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We consider opto- and electromechanical quantum systems composed of a driven cavity mode interacting with
a set of mechanical resonators. It has been proposed that the latter can be initialized in arbitrary cluster states,
including universal resource states for measurement-based quantum computation (MBQC). We show that, despite
the unavailability in this setup of direct measurements over the mechanical resonators, computation can still be
performed to a high degree of accuracy. In particular, it is possible to indirectly implement the measurements
necessary for arbitrary Gaussian MBQC by properly coupling the mechanical resonators to the cavity field and
continuously monitoring the leakage of the latter. We provide a thorough theoretical analysis of the performances
obtained via indirect measurements, comparing them with what is achievable when direct measurements are
instead available. We show that high levels of fidelity are attainable in parameter regimes within reach of present
experimental capabilities.
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I. INTRODUCTION

One of the major expected outcomes of research into
quantum technologies is the production of a quantum com-
puter, a device which allows efficient solution of problems
considered inefficient classically [1,2]. Among the various
emerging platforms for quantum technologies is that of quan-
tum optomechanics, in which radiation pressure is exploited
to establish a quantum dynamics between mechanical and
radiative systems [3–5]. This radiation pressure coupling
finds expression in a large range of settings, from small mi-
cromechanical resonators [6–10] to larger mesoscopic systems
[11–17], electromechanical systems [18–21], and more re-
cently in systems of levitated particles [22–24]. Along with
this plethora of technical settings comes an abundance of
applications for quantum technologies, including hybrid quan-
tum information processing [25], cooling of macroscopic ob-
jects to the ground state [9,11,18,26–28], backaction-evading
measurements [29–31], and preparation of nonclassical states
[17,32–36].

Additionally, recent experiments demonstrated the possibil-
ity of coherently coupling multiple mechanical resonators to a
single cavity field [37–40]. In fact, various theoretical analyses
of multiple resonators coupled to radiation pressure have been
put forward [41–52]. In particular, a recent proposal showed
that arbitrary graph states may be generated in an array of
resonators immersed in a cavity field [53] using a generaliza-
tion of the reservoir engineering sometimes used for cooling
[19,21,37,54]. As well, a method for reconstructing the state
of a network of harmonically interacting resonators coupled
to radiation pressure has been proposed [55]. This provides a
promising opportunity to use optomechanics as a platform for
measurement-based quantum computation (MBQC) [56,57] in
the continuous-variable setting [58–60]. The main advantage
would be that, being hosted in stationary or solid-state based
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architectures, they offer a promising path towards integrated
and scalable quantum technologies. However, there is an inher-
ent obstacle that could potentially frustrate this opportunity. In
fact, in the typical scenario of MBQC, the measurements are
projective and performed directly on the nodes of the cluster
[59]. However, in the sideband-resolved regime considered
in Refs. [53,55], mechanical modes are inaccessible to direct
measurement. Thus, it is necessary to devise indirect mea-
surement strategies which unfortunately typically introduce
noise in the process. The latter could represent a significant
hindrance to computation, spoiling the operational perfor-
mances of MBQC. In other words, in order to fully exploit
quantum optomechanical systems for advanced computational
purposes, it is necessary to identify an effective indirect-
measurement strategy and assess its performance in detail.

Here we address this issue by proposing a method for imple-
menting arbitrary single- and multimode Gaussian operations
on the mechanical cluster state, using continuous monitoring
[22,61–63] of an observable coupled to the nodes of the cluster.
This is accomplished using a quantum nondemolition (QND)
interaction of the cavity field with the mechanical cluster
node to be measured [64,65]. This interaction drives the latter
towards an eigenstate of the chosen observable. We must
ensure that the result is in accord with the usual procedure
of MBQC, which as said is based on direct measurements
of the cluster nodes. To this aim, we provide a thorough
theoretical analysis of the performances obtained via indirect
measurements, comparing them with what is achievable when
direct measurements are instead available [59], as in the more
common purely optical scenario [66–68]. The dependence on
the system parameters is analyzed in detail, by identifying the
ones that most affect the performances of a set of universal
Gaussian operations. This study can help in devising experi-
mental settings with the purpose of implementing MBQC over
mechanical resonators. In particular, we show that high levels
of fidelity, compared with direct measurements, are attainable
in parameter regimes within reach of present experimental
capabilities.

The article is arranged as follows: In Sec. II we discuss the
relevant theory of MBQC with continuous variables (CVs), and
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in Sec. III we discuss the technique of continuous monitoring.
We included these two sections for completeness and to set
the notation; however the reader familiar with both topics can
safely move to Sec. IV, where we discuss the optomechanical
setup we envision and how to apply continuous monitoring to
it. Then, in Sec. V we demonstrate that continuous monitoring
successfully reproduces the results of standard MBQC using
projective measurements directly onto the cluster state, and
we analyze in detail the effects that various types of noise
parameters have on the performance of MBQC. Finally, the
conclusion is given in Sec. VI.

