkxffiffiffiffi
zx

p
�†

Ax
i

� ffiffiffiffi
zx

p ∂θxKkx þ i
Kkxffiffiffiffi
zx

p
�
− zx∂θxK

†
kx
Ax
i ∂θxKkx −

1

zx
K†

kx
Ax
i Kkx

�����

≤ max
x

ðkAx
i kÞ

�����
X
x

qx
Xrx
kx¼1

� ffiffiffiffi
zx

p ∂θxKkx þ i
Kkxffiffiffiffi
zx

p
�†� ffiffiffiffi

zx
p ∂θxKkx þ i

Kkxffiffiffiffi
zx

p
�����þ

����
X
x

zxqx
X
k

∂θxK
†
kx
∂θxKkx

����þ
�X

x

qx
zx

��

≤ 2max
x

ðkAx
i kÞ

�����
X
x

qx
Xrx
kx

∂θxK
†
kx
Kkx

����þ
����
X
x

zxqx
X
kx

∂θxK
†
kx
∂θxKkx

����þ
�X

x

qx
zx

��
; ðB13Þ

where we have used the triangle inequality first, then inequality (B1) and then again the triangle inequality to obtain the last
line. From Eq. (B8), we know that kAx

i k ≤ kβxk, where βx ¼
P

k ∂θxK
†
kKk ¼ ∂θxK

†K; using this inequality, setting zx ¼ z,
and performing the sums in Eq. (B10), we obtain

FN
q ≤ 4min

h;z

�
N

����
Xp
x¼1

qxαx

����þ NðN − 1Þmax
x

ðkβxkÞ
�
1

z

�Xp
x¼1

qx

�
þ z

����
Xp
x¼1

qxαx

����þ
����
Xp
x¼1

qxβx

����
�	

; ðB14Þ

and by performing the explicit minimization over the
parameter z, we obtain the desired result Eq. (19). ▪
We notice that it might be possible to obtain a tighter

bound by optimizing over the whole set fzxg that appears in

Eq. (B13) instead of fixing all of them to be equal to
obtain Eq. (19). However, the main use of the parameter z
in Eq. (B14) is to generalize the bound to an infinitesimal
time step, as we do in Appendix D.
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APPENDIX C: BOUND FOR THE PARALLEL
STRATEGY

In the parallel strategy, the action of N channels is
described as fE⊗N

θx
g. The total QFI for the parallel strategy

with N uses is thus,

FN
q ≔ max

ρ∈SðH⊗N
S Þ

Xp
x¼1

qxF ðE⊗N
θx

ðρÞÞ: ðC1Þ

The following result generalizes the analogous single-
parameter one ([60] Theorem 5).
Theorem C.1: The total entanglement-assisted channel

QFI for the parallel scheme with N uses is upper bounded
as follows:

FN
q ≤4min

h

�
N

����
Xp
x¼1

qxαx

����þNðN−1Þ
����
Xp
i¼1

qxβ2x

����
	
; ðC2Þ

where αx ≔ ∂θxK̃
†
x∂θxK̃x and βx ¼ ð∂θxKx − ihxKxÞ†Kx.

Before proving this theorem, we need a simple inequality.
Lemma C.1: Given a collection of p Hermitian matrices

Ai, we have the following inequality between operator norms:
����
Xp
i¼1

Ai ⊗ Ai

���� ≤
����
Xp
i¼1

A2
i

����: ðC3Þ

Proof.—We rewrite the initial matrix as follows:

Xp
i¼1

Ai ⊗ Ai ¼
Xp
i¼1

ðAi ⊗ 1Þð1 ⊗ AiÞ ¼ Ã B̃; ðC4Þ

where Ã ¼

2
64
A1 ⊗ 1

..

.

Ap ⊗ 1

3
75
†

¼ ½A1;…; Ap � ⊗ 1 and

B̃ ¼

2
64
1 ⊗ A1

..

.

1 ⊗ Ap

3
75 ¼ 1 ⊗

2
64
A1

..

.

Ap

3
75. Now we can use the sub-

multiplicativity of the operator norm

����
Xp
i¼1

Ai ⊗ Ai

���� ¼ kÃ B̃ k ≤ kÃkkB̃k ðC5Þ

and obtain the desired result by noticing that

kÃjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kÃÃ†jj

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kPp

i A
2
i jj

q
and kB̃jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kB̃†B̃jj

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kPp
i A

2
i jj

q
. ▪

We can now prove Theorem C.1, essentially follow-
ing Ref. [60].
Proof of Theorem C.1.—The total entanglement-assisted

channel QFI of the ensemble fE⊗N
θx

g is obtained using
Theorem 1. Being a minimization over Kraus operators, if
we restrict the minimization over operators with a particular
form we obtain an upper bound. The most natural choice
for the channels E⊗N

θx
is the tensor product of Kraus

operators defined recursively

K̃ðNþ1Þ
kx

¼ K̃ðNÞ
k1

⊗ K̃ð1Þ
k2
; ðC6Þ

where kx ∈ f1;…; rxgN × f1;…; rxg is a multi-index and

K̃ð1Þ
x ¼ K̃x are the Kraus operator of the original channel.

