
����������
�������

Citation: Agliardi, G.; Prati, E.

Optimal Tuning of Quantum

Generative Adversarial Networks

for Multivariate Distribution

Loading. Quantum Rep. 2022, 4,

75–105. https://doi.org/10.3390/

quantum4010006

Academic Editor: Antonio Manzalini

Received: 7 January 2022

Accepted: 25 January 2022

Published: 9 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

quantum reports

Article

Optimal Tuning of Quantum Generative Adversarial Networks
for Multivariate Distribution Loading

Gabriele Agliardi 1,2 and Enrico Prati 3,4,*

1 Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, I-20133 Milano, Italy;
gabrielefrancesco.agliardi@polimi.it

2 IBM Italia S.p.A., Via Circonvallazione Idroscalo, I-20090 Segrate, Italy
3 Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32,

I-20133 Milano, Italy
4 National Inter-University Consortium for Telecommunications (CNIT), Viale G.P. Usberti, 181/A Pal.3,

I-43124 Parma, Italy
* Correspondence: enrico.prati@cnr.it

Abstract: Loading data efficiently from classical memories to quantum computers is a key challenge
of noisy intermediate-scale quantum computers. Such a problem can be addressed through quantum
generative adversarial networks (qGANs), which are noise tolerant and agnostic with respect to
data. Tuning a qGAN to balance accuracy and training time is a hard task that becomes paramount
when target distributions are multivariate. Thanks to our tuning of the hyper-parameters and of the
optimizer, the training of qGAN reduces, on average, the Kolmogorov–Smirnov statistic of 43–64%
with respect to the state of the art. The ability to reach optima is non-trivially affected by the starting
point of the search algorithm. A gap arises between the optimal and sub-optimal training accuracy.
We also point out that the simultaneous perturbation stochastic approximation (SPSA) optimizer
does not achieve the same accuracy as the Adam optimizer in our conditions, thus calling for new
advancements to support the scaling capability of qGANs.

Keywords: quantum machine learning; quantum generative adversarial networks; multivariate
quantum distributions; quantum data loading; quantum data encoding; quantum finance

1. Introduction

Loading classical data into a quantum register is widely known to represent a critical
task [1–4] which jeopardizes the advantage of some core quantum processing algorithms [5].
The complexity of classical data loading is believed to remain a bottleneck, unless quantum
parallel access to information is available through quantum random access memories
(qRAMs) [6]. Consequently, besides the exploitation of native quantum data [7], in more
recent times, the idea of efficiently loading approximate data was discussed in the literature
by recasting machine learning techniques on quantum hardware. One of the most relevant
classes of quantum machine learning algorithms consists of quantum generative adversarial
networks (qGANs) [8–10], the quantum counterpart of GANs [11,12].

Despite qGANs being a promising class of algorithms in applied quantum machine
learning, little is known about their optimization, mainly because their practical implementation
may require time-consuming experiments. Here, we quantify their performance in terms of
training time and approximation accuracy, and how such performance is jointly impacted
by the hyper-parameters for what concerns both the generator and discriminator settings,
respectively, and the optimizer configuration.

qGANs were originally applied to data loading in the domain of finance [8] as a
preliminary step for option pricing before applying quantum amplitude estimation [13].
Since quantum amplitude estimation can be thought of as the equivalent of Monte Carlo
integration in quantum computing, efficient qGANs can be beneficial for data loading
virtually in every field where Monte Carlo simulations are currently being employed [14].

Quantum Rep. 2022, 4, 75–105. https://doi.org/10.3390/quantum4010006 https://www.mdpi.com/journal/quantumrep

https://doi.org/10.3390/quantum4010006
https://doi.org/10.3390/quantum4010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com
https://orcid.org/0000-0002-1692-9047
https://orcid.org/0000-0001-9839-202X
https://doi.org/10.3390/quantum4010006
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com/article/10.3390/quantum4010006?type=check_update&version=1

Quantum Rep. 2022, 4 76

In recent years, huge efforts were made to improve classical machine learning through
quantum computers. The quantum version of most machine learning algorithms was
experimented with, ranging from support vector machines (SVM) [15] to perceptrons [16–18],
from feed-forward neural networks [17,19,20] to reservoir computing [21], and tensor
networks [22] in gate model quantum computers, to quantum restricted Boltzmann
machines [23,24] by adiabatic quantum computers, respectively. More specifically, in the
domain of generative networks [25,26], encouraging results were obtained in comparison
with the classical version in terms of the required network size [27].