II. MEASUREMENT-BASED QUANTUM COMPUTATION
OVER CONTINUOUS VARIABLES

In the common circuit model of quantum computation, the
system is initialized in a blank register and the computation
proceeds via single mode and entangling unitary gates [1,69].
MBQC is an alternate model of computation that instead uses
local measurements on a highly entangled resource state to
drive the computation [56,57]. The resource state is modeled
by a graph G = {V,E}, where V and E are the sets of
vertices and edges, respectively. Physically, the vertices are
represented by states embodying a balanced superposition of
the states of the computational basis. For example in the case
of qubits these are the states |+〉 = |0〉+|1〉√

2
. For CVs they are

a collection of zero-momentum eigenstates |0〉p = ∫
dx |x〉q

typically approximated by highly squeezed vacuum states
(where |x〉q represents the position eigenstate with eigenvalue
x). The edges of the graph are implemented via (entangling)
control-phase operations on pairs of vertices, which for CVs
are simply represented by CZjk = eiqj qk , where j,k denote the
vertices under consideration and qj is the position operator of
mode j . A graph state suitable for universal computation is
called a cluster state and consists of a two-dimensional grid
[57,70].

Operations on the cluster are performed by local measure-
ments on the nodes which drive the rest of the cluster into a new
state. This is most clearly seen from gate teleportation (Fig. 1),
whereby a measurement on some input state induces the action
of a unitary gate on a copy of the input teleported into an ancilla
state. A series of such measurements chosen appropriately will
drive the remainder of the cluster into a state representing the
output of a computation. Each measurement step will accu-
mulate known by-product operations that can be corrected:
phase space displacements X(m) = e−imp, which depend
on the measurement outcome m, and Fourier operations.
The cluster state is composed of Gaussian states, meaning
that it is characterized completely by its first and second
moments d = 〈r̂〉 and σij = 1

2 〈rirj − rj ri〉 − 〈ri〉 〈rj 〉, where

r̂ = (q1, p1, . . . ,qn, pn)�, qj = aj +a
†
j√

2
, and pj = i(a†

j −aj )√
2

, and
aj is the annihilation operator for a bosonic mode describing
the j th node of a cluster. For Gaussian operations on Gaussian
cluster states, the local displacements can be discarded from
the analysis, since they may be applied at any point in the
computation. This leaves the output with a Fourier transform
still applied. The protocol of gate teleportation shows that to
apply a unitary operation U via measurements, one should
measure in the quadrature basis U †pU .

|Ψ〉

|0〉p

U†pU : m

X(m)FU |Ψ〉

|0〉p X(m)FU |Ψ〉

p : mU |Ψ〉

⇔

FIG. 1. The circuit representing gate teleportation. Upper circuit:
An input state |�〉 is linked via a control-phase gate to an ancilla state
|0〉p . A measurement of p with outcome m teleports the input state to
the ancilla along with some by-product known operations [F being
the Fourier transform and X(m) = e−imp]. Lower circuit: If a unitary
operation U is carried out on the input before the entangling gate then
it also will be teleported, as U |�〉 is simply another legitimate input
state. However, if U is diagonal in the computational basis then the
two circuits are equivalent, since U commutes with the control-phase
operation and can be incorporated into the measurement by a rotation
of the measurement basis. Thus the measurement itself can be used
to induce the operation U on an input state.

In order to achieve universal computation (with CVs), a
certain minimal set of operations are required [57,71]. These
include a universal set of single-mode Gaussian transforma-
tions: arbitrary phase-space displacements D(α) = eαa†−α∗a ,
the Fourier gate F = e

iπ
2 eiπa†a , and the shearing gate S(λ) =

eiλq2
. Adding a single multimode Gaussian operation suffices

to cover all Gaussian transformations. A typical choice for
such an operation is the control-phase gate already considered
in the procedure to generate the cluster [72]. Finally, at least
one non-Gaussian element must also be included. Typically
this is an operation of the form eitqn

for some t and n � 3.
Given the availability of quadrature measurements (ho-

modyne detection), at the level of state covariances any
single-mode Gaussian transformation can be achieved using
the shearing gate and Fourier transform. In other words, a
single step gate teleportation is encapsulated by FS(λ), for a
particular value of λ. The measurement associated with the
shearing gate is p + λq. With an ancillary linear cluster of
just four nodes the full range of single-mode transformations
can be applied to some input state, including the corrective
Fourier gates [73,74]. Each single-mode Gaussian unitary
can be decomposed into a 2×2 symplectic matrix M. For
example, the Fourier transform and the shearing gate are
associated with the matrices f = (0 −1

1 0 ) and s(λ) = (1 0
λ 1),

respectively. In particular, given a sequence of four gate
teleportations defined by FS(λ4)FS(λ3)FS(λ2)FS(λ1) the
symplectic transformation associated to it is given by

M

=
(

λ4λ3(λ2λ1−1)−λ1(λ2 + λ4)+1 λ4λ3λ2−λ4 − λ2

−λ3λ2λ1+λ3 + λ1 −λ3λ2+1

)
.