Each multi-index kx depends on x, yet for brevity, we
suppress the dependence on x when expressing its compo-
nents ki ≔ kx;i. We introduce the quantities

αðNÞ
x ¼

X
kx

∂θx K̃
ðNÞ†
kx

∂θx K̃
ðNÞ
kx

; ðC7Þ

βðNÞ
x ¼

X
kx

∂θx K̃
ðNÞ†
kx

K̃ðNÞ
kx

; ðC8Þ

and αx ≔ αð1Þx and βx ≔ βð1Þx are the quantities that appear in
the statement of the theorem. Following the derivation of
Ref. [60], we obtain

Xp
x¼1

qxα
ðNÞ
x ¼

Xp
x¼1

qx

� X
i;j

iþj¼N−1

1⊗i ⊗ αx ⊗ 1⊗j − 2
X
i;j;k

iþjþk¼N−2

1⊗i ⊗ βx ⊗ 1⊗j ⊗ βx ⊗ 1⊗k

�
; ðC9Þ

the only difference being the additional summation over x.
Thanks to the triangle inequality

����
Xp
x¼1

qxα
ðNÞ
x

���� ≤ N

����
Xp
x¼1

qxαx

����þ NðN − 1Þ
����
Xp
x¼1

qxβx ⊗ βx

����;
ðC10Þ

and the second term is upper bounded using Eq. (C3) to
obtain Eq. (C2). ▪

This bound is asymptotically equivalent to the adaptive
bound when Heisenberg scaling is not allowed. From the
triangle inequality for the operator norm, we also see that

4min
h

�
N

����
Xp
x¼1

qxαx

����þ NðN − 1Þ
����
Xp
i¼1

qxβ2x

����
	

≤
Xp
x¼1

qx4min
hx

fNkαxk þ NðN − 1Þkβxjj2g; ðC11Þ
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where the quantity on the right-hand side of Eq. (C11) is the
sum of the independent single-parameter bounds; this is
again a trivial bound that does not take into account
inherent incompatibility.

APPENDIX D: BOUND FOR A GENERAL
MARKOVIAN NOISE MODEL

We consider a probe system evolving in time according
to a Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)
master equation:

dρ
dt

¼ −iθx½Hx; ρ� þ
XJx
j¼1

Lx;jρL
†
x;j

−
1

2
ðL†

x;jLx;jρþ ρL†
x;jLx;jÞ; ðD1Þ

where the parameter dependence enters linearly in the
Hamiltonian part. We can derive a bound for the total
QFI of the most general strategy, which includes the
application of arbitrary fast and frequent control operations,
by considering the channel Eθx;dt obtained by integrating
the master equation for a time dt and taking the limit
dt→0. For each channel, we choose the following Jx þ 1
Kraus operators that reproduce the dynamics up to first
order in dt:

Kx;0 ¼ 1 −
�
1

2
L†

xLx þ iθxHx

�
dtþOðdt2Þ; ðD2Þ

Kx;j ¼ Lx;j

ffiffiffiffiffi
dt

p
þOðdt32Þ; j ¼ 1;…; Jx: ðD3Þ

Given the structure of the Kraus operator, the Hermitian
matrices in the minimization are written in the following
block form:

hx ¼
�
h0x h†

x

hx hx

�
: ðD4Þ

With this choice, we can follow the same approach used in
the single-parameter case [4,5] and fix the total probing
time T such that the scheme is equivalent to a sequential
one with a discrete number of channel uses N ¼ T=dt and
eventually take the limit dt → 0. The final result is obtained
by using the infinitesimal Kraus operators (D2) in the
sequential bound (B14), where the free parameter z allows
us to get a meaningful result for dt → 0. In particular, we
focus only on the case in which Heisenberg scaling T2 is
not possible and obtain the following SQL bound:

FT
q ≤ TBq; Bq ≔ 4 min

h

fβð1Þx ¼0g

����
Xp
x¼1

qxα
ð1Þ
x

����; ðD5Þ

where αð1Þx ¼ ðhð1
2
Þ

x 1þ hð0Þx LxÞ
†ðhð1

2
Þ

x 1þ hð0Þx LxÞ, βð1Þx ¼
Hx þ h0ð1Þx 1þ h

†ð1
2
Þ

x Lx þL†
xh

ð1
2
Þ

x þL†
xh

ð0Þ
x Lx, and the opti-

mization variables are the set h ¼ fh0ð1Þx ;h
ð1
2
Þ

x ; hð0Þx gpx¼1. The
subscript in brackets indicates the corresponding order
in dt.

The conditions βð1Þx ¼ 0 are known as “Hamiltonian in
the Lindblad span” conditions, since they are equivalent to

Hx ∈ spanRf1; ðLx;jÞH; iðLx;jÞAH; ðL†
x;jLx;j0 ÞH;

iðL†
x;jLx;j0 ÞAHg;

where H and AH denote the Hermitian and anti-Hermitian
parts, and the sets are known as the Lindblad spans
[4,5,8,75] of the different GKLS master equations. These
conditions have to be violated for all parameters in order to
preserve Heisenberg scaling of the total variance with error
correction [28].

