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Quantum correlations and thermodynamic performances of two-qubit engines
with local and common baths
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We investigate heat engines whose working substance is made of two coupled qubits performing a generalized
Otto cycle by varying their applied magnetic field or their interaction strength during the compression and
expansion strokes. During the heating and cooling strokes, the two qubits are coupled to local and common
environments that are not necessarily at equilibrium. We find instances of quantum engines coupled to
nonequilibrium common environments exhibiting nontrivial connections to quantum correlations as witnessed
by a monotonic dependence of the work produced on quantum discord and entanglement.

DOI: 10.1103/PhysRevA.98.042102

I. INTRODUCTION

Quantum thermodynamics is an active area of research that
focuses on concepts derived from classical thermodynamics—
like heat, work, and the laws of thermodynamics—and aims
at understanding and exploiting them in the quantum context
[1–6]. Traditionally, considerable efforts have focused on
introducing quantum versions of classical engines [7]. A wide
range of quantum heat engines [8] has been devised, notably
based on the Otto [9–20] and Carnot [21–27] cycles, among
others [28–32]. In this context, a large selection of quantum
working substances has been used to devise these engines,
including qubits [9–14,27–29], qudits [17–19,24,25,30,31],
photons [21–23], and harmonic oscillators [15,16,20,26,32].
A few works have also dealt with many-body powered
quantum engines [33,34]. Experimental platforms have also
reached a level progress that allows for these heat engines to
be constructed and theoretical predictions tested and verified
[35–37].

The proper understanding of quantum heat engines re-
quires that the role played by the genuine quantum properties
of their working substance be investigated. Among these prop-
erties, quantum correlations in general [38], and entanglement
in particular [39], are recognized as crucial in setting the
departure of the quantum from the classical description of
physical systems. While mostly investigated as a resource for
information processing, quantum correlations have also been
significantly considered in the context of many-body systems
[40,41] and, more recently, in quantum thermodynamics [4].

This work aims at considering in detail the relation, if any,
between the quantum correlations established in the working
substance during the operation of heat engines and their re-
spective energetic performances, specifically in terms of work
output and efficiency. For this, we study working substances
composed of more than one constituent only, focusing, in
particular, on the two-qubit case. While this has been partially
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touched on in previous works [10,14,19,22,27,42], the latter
have been mostly confined to reservoirs with equilibrium
thermal steady states, which in turn limit the correlations that
can be developed in the working substance.

Here, we instead focus on designing engines that (i) op-
erate out of thermal equilibrium and (ii) interact with baths
acting either locally (namely, with each qubit separately)
or commonly (namely, via simultaneous interactions with
both qubits). Interestingly, this approach turns out to be rich
enough to cover a variety of instances: it is possible to design
case studies for which the energetic performances are either
completely unrelated to quantum correlations or related to
quantum discord or to entanglement, depending on the spe-
cific design of the engine. A summary of the various instances
we introduce is given in Table I.

We employ techniques developed for open quantum sys-
tems [43–52] and use steady states thereof that allow us to
examine a wide selection of cases, including nonequilibrium
and common reservoirs. The setups considered here can be
realized experimentally by letting the working substance un-
dergo repeated interactions with external ancillary quantum
systems [53–56] and are immune to thermodynamic inconsis-
tencies [57,58]. For nonequilibrium reservoirs, it is important
to stress that maintaining them requires extra work that we do
not analyze here.

We examine two-qubit working substances with an XY
Hamiltonian that undergo a generalized Otto cycle. We look
into the possibility of generating quantum correlations at
steady state when using local and common jump operators.
The effect of measurements necessary for a consistent defi-
nition of thermodynamic work in a quantum setting is taken
into account as well. We also investigate the discrepancy in
the steady state that occurs between a local thermal master
equation and a typical thermal bath, highlighting the effects
on the performances of heat engines.

The paper is organized as follows. In Sec. II, we introduce
the working substance and the method for constructing and
calculating the work and efficiency of a heat cycle. In Sec. III,
we analyze two-qubit Otto engines coupled to local reser-
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TABLE I. Summary of the cases analyzed in this paper and the corresponding sections. We list whether the baths are local on the two
qubits or common; whether the steady state or the state after energy projection is separable or contains quantum correlations; and, finally, the
relation between quantum correlations and the work produced.

Bath Steady state Projected state Relation with work produced

Sec. III A Local Separable Separable None
Sec. III B Local Entangled Separable None
Sec. IV A Common Entangled Discordant Discord
Sec. IV B Common Entangled Entangled Entanglement

voirs, while in Sec. IV, we expand this analysis to include
a selection of common baths resulting in heat engines whose
work produced depends on the quantum correlations present
in the system. Finally, in Sec. V we summarize and discuss
our findings.

II. MODEL

We consider as the working substance a system comprised
of two interacting qubits a and b described by the XY Hamil-
tonian subject to a magnetic field,

H = (Jxσxaσxb + Jyσyaσyb ) + B(σza + σzb ), (1)

where σ[x,y,z] j represents the Pauli operator acting on qubit
j = a, b, the positive coefficients Jx and Jy are the strengths
of the antiferromagnetic couplings, and B is the applied
magnetic field.