(1)
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FIG. 2. A linear cluster of five nodes. Before measurement
commences (a) all nodes (blue with solid border) are equally linked
by balanced CZ gates and each node has an equal degree of squeezing.
After a sequence of measurements (b) the (red with dashed border)
measured nodes are disconnected from the cluster and are discarded,
leaving behind a single node (green with no border) modified by
the required operation. A two-mode operation requiring a dual rail
can be minimally simulated by (c) taking the four-node ancilla and
manipulating it topologically.

The ability to tune each parameter λj above enables one to im-
plement an arbitrary 2×2 symplectic matrix. Thus, by applying
a sequence of four teleportations (with tunable λj ) to an initial
five-mode cluster, any single-mode Gaussian transformation
can be implemented (Fig. 2). We will use this formalism to
demonstrate universal single-mode operations. In particular,
we will use the notation M → {λ1,λ2,λ3,λ4} to associate with
a given single-mode operation M the corresponding set of four
measurements p + λjq that implement it (j = 1, . . . ,4).

For the CZ gate, one requires at least two linear graphs
linked into a grid. The simplest version of this is just the same
four-node linear cluster rearranged so that the first two nodes
in the dual rail are the middle nodes of the linear cluster. To
provide a multimode operation, we use a technique for shaping
cluster states called wire shortening [57,70]. It so happens
that a measurement of p on a cluster node deletes the vertex
while maintaining the edges to which it was connected. A
succession of two such measurements on the leftmost column
of the right-hand side of Fig. 2(c) deletes the vertices in such
a way that the remainder of the cluster is given by the two end
nodes (right column) connected by an edge. Creating this edge
is equivalent to performing a CZ operation between the two
end nodes.

III. GAUSSIAN CONDITIONAL DYNAMICS

Let us briefly review the formalism needed to describe
Gaussian conditional dynamics via continuous monitoring.
Consider a set of m input modes interacting with n system
modes, where the former are associated with Markovian bath
modes and the latter with the system of interest. As said, in the
Gaussian regime, the dynamics can be described by the first
and second moments of the canonical operators. The coupling
between the modes is at most quadratic,

ĤC = 1

2
r̂�

SB

(
0 C

C� 0

)
r̂SB ≡ 1

2
r̂�

SBHC r̂SB, (2)

where C is a n×m real matrix characterizing the in-
teraction between system (S) and input (B) modes,
and we use the quadrature ordering r̂�

SB ≡ (r̂�, r̂�
in) ≡

(q1,p1, . . . ,qn,pn,Q1,P1, . . . ,Qm,Pm)� with system and in-
put modes denoted by lowercase and uppercase symbols,
respectively. The initial covariance matrix σ ⊕ σB , where σ

is the initial state of the system and σB is the initial state
of the input modes, evolves according to the symplectic
transformation

e�HCdw = I + �HCdw + (�HC)2

2
dt + o(dt), (3)

where the Wiener process dw satisfies the Ito rule dw2 = dt

[62]. The symplectic form � is defined as

� =
k⊕

j=1

ω, ω =
(

0 1
−1 0

)
. (4)

For brevity, we do not indicate explicitly the dimension of �

which should be extracted from the context. The evolution of
system-input modes is seen to be [62]

e�HCdw(σ ⊕ σB)e�H�
C dw

= (σ ⊕ σB) +
(

�C�C�σ + σC�C��

2

)
⊕ σ̂B,1dt

+�CσBC�σBC��� ⊕ σ̂B,2dt + σSBdw + σBBo(dt),

(5)

with

σSB =
(

0 �CσB + σC��

σBC��� + �C�σ 0

)
, (6)

σ̂B,1 = �C��CσB + σBC��C�

2
, (7)

σ̂B,2 = ��C�σC�. (8)

The behavior of the system when all the input modes of
the bath are disregarded is then encapsulated in the matrix
diffusion equation, or Lyapunov equation,

σ̇ = Aσ + σA� + D, (9)

with drift and diffusion matrices

A = �C�C�

2
, D = �CσBC���. (10)

Interaction among the system modes leads to an additional
Hamiltonian term, Ĥs = 1

2 r̂�Hs r̂, which modifies the drift
matrix:

A → A + �Hs. (11)

This interaction term is crucial, as it will contain the QND
interaction that allows the measurement of mechanical quadra-
tures.