APPENDIX E: RECOVERING PREVIOUS
RESULTS

Here we show that a couple of existing results that have
been derived in a different framework can be recovered as
purification-based bounds.

1. Unitary parameters

The situation for unitary parameters is particularly
simple, since there is only one Kraus operator. Kura and
Ueda ([21] Theorem 1) have derived a general bound, and
here we show that the same result can be obtained from the
purification-based definition of the QFI matrix.
Corollary E.1: For noiseless multiparameter estimation

with a linear parameter encoding Uθ¼e−iHθ ¼e−i
P

p
x¼1

θxGx

with p Hermitian generators fGxgpx¼1, we have

trF ðUθjψ0iÞ ≤ F ≤ 4

����
Xp
x¼1

G2
x

����: ðE1Þ

Proof.—From Eq. (12) for a unitary evolution, we have

trF ðUθjψ0iÞ≤4min
h

����
Xp
x¼1

∂xŨ
†
θ∂xŨθ

����≤4

����
Xp
x¼1

∂xU
†
θ∂xUθ

����;
ðE2Þ

since the choice hx ¼ 0 needs not be optimal. We recall the
formula for the derivative of a unitary [11]

∂xUθ ¼ −iUθ

�Z
1

0

dαeiαHθGxe−iαHθ

�
: ðE3Þ

We can use the triangle inequality for the integral to get the
upper bound
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����
Xp
x¼1

∂xU
†
θ∂xUθ

����

¼
����
Xp
x¼1

�Z
1

0

dαeiαHθGxe−iαHθ

��Z
1

0

dα0eiα0HθGxe−iα
0Hθ

�����

≤
Z

1

0

dα
Z

1

0

dα0
����
Xp
x¼1

ðeiαHθGxe−iαHθÞðeiα0HθGxe−iα
0HθÞ

����

¼
Z

1

0

dα
Z

1

0

dα0
����
Xp
x¼1

Gxe−iðα−α
0ÞHθGx

����

≤
Z

1

0

dα
Z

1

0

dα0ke−iðα−α0ÞHθk
����
Xp
x¼1

G2
x

����¼
����
Xp
x¼1

G2
x

����;
ðE4Þ

where we use the inequality (B8). ▪
In particular, when the parameters are frequencies

ωi ¼ θi=t, we get F ≤ 4t2kPp
x¼1 G

2
xk as in Ref. [21].

2. Right logarithmic derivative channel bound

Hayashi introduced a channel bound based on the right
logarithmic derivative (RLD) QFI [126] for a single-
parameter family of channels. Further properties and
connections with hypothesis testing have been explored
in Ref. [127]. While the applicability of this construction is
more limited than general purification-based bounds [2], it
has the advantage of being expressed only in terms of the
Choi-Jamiołkowski (CJ) matrix of the channel. Very
recently, the same approach has been extended to multiple
parameters in Ref. [62]. Following the reasoning of
Ref. [77], we show that, when it is defined, the multi-
parameter RLD channel bound corresponds to a particular
purification, thus being less tight than the optimal bound.
The CJ matrix of the channel Eθ∶T ðHinÞ → T ðHoutÞ is

an unnormalized state on the space T ðHout ⊗ HAÞ, where
dimHA ¼ dout is defined as

Ωθ ¼ Eθ ⊗ Iðj1ih1jÞ ¼
X
ij

EθðjiihjjSÞ ⊗ jiihjjA; ðE5Þ

where fjjiSgdinj¼1 and fjjiAgdoutj¼1 are orthonormal bases of

Hin and HA, while j1i ¼
Pdin

i¼1 jiiSjiiA is an unnormalized
maximally entangled state. We use the compact notation
jMi ¼ Pdin

i;j¼1hijMjjijiijji ¼ M ⊗ 1j1i ¼ 1 ⊗ MT j1i
that can be used to write the CJ matrix as Ωθ ¼P

l
i¼1 jKiihKij where the operators Ki are an arbitrary

Kraus decomposition of the channel. The CJ matrix can be
diagonalized as Ωθ ¼

P
r
i¼1 λijΨiihΨij, where λi > 0 and

hΨijΨji ¼ δij and this defines the canonical Kraus decom-
position jKii ¼

ffiffiffiffi
λi

p jΨii.
The following bound for a general adaptive strategy with

N uses of the channel was obtained in Ref. [62] (we

consider W ¼ 1 without loss of generality, since it can be
understood as a reparametrization)

Δ2θ̃ ≥
p2

NBR ðE6Þ

BR ¼
����
Xp
x¼1

TrA½ð∂xΩθÞΩ−1
θ ð∂xΩθÞ�

���� ðE7Þ

valid when the following finiteness condition holds:

Xp
x¼1

ð∂xΩθÞ2Π⊥
Ω ¼ 0; ðE8Þ

where Π⊥
Ω is the projector on the kernel of the CJ matrix Ωθ

and the inverse is taken on the support. Otherwise, the
bound is trivial (diverging) when Eq. (E8) is not satisfied.
In a moment, we show that this condition is equivalent to
the following conditions:

∂xKi ¼
X
j

νx;ijKi ⇒

∂xΩθ ¼
X
ij

μx;ijjKiihKjj ∀ x ¼ 1;…; p; ðE9Þ

where fνxg are p complex matrices, μx ¼ νx þ ν†x are twice
their Hermitian part, and fKig is the canonical Kraus
representation. This also means that the partial derivatives
of the CJ matrix vanish outside the support of the CJ
matrix. For a single-parameter channel, this condition is
known as φ nonextremality [2,77]. When it is satisfied for
all parameters of a quantum channel, we dub it local
nonextremality, or equivalently, we say the channel is
locally nonextremal. Now we proceed to show the equiv-
alence of local nonextremality (E9) and the finiteness
condition (E8). The situation is essentially equivalent to
the single-parameter case described in Ref. [77], modulo
minor observations.
When the channel is locally nonextremal (E9) the finite-

ness condition (E8) holds trivially, since hKijP⊥
Ω ¼ 0 ∀ i.

On the other hand, we notice that the condition (E8) is
equivalent to

Π⊥
Ω

�Xp
x¼1

ð∂xΩθÞ2
�
Π⊥

Ω ¼ 0; ðE10Þ

since the matrix
Pp

x¼1ð∂xΩθÞ2 is Hermitian. We write the
derivatives of the Kraus operators separating the com-
ponents in the support of Ωθ and those in the kernel:
j∂xKii ¼

P
r
j¼1 νx;ijjKji þ jLx;ii, where hKijLx;ji¼0 ∀ i;

j¼1;…;r ∀ x¼1;…;p and fνxg are p complex matrices
of dimension r × r. The condition (E10) becomes
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Xp
x¼1

�Xr

i¼1

jLx;iihKij
��Xr

j¼1

jKjihLx;ij
�

¼ 0: ðE11Þ

This equality has the form
P

i A
†
i Ai ¼ 0, and since

A†
i Ai ≥ 0 we must have that Ai ¼ 0 ∀ i; furthermore,

since the vectors jKii are orthogonal, we obtain
jLx;ii ¼ 0 ∀ i; x, which means

∂xKi ¼
X
j

νx;ijKi; ∀ x ¼ 1;…; p: ðE12Þ

From this, we have that

∂xΩθ ¼
Xr

i¼1

j∂xKiihKij þ jKiih∂xKij

¼
Xr

i;j¼1

νx;ijjKjihKij þ ν�x;ijjKiihKjj

¼
Xr

i;j¼1

μx;ijjKjihKij; ðE13Þ

where μx ¼ νx þ ν†x is twice the Hermitian part.
Now we can show that Eq. (E9) implies the satisfaction

of the HKS condition for all parameters and that the bound
(E6) has the same form 4kPx αxk of purification-based
bounds. From the derivatives of the Kraus operators (E9),
we obtain the equality

i
2

X
i

jKiih∂xKij − j∂xKiihKij

¼ −
i
2

X
i;j

ðνx − νx†ÞijjKiihKjj ¼
X
i;j

ðhRx ÞijjKiihKjj;

ðE14Þ

where hRx ¼ −iνAx ¼ −ði=2Þðνx − νx†Þ, and by partial
tracing over HA we obtain the HKS conditions
∂xK†K ¼ −iK†hRxK, since ∂xK†K ¼ −K†∂xK. Since
hKijΩ−1

θ jKji ¼ δij, the operators appearing inside the
summation in Eq. (E6) can be written as follows:

TrA½ð∂xΩθÞΩ−1
θ ð∂xΩθÞ� ¼ TrA

�X
i;j

ðμ2xÞijjKjihKij
�

¼ 4∂xK̃
†∂xK̃; ðE15Þ

where ∂K̃ ¼ ∂xK − ihRxK, since ∂xK ¼ νxK from
Eq. (E9) and νx − ihRx ¼ 1

2
μx by definition. Therefore,

we show that the bound (E6) has the same form of the
bound (20), but it is evaluated with a generally suboptimal
choice fhRx gpx¼1, implying that

B ≤ BR: ðE16Þ

APPENDIX F: SEMIDEFINITE PROGRAMS FOR
THE BOUNDS

We introduce the following matrix:

D ¼

2
6664

ffiffiffi
q

p
1
ð∂θ1K1 − ih1K1Þ

..