The working substance can be put in contact with one or
more reservoirs, not necessarily at equilibrium. This means
that after the system is put in contact with the reservoir for
a long time it will reach not a thermal state but, rather, a
nonequilibrium steady state. In the following we consider
separately the case of local reservoirs, each interacting with
one of the qubits, and common reservoirs, interacting globally
with the two-qubit system. In any case, we assume that
the dynamics of the working substance density operator ρ

is Markovian and can be described by a Lindblad master
equation of the form

ρ̇ = −i[H, ρ] +
∑

i

giLai
(ρ), (2)

where [·, ·] denotes the commutator, Lai
= 2aiρa

†
i −

{a†
i ai, ρ}, ai is a jump operator describing the action of the

bath, and {·, ·} denotes the anticommutator. The coefficient gi

denotes the rate of dissipation associated with the Lindblad
term Lai

. In the absence of interaction with the environment
we assume the evolution of the system to be described by
Eq. (2) with all gi = 0.

The working substance undergoes a generalized Otto cycle
[8]. The four stages of the cycle are as follows.

(1) Compression: The working substance is isolated from
any environment and one of the Hamiltonian’s parameters, Jx ,
Jy , or B, is changed, inducing an increase in the energy gaps.

(2) Heating: The working substance is put into contact
with one or more reservoirs, which may be at different
temperatures. During the evolution, the working substance
converges to a steady state, i.e., satisfying Eq. (2) with ρ̇ = 0.
At the end of this evolution the average energy of the working

substance is increased, meaning that heat is absorbed from the
reservoirs.

(3) Expansion: The working substance is isolated from
any environment and one of the Hamiltonian’s parameters,
Jx , Jy , or B, is changed back to its original value, inducing
a decrease in the energy gaps.

(4) Cooling: The working substance is put into contact
with one or more reservoirs, which may be at different tem-
peratures, and allowed to reach a steady state by releasing heat
into the environment. The final state is also the initial state of
the working substance at the beginning of a new cycle.

A useful property of the Otto cycle is that during the
expansion and compression strokes, the system is isolated
from the environment and thus its energy change is due only to
external work. On the other hand, for the heating and cooling
strokes and for nonequilibrium reservoirs, there might be an
exchange of both heat and work. We comment on this delicate
issue in every analysis we make.

For our Hamiltonian (1) the parameter P (t ) to be changed
is either Jx , Jy , or B, depending on what terms are present
in the given Hamiltonian. We assume that such a parameter
changes from its initial value P1 to its final value P2 via a
linear ramp,

P (t ) = P1 + P2 − P1

τramp
t, (3)

where τramp is the duration of the work stroke.
To assess the work extracted or produced by the engine

during the cycle we employ the definition of work based on
the two-time measurement protocol [15,59–61], which we
now briefly report. Let us assume the system to be initially
in state ρ in and subject to the initial Hamiltonian Hin with
eigenvalues Ein

i and orthonormal eigenvectors |ein
iα〉, where

the index α accounts for possible degeneracies in the energy
spectrum. The initial energy is measured, yielding a value Ein

i

with probability pin
i = ∑

α 〈ein
iα| ρ in |ein

iα〉 and leaving the sys-
tem in the projected state ρP

i = ∑
α |ein

iα〉 〈ein
iα| ρ in |ein

iα〉 〈ein
iα|.

We now change the Hamiltonian from Hin to Hfin in time
while the system is isolated from any environment. We de-
note the eigenvalues and orthonormal eigenvectors of the
final Hamiltonian HfinE

fin
i and |efin

iα 〉. This change induces a
unitary evolution so that the state at the end of the process
is UρP

i U †, where U is the evolution operator. The final
energy is measured, yielding the value Efin

j with conditional
probability p(j |i) = ∑

β 〈efin
jβ | UρP

i U † |efin
jβ〉. The work done

on the system for this particular combination of measurement
outcomes is W = Efin

j − Ein
i . The mean work can be obtained
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by averaging over all possible measurement outcomes:

〈W 〉 =
∑
ij

pin
i p(j |i)

(
Efin

j − Ein
i

)
. (4)

This expression can also be cast as an energy balance,

〈W 〉 = Tr(UρP U †Hfin) − Tr(ρ inHin ), (5)

where we have set ρP = ∑
i p

in
i ρP

i . If the initial state ρ in

is diagonal in the initial energy eigenbasis, i.e., ρ in = ρP ,
the average work is just the energy balance of the initial
and final states calculated with their respective Hamiltonians.
Thus, energy is extracted (work is produced) if W < 0. In
a similar way one can estimate the heat exchanged with
the environment during the cooling and heating strokes by
replacing the evolution operator with the completely positive
map describing the process. We thus denote by −W1 and −W2

the work extracted during the compression and expansion
strokes, respectively. Similarly, we denote by Q1 and Q2 the
heat exchanged with the environments during the heating and
cooling, respectively. We assume that Q > 0 when heat is
absorbed from the reservoirs, increasing the system’s energy.

Since the evolution is cyclic, we have

W1 + W2 + Q1 + Q2 = 0, (6)

and thus the total work extracted is

WT = −(W1 + W2) = Q1 + Q2. (7)

We define the efficiency in the usual way, as the ratio of the
work extracted (if positive) and the total heat absorbed by the
reservoirs:

η = WT∑
Qi>0 Qi

. (8)

We remark here that the two-time energy measurement
protocol may affect both the work produced (see Ref. [61])
and the quantum correlations of the working substance, which
is the main focus of this paper. In our analysis we present both
cases in which an energy observation is performed at each
stroke and cases in which it is not.