So far this formalism describes noise. Let us assume now
that the input modes undergo continuous monitoring instead.
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The description of Gaussian measurements on Gaussian states
involves an instantaneous mapping of the covariance matrix
and the vector of first moments.1 Denoting the postmeasure-
ment covariance matrix of the measured modes of the bath B
by σm, the postmeasurement covariances of the system modes
are given by

σ → σ − σC

1

σB + σm

σ�
C . (12)

Here σC is the off-diagonal block of σSB . Applying this results
in a Riccati equation [rather then in a Lyapunov equation as in
Eq. (9)]:

σ̇ = Ãσ + σÃ� + D̃ − σBB�σ, (13)

where now we defined

Ã = A − �CσB

1

σB + σm

�C�, (14)

D̃ = D + �CσB

1

σB + σm

σBC��, (15)

B = C�

√
1

σB + σm

. (16)

In order to model the optomechanical system considered
for MBQC, we need to consider a situation in which only
a portion of the input modes undergo monitoring, whereas
the rest are lost as genuine noise. To take account of this,
a small modification is required. The modes undergoing
purely dissipative dynamics entail an evolution of the system
covariance matrix in Lyapunov form of Eq. (9), whereas those
undergoing monitoring evolve the covariance matrix in the
Riccati form of Eq. (13). We introduce a distinction between
the interaction of the monitored and dissipative modes with
the system modes via Cm and Cd . Cd enforces a Lyapunov
equation with matrix coefficients ALyap and DLyap whereas Cm

enforces a Riccati equation with coefficients ÃRicc, D̃Ricc, and
B that depends only on Cm. The linearity of these equations
allows them to be simply added to find the full dynamics of
the covariance matrix under both effects:

σ̇ = (ALyap + ÃRicc)σ + σ (A�
Lyap + Ã�

Ricc)

+DLyap + D̃Ricc − σBB�σ. (17)

Finally for homodyne detection, inefficient detectors can be
introduced by distorting the postmeasurement state as follows:

σm → 1

η
σm + 1 − η

η
I. (18)

In the following we are going to consider a homo-
dyne detection scheme. The postmeasurement state of the
homodyned mode will be a position-squeezed vacuum
with squeezing parameter denoted as rpostmeas; hence σm =
1
2 Diag(e−2rpostmeas ,e2rpostmeas ). Notice that perfect homodyne de-
tection requires rpostmeas → ∞. Note that, in contrast to optical

1The latter are not relevant for the purposes of this paper, since for
Gaussian MBQC we can always absorb first-moment displacements
in by-product operations.

FIG. 3. A driven single-mode cavity hosts a collection of nonin-
teracting mechanical resonators. The latter are supposed to be already
prepared in a cluster state and to have nonoverlapping frequencies
(this can be achieved following the proposal of Ref. [53]). They are
coupled to a thermal environment with dissipation rate γ . The cavity
decays at a rate κ into a monitored mode which is eventually measured
via a homodyne detector. Unmonitored losses at rate τ are also taken
into account.

schemes in which a mode representing a cluster vertex is
destroyed by the measurement, the measured mechanical mode
is disconnected from the cluster by the measurement in the
sense of having its correlations with the remainder of the
cluster destroyed by the measurement.

IV. OPTOMECHANICAL SETTING AND MECHANICAL
CLUSTER STATES

As mentioned in Sec. I, the mechanical portion of an
optomechanics experiment is inaccessible to direct measure-
ment in the regimes of our interest. However, schemes exist
for the precise measurement of the mechanical quadratures
via measurements on the cavity field [29–31]. One of these
involves continuous monitoring by engineering a QND inter-
action between the cavity field and the mechanical quadrature
operator one is interested in measuring. We are now going to
show how this interaction can be exploited for our purposes.

The system we focus on is pictorially represented in Fig. 3.
It is composed of an array of N noninteracting resonators
immersed in the cavity field which dissipates at a rate κ . The
resonators are assumed to have identical mechanical damping
rates γ which dissipate into thermal baths of temperature
T . The cavity operates in the sideband-resolved regime κ �
min(�j ) with �j the mechanical frequencies, and is driven
by a collection of M fields. The collection of resonators are
supposed to have nonoverlapping frequencies, allowing us to
address each of them individually for measurement.