Here, we report a number of advancements concerning the understanding and the
improvement of the training of qGANs. First, training through the Adam optimizer
achieves significantly better approximation quality than through the simultaneous
perturbation stochastic approximation (SPSA) optimizer. Unfortunately, it implies a scaling
limitation with the input size since Adam is more costly than SPSA when the input grows.
We discuss the topic of the qGAN scaling more broadly in terms of approximation quality
and training cost. Secondly, we observe a gap in terms of accuracy between the runs that
achieve optimal and sub-optimal results. Thirdly, the number of runs achieving an optimal
accuracy is relatively small (10% to 30% of the converging runs, with n = 3 qubits). It tends
to decrease further with the number of qubits, so it is essential to train qGANs multiple
times with many initial, randomly chosen values of the parameters. Lastly, such systematic
analysis leads us to improve the training of the qGANs beyond the state of the art, through
the hyper-parameter optimization and an adjustment of the discriminator network.

As the target of our analysis is multivariate distributions, we design the discriminator
network in a way that allows us to treat both univariate and multivariate distributions
equivalently. Multivariate distributions are of major interest, as they are common in the
same fields of application as Monte Carlo methods, which are, in turn, an area of strong
development for quantum computing [28–30]. In the context of finance, and specifically
of option pricing [13] where the qGAN technique was first introduced, multivariate
distributions are suitable to effectively represent the evolution of assets in discrete time,
thus allowing to move away from toy problems and enter the space of industrially relevant
applications [31].

We extensively explore both hyper-parameters, such as the learning rates and the
quantum sampling size, and the architecture of the networks. The latter involves the choice
of the optimizer in order to identify the best settings for a 3-qubit case and, afterwards, for
4 qubits. Interrelated pairs of hyper-parameters are subject to a simultaneous sensitivity
analysis on both. We also perform non-regression tests, verifying that the choice of a hyper-
parameter does not affect the optimization of another hyper-parameter conducted previously.

To summarize, we study the main trade-offs in the qGAN performance, finding Adam
to be a more effective optimizer than SPSA, and assessing the accuracy degradation when
increasing the number of qubits. We observe the decrease in successful runs by increasing
the number of qubits, and discover a gap in the approximation performance between the
best and the sub-optimal results. We exploit our findings for setting the hyper-parameters
and choosing the optimizer so as to achieve training of qGANs beyond the state of the art,
with an average reduction in the Kolmogorov–Smirnov statistic of 45–64%.

Section 2 reviews the different methods to represent information in quantum computers,
and how to load a classical data set according to known encoding methods. Section 4
presents in detail the dependence of the training quality with respect to the main hyper-
parameters of the qGAN. The methods are described separately in Section 5. Finally,
Section 6 summarizes the paper and suggests directions for future investigation.

Quantum Rep. 2022, 4 77

2. Encoding and Loading Classical Information in Quantum Registers: Overcoming
the Challenges of the NISQ Era

Classical information can be encoded into a state of a circuital quantum computer
in three ways, which we refer to as multi-register encoding, digital encoding, and analog
encoding, respectively. The features of the three representations, together with some major
algorithms exploiting them, are summarized in Table 1. For real-valued numbers {xi}N−1

i=0
with ∑N−1

i=0 |xi|2 = 1, all the encodings are applicable. As each algorithm relies on a specific
encoding, conversion between them is required to combine multiple algorithms together.
For instance, HHL (named after Aram Harrow, Avinatan Hassidim, and Seth Lloyd [32])
takes its input in the analog encoding, but it relies on the digital encoding of a matrix of
eigenvalues at an intermediate stage of the computation [3]. Other examples of algorithms
based on multiple encoding are constituted by the quantum metropolis sampling [3] and
variational quantum algorithms (VQA); see, for instance, [33]).

Recently, other ways of embedding classical information into a quantum circuit were
introduced, particularly in the context of quantum machine learning (QML) [34]. Such data
encoding techniques are not included in this section because, instead of storing data in a
well defined quantum state so as to allow subsequent data extraction, they should be rather
seen as a way of influencing the behavior of a neural network by a black-box approach.