III. ENGINE WITH LOCAL BATHS

We now start our analysis of the two-qubit engine perfor-
mance in the case of local baths. To assess this we use an
XX Hamiltonian [10], namely, we set Jx = Jy = J in Eq. (1).
During the heating and cooling strokes each of the two qubits
is coupled to a local thermal reservoir. The corresponding
dynamics is given by Eq. (2) with Lindblad operators L

σ
j
+

with coefficient g
j
+ = γj n̄j and L

σ
j
−

with coefficient g
j
− =

γj (n̄j + 1), where the index j = a, b refers to the two qubits
and the jump operators are the usual rising and lowering
operators σ+ = |1〉〈0| and σ− = |0〉〈1|. The coefficients γj

set the interaction rate of each qubit with its environment
and n̄j set the corresponding equilibrium temperature n̄j =
(e2Bj /Tj − 1)−1 (setting the Boltzmann constant to 1), where
Bj and Tj are the magnetic field and temperature for the bath
coupled to qubit j , respectively.

In this generalized Otto cycle, during the compression
(expansion) stroke the magnetic field is changed, for both

qubits, from B1 to B2 (B2 to B1) with B2 > B1, while the
qubit coupling J is held constant. We note that for B = J

there is a “level crossing” in the energy levels. However,
since the eigenvectors of the XX Hamiltonian are parameter
independent the crossing does not affect the qubits’ evolution.
Note that, in the presence of interqubit coupling, the heating
and cooling steady states of each qubit are generally not
thermal states, not even for equal reservoir temperatures, the
difference significantly increasing with their mutual interac-
tion. In other words, the system under scrutiny is out of
equilibrium. In Sec. III C we make a detailed comparison
between the steady state of Eq. (2) and the corresponding
equilibrium thermal state.

A. Equal temperatures

In the case of equal temperatures n̄j = n̄ and for equal
rates γj = γ , the steady state is diagonal in the σzj eigenbasis
(given by the set |00〉 , |01〉 , |10〉 , |11〉)

ρS = 1

Z

⎛
⎜⎝

n̄2 0 0 0
0 n̄(1 + n̄) 0 0
0 0 n̄(1 + n̄) 0
0 0 0 (1 + n̄)2

⎞
⎟⎠, (9)

with Z = (1 + 2n̄)2 a normalization constant. The latter state,
being a product state, shows no quantum correlations, not
even in the form of quantum discord. In addition, due to the
symmetries of the model, the steady state ρS is invariant under
an energy measurement, implying that the projected state ρP

coincides with ρS . As a consequence, for an engine operating
under these conditions, there will be no effects at all related
to quantum correlations. This can, nevertheless, be used as a
benchmark to compare to other cycles.

Assuming that the heating process corresponds to con-
necting the two qubits with two local baths with thermal
occupation n̄H and, similarly, the cooling process with n̄C

with n̄C < n̄H , one can obtain the following values for the
work and heat contributions:

W1 = 2(B1 − B2)

1 + 2n̄C

, (10)

Q1 = 2B2

(
1

1 + 2n̄C

− 1

1 + 2n̄H

)
, (11)

W2 = −2(B1 − B2)

1 + 2n̄H

, (12)

Q2 = 2B1

(
1

1 + 2n̄H

− 1

1 + 2n̄C

)
. (13)

Note that the thermodynamic quantities above do not depend
on the coupling J and are actually twice as large as the
corresponding values of a single-qubit Otto engine. The total
work is

WT = 4(B1 − B2)(n̄C − n̄H )

(1 + 2n̄C )(1 + 2n̄H )
, (14)

and the efficiency turns out to be given by the standard Otto
efficiency η = 1 − B1/B2, which is based solely on the ratio
between the two values of B used.

In Appendix A we provide an analysis of the engine
assuming only partial thermalization during the cooling and
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FIG. 1. Contour plot of the concurrence of state ρS in Eq. (15)
corresponding to n̄b = 0 and n̄a = 1 (left) and n̄a = 2 (right) as a
function of γa and γb, with J = 1 for both panels.

heating strokes. As mentioned earlier, this setting provides
a specific example in which the working substance displays
no quantum correlations, which therefore cannot have any
relation with the thermodynamic quantities that characterize
the engine.

B. Different qubits’ temperatures

We now consider the more general situation in which the
temperatures of the cooling and heating baths coupled to the
two qubits are different. We call n̄Ca and n̄Cb the correspond-
ing cooling-bath populations, and similarly, we define n̄Ha

and n̄Hb for the heating stroke. For the sake of generality, we
also assume different decay rates γa and γb.

Under this condition, we can see that the steady state is no
longer diagonal, as in Eq. (9), but is of the form

ρS = 1

α

⎛
⎜⎝

r11 0 0 0
0 r22 ir23 0
0 −ir23 r33 0
0 0 0 r44

⎞
⎟⎠, (15)

where α is a normalization constant. The analytical expres-
sions of α and all the real coefficients rij are given in
Appendix B.

Depending on the interqubit couplings, the reservoir tem-
peratures, and the decay rates, the steady state might become
entangled. To measure the amount of the latter we employ
the concurrence [62], defined as follows. Let σ be the den-
sity matrix of two qubits. We define the matrix σ̃ = (σya ⊗
σyb )σ ∗(σya ⊗ σyb ) and λi as the eigenvalues of the positive
semidefinite matrix σ σ̃ sorted in decreasing order. Then the
concurrence of σ is defined as

C(σ ) = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4). (16)

State ρS in Eq. (15) is entangled for certain values of γa

and γb, as shown in Fig. 1 for the extreme case in which n̄ib =
0, i = {C,H }. Not surprisingly, we observe that the region
of parameters in which the state is entangled shrinks as the
reservoir temperatures increases. We see that, in order for the
working substance to sustain entanglement, not only the bath
temperatures but also their rates have to be unequal. Note also
that, even at its maximum level, the amount of entanglement
is small. Lifting the restriction n̄ib = 0 (i = {C,H }), we can
see in Fig. 2 that the entanglement persists only for very low
values of n̄ib.
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FIG. 2. Contour plot of the concurrence of state (15), γa = 0.1,
γb = 5, J = 1, as a function of n̄a and n̄b.