The linearized Hamiltonian for the described system, in an
interaction picture with respect to the free evolution, takes the
form

H = a†
N∑
j

M∑
k

αke
iφkgj e

i(ωc−ωk)t (bj e
−i�j t+b

†
j e

i�j t )+H.c.,

(19)
where gj are the single photon-phonon interaction strengths,
�j , ωc, and ωk are the frequencies of the resonators, cavity, and
drives, respectively, αk � 0 are the cavity drive strengths and
φk their phases, whereas a and bj are the annihilation operators
for the cavity and mechanical modes. We will assume that
γ � κ . In addition, we will work in the sideband-resolved
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regime κ � min(�j ) and assume weak coupling between
radiation and mechanics: gjαj � min(�j ).

Now choose two drive frequencies for each resonator j to
be on the mechanical sidebands ω±

j = ωc ± �j with strengths
α±

j and phases φ±
j :

H = a†
N∑
j

gj [α+
j eiφ+

j e−i�j t (bj e
−i�j t + b

†
j e

i�j t )

+α−
j eiφ−

j ei�j t (bj e
−i�j t + b

†
j e

i�j t )] + H.c.

= a†
∑

j

gj [α+
j eiφ+

j (b†j + bj e
−2i�j t )

+α−
j eiφ−

j (b†j e
2i�j t + bj )] + H.c. (20)

Let αj = α+
j = α−

j and φj = φ+
j = −φ−

j . Then

H = (a + a†)
∑

j

gjαj [eiφj (b†j + bj e
−2i�j t )

+ e−iφj (bj + b
†
j e

2i�j t )]

=
√

2(a + a†)
∑

j

gjαj

[
Xφj

+ 1√
2

× (bj e
−i(2�j t−φj ) + b

†
j e

i(2�j t−φj ))

]

=
√

2(a + a†)
∑

j

gjαj [Xφj
+ Xj cos(2�j t − φj )

+Pj sin(2�j t − φj )], (21)

where we have defined the quadratures for the mechanical
resonators as follows:

Xφj
= Xj cos φj + Pj sin φj , (22)

with Xj = bj +b
†
j√

2
and Pj = bj −b

†
j

i
√

2
. Since we are in the weak-

coupling regime we may take the rotating-wave approxima-
tion, discarding the fast-rotating terms so that this Hamiltonian
is a time-averaged interaction of the cavity position with
an arbitrary quadrature of each mechanical mode. Since the
interaction with each resonator depends on the choice of αj

one can imagine a step-by-step process in which each resonator
is addressed in turn by having all but one of the αj set to
zero. In such a scenario, the Hamiltonian during one step
is, in the above time-averaged sense, a QND interaction of
cavity-position X = a+a†√

2
with Xφ of a single resonator, say

the kth one:

Hk = 2gjαkXXφk
. (23)

Continuous measurement of the position quadrature via
homodyne detection on the output field from the cavity
produces a backaction-evading measurement of Xφk

. This
provides an effective indirect measurement of the mechanical
resonator which is in fact driven towards a highly squeezed
approximation to an eigenstate of Xφk

. In turn, the remainder
of the cluster is driven to the corresponding postmeasurement
state. Allowing sufficient time for this remainder to reach a
steady state, then moving to a new resonator, provides a method
for measurements on individual mechanical modes.

The matrix coefficients for Eq. (17) can be determined
from Eqs. (10), (11), and (14)–(16) above using the following
Hamiltonians expressing the internal system coupling and the
coupling between system and input modes:

Hs = Hk, (24)

HC = √
κ(XXout + PPout) + √

τ (XX′
out + PP ′

out)

+√
γ

∑
j

(XjX
′
j,out + PjP

′
j,out), (25)

where all the X and P are conjugate operators, the subscript
“out” describes the output fields, and the primed quadratures
are unmonitored output modes. The unmonitored cavity decay
represents genuine photon losses (e.g., scattering or absorption
of the cavity) and is characterized by a rate τ . The system
also dissipates interacting with the thermal environment of
each mechanical mode. We assume for simplicity that each
mechanical resonator is locally in contact with its own purely
dissipative environment, each of which is characterized by
the same damping rate γ and temperature T . The state
of each mechanical bath is a Gaussian thermal state char-
acterized by the covariance matrix σj,th = (nj + 1

2 )I, with

nj = [exp( h̄�j

kBT
) − 1]−1.

