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Abstract

Atrial flutter (AFl) is a common heart rhythm disor-
der driven by different self-sustaining electrophysiological
atrial mechanisms. In this work, we tried to automatically
distinguish the macro-mechanism sustaining the arrhyth-
mia in an individual patient using the non-invasive 12-lead
electrocardiogram (ECG). We implemented a concurrent
clustering and classification algorithm (CCC) to discrim-
inate the clinical classes and look for potential similari-
ties between patient features in each class, thus suggest-
ing that these patients would require a similar treatment.
The CCC performance was then compared to a standard
supervised technique (K-nearest neighbor, KNN). 3-class
classification (macro-reentry right atrium, macro-reentry
left atrium, and others) achieved 48.3% and 72.0% CCC
and KNN accuracy, respectively. 4-class classification (tri-
cuspidal reentry, mitral reentry, fig-8 macro-reentry, and
others) achieved 41.6% and 71.2% CCC and KNN accu-
racy, respectively. Our results show that a clustering ap-
proach does not improve the performance of AFI classifi-
cation because the semi-supervised method leads to clus-
ters that are strongly overlapping between the different
ground truth classes. In contrast, the supervised learning
approach shows potential for the classification, although
constrained by the complexity and the multiple variables
that influence the underlying mechanisms.

1. Introduction

Atrial flutter (AFl) is a common arrhythmia that can
be categorized according to different self-sustained elec-
trophysiological mechanisms driving it. This atrial tachy-
cardia is characterized by electrical signals that repeatedly
propagate along various physiological pathways different
from sinus rhythm [1]. Although AFlI is not directly lethal,
it can lead to significant complications and symptoms -
e.g., palpitations, dyspnea, stroke and heart attack. The
most used treatment to restore sinus rhythm from AFI con-
ditions is ablation therapy. Each AFl mechanism requires
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a different ablation procedure [2].

To identify the AFl mechanism in an individual patient,
invasive mapping of the atria’s electrical activity is carried
out using intracardiac catheters. In addition, the 12-lead
ECG is also collected during the intervention. The use of
the surface ECG to identify the mechanism of AFI would
facilitate patient selection, the planning of the interven-
tion and reduce the procedure time for invasive mapping
and ablation therapy. An automatic identification of differ-
ent AFl mechanisms using only the 12-lead ECGs was at-
tempted in one of our previous works [3], reaching promis-
ing performance.

In this study, we investigated the possibility of identify-
ing clusters of patients with ECGs displaying similar fea-
ture behaviors within the same ground truth class (clini-
cal classes) and thereby aiding in the automatic classifi-
cation of the clinical classes themselves. This clustering
can be automatically performed by means of algorithms
belonging to the unsupervised learning domain. Using
this unsupervised method within already clinically defined
classes led us to refer to a semi-supervised approach. Here,
we tested an algorithm that could concurrently cluster and
classify (CCC) the ECG of a patient during AFl. The al-
gorithm aims to estimate the type of AFl mechanism, as
well as the cluster (or, in other words, the patient group).
We compared this algorithm with a supervised K-nearest
neighbor (KNN) classifier.

2. Methods

2.1. Simulated AFI scenarios

Based on the AFI simulations implemented in our pre-
vious work [4], a database of computational AFI scenarios
was set up. The complete list of scenarios is provided in
Table 1.

Cardiac excitation was simulated using the fast march-
ing approach to solve the Eikonal equation [5,6]. The atrial
electrophysiological activity was simulated on tetrahedral
volume meshes of 8 bi-atrial anatomies, generated from
segmented magnetic resonance imaging data of healthy
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Table 1. Database of clinically informed manually param-
eterized AFl mechanisms

Mechanism Atrium Position Direction 3cc  4cc
Macro-reentry RA  Tricuspid Valve cew 1 I