.

ffiffiffi
q

p
pð∂θpKp − ihpKpÞ

3
7775; ðF1Þ

where the derivatives of the Kraus operator of each channel
Eθx are put in a column. This matrix has dimension d̄ × din,
where d̄ ¼ dout

Pp
x¼1 rx, where rx is the number of Kraus

operators of each channel. When considering the multi-
parameter estimation scenario with a single channel with r
Kraus operators, we have d̄ ¼ pdoutr.
The bound for a single use of the channel (12) can be

rewritten as the following SDP:

F ¼ 4min
t;fhxg

t subject to

�
t1din D†

D 1d̄

�
≥ 0: ðF2Þ

The finite-N bound (C2) for the parallel strategy, i.e.,
BN ¼ 4minh fk

Pp
x¼1 qxαxk þ ðN − 1ÞkPp

i¼1 qxβ
2
xkg,

can be obtained similarly to the single-parameter case [72]
as follows:

BN ¼ 4 min
t;v;fhxg

ftþ ðN − 1Þvg

subject to

�
t1din D†

D 1d̄

�
≥ 0

�
v1din B†

B 1d̄

�
≥ 0; ðF3Þ

where we introduce

B ¼

2
6664

ffiffiffi
q

p
1
ð∂θ1K1 − ih1K1Þ†K1

..

.

ffiffiffi
q

p
pð∂θpKp − ihpKpÞ†Kp

3
7775: ðF4Þ

The asymptotic SQL bound (20) is obtained simply by
imposing the additional linear constraints βx ¼ 0 ∀ x ¼
1;…; p to the SDP (F2).
Finally, the asymptotic SQL bound for Markovian noise

(D5) is obtained in the same way, but using

DMark ¼

2
6664

ffiffiffiffiffi
q1

p ðhð1
2
Þ

1 1þ hð0Þ1 L1Þ
..
.

ffiffiffiffiffi
q2

p ðhð1
2
Þ

p 1þ hð0Þp LpÞ

3
7775 ðF5Þ

instead of D; here, din ¼ dout ¼ d, d̄ ¼ d
Pp

x¼1 Jx (where
Jx is the number of collapse operators of each master
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equation), and the optimization runs over the Hermitian

matrices fh0ð1Þx ;h
ð1
2
Þ

x ; hð0Þx gpx¼1 with the linear constraints

βð1Þx ¼ 0.

APPENDIX G: ALGORITHM TO FIND
AN OPTIMAL STATE AND EVALUATE

ITS QFI MATRIX

The derivation of the analogous single-parameter
algorithm [7,8] relies on Sion’s minimax theorem and
remains unchanged for our multiparameter figure of
merit. The only difference is that now we have a collec-
tion of p matrices h ¼ fhxgpx¼1 instead of just one. Thus,
we can adapt the two-step procedure of Appendix 8 in
Ref. [8]; the algorithm to find an optimal state goes as
follows (for simplicity, we introduce the opera-
tor ᾱ ¼ Pp

x¼1 qxαx).
(1) Find a set of optimal Hermitian matrices h⋆ by

solving the SDP (F2), such that the operator ᾱ⋆ ¼
ᾱjh¼h⋆ satisfies minh kᾱk ¼ kᾱ⋆k.

(2) The support of the optimal state ρ⋆ is the eigenspace
of the largest eigenvalue of the operator ᾱ⋆ and ∀ x,
and it satisfies the constraints

RefTr½ρ⋆ðiK†
xΔhxÞð∂xKx − ihxKÞ�g ¼ 0;

∀Δhx ∈ Crx×rx ; Δhx ¼ ðΔhxÞ†: ðG1Þ

The constraints (G1) are linear constraints on ρ⋆, and in
practice they are imposed by fixing a basis of rx × rx
Hermitian matrices. We remark that the optimal state is
generally mixed when the largest eigenvalue of ᾱ⋆ has
multiplicity greater than 1. When a mixed state is optimal, it
means that an optimal strategy is to use an extended
channel and take advantage of entanglement with the
auxiliary system, as it is clear from the proof of
Theorem 1.
This algorithm allows one to find an optimal state

attaining the total QFI, even when it corresponds to a
random sensing scenario and the Kraus operators Kx
pertain to different quantum channels. If we work in the
multiparameter estimation scenario, there is only one vector
K of Kraus operators; once an optimal state is found, the
QFI matrix elements are evaluated as

F xy ¼ 4RefTr½ρ⋆ð∂xK − ih⋆xKÞ†ð∂yK − ih⋆yKÞ�g; ðG2Þ

since the matrices h⋆ correspond to the optimal purifica-
tion, we can apply the purification-based definition (24).
The same algorithm can be adapted to the asymptotic

case by solving the SDP with the constraints βx ¼ 0 and
additionally imposing K†

xΔhxKx ¼ 0 ∀ x. In practice,
these constraints are imposed by using a basis of the null
space of the map h ↦

Prx
j;k¼1 hjkK

†
x;jKx;k from rx × rx to

din × din Hermitian matrices.

APPENDIX H: DETAILS ON THE EVALUATION
OF THE BOUNDS FOR QUANTUM-METROLOGY

APPLICATIONS

In the following calculations, we make a series of
Ansätze on the form of the optimal matrices h. These
are mostly inspired by the numerical solution and justified
by symmetry arguments. While the optimality of the
presented solutions is tested against numerical results,
we remark that any allowed choice of h provides a valid
bound on the total QFI. To ease the notation, in this section
we move the parameter label x of the matrices h to the
superscript when necessary.