The remainder of the section is devoted to discussing data-loading techniques, and
how they are impacted by the current non-ideal quantum hardware. Indeed, noisy
intermediate-scale quantum (NISQ) computers [35] carry two features: on one side, quantum
devices are becoming impossible to simulate through classical computers due to their
rising power [36–38]; on the other side, current hardware does not yet allow for the
implementation of full error-correction protocols. The lack of implementable error correction
codes forces the circuits to remain very shallow. Alternatively, one may operate hybrid
quantum–classical algorithms, where only selected key parts of the workload are delegated
to quantum computers [39,40].

Table 1. Three different ways to encode the data set {xi}N−1
i=0 into a quantum state. n = dlog2 Ne is

the number of qubits needed for the index.

Encoding Form Number
of Qubits Data Type of Each Item xi Algorithms

Multi-register
⊗N−1

i=0 |xi〉 Nm

Any binary string of length m (including
integer, fixed point, and floating point numbers).
In literature, a common choice for numbers is
fixed point.

Quantum arithmetic (adder,
multiplier, max, ...)

Digital 1√
N ∑N−1

i=0 |xi〉|i〉 m + n

Any binary string of length m (including
integer, fixed point, and floating point numbers).
In literature, a common choice for numbers is
fixed point.

Grover

Analog ∑N−1
i=0 xi |i〉 n

Complex numbers satisfying the constraint
∑N−1

i=0 |xi |2 = 1.
Quantum Fourier Transform
(QFT), HHL

2.1. Techniques for Exact Data Loading and Their Limitations

We start the discussion of the data loading techniques from exact loading. In [41], it
is shown how to load classical data in the multi-register encoding with O(mN) one- and
two-qubit gates, and with O(1) depth, as well as how to prepare a digital encoding with
O(mN) gates and Õ(m log N) depth, where Õ indicates that O(log log(·)) factors were
discarded. In [42], instead, a technique to produce an analog encoding with O(N) CNOT’s
is presented. Assuming one can resort to a unitary UD that efficiently performs digital
encoding of normalized numbers in fixed point format, the analog encoding can also be
obtained with Õ(m log N) gates, plus O(log N) calls to UD, after having set up a classical
binary tree, thanks to artifices introduced in Ref. [43] and derived in Ref. [2]. Finally,
algorithms that allow for digital-to-analog and analog-to-digital conversion are given in
Ref. [3].

Quantum Rep. 2022, 4 78

Such loading methods have two main drawbacks. First, since current access to
classically stored information is performed sequentially, no exact loading algorithm can
run faster than O(N) if we consider it end to end, including the classical processing time
needed to prepare the circuit. Such a limitation is detrimental in quantum computing, since
some algorithms (such as the quantum Fourier transform and HHL) have a processing time
that scales logarithmically with the input size such that data loading becomes the bottleneck
to the otherwise exponential quantum speedup. Such a constraint could be overcome with
an efficient quantum RAM (or qRAM), namely, a physical device allowing for quantum
parallel access to information (such as the one envisioned in [6,44]), or alternatively, by
feeding the circuit with native quantum data. Secondly, the loading techniques introduced
so far were designed to provide good asymptotic scaling when the input size grows, but
they are little prone to the NISQ era since the amount of gates needed for small data sets is
out of reach for the current hardware capabilities.

2.2. Approximate Data Loading with qGANs

The aforementioned limitations led Zoufal et al. [8] to consider a novel approach for
analog encoding based on two characteristics. First, the loading circuit is prepared once,
at the expense of high effort, and then run multiple times to load the same data, thus
mitigating the bottleneck of classical sequential data reading under the assumption that
the same data set can be exploited in many independent runs. Then, approximation in
the loaded data is accepted in favor of a shorter circuit. The traditional approach, which
originated from a classical data set with the aim to map it onto an efficient loading circuit,
is inverted. Indeed, the starting point is now an ansatz, called variational circuit [40], which
is inherently an efficient quantum circuit, and whose parameters are chosen so that the
output distribution closely emulates the target data set. The optimization of the parameters
is made through a training process, grounding on machine learning techniques. More
precisely, the architecture is that of a generative adversarial network (GAN), where the
generator is the ansatz itself, and the discriminator is a merely classical neural network.