Having found the presence of entanglement in the working
substance at steady state, we now look at its possible effect
on the performance of the Otto engine. Contrary to the case in
Sec. III A, the projected state after the energy measurement is
now different from ρS :

ρP =

⎛
⎜⎜⎝

r11 0 0 0
0 r22+r33

2 0 0
0 0 r22+r33

2 0
0 0 0 r44

⎞
⎟⎟⎠. (17)

In particular, due to the symmetries of the system, ρP is
diagonal and therefore it does not bear any entanglement or
quantum correlations. Note, however, that the measurement
process has no effect on the elements r11 and r44, which, in
turn, solely determine the energy:

〈H 〉 = B(r11 − r44). (18)

Therefore, despite destroying all quantum correlations, as a
point of fact, the energy measurement process has no effect
on the energetic performance of the engine. In particular, the
analytical expression for the total amount of work is very long
and is reported in Appendix B for n̄ib = 0 (i = {C,H }). It is
possible to prove in general that for this model the efficiency
is the same as the Otto cycle. In fact, let us call ρC and ρH ,
with elements rH

ij and rC
ij , the steady states of the cold and hot

baths, respectively. Then the total work reads

WT = (B2 − B1)
(
rH

11 − rC
11 + rC

44 − rH
44

)
, (19)

while the heat absorbed from the two hot reservoirs is

Q1 = B2
(
rH

11 − rC
11 + rC

44 − rH
44

)
(20)

and thus

η = WT

Q1
= 1 − B1

B2
. (21)

We see that the efficiency of the engine is related exclusively
to the values of B that are used in the cycle, which are in turn
unrelated to the level of entanglement present in the system
before the measurement process. In addition, the work of the
system is only dependent on the populations of the system and
is thus again unaffected by the entanglement.

Summarizing, this setting provides an example in which
the working substance does display quantum correlations
in the form of entanglement. However, no relation exists
between the latter and the thermodynamic quantities that
characterize the engine. In fact, on one hand, those quantum
correlations are destroyed during the measurement process,
and on the other hand, the design of this engine itself implies
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that its energetic performances depend on the populations
only, which are left untouched by the measurement.

We briefly mention that the dissipative evolution of two
qubits interacting via the XX Hamiltonian and described by a
local master equation was investigated in [55]. Utilizing their
calculations, it is straightforward to see that the external work
required to generate such dissipative evolution for our two-
qubit system is 0 since the magnetic field is identical on both
spins.

C. Differences between steady state and thermal state

Our previous discussion has exclusively focused on the
dynamics implied by the master equation, (2), and, in par-
ticular, its associated steady states. The latter are crucial in
determining the performance of the engine, and it is therefore
important to consider carefully their emergence.

When connecting a system to an equilibrium reservoir,
one would expect for long times the emergence of a thermal
state: ρT (H ) = e−βH / Tr[e−βH ]. Note that the thermal state
assumes that the two qubits interact with equal-temperature
baths. For the XX Hamiltonian the thermal state is given by

ρT (H ) = 1

Z

⎛
⎜⎝

e−βB 0 0 0
0 cosh(Jβ ) − sinh(Jβ ) 0
0 − sinh(Jβ ) cosh(Jβ ) 0
0 0 0 eβB

⎞
⎟⎠,

(22)

with Z = e−βB + eβB + e−βJ + e−βJ being the partition
function. We see that the state in Eq. (22) is different from
that in Eq. (9); notably, the thermal state is not diagonal and
can be entangled if sinh2 Jβ > 1. Thermodynamics engines in
which the working substance operates between thermal states
have been considered, for example, in Refs. [9,10,14,17,19].

We now see that the difference between thermal and steady
states implies that the work produced by an engine operating
with the former is different from that given in Eq. (14). Let us
start by substituting the definition of n̄j into Eq. (14),

WT = 2(B1 − B2)

[
tanh

(
B1

T1

)
− tanh

(
B2

T2

)]
, (23)

which allows us to compare the two scenarios as a function
of the temperatures and magnetic fields. Calculating the ener-
getic performance of an engine operating with thermal states
we have

W1 = 2(B1 − B2)�1, (24)

Q1 = �1 − �2, (25)

W2 = 2(B2 − B1)�2, (26)

Q2 = �2 − �1, (27)

WT = 2(B1 − B2)(�2 − �1), (28)

η = 2(B1 − B2)(�2 − �1)

�1 − �2
, (29)
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FIG. 3. Plots of the work and efficiency for an Otto cycle operat-
ing between T1 = 1 and T2 = 4 using the steady state (dotted curve)
and the thermal state (dashed curve). Top: We fix B1 = 1 and B2 = 2
and in the compression and expansion strokes we change J from 1 to
the value reported on the horizontal axis. Bottom: We fix J = 1 and
vary the magnetic field from B1 = 1 to B2 reported on the horizontal
axis.

where we have defined � and � as

�i =
sinh

( 2Bi

Ti

) + J sinh
(

2J
T i

)
cosh

( 2Bi

Ti

) + cosh
(

2J
Ti

) , (30)

�i =
sinh

( 2Bi

Ti

)
cosh

( 2Bi

Ti

) + cosh
(

2J
Ti

) . (31)

First, note that when J is 0 the work done is identical to (23).
When J �= 0, though, the two scenarios diverge significantly,
as the thermal-state work in Eq. (28) depends on J while
the steady-state work in Eq. (14) does not. A plot of the
differences between these two scenarios is given in Fig. 3,
where the efficiency of the cycle is also shown.