Macro-reentry RA  Tricuspid Valve cw I

Macro-reentry LA Mitral Valve cew II 1I

Macro-reentry LA Mitral Valve cw II 11

Scar-related Reentry LA LPV post II IV
Scar-related Reentry LA LPV ant 1L v
Scar-related Reentry LA RPV post II IV
Scar-related Reentry LA RPV ant I IV
Figure-8 Macro-reentry LA Both PVs ant II 11
Figure-8 Macro-reentry LA Both PVs post II  III
Figure-8 Macro-reentry LA RPVs ant II  MI
Focal Source LA RSPV anterior m 1V
Focal Source LA RSPV posterior IV
Focal Source LA LSPV anterior m IV
Focal Source LA  LSPV posterior I Iv
Micro-reentry LA ant MV annulus nur Iv
Micro-reentry LA ant LAA m IV
Micro-reentry LA ant RSPV m Iv
Figure-8 Micro-reentry LA ant n Iv
Micro-reentry LA post wall m 1V

Right atrium (RA), left atrium (LA), left pulmonary veins (LPV), right
pulmonary veins (RPV), pulmonary veins (PVs), right superior pul-
monary vein (RSPV), left superior pulmonary vein (LSPV), mitral valve
(MV), left atrial appendage (LAA), clockwise (cw), counterclockwise
(ccw), anterior (ant), posterior (post), 3-clinical-class (3cc) classification,
4-clinical-class (4cc) classification.

male and female subjects [7].

Transmembrane voltages (TMV) were obtained using
the Courtemanche et al. mathematical model of the human
atrial action potential, including chronic atrial fibrillation-
induced remodeling [8]. From the TMYV, the body surface
potential map (BSPM) was calculated on 8 different torso
surface models using the boundary element method. To
augment the dataset, atria were placed within the torso us-
ing two different orientations. From the BSPM, the 12-
lead ECG was extracted. A detailed description of the sim-
ulation procedure can be found in [4].

Each 12-lead ECG signal covered a single AFl cycle and
was sampled at 1 kHz. ECG signals were formed only by
F-waves without the QRS complex and T-wave (represent-
ing ventricular activity) since the ventricles were not in-
cluded in the simulations. Figure 1) shows examples of
single cycle ECG signals.

A total of 2,512 12-lead ECGs were calculated from the
simulated AFI scenarios on 8 atrial models with 2 orienta-
tions and 8 torso models.

2.2. Feature extraction and selection

151 features were extracted from the 12-lead ECGs us-
ing several biosignal processing methods from different
domains, e.g., time, frequency, wavelet, entropy, and non-
linear recurrence analysis. All features were min-max nor-
malized.

A greedy forward selection algorithm was implemented

to select a feature set using the KNN algorithm (see sec.
2.3). This algorithm started with an empty feature set and
added the feature leading to the highest increase in accu-
racy to the set at each iteration. The algorithm was stopped
when performance based on the validation set could not be
further increased. To avoid feature redundancy, the candi-
date feature was only added if the correlation coefficient
with any of the already included features was < 0.6. Fea-
ture selection was performed to have a relevant feature set
to be tested with CCC.

2.3.  Classification

Two classification problems were investigated. The
first one involved 3 clinical classes (3cc) while the sec-
ond one considered 4 clinical classes (4cc). The simu-
lated AFl mechanisms were grouped based on the clas-
sification problem. 3cc considered macro-reentry RA
(D, macro-reentry LA (II), and others (III). 4cc was de-
fined with tricuspidal-reentry (I), mitral-reentry (II), fig-8
macro-reentry (III), and others (IV). Table 1 show to which
clinical class each AFI scenario was assigned (columns 3cc
and 4cc).

CCC and KNN classifiers were implemented for both
classification problems. For both classifiers, 6 random
atrial anatomical models were used for the training set,
1 atrial model for the validation set, and the remaining
atrial model for the test set. This prevented overfitting to
the atrial models used in this study [3]. CCC and KNN
used the same feature set previously selected using only
the training and validation sets. The number of neighbors
used by the KNN was iteratively optimized on the valida-
tion set performance (optimal neighbors’ number was set
to 6 and 4 for 3cc and 4cc, respectively).

