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We present strategies for the training of a qubit network aimed at the ancilla-assisted
synthesis of multi-qubit gates based on a set of restricted resources. By assuming the
availability of only time-independent single and two-qubit interactions, we introduce

and describe a supervised learning strategy implemented through momentum-stochastic
gradient descent with automatic differentiation methods. We demonstrate the effectiveness

of the scheme by discussing the implementation of non-trivial three qubit operations,
including a Quantum Fourier Transform (QFT) and a half-adder gate.
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1. Introduction

Machine learning techniques find fruitful application in several branches of quantum

information theory.1–6 Supervised learning, in particular, provides powerful tools

1
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to build algorithms able to pick up patterns from sets of pre-labelled data. In the

context of quantum information science, machine learning techniques have been

showcased as a flexible tool to solve complex optimisation tasks in different areas.7–17

In particular, supervised learning techniques were recently demonstrated to solve

gate design problems.15,17

Here, by gate design problem we mean the task of identifying a time-independent

Hamiltonian generating a target evolution, under a series of restrictions imposed on

the allowed Hamiltonian terms. This problem is well suited for machine learning

techniques because, while mathematically well-defined, it presents a complex and

strongly context-depend phenomenology. At the same time, the ability to implement

non-trivial gates using time-independent dynamics and experimentally-feasible

interactions is potentially of great interest for practical implementations of quantum

algorithms. It was recently shown in Ref.17 that, by exploiting supervised learning

techniques and ideas, it is possible to flexibly tackle arbitrary gate design problems.

A mathematical framework to further improve the efficiency of the numerics by

providing improved ansatz for the optimisations can be formalised and used. In this

paper, we illustrate the methodology sketched in Ref.17 and give further examples of

time-independent Hamiltonians found via supervised learning optimisation, exploring

cases in which ancillary qubits are used to catalyse the evolution, but are traced

out at the end of the dynamics in such a way that the effective evolution over the

system qubits is the desired one.

The remainder of this paper is organized as follows. In Sec. 2 we introduce the

context of the problem that we address, stating the mathematical conditions that

qualify a successful gate design (or synthesis). Sec. 3 is dedicated to the illustration

of the supervised learning approach that we use to tackle our problem. In Sec. 4

we discuss in details the stochastic momentum gradient descent approach that we

choose to ensure the fulfilment of the mathematical conditions for gate design. Such

methods are used in Sec. 5 to address quantitatively the training of a qubit network

for the synthesis of three non-trivial three-qubit gates, including a half-adder and

a quantum Fourier transform. We demonstrate that extremely high-quality gates

can be synthesised using only evolutions coupling at most two qubits per time.

Moreover, such restricted-resource designs are relatively stable against variations

in the controlled parameters of the synthesis, which makes our approach robust,

and potentially very interesting for implementation in a number of context, from

superconducting quantum systems to trapped ions. Finally, in Sec. 6 we draw our

conclusions.

2. Optimisation of qubit networks

Consider a set of qubits whose dynamics is described by the time-independent

Hamiltonian Hλ =
∑
k λkAk, which is specified by the set of real parameters

λ = {λ1, λ2, . . . , λk, . . . } and has been decomposed over the (Hermitian) operatorial

basis {Ak}. We consider some of the qubits of the set, say the first M ones, as
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composing the system S under investigation. The others embody a set A of ancillary

qubits, whose collective initial state is set to be |φ〉A. We call |ψ〉S the initial state

of the system qubits, which we assume to be uncorrelated to the set of ancillae and

will thus evolve as

ρSout(t,λ) = TrA [exp(itHλ)(ψ ⊗ φ)] , (1)

where TrA denotes the partial trace of the ancillary qubits and we have used the

shortcut notation

exp(itHλ)(ψ ⊗ φ) = eitHλ(|ψ〉 〈ψ|S ⊗ |φ〉 〈φ|A)e−itHλ . (2)

Without loss of generality, in the following we can assume units such that t = 1,

so that the evolution time can be incorporated into a suitable rescaling of the the

Hamiltonian parameters λ. The evolved system state will henceforth be written as

ρSout(t,λ) ≡ ρSout(λ). Our goal is to find a set of parameters λ0 such that, for a given

target evolution Utarget, we have the successful gate synthesis Utarget = exp(iHλ0
).