The calculations above show that care must be taken
when comparing models of quantum engines with a working
medium formed by several interacting particles. In particular,
different relaxation processes the particles are subject to can
lead to different steady states, which, in turn, are determined
not solely by the effective bath temperatures but also by
the underlying physics. Working substances whose open dy-
namics can be legitimately described by local baths can in
fact determine engine performances strikingly different from
the ones associated with engines with working substances
operating between nonlocal (or common) baths. In the next
section we further elucidate the relevance of common baths.
In particular, we present settings in which, contrary to what
is found in Secs. III A and III B, a clear relation between the
engine performance and quantum correlations can be drawn.

IV. COMMON BATHS AND ENGINE PERFORMANCE

From the analysis above we see that local baths have
limited possibility in the generation of entanglement, in that
the amount of the latter is usually small and can be destroyed
during the measurement process. In fact, we have provided
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two settings, with different features from the correlation
viewpoint, for which, nonetheless, no relation exists between
quantum correlations and thermodynamics performances. In
this section, we generalize the settings under scrutiny by con-
sidering common Lindblad quantum jump operators acting
on the working substance. This allows for greater freedom in
generating coherences and quantum correlated steady states.
In particular, we examine a range of Hamiltonians of the
form given in Eq. (1) and see how the average energy 〈H 〉
is affected by coherences at steady state. We then use this
model to design a generalized Otto cycle heat engine whose
performance is related to the quantum correlations in the
working substance. We stress, once more, that the reservoirs
we are considering are not thermal baths and therefore do
not necessarily bring the system to an equilibrium state and
might require external work to operate. Nevertheless, they are
physical models that can be engineered experimentally.

A. Noninteracting Hamiltonian

We begin our analysis by looking at noninteracting Hamil-
tonians, setting Jx = Jy = 0 in Eq. (1). In this setup there can
be no correlations ascribable to the Hamiltonian dynamics,
so any entanglement in the system will be generated by
a carefully chosen common environment. We start with a
Hamiltonian, similar to Eq. (1) but a with magnetic field
aligned along the x axis:

H = B(σxa + σxb ). (32)

The corresponding mean energy depends on the entries rij of
the density matrix as

〈H 〉 = 2B Re(r12 + r13 + r24 + r34), (33)

namely, on the real part of the coherences of the system’s state.
We assume each qubit to be coupled to its local thermal

bath at the same temperature, in terms of n̄, and described by
the following jump operators and strengths:

a1 = σa
+, g1 = (1 − γ )n̄;

a2 = σa
−, g2 = (1 − γ )(n̄ + 1);

a3 = σb
+, g3 = (1 − γ )n̄;

a4 = σb
−, g4 = (1 − γ )(n̄ + 1). (34)

Additionally, the qubits are coupled to a common environ-
ment described by two jump operators:

a5 = (
σa

− − σb
z

)
(σa

− − σb
−), g5 = γ,

a6 = (
σa

z − σb
x

)(
σa

x − σb
−
)
, g6 = γ. (35)

The parameter γ measures the relative strength of the
common bath compared to the local baths. The common baths
above were inspired by the bilocal jump operators for two
qubits as described in [63] but adapted to maximize (33) and
thus the coherences in the system. The steady state of the
corresponding master equation can be found analytically but
its expression is long and we do not report it.

With this setup we design a nonequilibrium quantum en-
gine. As before during the compression (expansion) strokes
the magnetic field is changed from B1 to B2 (B2 to B1) with
B2 > B1. For the cooling stroke, we consider the environment
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FIG. 4. Common baths with noninteracting Hamiltonians. Top:
Plot of the discord (dashed curve) and concurrence (dotted curve)
of the steady state of the common bath introduced in Sec. IV A for
values of γ from 0 to 1, n̄ = 1, B1 = 1, B2 = 2. Bottom: Total work
produced as a function of the discord of the steady state of the hot
bath for 0 < γ < 1 before measurement is performed (dotted curve)
and after measurement (dashed curve). Same parameters as in the top
panel.

described by the jump operators ai with strengths gi with γ =
0. For the heating stroke we take a finite value, γ �= 0. The
temperature of the local thermal baths described by n̄ is kept
constant. Note that, as mentioned above, the nomenclature
used here is related to the fact that during the cooling (heating)
stroke the average system energy decreases (increases).

Considering the steady states that correspond to such an
engine, one can show that the coherences are not large enough
to generate entanglement for any value of γ (see Fig. 4).
Hence, rather than the concurrence, in order to measure the
quantum correlations between the two qubits we use the
quantum discord D(ρS ) of the steady state, whose definition
is reported in Appendix C. We can see in Fig. 4 that discord
is always present in the system as long as γ �= 0, even when
the concurrence is absent. This is actually the case for typical
multipartite open systems [64].