The CCC was implemented following the directions of
Rivolta et al. [9]. In each clinical class, 3, 5, and 7 clusters
were calculated using k-means to identify similarities be-
tween patients within the same clinical class. The k-means
algorithm was repeated 100 times and the clusters’ cen-
troids displaying the largest distance between each other
were retained. The clusters identified in each clinical class
were then combined in feature space to obtain the classi-
fier. Each test sample was assigned to the clusters with
smallest distance between the centroid and the test sample
itself. The test sample was thus automatically identified as
the clinical class to which the cluster belongs.

Performance was assessed using the accuracy perfor-
mance metric.
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Figure 1. A.l. Simulated macro-reentry AFl around the tricuspid valve with ccw direction of rotation (red arrow). A.2.
Simulated figure-8 macro-reentry AFl around the left and right PVs with anterior direction of rotation (red arrows). A.3.
Simulated macro-reentry AFI around the mitral valve with cw direction of rotation (red arrow). B. Example of the F-wave
single cycle ECG for leads I, II, and V1 of the 12-lead ECG extracted from the BSPM.

3. Results

Accuracy did not improve significantly with more than
2 features for both classification problems. Therefore, we
report only the results for this case here to facilitate the 2
dimensional visualization of the behaviour of CCC ( 2).

The selected 3cc feature set was: F-wave duration (cy-
cle length) and trapping time (TT) of the third principal
component obtained by PCA of the 12-lead ECG calcu-
lated with Individual Component Recurrence Quantifica-
tion analysis (icRQA) [4]. On the other hand, the 4cc fea-
ture set was: F-wave duration and laminarity (LAM) of the
second principal component calculated with icRQA.

For the 3cc problem, CCC achieved 50.5%, 45.4%, and
48.3% accuracy on the test set calculated with 9, 15, and
21 total clusters (3, 5, and 7 clusters for each clinical class,
respectively). In comparison, the KNN classifier achieved
a test set accuracy of 72.0%. Regarding the 4cc problem,
the CCC classifier achieved 34.7%, 38.1%, and 41.6% ac-
curacy on the test set with 12, 20, 28 total clusters (3, 5, and
7 clusters per clinical class, respectively). One the other
hand, the KNN classifier achieved 71.2% test accuracy.

Figure 2 shows two examples of the partitioning of the
feature space into clusters and their clinical classes using
k-means, and the position of the test set samples.

4. Discussion and Conclusions

Simulations provide ideal and controlled scenarios
where the ground truth mechanism driving AFl is known
in all cases, allowing for the analysis of each mechanism
without the influence of secondary - or unknown - mecha-
nisms. The classification by CCC led to a drastic reduction
in performance compared to the KNN classifier for both
classification problems. The clustering within each clin-
ical class was not able to distinguish between all others
correctly.

This can be seen from the examples in Fig 2 since there
is not a clear match between test samples scattered in the
feature space and the calculated clusters. Given the au-
tonomous and uncontrolled nature of clustering in parti-
tioning the data, the resulting clusters revealed differences
among the dataset that were not useful for the classifica-
tion, even if we used a semi-supervised method. More-
over, the idea of using the clusters identified to perform
classification was probably too coarse (feature values were
overlapping too much). Increasing the number of clusters
might have ameliorated the situation but at the cost of inter-
pretability of the results, and, at the end of the day, would
have thwarted the clustering idea itself by converging into
a KNN. In contrast, the KNN classifier results showed
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Figure 2. Examples of the partitioning of the feature space
into clusters and associated clinical classes together with
the position of the test set samples. The color of the big cir-
cles (centroids) and small circles (test samples) represent
the clinical class. The different shades of a given class’s
color represent the associated cluster. Any test sample that
does not have the same color as the area in which it is lo-
cated was misclassified. Top and bottom panels represent
the 3-class and 4-class CCC with 3 clusters for each clini-
cal class, respectively.

that a supervised classifier can potentially identify clini-
cal classes of different AFl mechanisms using the 12-lead
ECG, or more precisely a single F-wave. This non-invasive
method can help physicians to plan the most appropriate
treatment for the patients without the need of prior inva-
sive mapping.

The results obtained in this work, indicate that it is
best to stick to the supervised approaches proposed in [4]
and [3]. Nevertheless, further tests on clinical data using
supervised machine learning algorithms are necessary to

effectively assess the proposed classifications.
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