This is equivalent to having

ρSout(λ0) = Utarget(|ψ〉 〈ψ|S)U†target, ∀ |ψ〉S . (3)

A natural way to quantify how much a given λ is close to the needed set λ0 is to

use the state fidelity

Fλ(ψ) = S〈ψ|U†targetρSout(λ)Utarget|ψ〉S . (4)

It then follows that

Fλ0
(ψ) = 1 ∀ |ψ〉 ⇔ exp(iHλ0

) = Utarget. (5)

Restricting ourselves to Hamiltonians having at most pairwise interactions, which

are easier to implement in many experimental architectures, we can consider the

following decomposition over the Pauli basis

Hλ = h01+
∑

hαi σ
α
i +

∑
Jαβij σ

α
i σ

β
j . (6)

Here, i, j = 1, ..., N are indices for the qubits of the overall set (system and ancillae),

α, β ∈ {1, 2, 3} identify the element of the Pauli vector σ = (σ1, σ2, σ3) being

considered (we use the correspondence σ1 → σx, σ2 → σy, σ3 → σz), Jαβij is a

coupling strength, and λ = {h0, hαi , J
αβ
ij }.

Note that, for a given choice of Utarget and Hλ, it is not known whether a solution

to the question posed by Eq. (5) even exists. Indeed, a simple parameter-counting

argument shows it does not in general: not all possible evolutions produced using

higher-order interactions can be generated when only one- and two-qubit couplings

are available. A concrete example of the gate-synthesis problem discussed here is

given by the implementation of a Toffoli gate19 over a three-qubit network with a

restricted set of interactions. Yet, Ref.15 has shown that the use of a single ancillary

qubit catalyses the synthesis of three-qubit gates with the restricted resources

mentioned above. Moreover, it was recently shown17 that the same task can be
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achieved without ancillary qubits and under the stronger restriction of having

available only diagonal pairwise interactions. Whether a given gate can be realized

with a specific time-independent set of operations remains an open question.

3. Supervised learning of the Hamiltonian parameters

A standard approach to the design of Hamiltonians producing a target gate is the

direct optimization of the average fidelity Fλ ≡
∫
Fψ dψ, where the integral is

performed over the set of all pure states |ψ〉. Explicit closed expressions for Fλ are

known,20–22 so that global optimisation algorithms can be applied directly. However,

the resulting complex parameter landscape makes such optimization inefficient. In

order to avoid the issues associated with global optimisation techniques, we thus

resort to a different approach.

Instead of directly optimising Fλ, we focus on single input states and optimise

Fλ(ψ) for many different |ψ〉. Formulated in this manner, the problem can be phrased

in terms of supervised machine learning tasks, akin to the training of a neural network

model. Indeed, qubit networks can be trained to implement target evolutions just

as neural network are trained to implement desired functional relationships.

One of the most used techniques to train neural network models is the so-

called Stochastic Gradient Descent (SGD),23,24 a workhorse of many state-of-the-art

machine learning algorithms. Given a parametrised functional relation fw(x), SGD

looks for sets of parameters w0 such that fw0(x) is minimised for all x. This is done

via the following iterative procedure: 1) choose a random input x0, 2) perform a few

gradient descent steps over w, and 3) go back to the first step, until a good result

is obtained. In this way some of the difficulties associated with local optimisation

are avoided, because for every input x one has a different parameter landscape

w 7→ fw(x) over which the gradient descent is performed. This new parameter

landscape does not in general have the same local minima as the previous ones,

while on the other hand the global minimum is bound to be a minimum for all x.

In the qubit network scenario that we are tackling, this translates into the fidelity

being unitary for all |ψ〉S only for the sets λ such that exp(iHλ) = Utarget.
Following the large body of research that the area of machine learning has seen in

recent years,25,26 a number of well-honed tools to efficiently tackle these kinds of tasks

has been developed and made freely available. In particular, software frameworks

such as Theano,27 TensorFlow28 and PyTorch29 allow to efficiently train arbitrarily

built models with state-of-the-art SGD algorithms. One particular aspect of these

frameworks which allows to further speed-up the training procedure is that they allow

to perform automatic differentiation23,30,31 of arbitrary computations. Automatic

differentiation is a technique to efficiently compute, numerically, the gradient of

an arbitrary multivalued function f(x), without using numerical approximation

methods nor requiring the analytical expression of the gradient. Such technique is

especially valuable to speed-up SGD optimisations, as it significantly decreases the

cost of computing ∇wf .
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4. Implementation details

We implement supervised learning of arbitrary qubit networks using Theano,27 a

Python library for machine learning of widespread use. More specifically, we use

Theano to perform momentum-SGD24 over the network parameters λ, exploiting

the automatic differentiation capabilities provided by Theano to speed-up the

optimisation. The implemented protocol can be summarized in the following steps

(1) Choose an initial set of parameters λ.