We calculate the total work done by the engine and the
discord of the steady state after connecting to the hot bath for
values of γ between 0 and 1. The results in Fig. 4 show that
the discord of the hot steady state increases as the total work
done by the system increases. This shows a clear relation,
for this type of engine, between quantum correlations and
energetic performances. The crucial features that determine
such a relation are, on the one hand, the dependence of the
energy on the coherences present in the working substance
[Eq. (33)] and, on the other hand, the presence of a common
bath. Note that this relation remains valid even when the
energy measurement related to the two-time definition of work
takes place. The effect of the measurement, as shown in Fig. 4,
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is to decrease the amount of discord, which, however, remains
nonzero.

B. Commom baths and interacting Hamiltonians

We now consider the effect of common baths on the func-
tioning of an engine comprised of two interacting qubits, with
an Ising Hamiltonian, (1), with B = 0 and Jx = J , Jy = 0.
As J is the only parameter present in the Hamiltonian it will
be the one that is raised (lowered) during the compression
(expansion) strokes between two values J1 < J2. This can
be realized, for example, in quantum simulation experiments
with trapped ions [65]. The average energy in terms of the
state density matrix elements and for a coupling J reads

〈H 〉 = 2J Re(r14 + r23). (36)

As in the previous case, we see a dependence of the average
energy on the coherences of the system. We want to construct
a heat cycle in which the work and heat exchanged depend
on these off-diagonal entries. To this aim, we consider two
scenarios described below.

1. Common dephasing and Bell pumping.

In the first scenario we assume the working medium to be
simultaneously coupled to two common environments. The
first is a common dephasing reservoir as found in Ref. [45]
and modeled by the following jump operators and strengths:

a1 = σza + σzb, g1 = (1 − γ );

a2 = σza − σzb, g2 = (1 − γ ). (37)

The steady state of this bath is a purely diagonal state.
The other reservoir drives the system to the Bell state

|ψ−〉 = 2−1/2(|01〉 − |10〉) and is described by the following
jump operators [46]:

a3 = 1
2σxb(I + σzaσzb ), g3 = γ,

(38)
a4 = 1

2σzb(I + σxaσxb ), g4 = γ,

where I is the identity matrix for the two qubits. In this
model, γ measures the strength of the Bell state bath over the
dephasing one. The system is entangled for all γ �= 0, whereas
for γ = 0 the steady state is |01〉 〈01| + |10〉 〈10|, which
is separable. For γ = 1 the steady state is the maximally
entangled Bell state |ψ−〉, and for all other values of γ the
resulting steady state is

ρS =

⎛
⎜⎝

0 0 0 0
0 1/2 μ 0
0 μ 1/2 0
0 0 0 0

⎞
⎟⎠, (39)

where μ = γ

14γ−16 , −1/2 < μ < 0 for 0 � γ � 1. We note
that the average energy in Eq. (36) of the steady state ρS is
〈H 〉 = 2μJ . Thus, for γ = 1, the steady state being |ψ−〉, the
energy is −J , which is lower than the energy of the steady
state for γ = 0 (for which 〈H 〉 = 0). We thus use the en-
vironment with γ �= 0 as a cold bath, since it decreases the
system energy, and the environment with γ = 0 as a hot bath,
as the system energy is increased. The work extracted during

the cycle is given by

WT = μ(J1 − J2). (40)

Crucially, the concurrence of the steady state ρS of the cold
bath is C = −2μ. Hence we see that, for the case of this
engine, the total work is proportional to the concurrence.
This establishes a direct link between the entanglement within
the working substance and the energetic performances of the
engine.

As before, we note that this link between quantum corre-
lations, this time expressed in the strong form of entangle-
ment, and performances persists even when the measurement
process takes place. In fact, the energy eigenstates are in this
case the four Bell states |ψ±〉 = 2−1/2(|00〉 ± |11〉), |φ±〉 =
2−1/2(|01〉 ± |10〉), independently of J . By noting that the
steady state in Eq. (39) can be written as

ρS = 1 + 2μ

2
|ψ+〉 〈ψ+| + 1 − 2μ

2
|ψ−〉 〈ψ−| , (41)

one can immediately conclude that the energy measurements
leave the steady state invariant, namely, ρS = ρP . As a con-
sequence, the relation between concurrence C and total work
WT holds true also after the measurement related to the two-
time work definition.

Note, however, that also in the case of this engine, as per
the previous ones, the efficiency is just given by the Otto
efficiency,

η = 1 − J1

J2
, (42)

where J plays the role of B, as that is the parameter that has
been changed in the compression and expansion strokes. As
the efficiency of the engine does not change as γ increases the
increase in the work output causes a corresponding increase
in the heat input.

2. Local dissipation and Bell pumping

The preceding example is a specific case whose construc-
tion simplifies many aspects. However, in order to include
possible thermal effects, we now consider an environment
characterized by the set of jump operators defined in Eq. (38)
jointly with the set of local thermal dissipators defined in (34).
The steady state for an arbitrary γ is a mixture of |ψ−〉 and the
steady state of the master equation in the absence of common
environment; see Eq. (9).

Unlike the previous case, this system is not entangled for
all γ > 0, resembling the situation obtained in Sec. IV A.
Thus to measure the level of coherence in the system we again
rely on the quantum discord, which is nonzero for all γ > 0
(see Fig. 5).