V. CONTINUOUS MONITORING FOR GAUSSIAN
TRANSFORMATIONS

In this section, we will demonstrate that continuous mon-
itoring of the cluster state can reproduce, in certain regimes,
the same results of a Gaussian transformation implemented
directly on a cluster through projective measurements. The key
Gaussian operations that we are going to investigate are the
identity I → {0,0,0,0}, the Fourier transform F → {1,1,1,0},
the shearing operation S(1) → {1,0,0,0}, and the two-mode
operation CZ. As recalled in Sec. II, the decomposition in
Eq. (1) links a set of four numbers {λ1, . . . ,λ4} to the associated
Gaussian transformation induced by the four measurements
p + λjq performed on the first four nodes of a five-mode
linear cluster (j = 1, . . . ,4). Via Eq. (22), each of these
measurements is related to the choice of the driving phase
given by

φj = arctan
1

λj

. (26)

As said, these operations are (for arbitrary shearing pa-
rameters) universal for multimode Gaussian transformations.
In particular, the identity operation covers displacements in
the decomposition of Gaussian transformations discussed in
Sec. II.

Before proceeding let us stress two observations regarding
the initial state of the system and the figure of merit that we
use. First, let us assume that we want to perform a single-mode
operation on a generic input state. The standard procedure
to accomplish this in a MBQC setting is to attach the latter
to a four-node cluster via a CZ operation. Without loss
of generality, we take the input state to be a vacuum state
squeezed in momentum to the same degree as the constituents
of the ancillary cluster. This makes the system before the first
measurement equivalent to a five-node linear cluster, which
could in turn be prepared following the protocol described
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TABLE I. Experimentally motivated (set 1) and close-to-ideal (set
2) values for parameters used in the simulations. Where a parameter is
varied across a simulation (see Figs. 4–8), that value takes precedence
over the table value. The resonators have frequencies 2πj 11 MHz
(j = 1, . . . ,N ).

Parameter Set 1 Set 2
(realistic) (close to ideal)

η 0.99 1
γ

2π
8 Hz 0 Hz

κ

2π
0.33 MHz 0.1 MHz

τ 0.01κ 0
αg 0.35 MHz 0.35 MHz
T 1 mK 0 K
rpostmeas 10 dB 20 dB
rcluster 3 dB 3 dB

in Ref. [53]. The preparation scheme ends completely before
detection takes place, and so the drive fields for generation and
measurement do not overlap. This will be the initial state of the
system that we will consider (see below for two-mode opera-
tions). Second, let us recall that the objective of this analysis
is to demonstrate that the continuous monitoring scheme is
functionally equivalent to the direct projective measurements
required by standard MBQC. To this end, the states whose
fidelity we calculate are those of the outputs from continuous
monitoring and from projective measurements on a cluster
state. Therefore, a high fidelity indicates that continuous
monitoring well approximates projective measurements. This
is not the same as saying that the output state has a high fidelity
with the expected outcome of a computation. For this to occur,
a high level of squeezing is known to be required in general
[57]—with the limit for fault-tolerant computation currently
set at approximately 20 dB [75].

The set of parameters that describe the optomechanical
system under consideration is relatively large, and is given in
Table I. This includes the linearized interaction strength αg,
the mechanical dissipation rate γ , the mechanical bath temper-
ature T , the cavity decay rate κ , the unmonitored losses τ , the
detector efficiency η, the squeezing of the postmeasurement
state of the homodyned mode rpostmeas, and the squeezing of the
cluster rcluster.2 In addition, one may also tune the monitoring
time tmon for each step in the measurement process.

Given the number of parameters involved, it is of relevance
to individuate which of them are going to be determinant for
the purposes of MBQC. To this end, we are now going to
provide simulations of the continuous monitoring procedure
varying certain parameters and progressively eliminating
from consideration those with the weakest contribution.
Hence, this analysis will not only establish the possibility
to perform MBQC using continuous monitoring rather then
direct measurements, but it can also be seen as instrumental

2In our numerical analysis, the squeezing of the cluster rcluster is
fixed at 3 dB, which is the theoretical limit for standard parametric
squeezing techniques. Note however that this limit has very recently
been overcome using reservoir engineering [54].

FIG. 4. From top to bottom, effect of the variation of the
detector efficiency η, unmonitored losses τ , and squeezing of the
postmeasurement state of the homodyned mode rpostmeas on the highest
achievable fidelity on application of the gate S(1) to a 5-node linear
cluster against the monitoring time per step. Except for the noise
parameter under consideration all the parameters are set as per
Table I with solid and dashed lines denoting close-to-ideal (set 2)
and realistic (set 1) parameters, respectively. In each plot the curves
corresponding to each set of parameters bunch together (particularly
for long monitoring times). From top to bottom of each bunch the
parameter under consideration is varied: (a) the detector efficiency
η = 1,0.9,0.8, (b) the unmonitored losses τ = 0.01κ,0.05κ,0.1κ , and
(c) the squeezing of postmeasurement state of the homodyned mode
rpostmeas = 20,10,5 dB. These plots show that these three noise mecha-
nisms are only minimally detrimental for successfully implementing
Gaussian transformations on a mechanical cluster state, and that
their effect is more and more negligible for long monitoring times.