1. Generalized amplitude damping channel

The generalized amplitude damping channel is a qubit
channel with the following Kraus operators [128]:

K0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

p �
1 0

0
ffiffiffiffiffiffiffiffiffiffi
1 − γ

p
�
; K1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

p �
0

ffiffiffi
γ

p
0 0

�
;

K2 ¼
ffiffiffi
ν

p � ffiffiffiffiffiffiffiffiffiffi
1 − γ

p
0

0 1

�
; K3 ¼

ffiffiffi
ν

p �
0 0ffiffiffi
γ

p
0

�
; ðH1Þ

and we are interested in the estimation of both the
parameters ν and γ. The estimation of γ was studied in
great detail in Ref. [129]. The multiparameter problem was
studied in Ref. [62] as an application of the RLD channel
bound introduced in Appendix E 2.
For this model, sequential or parallel strategies do not

give any advantage and we observe F ¼ B and I ¼ I∞.
The only nonzero elements of the optimal purification
matrices are hν02 ¼ hν�02 ¼ iA and hγ02 ¼ hγ�02 ¼ iB, where A
and B are real numbers, but we do not report the full details
to find A and B as functions of γ and ν. However, it is
simple to check this statement numerically by solving the
SDP; the code for this example can be found in Ref. [73].
We mention that the optimal scheme is to use a probe stateffiffiffi
a

p j00i þ ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p j11i, making use of an auxiliary system,
i.e., considering the extended channel Eν;γ ⊗ I . The
optimal degree of entanglement a with the auxiliary system
depends on the parameter values via a rather complicated
function.
Qualitatively, the probe incompatibility cost is a decreas-

ing function of γ for a fixed ν ≠ 1
2
. Moreover, the problem is

symmetrical around the value ν ¼ 1
2
, and incompatibility

decreases symmetrically as ν goes from the extremes 0 and
1 to 1

2
and only for η ¼ 1

2
there is no probe incompatibility.

For this problem, it is interesting to compare our result to
the RLD bound, already evaluated in Ref. [62] Appendix F.
One can see immediately that the multiparameter RLD is
not tight for this problem, and it does not detect any probe
incompatibility since it can be easily checked that

BR ¼ BR
γ þBR

ν : ðH2Þ
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To give an idea, we report numerical results for a particular
choice of parameters ðν; γÞ ¼ ð1

4
; 1
2
Þ for which we

obtain BR ≈ 10.67 > Fν þFγ ≈ 4.72 > F ≈ 3.84.

2. Hamiltonian tomography with erasure noise

a. Diagonal generators: Lossy multiphase estimation

With the Kraus operators (29), we obtain

K†
i Kj ¼

� ð1 − ηÞjiihjj; i; j > 0;

η1d; j ¼ i ¼ 0;
ðH3Þ

and the βx ¼ 0 HKS conditions become

−jxihxj ¼ hx00η1þ ð1 − ηÞ
X
ij

hxijjiihjj; ðH4Þ

which entail

hx00ηþ hxiið1 − ηÞ ¼ 0; i ≠ x;

hx00ηþ hxxxð1 − ηÞ ¼ −1;

hxijð1 − ηÞ ¼ 0; i ≠ j: ðH5Þ

Therefore, taking advantage of the symmetry of the
problem, we can parametrize the matrices hx satisfying
the constraint as follows:

hx00 ¼ A; hxxx ¼ −
1þ Aη
1 − η

; ðH6Þ

hxii ¼ −
Aη
1 − η

; hxij ¼ 0; hx0i ¼ ci; ðH7Þ

but we simplify the calculation with the Ansatz ci ¼ 0. We
use the simplified form (27) to compute the bound. We
obtain

H ¼
Xp
x¼1

ðhxÞ2 ¼ diagðX; Y; Y;…; YÞ; ðH8Þ

X ¼ pA2; Y ¼ ðp − 1ÞA2η2 þ ð1þ AηÞ2
ð1 − ηÞ2 ; ðH9Þ

and since
Pp

x¼1G
2
x ¼ 1, we have the function

����−1þ
Xd
i;j¼0

HijK
†
i Kj

���� ¼ −1þ Xηþ ð1 − ηÞY; ðH10Þ

which is minimized for A ¼ −1=p, giving the
bound Bdiag ¼ ½η=ð1 − ηÞ�½4p=ðp − 1Þ�.
The previous calculation is obtained with p ¼ d ≥ 2, but

we can repeat the same calculation with d > p ≥ 2 and
keep the same diagonal matrices hx in Eq. (H6) as before,
obtaining now

H0 ¼
Xp
x¼1

ðhxÞ2 ¼ diagðX; Y; Y;…; Y; Z;…; ZÞ; ðH11Þ

Z ¼ pA2η2

ð1 − ηÞ2 ; ðH12Þ

where Y is repeated p times and Z is repeated d − p times.
The operator inside the norm now has one block
½−1þ Xηþ ð1 − ηÞY�1p analogous to the previous one
[Eq. (H10)] and another block ½Zð1 − ηÞ þ ηX�1d−p, where
1p is the projector on the span of the first p canonical
vectors and 1d−p ¼ 1 − 1p. The minimization of the
operator norm produces the same result as in the previous
case, since the optimal maximal eigenvalue always pertains
to the first block.