As shown in Fig. 5, we can relate the work produced by the
machine with the quantum discord of the steady state of the
working medium after connecting to the cold bath. Another
difference between this and the previous example is that the
steady state can no longer be written in terms of its energy
eigenvectors, hence ρS �= ρP . The general form of the density
matrix after reaching the steady state of the Bell pump and the
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FIG. 5. Local dissipation and Bell pumping. Top: Quantum dis-
cord (dashed curve) and concurrence (dotted curve) of (43) as a
function of the parameter γ with parameters n̄ = 1, J1 = 1, J2 = 2.
Bottom: Total work versus discord of the steady state of the system
after connecting with the cold before measurement is performed
[(43); dashed curve] and after measurement [(44); dotted curve], with
the same parameters as in the top panel.

local dissipator has the form

ρ =

⎛
⎜⎝

r11 0 0 r14

0 r22 r23 0
0 r23∗ r33 0

r14∗ 0 0 r44

⎞
⎟⎠ . (43)

Analytical expressions of all coefficients rij can be found
explicitly but are not reported due to their length. The state
after the measurement is

ρm = 1

2

⎛
⎜⎝

r11 + r44 0 0 2Re[r14]
0 r22 + r33 2Re[r23] 0
0 2Re[r23] r22 + r33 0

2Re[r14] 0 0 r11 + r44

⎞
⎟⎠.

(44)

We see that the measurement only destroys the imaginary
part of the coherences, leaving the real part intact. This is
the cause of the slight disparity in the discord between the
projected and the nonprojected states shown in Fig. 5, which,
however, rapidly disappears as γ increases. As a consequence,
also for this engine the observed relation between quantum
correlations and energetic performances is robust against the
measurement process.

V. SUMMARY

In conclusion, we have presented several designs of quan-
tum thermal engines whose working substance is made of two
interacting qubits. We have modeled the interaction with the
baths through Lindblad master equations that do not bring

the system necessarily to equilibrium. This is not necessarily
in contradiction with thermodynamic laws as long as one
accounts for the extra resources necessary to maintain such
nonequilibrium reservoirs.

Interestingly, we have shown that in the case of common
baths, it is possible to make a direct link between the work and
the quantum correlations, entanglement and discord, produced
during the cycle. In this respect, our work contributes to the
debate on whether or not quantum correlations are helpful in
the performance of quantum work engines. The models we
have considered show that there is not, however, a universal
connection, and if it exists, it relies on the specific models we
design.

Finally, given the simplicity of the model and the analytical
results found in our work, we note the possibility of realizing
such two-qubit engines in several experimental platforms
including nuclear magnetic resonance, trapped ions, photonic
systems, ultracold atoms, and superconducting circuits.
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APPENDIX A: FINITE TIME CYCLES

The calculations in Sec. III A assume that the system will
be in contact with the heat reservoirs for a time sufficient
for the system to reach steady state. In a practical imple-
mentation, the time τ in which the system interacts with the
reservoir would be finite. We now calculate the effect of partial
thermalization on the performance of the engine with equal
temperatures considered in Sec. III A.

We begin by pointing out that, in this model, the eigen-
vectors of the system’s Hamiltonian do not change as the
magnetic field is ramped. Thus the state of the system does
not change during the compression and work steps (although
its energy does change). We thus assume that they are done as
quenches in a time negligible for our analysis. We also assume
that, during the heating and cooling strokes, the system inter-
acts, respectively, with the hot and cold baths for the same
amounts of time τ , giving a total cycle time of 2τ . For the
limiting cycle we find the heat and work contributions for each
stroke (see Sec. III A):

W1 = 2(B1 − B2)

2nC + 1

[
2(nC − nH )e−2γ (2nC+1)τ

2nH + 1
+ 1

]
, (A1)

Q1 = 4B2(nC − nH )�

(2nC + 1)(2nH + 1)
, (A2)

W2 = 2(B1 − B2)

2nC + 1

[
2(nC − nH )e−2γ (2nH +1)τ

2nC + 1
− 1

]
, (A3)

Q2 = 4B1(nH − nC )�

(2nC + 1)(2nH + 1)
, (A4)

042102-8



QUANTUM CORRELATIONS AND THERMODYNAMIC … PHYSICAL REVIEW A 98, 042102 (2018)

0 2 4 6 8 10
�0.4

�0.2

0.0

0.2

0.4
W
T
�2

FIG. 6. Plot of the power WT /2γ τ (in units of γ ) vs the duration
τ of the heating and cooling strokes. Parameters: nC = 1, nH = 2,
B1 = 1, B2 = 2.

where

� = e−4γ (nC+nH +1)τ

× (−e4γ (nC+nH +1)τ + e2γ (2nC+1)τ + e2γ (2nH +1)τ ). (A5)

We see that the amount of work and heat exchanged assum-
ing a finite-time thermalization has a similar form to those

assuming total thermalization with the addition of time-
dependent exponential factors. In the limit of τ → ∞ the
steady-state results are returned. The total work is

WT = 4(B1 − B2)(nH − nC )�

(2nC + 1)(2nH + 1)
, (A6)

which is the same as Eq. (14) but with the additional factor
of �. As this factor of � is also present in the heat input, the
efficiency of the system is still the standard Otto efficiency
η = 1 − B1/B2. However, the total amount of work produced
depends nontrivially on τ . In Fig. 6 we show the total power
WT /2τ as a function of τ . We find that for τ → ∞, the
power decays exponentially to 0 as expected. There exists a
value of τ below which there is no work production and the
power becomes negative. Finally, there is an optimal value
of τ at which the output power is maximum. No analytical
expressions for these special values of τ can be obtained.