at a quantitative level for setting benchmarks and driving
experimental efforts in using optomechanics for advanced
quantum information tasks.
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To show the effects of this collection of parameters,
we vary each of them individually within two sets (see
Table I): (i) Set 1 refers to realistic values of the parameters
involved, as guided by recent experimental achievements [54].
(ii) Set 2 refers to close-to-ideal settings in which all losses
are neglected, nearly perfect homodyne measurements are
achievable, and access to the sideband-resolved regime is deep.
In the majority of the analysis below, our target is to apply the
gate given by the shearing operation S(1); however we will
also demonstrate that gate choice has little effect on the final
fidelity.

We start our analysis by considering the role played by the
noise parameters η, τ , and rpostmeas. The plots in Fig. 4 show
that their effect on the highest achievable fidelity is relatively
minimal both in the close-to-ideal and realistic settings. This
is due to the fact that the monitoring scheme continuously
gathers information on the mechanical state, driving it towards
an eigenstate associated with Xφ . This suggests that small
losses—due either to genuine photon loss from the cavity (τ )
or photons missed at the detector end (η)—are ineffectual
at disturbing the measurement outcome, provided enough
monitoring time is given. In other words, small amounts of
measurement losses can be compensated for by increasing the
time for which the system is monitored. For similar reasons,
the deviations from ideal homodyne measurements due to a
finite degree of squeezing of the postmeasurement state have
little effect. However note that we maintain rcluster < rpostmeas,
a condition that is typically met in experimental settings. In
general, all the plots of Fig. 4 show that when the remaining
parameters are set in close-to-ideal conditions (set 2), unit
fidelity is in fact achieved for long monitoring time. When
realistic parameters (set 1) are considered, obviously unit
fidelity cannot be achieved any more (as the mechanical
resonators tend to thermalize asymptotically); however it is
still true that the effect of variations in η, τ , and rpostmeas is
negligible for large monitoring times. Notice also that, for all
the curves that refer to realistic parameters (dashed curves),
the fidelity achieves a maximum for a finite monitoring time
tmon. As it is reasonable to expect when mechanical losses
are present, this indicates that one can optimize tmon, an
opportunity that we will address later on.

Let us now turn our attention to the cavity output rate κ

and the effective coupling strength αg. As detailed in Sec. IV,
our analysis is valid in the sideband-resolved regime and when
the rotating-wave approximation holds, respectively when κ

and αg are both much lower than the mechanical frequencies.
However, as long as these conditions are met, there is still room
for optimizing their values. Regarding αg, it determines the
strength of the effective measurement that we are performing
on the mechanical resonators by monitoring the cavity output.
Hence, in principle, the larger it is the more effective our
measurement strategy is. The upper panel of Fig. 5 shows that
this is indeed the case. However, depending on the values of the
remaining parameters, it might not be necessary to increase αg

up to the limit of validity of the rotating-wave approximation,
since a fidelity close to 1 can be achieved for relatively weak
coupling. That is, once αg is sufficiently large it ceases to be
beneficial to increase it further.

Regarding the cavity output rate κ , one expects that the
deeper we are in the sideband-resolved regime the better—

FIG. 5. Variation of (a) the interaction strength αg and (b) the
cavity decay rate κ . These plots show the maximum fidelity achieved
over long monitoring times using realistic parameters as per set 1 of
Table I (except for the mechanical losses γ whose value is indicated
in the legend).

as long as the monitoring time is large enough so that the
measurement of the (small portion of) radiation emerging from
the cavity is still effective. This is in fact shown in Fig. 5(b),
where it is also evident however that for nonzero mechanical
losses γ a trade-off appears. This is due to the fact that for very
small κ the monitoring time required to effectively measure the
mechanical resonators starts to be too large and the mechanical
losses spoil the MBQC-induced dynamics.

We next demonstrate that the choice of the gate to be
implemented has little effect on the final fidelity, as one would
ideally require when performing a computation. Using the set
of realistic parameters (set 1) we observe that the three key
single-mode gates [plus S(3) and S(5)] achieve similar final
fidelity curves, over the time interval allotted per measurement
step (Fig. 6). This shows that the continuous monitoring
scheme is not greatly affected by the choice of measurement

FIG. 6. Applying the operations of identity I, Fourier transform
F , and shearing S(λ) with λ = 1,3,5 under the realistic parameters of
Table I. The final fidelity of the output of these operations is plotted
against the monitoring time for each step.
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to be performed and that a computation need not be optimized
against using certain operations.