b. Off-diagonal generators

We focus on the dðd − 1Þ=2 real off-diagonal generators
Gμν ¼ 1

2
ðjμihνj þ jμihνjÞ, and we use the convention

μ > ν. The HKS conditions entail

−
1

2
ðjμihνj þ jνihμjÞ ¼ hμν00η1þ ð1 − ηÞ

X
i;j>0

hμνij jiihjj;

ðH13Þ

and for i, j > 0 we have

hμνij ¼ −
1

2ð1 − ηÞ ðδiμδjν þ δiνδjμÞ; i ≠ j;

hμνii ¼ −
η

1 − η
hμν00; i ¼ j: ðH14Þ

We assume the following form:

hμν00 ¼ A; hμνi0 ¼ 0∀ i > 0;

hμνij ¼ −
η

1 − η
Aδij −

1

2ð1 − ηÞ ðδiμδjν þ δiνδjμÞ; ðH15Þ

from which we obtain

X
μ>ν

ðhμνÞ2

¼ dðd − 1ÞA2

2
j0ih0j þ d − 1

4ð1 − ηÞ2 ð1þ 2dη2A2Þ
Xd
i¼1

jiihij

þ ηA
ð1 − ηÞ2

X
μ>ν

ðjμihνj þ jνihμjÞ: ðH16Þ

This is a spherical model (according to the terminology of
Ref. [21]):

P
μ>νðGμνÞ2 ¼ ½ðd − 1Þ=4�1, and the function

to minimize in the bound (27) becomes

PROBE INCOMPATIBILITY IN MULTIPARAMETER NOISY … PHYS. REV. X 12, 011039 (2022)

011039-23



����d − 1

4

η

1 − η
1þ dðd − 1ÞA2

2

η

1 − η
1þ ηA

1 − η

X
i≠j

jiihjj
����;

and the optimal choice is simply A ¼ 0 so the bound is
Breal ¼ ½η=ð1 − ηÞ�ðd − 1Þ. For the imaginary off-diagonal
elements, we can repeat the same reasoning and we arrive at
the same bound.
We notice that the three operators

P
x αx for the three

submodels are all proportional to the identity, and so they
saturate the triangle inequality with equality as per Eq. (30).

3. Phase and loss

First, we consider the two separate single-parameter
problems. For phase estimation, we have the single-use
bound Fθ ¼ ½4η=ð ffiffiffi

η
p þ 1Þ2� corresponding to the optimal

matrix hθ ¼ diagf−1þ ½1=ð1þ ffiffiffi
η

p Þ�;−1g and the asymp-
totic boundBθ ¼ ½4η=ð1 − ηÞ� corresponding to the matrix
hθ ¼ diagf0; ½−1=ð1 − ηÞ�g. For the estimation of η, both
bounds coincide and we have Fη ¼ Bη ¼ f1=½ηð1 − ηÞ�g,
and the optimal hη ¼ 0 means that the original Kraus
operators are already the optimal purification.
The single-use incompatibility cost (9) requires solving

the following minimization:

min
hθ ;hη

4

���� 1

Fθ
αθ þ

1

Fη
αη

����; ðH17Þ

and the optimal matrices are hθ ¼ diagf−½ðη3=2 −ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η3=2 þ η

p
þ ηÞ=ðη3=2 þ η − ffiffiffi

η
p − 1Þ�;−1g and

hη ¼ 0, from which we obtain Eq. (35).
For the asymptotic incompatibility bound, the condition

βθ ¼ 0 constrains the matrix hθ to be the same as in the
single-parameter case. We obtain 4αθ ¼ diagðBθ; 0Þ and
4αη ¼ diagðBη; 0Þ, from which we can clearly see that there
is no probe incompatibility: I∞ ¼ 1 and B¼Bθ þBη.
If we consider a description of the problem in terms of

modes (instead of formally treating the photons as distin-
guishable particles), the evolution is described by a single-
mode channel with the following Kraus operators:

Kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞl

l!

r
e−iθa

†a ffiffiffi
η

p a†aal; l ¼ 1;…; N; ðH18Þ

where N is the total photon number, and we use bosonic
operators a ¼ P∞

j¼0

ffiffiffiffiffiffiffiffiffiffiffi
jþ 1

p jjihjþ 1j. The single-use
bound for this channel is equivalent to an optimization
of the total QFI over two-mode states of the formP

N
m¼0 ψmjm;M −mi. We evaluate our probe incompati-

bility measure for these finite-N channels, and we find that
it decreases as N increases, supporting our finding that it
should disappear asymptotically. For example, going from
N ¼ 2 to N ¼ 20, we find that probe incompatibility
decreases from the value 1.0829 to 1.0712 (approximately

1%) for η ¼ 0.05, from 1.1726 to 1.1392 (approximately
3%) for η ¼ 0.5, and from 1.2703 to 1.1952 (approximately
6%) for η ¼ 0.95.