(2) Generate a random set of input states |ψk〉, k = 1, ..., Nb, with Nb the size of

the mini-batches chosen beforehand.

(3) For each k, compute ∇λFλ(ψk) using the automatic differentiation capabilities

offered by Theano.

(4) Change the coupling strengths λ according to the chosen updating rule. A

standard choice, adopted in this work, is momentum-SGD, which is characterised

by the following updating rule:

v → γv + η∇λFλ(ψk),

λ→ λ+ v,
(7)

where the learning rate η and the momentum term γ are hyperparameters that

define the optimisation protocol. The value of the learning rate is also chosen

to be decreasing with the iteration number.

(5) Return to point (2), until a satisfactory value of the fidelity is obtained.

For the cost function Fλ we use the expression given in Eq. (11), with a general

Hamiltonian model with at most pairwise interactions, as given in Eq. (6). This

means that, for example, to train the four-qubit networks implementing Half-adder

and TofFredkin gates, we start with a general Hamiltonian like in Eq. (6) with 9

parameters hαi for the single-qubit fields, plus 3×9 parameters Jαβij for the two-qubit

interactions, amounting to a total of 36 parameters to be trained. The h0 parameter

can be left out of the training as it only amounts to an unobservable global phase.

A similar calculation tells us that for the 3 + 5 network used to train the QFT gate,

a total amount of 276 parameters are trained.

All the codes used to generate the results reported in this paper are freely

available from Ref.32

5. Results

We trained qubit networks of various sizes to generate the Quantum Fourier Trans-

form (QFT) over three qubits, a special doubly-controlled gate that shares charac-

teristics with both Toffoli and Fredkin gate, to which we will refer to as TofFredkin

in the following, and the half-adder gate.33
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The three-qubit QFT transformation can be written as

QFT |a〉1 |b〉2 |c〉3 =
1√
8

(
|0〉+ eiπc |1〉

)
1

(
|0〉+ eiπ(b+

c
2 ) |1〉

)
2

(
|0〉+ eiπ(a+

b
2+

c
4 ) |1〉

)
3

(8)

with |k〉j the states of the system qubit j = 1, 2, 3 (k = a, b, c = 0, 1).

We define the TofFredkin gate as the three-qubit transformation

UTF = |0〉 〈0|1 ⊗ CNOT23 + |1〉 〈1|1 ⊗ SWAP23, (9)

which thus performs a CNOT (SWAP) gate on qubits 2 and 3, akin to a quantum

Toffoli (Fredkin) gate, when the state of the control qubit 1 is |0〉1 (|1〉1).

Finally, the half-adder acts on a register of three qubits as

UHA = CNOT12CCNOT123, (10)

where CCNOT123 stands for the quantum Toffoli gate. When applied to a logical

state |a〉1 |b〉2 |c〉3, the half adder returns the state |a〉1 |a⊕ b〉2 |c⊕ carry〉3 with

carry=0,1 the carry over of a⊕ b.
To assess the quality of the obtained gates we use the averaged gate fidelity

F(E ,U), defined as

F(E ,U) =

∫
dψ 〈ψ|U†E(|ψ〉〈ψ|)U|ψ〉 . (11)

This quantity is used to characterize how close the action of a map E is to the action of

a unitary U . The map is in our case the operation corresponding to the action of a uni-

tary in the enlarged system+ancillae space, followed by tracing the ancillary qubits.

In our case, if Ũ is the unitary acting on the full system+ancillae space, obtained

from the learning procedure, then the map is defined as E(ρ) = TrA[Ũ(ρ⊗ |0〉〈0|)Ũ†],
where |0〉〈0|A is the initial state of the ancillary system. Equation (11) can be

explicitly computed as

F(E ,U) =
1

d+ 1

1 +
1

d

∑
ij

〈i|U†E(|i〉〈j|)U|j〉

 . (12)

In what follows, we use of Eq. (12) to assess the quality of the reported results.

Figure 1 shows the sets of Hamiltonian parameters that were obtained through

the training procedure, for each of these operations. The TofFredkin gate was found

with unit fidelity, up to numerical precision, using a single ancillary qubit. In Fig. 2

is shown how the fidelity varies with the Hamiltonian parameters. Fig. 3 reports the

final matrix over the full four-qubit network.