3. From GANs to qGANs

Generative adversarial networks (GANs) [12] are used to generalize the training data
set, creating output samples that resemble the original data. The most prominent example
of application is the synthesis of new images, reproducing subjects of a given class provided
in the data set (such as cats, dogs, flowers, or human faces). Technically, they are composed
of a couple of artificial neural networks, called a generator and discriminator, that are
trained together with conflicting objectives in order to find their Nash equilibrium. Once
the training is complete, the discriminator is typically discarded, while the generator is
used to draw new samples.

In more detail, the discriminator has access to the training set, and its objective is to
discriminate samples of the training set from samples generated by the generator. Conversely,
the generator has no access to the training set, but it can only question the discriminator, so
its objective is to generate samples that the discriminator hardly discriminates.

GANs in the literature are labeled as quantum GANs (qGANs or QuGANs) if they
process quantum data, or if part of their processing happens through quantum computers [45].
We are interested in the latter class, and specifically in GANs whose generator is a parametric
quantum circuit, referred to as ‘ansatz’.

3.1. The Generative Interpretation of qGANs

The quest for the useful application of NISQ computers [46] is still open, as encouraging
outcomes keep alternating with improvements in the corresponding classical algorithms.
In this confrontation, quantum machine learning (QML) [47,48] and, specifically, synthetic
data generation (SDG) are playing a role besides the more consolidated domains of quantum
chemistry, quantum optimization and finance [49]. SDG is a set of tools to produce data
that emulate a given phenomenon, typically in order to train data science models, when
direct data are unavailable, scarce, or unusable for privacy or regulatory constraints.

Quantum Rep. 2022, 4 79

Quantum neural networks are being widely studied due to two characteristics that
make them relevant for NISQ applications: the intrinsic noise robustness of neural networks,
and to the abundance of iterative methods that enable hybrid processing [50].

In classical machine learning, generative networks have already proved beneficial
for generating samples according to desired patterns [11,12] such that it appeared natural
to apply qGANs for distribution learning [8] and data generation [25–27] with quantum
computers. Following an approach that can be traced back to Ref. [51], and which was more
recently developed in Ref. [49], we can interpret our trained circuit as a ‘Born machine’
to generate data according to a distribution, thus constituting an algorithm per se. Even
though in the remainder of the paper we stick with the interpretation of approximate data
loading as a support tool for subsequent quantum processing, introduced in Section 2.2, it
is worth mentioning also the generative interpretation because it provides an alternative
theoretical framework and because it shows a strong parallel between classical GANs
and qGANs.

3.2. The Data-Compression Interpretation of qGANs

There is another interpretation of data loading through qGANs, which is related
to information compression. A discrete distribution with 2n buckets in the domain is
fully described by 2n − 1 real numbers since the probabilities are constrained to sum
up to 1. A trained qGAN can load an approximate version of the same probabilities by
means of a parametric quantum circuit, called ansatz, having n(k + 1) parameters, where
k is the number of layers, as we discuss in Section 4.1. If we conjecture that k scales
sub-exponentially with n, then the parameters are asymptotically fewer than the original
probabilities. In summary, the parameters are fewer in number than the probabilities, but
nevertheless produce an approximation of the probabilities when fed to the ansatz. In
order to properly call this a lossy compression, we need to further assume that each of
the parameters can be stored in the same amount of bits as each one of the probabilities.
The way the assumption was phrased is related to the fact that double digit floating
point numbers are commonly used to store probabilities in the applications, and it is
reasonable to consider them adequate for storing the ansatz parameters as well, without
introducing additional considerable approximation. From a theoretical perspective, though,
the assumption could be further relaxed. In fact, it is enough to require that the number of
bits needed for the storage of each parameter scales, at most, linearly with the number of
bits needed for each of the target probabilities when n grows.