APPENDIX B: STEADY-STATE COEFFICIENTS
FOR DIFFERENT QUBIT TEMPERATURES

Here we provide the analytical formula for the steady state,
(15), with unequal temperatures:

α = (γa + γb + 2γan̄a + 2γbn̄b )2{γaγb + 4J 2 + 2γaγb[n̄b + n̄a (2n̄b + 1)]},
r11 = 4γa

2n̄2
a[J 2 + γbn̄b(γa + γb + 2γbn̄b )] + γaγbn̄bn̄a[(γa + γb )2 + 8J 2 + 4γbn̄b(γa + γb + γbn̄b )]

+ 4γb
2J 2n̄2

b + 4γa
3γbn̄bn̄

3
a,

r22 = 4γa
2n̄2

a[γb(γa + γb ) + J 2 + γbn̄b(γa + 3γb + 2γbn̄b )]

+ γan̄a (γa + γb + 2γbn̄b )[γb(γa + γb ) + 4J 2 + γbn̄b(γa + 3γb + 2γbn̄b )]

+ 4γbJ
2n̄b(γa + γb + γbn̄b ) + 4γa

3γb(n̄b + 1)n̄3
a,

r33 = 4γb
2n̄2

b[γa (γa + γb ) + J 2 + γan̄a (3γa + γb + 2γan̄a )]

+ γbn̄b(γa + γb + 2γan̄a )[γa (γa + γb ) + 4J 2 + γan̄a (3γa + γb + 2γan̄a )]

+ 4γaJ
2n̄a (γa + γb + γan̄a ) + 4γaγb

3(n̄a + 1)n̄3
b,

r44 = (γa + γb )2(γaγb + 4J 2) + γan̄a{(γa + γb )(γb(5γa + γb ) + 8J 2)

+ γbn̄b[5γa
2 + 18γaγb + 5γb

2 + 8J 2 + 4γbn̄b(3γa + 2γb + γbn̄b )]}
+ 4γa

2n̄2
a[γb(2γa + γb ) + J 2 + γbn̄b(2γa + 3γb + 2γbn̄b )]

+ γbn̄b[(γa + γb )(γa (γa + 5γb ) + 8J 2) + 4γbn̄b(γa
2 + 2γaγb + J 2 + γaγbn̄b )] + 4γa

3γb(n̄b + 1)n̄3
a,

r23 = 2γaγbJ (n̄a − n̄b ).

For the case in which the second qubit is attached to a zero-temperature bath, n̄b = 0, this simplifies to

α = [(1 + 2n̄a )γa + γb]2[4J 2 + (1 + 2n̄a )γaγb],

r11 = 4J 2n̄2
aγ

2
a ,

r22 = n̄aγa4J 2(1 + n̄a )γa + [4J 2 + (1 + 2n̄a )2γ 2
a ]γb + 2(1 + 2n̄a )γaγ

2
b + γ 3

b ,

r33 = 4J 2n̄aγa[(1 + n̄a )γa + γb],

r44 = 4J 2(1 + n̄a )2γ 2
a + (1 + n̄a )γa[8J 2 + (1 + 2n̄a )2γ 2

a ]γb + 2γ 2
b [2J 2 + (1 + n̄a )(1 + 2n̄a )γ 2

a ] + (1 + n̄a )γaγ
3
b ,

r23 = 2J n̄aγaγb. (B1)

From (19) we have

WT = (B2 − B1)
(
rH

11 − rC
11 + rC

44 − rH
44

)
. (B2)

042102-9



HEWGILL, FERRARO, AND DE CHIARA PHYSICAL REVIEW A 98, 042102 (2018)

Now, denoting αi = [(1 + 2n̄i )γa + γb]2(4J 2 + (1 + 2n̄i )γaγb ) and using n̄C and n̄H for the cold and hot temperatures,
respectively, we obtain

WT = α−1
C

{
4J 2n̄2

Cγ 2
a − 4J 2(1 + n̄C )2γ 2

a + (1 + n̄C )γa

[
8J 2 + (1 + 2n̄C )2γ 2

a

]
γb

+ 2
[
2J 2 + (1 + n̄C )(1 + 2n̄C )γ 2

a

]
γ 2

b + (1 + n̄C )γaγ
3
b

}
−α−1

H

{
4J 2n̄2

H γ 2
a − 4J 2(1 + n̄H )2γ 2

a + (1 + n̄H )γa

[
8J 2 + (1 + 2n̄H )2γ 2

a

]
γb

+ 2
[
2J 2 + (1 + n̄H )(1 + 2n̄H )γ 2

a

]
γ 2

b + (1 + n̄H )γaγ
3
b

}
.

APPENDIX C: QUANTUM DISCORD

To measure the level of quantum correlations in the system we use the quantum discord of the steady state [66–69], which is
calculated as follows. For any system the total amount of correlation present is equal to the mutual information of the system,

I (ρAB ) = S(ρA) + S(ρB ) − S(ρAB ), (C1)

where ρAB is the density matrix of the complete system and ρA [ρB] is the state of subsystem A [B]. S(ρ) is the von Neumann
entropy, S(ρ) = −Trρ log2 ρ. This mutual information is composed of the classical correlations and the quantum correlations,
the so-called quantum discord. The classical correlations can be calculated by the maximum information that can be obtained by
measuring one of the subsystems,

J (ρAB ) = S(ρB ) − min
�A

N∑
i

piS(ρi ), (C2)

where pi = Tr[�iρ
AB�i] and ρi = TrA[�iρ

AB�i]. The minimization is done over all possible sets of measurements �. The
discord is then just the difference between the mutual information and the classical correlations:

D(ρAB ) = I (ρAB ) − J (ρAB ). (C3)
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