In the case of the QFT, we performed a series of training procedures with

different sizes for the ancillary system, from the case of no ancilla to a maximum

of five ancillary qubits being used. We observed the best results when using 0, 3,

and 5 ancillae, the average fidelities being 0.987, 0.991, and 0.988 respectively. It

is important to note that due to the heuristic nature of the optimization method

we employed, better results could be possible by using different initial conditions
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or optimization parameters. In Figs. 1 and 4 we show the final parameters, and

variation of final fidelities against the parameters, for the case of 5 ancillary qubits.34

Finally, the half-adder gate was realized with average fidelity F ' 0.999997 with

a single ancilla. Again, in Fig. 5 is reported the behaviour of Fλ upon variations of

λ, and in Fig. 6 we show the final unitary gate implemented over the full four-qubit

network.

Figures 2, 4 and 5 show the relative stability of the gates with respect to changes

of the Hamiltonian parameters. In particular, for TofFredkin and QFT, the fidelity

remains above 95% upon a 25% variation of the evolution time. The half-adder

appears to be less stable, but this is only consequence of the larger values of its

interactions, as shown in Fig. 1(c). Indeed, the hardness of tuning the Hamiltonian

parameters with sufficient precision will vary strongly between different gates, as

well as between different implementation of the same gate, and between different

parameters in any given implementation.

These results provide further evidence in support of the power and flexibility

of the supervised learning approach presented in,15,17 which clearly applies to the

cases where ancillary degrees of freedom are exploited during the evolution.

6. Conclusions

We have reported on strategies for supervised learning-assisted synthesis of multi-

qubit quantum gates. The general scheme of our gate design is based on the use of

a limited set of resources (such as two-qubit gates) that, in general, would not be

sufficient for arbitrary gate design. However, the catalyst effect brought about by

the use of machine learning – specifically, stochastic momentum gradient descent

– is sufficient to overcome the limitation of our resources and deliver high-quality

complex quantum gates. We have demonstrated the performance of our scheme by

addressing the significant cases of a half-adder and a QFT circuit. Moreover, we

have shown the flexibility of our approach by addressing a novel type of gate that

puts together the paradigmatic quantum Toffoli and Fredkin gates.

We believe that the proposed methodology will be able to significantly help in

the task of designing complex evolutions suitable for the simulation of the dynamics

of networks of information carriers, lowering the complexity associated with gate

decomposition, and simply adopting well-known techniques of classical machine

learning.
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Fig. 1. Trained parameters for the three-qubit QFT, TofFredkin and half-adder networks. We
plot the values taken by the elements of the full set of parameters entering Eq. (6) and ordered as

λ = {h0, h11, . . . , h3N , J
11
11 , . . . , J

33
NN} with N the number of elements of the qubit network.
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Fig. 2. Fidelity Fλ(ψ) vs variations of λ, for different test states, for the TofFredkin gate. The
five test states ψ are sampled randomly. (a) Global relative variations of λ, that is, plotting the

fidelity against αλ for 0.9 ≤ α ≤ 1.1. Note that this is equivalent to studying how the fidelity

changes with respect to uncertainties in the evolution time, that is, how much does exp(iHt′)
differ from exp(iHt). (b) Same as (a) but with 0 ≤ α ≤ 1.2. (c) Plot of Fλ(ψ) against absolute

variations of a single element of λ, in this case the first one, i.e. we take λ1 ∈ [−10, 10]. (d) Like

(c) but for λ2.



June 17, 2018 20:46 WSPC/INSTRUCTION FILE verona-QGL-IJQJ

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.09 0.15 0.25 0.36 0.12 0.38 0.10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.77 0.07 0.08 0.36 0.44 0.15 0.19

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.05 0.54 0.74 0.07 0.08 0.34 0.13

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.03 0.78 0.54 0.10 0.12 0.06 0.20

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.43 0.07 0.10 0.72 0.36 0.01 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.34 0.11 0.03 0.44 0.75 0.28 0.12

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.05 0.07 0.24 0.07 0.21 0.15 0.91

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.31 0.21 0.14 0.01 0.21 0.78 0.22