We have noticed above (see both Figs. 4 and 6) that the
monitoring time per step can be optimized. Now we may
demonstrate more quantitatively the effect of the length of
the monitoring interval, the time tmon taken for a single
measurement step. In all analyses thus far the monitoring has
been performed with each step taking an equal fraction of the
total time for the scheme to complete. However, the monitoring
interval is an easily tunable parameter and heuristically has
large effects on the quality of the computation. This is because
short intervals do not allow the measured node to reach a
state with an acceptable degree of squeezing, whereas long
intervals allow mechanical damping to dominate the dynamics.
We can optimize by making the length of each monitoring step
independent of the others such that the fidelity never decreases.
In Fig. 7 we show that optimizing the monitoring interval has
the beneficial effect of increasing monotonically with time the
fidelity of the output mode with the target state. Physically
we want the mechanical system to spend minimal time
in the fire and consequently to be less affected by its
environment. Notice that the effects of this optimization are to
simultaneously raise the ceiling on the achievable fidelity and
significantly decrease the length of the monitoring process.

After the analysis performed so far, only T , γ , and rcluster

remain from Table I. Since these appear to be the most relevant
parameters we provide a more exhaustive analysis of their
effects, both for the key single-mode operations and for the
two-mode CZ operation. Recall from Sec. II that for the CZ

operation a four-node cluster is topologically equivalent to a
minimal dual rail configuration [Fig. 2(c)]. It is the latter that
we are going to use for the CZ operation.

Using the realistic parameters (set 1), Fig. 8 shows the
maximum fidelity achieved with optimized monitoring inter-
vals as the temperature and mechanical dissipation are varied
over the shearing S(1) and CZ operations, for rcluster = 3 dB
and 5 dB. We can clearly see that high levels of fidelity,
above 95%, can be achieved, in all the cases considered, for
temperature T and mechanical damping rate γ within reach of
current technology. This establishes optomechanical systems
as a promising candidate for advanced computational tasks.
As expected, increasing γ or T has deleterious effects on
the fidelity. Additionally, increasing the squeezing parameter
rcluster reduces the achievable fidelity for a particular pair (γ,T ).
We expect that for larger squeezing values the region of the
plots with large fidelity becomes more localized around the
point (γ,T ) = (0,0).

VI. CONCLUSIONS

To conclude, we generalized an existing backaction-
evading measurement scheme in optomechanics to the case
in which the cavity interacts directly with a collection of
resonators. This allowed us to demonstrate the effectiveness of
continuous monitoring in performing QND measurements on a
mechanical cluster state. In particular, we showed that arbitrary
multimode Gaussian transformations can be implemented with
this method within the same experimental setup that allows for
the preparation [53] and reconstruction [55] of a mechanical
cluster state. Therefore this work provides a significant

FIG. 7. The fidelity of the identity operation with equally spaced
step intervals (left) and with optimized steps (right). Without
optimization there are long periods where the fidelity is not increased
by the monitoring scheme, and in fact is actively decreased by
exposure to the mechanical damping. With optimization, the ceiling
for the fidelity is raised and the time required to reach high fidelities
is significantly lessened. These simulations also consider realistic
parameters (set 1), with the exception of T = 10 K, emphasizing the
effect of the optimized monitoring steps. The optimized steps for this
scenario are 21.4, 21.2, 21.1, and 21.1 μs.

step towards universal measurement-based computation with
mechanical resonators.

We examined our procedure in a variety of conditions
relevant to experiments, noting the prevalent impact of
temperature and mechanical damping on the success of the
computation, while showing the limited effect of a large set of
other parameters. In general, low temperatures and mechanical
dissipation rates are a fundamental requirement to replicate
the results of projective measurements performed directly on
a cluster state—thus allowing for any computational step to
occur. The requirements become more stringent when the
degree of squeezing of the cluster is increased, a necessity
for approaching fault-tolerant computation.

In order to achieve universal computation a non-Gaussian
operation has to be added to the set of operations considered
here. This will necessitate involving a non-Gaussian element
in the network, whether taking advantage of a non-Gaussian
measurement, a nonlinear optomechanical dynamics, or an
already prepared non-Gaussian resource. Promisingly in this
direction, it has been shown that opto- and electromechanical
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FIG. 8. The maximum achievable fidelity with optimized monitoring intervals for the continuous monitoring implementation of the shearing
S(1) and CZ operations. Increased squeezing increases the susceptibility of the output to damage from the thermal environment.

systems can intrinsically host nonlinearities in various settings
[33,36,76,77], and this possibility has been suggested for en-
gineering non-Gaussian states, dynamics, and measurements
[32,78–85]. The latter could potentially be exploited to unlock
the universality of computation and this shall be the topic of
future work.
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