4. Phase and dephasing

This problem is particularly simple, since the optimal
matrices are always identical to the single-parameter ones.
Regarding the parameter ϕ, we have the single-use bound
[72] Fθ ¼ η2 corresponding to hθ ¼ 1

2
1þ ½ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1− η2

p
Þ=2�σx

and the asymptotic bound [2] Bθ ¼ ½η2=ð1 − η2Þ� corre-
sponding to hθ ¼ 1

2
1þ ½1=ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
Þ�σx. Analogous to

loss estimation in the previous section, the Kraus operators
are already optimal for estimating η, i.e., hη ¼ 0, and we
have Fη ¼ Bη ¼ ½1=ð1 − η2Þ�.
For these optimal matrices, we obtain 4αθ ¼ Fθ1 for a

single use (and analogous 4αθ ¼ Bθ1 for the asymptotic
case) and 4αη ¼ Fη1. Therefore, we see no probe incom-
patibility I ¼ I∞ ¼ 1, F ¼ Fθ þFη, andB ¼ Bθ þBη.

5. Diagonal generators with qudit dephasing

We can use the following Kraus representation for the
qudit dephasing channel:

K0 ¼
ffiffiffi
η

p
1; Kj ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
jkihkji ¼ 1;…; d; ðH19Þ

which is not minimal, since it has dþ 1 operators and the
rank of the channel is d, but it is more convenient for the
calculation.
We start by recalling the HKS βx ¼ 0 conditions

i
Xd
l¼0

ð∂xK
†
l ÞKl ¼ −jxihxj ¼

Xd
i;j¼1

hxijK
†
i Kj; ðH20Þ

the rhs becomes

hx00η1þ
X
j¼1

ðhx0j þ hxj0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p
jjihjj

þ
X
k;j¼1

hxjkð1 − ηÞδjkjkihkj; ðH21Þ

and we assume that the matrices hx have real elements,
obtaining

hx00η1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p X
j¼1

2hx0jjjihjj þ ð1 − ηÞ
X
k¼1

hxkkjkihkj:

ðH22Þ

Now, we make the following Ansatz on the form of the
matrices hx:
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hx00 ¼ A;

hx0x ¼ hxx0 ¼ C;

hx0j ¼ hx0j ¼ B; j > 0 ∧ j ≠ x;

hxxx ¼ F;

hxxj ¼ hxjx ¼ G; j > 0 ∧ j ≠ x;

hxjj ¼ D; i > 0 ∧ j ≠ x;

hxij ¼ hxji ¼ E; i; j > 0 ∧ i; j ≠ x; ðH23Þ

so that all d matrices fhxgdx¼1 are parametrized by seven
real parameters. More explicitly, they look like this

hx ¼

2
6666666664

A B B … C … B

B D E G E
B E D G … E
..
. . .

.

C G G F G
..
. ..

. . .
.

B E E G D

3
7777777775
; ðH24Þ

where the column and row that stand out are the xth ones
(starting to count from 0). We have numerical evidence that
matrices in this form attain the minimum. With this
simplification, Eq. (H21) becomes

Aη1þ 2B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p
ð1 − jxihxjÞ þ 2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p
jxihxj

þDð1 − ηÞð1 − jxihxjÞ þ Fð1 − ηÞjxihxj; ðH25Þ

and the condition βx ¼ 0 ∀ x is satisfied if and only if

Aηþ 2B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p
þDð1 − ηÞ ¼ 0;

Aηþ 2C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p
þ Fð1 − ηÞ ¼ −1; ðH26Þ

from which we can eliminate two variables, i.e.,

F ¼ −
1þ Aηþ 2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ηÞηp
1 − η

; ðH27Þ

D ¼ −
Aηþ 2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ηÞηp
1 − η

: ðH28Þ

We obtain

H ¼
Xd
x¼1

ðhxÞ2 ¼

2
666664

X Z Z … Z

Z Y T T
Z T Y T
..
. . .

.

Z T T Y

3
777775
; ðH29Þ

where

X ¼ d½A2 þ ðd − 1ÞB2 þ C2�; ðH30Þ

Y ¼ ðd − 1Þ½D2 þ B2 þ ðd − 2ÞE2 þG2�
þ C2 þ F2 þ ðd − 1ÞG2; ðH31Þ

Z ¼ ðd − 1Þ½BðAþDÞ þ ðd − 2ÞBEþ GC�
þ CðAþ FÞ þ BGðd − 1Þ: ðH32Þ

Finally, the bound (27) amounts to the following mini-
mization:

min
A;B;C;E;G

½Xηþ 2Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞη

p
þ ð1 − ηÞY − 1�; ðH33Þ

from which we obtain

B ¼ 4ðd − 1Þη2
ð2þ dηÞð1 − ηÞ ¼

4η

1 − η

d − 1

dþ 2
η

: ðH34Þ
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