Fig. 3. Final TofFredkin gate found from the supervised learning training. In this representation,
the ancillary qubit is the first one, so that the top-left 8× 8 submatrix describes the evolution of

states when the ancillary qubit starts as |0〉. Notably, it is clear from the matrix that the gate acts

diagonally on the ancillary qubits, which therefore effectively acts as a control qubit. When this
control ancillary qubit is |0〉, the other three qubits evolve according to the TofFredkin gate.
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Fig. 4. Fidelity Fλ(ψ) vs variations of λ, for different test states, for the three-qubit QFT gate.
The five test states ψ are sampled randomly. (a) Global relative variations of λ, that is, plotting

the fidelity against αλ for 0.9 ≤ α ≤ 1.1. Note that this is equivalent to studying how the fidelity

changes with respect to uncertainties in the evolution time, that is, how much does exp(iHt′)
differ from exp(iHt). (b) Same as (a) but with 0 ≤ α ≤ 1.2. (c) Plot of Fλ(ψ) against absolute

variations of a single element of λ, in this case the first one, i.e. we take λ1 ∈ [−10, 10]. (d) Like

(c) but for λ2.



June 17, 2018 20:46 WSPC/INSTRUCTION FILE verona-QGL-IJQJ

12

0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075 1.100

0.4

0.5

0.6

0.7

0.8

0.9

1.0
(a)

α

Fλ(ψ)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.4

0.6

0.8

1.0
(b)

α

Fλ(ψ)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0.2

0.4

0.6

0.8

1.0
(c)

λ1

Fλ(ψ)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0.2

0.4

0.6

0.8

1.0
(d)

λ2

Fλ(ψ)

Fig. 5. Fidelity Fλ(ψ) vs variations of λ, for different test states, for the half-adder gate. The

five test states ψ are sampled randomly. (a) Global relative variations of λ, that is, plotting the
fidelity against αλ for 0.9 ≤ α ≤ 1.1. Note that this is equivalent to studying how the fidelity
changes with respect to uncertainties in the evolution time, that is, how much does exp(iHt′)
differ from exp(iHt). (b) Same as (a) but with 0 ≤ α ≤ 1.2. (c) Plot of Fλ(ψ) against absolute
variations of a single element of λ, in this case the first one, i.e. we take λ1 ∈ [−10, 10]. (d) Like

(c) but for λ2.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.63 0.32 0.32

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.63 0.32 0.32

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.32 0.63 0.63

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.32 0.63 0.63

Fig. 6. Final half-adder gate found from the supervised learning training. In this representation,
the ancillary qubit is the first one, so that the top-left 8× 8 submatrix describes the evolution of

states when the ancillary qubit starts as |0〉. Notably, it is clear from the matrix that the gate acts

diagonally on the ancillary qubits, which therefore effectively acts as a control qubit, which when
|0〉 induces the other three qubits to evolve according to the half-adder gate.
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S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu and X. Zheng, TensorFlow: Large-scale machine
learning on heterogeneous systems (2015). Software available from tensorflow.org.

29. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga and A. Lerer, Automatic differentiation in pytorch, in NIPS-W (20170;
available from https://openreview.net/forum?id=BJJsrmfCZ.

https://openreview.net/forum?id=BJJsrmfCZ


June 17, 2018 20:46 WSPC/INSTRUCTION FILE verona-QGL-IJQJ

15

30. M. Bartholomew-Biggs, S. Brown, B. Christianson and L. Dixon, Journal of Compu-
tational and Applied Mathematics 124 (2000) 171.

31. A. G. Baydin, B. A. Pearlmutter, A. A. Radul and J. M. Siskind, arXiv:1502.05767
(2015).

32. github.com/lucainnocenti/quantum-gate-learning-1803.07119.
33. G. A. Barbosa, Physical Review A 73 (2006) 052321.
34. More details, as

well as all of the data , are available at github.com/lucainnocenti/quantum-gate-
learning-1803.07119/notebooks/QFT/qft over three qubits.ipynb.

35. G. Goh, “Why Momentum Really Works”, Distill, 2017.
http://doi.org/10.23915/distill.00006.

https://github.com/lucainnocenti/quantum-gate-learning-1803.07119
https://github.com/lucainnocenti/quantum-gate-learning-1803.07119/blob/master/notebooks/QFT/qft_over_three_qubits.ipynb
https://github.com/lucainnocenti/quantum-gate-learning-1803.07119/blob/master/notebooks/QFT/qft_over_three_qubits.ipynb
http://doi.org/10.23915/distill.00006

	Introduction
	Optimisation of qubit networks
	Supervised learning of the Hamiltonian parameters
	Implementation details
	Results
	Conclusions
	Acknowledgments