Let us now interpret the lossy compression from a geometrical point of view. The
ansatz spans a manifold when its parameters change. As a consequence, we are not able,
in general, to reach the exact point that we are trying to approach and that represents
the distribution we want to load. Conversely, we are rather looking for the point on the
manifold which is ‘closer’ to the target. Moreover, in practice, we typically fall into sub-
optima. The quality of the approximation achieved, then, is better if the manifold is denser
in the surrounding area of the target point. As a consequence, it makes sense to choose
the manifold (that is, the structure of the ansatz, namely, the type of gates and the number
of repetitions) according to the target point (that is, according to the shape of the target
distribution). In the vocabulary of data compression, an ansatz may be more fitted to
capturing the specific structure of a given data set. This argument is implied in Ref. [8]
from the effect of different target distribution shapes on the training performance.

In our case, nonetheless, we aim at an agnostic perspective on the data structure so
that we ignore the (possibly favorable) link between the ansatz and the target distribution
shape. The way we label samples reflects this approach, as we discuss in Section 4.2.

Quantum Rep. 2022, 4 80

4. Results

Let us denote the target distribution with {pi}, and the approximate distribution
achieved by the qGAN with { p̃i}. The generator (Figure 1a) produces a quantum state
∑N−1

i=0 xi|i〉whose amplitudes {xi} are interpreted as the analog encoding of the square root
of the approximate probabilities { p̃i}. This way, if the state is measured, i is obtained with
probability |xi|2 = p̃i: in other words, the distribution of circuit measurements equals the
approximate distribution. The discriminator (Figure 1b) is a classical neural network that
labels a sample as true or fake, according to its ability to discriminate the target data set
from the generated data set.

The training of our qGAN (Figure 1c) is performed in epochs. During each epoch, the
data sampled from the target distribution are randomly split into batches. For each epoch
and batch, fake data are generated by applying the generator with its current parameters
and measuring the output state multiple times, then one step of the discriminator training
and one step of the generator training occur. The discriminator training algorithms perturbs
the discriminator parameters in order to obtain an updated set of parameters that better
discriminate true from generated data. The generator training, instead, perturbs the
generator parameters, measures multiples samples from the quantum state for each new
parameter set, and obtains the labels of such samples by the discriminator so as to identify
the generator parameters that most confuse the discriminator. Afterwords, the loop restarts
with a new batch. As epochs go by, if the training is convergent, the discriminator learns to
identify generated data, while the generator improves its ability to reproduce the reference
data. At the end of the training, the generator quantum circuit produces a state distributed
approximately like the target distribution.

The choice of the updated parameters for both the discriminator and the generator
is made by an optimizer that searches for the descent direction of an objective function.
Multiple objective functions can be used in GANs [12]. Following the example of previous
qGAN implementations [8], we adopt the so-called non-saturating loss, designed to avoid
the effect of insufficient gradient of the generator, which can be observed in the simplest
minimax formulation [12].

4.1. Design of the Generative Quantum Circuit Network

In line with the prior art, the ansatz of the generative network is layered, alternating
single-qubit rotations with entanglements (see Figure 1d). As far as rotations are concerned,
we take RY gates since they map real amplitudes to real amplitudes. As we want to load
probability densities which are real numbers, we can restrict ourselves to explore quantum
states with real amplitudes only, instead of spanning a broader, complex-valued manifold.
In terms of entanglement gates, following previous literature [8], we use cZ gates. In the
entanglement layers we arrange cZs in a circular fashion: this means applying cZ gates
between j-th and (j + 1)-th qubits, where the j-th is the control qubit, for all j = 0, ..., n− 1
and also between the (n− 1)-th and 0th.

Given the said choice of the entanglement layer, testing the circuit for n = 2 qubits only
is trivial since cZ(0, 1)cZ(1, 0) = I and the whole circuit reduces to single-qubit rotations.

Here, the free hyper-parameter for the ansatz is the number k of layers of rotations and
entanglements, known as the number of repetitions. A circuit with k repetitions has 1 initial
rotation layer, plus k entanglement and rotation layers, resulting in (k + 1)n parameters to
be trained, which correspond to the rotation angles.

Quantum Rep. 2022, 4 81

6 of 35

the effect of insufficient gradient of the generator which can be observed in the simplest
minimax formulation [12].

G
(ansatz)

Generator parameters

Quantum
state

µ Sample

(a) In the case of a qGAN, the generator is an ansatz parametric quantum
circuit. It produces a quantum state, in which squared amplitudes encode ap-
proximate probabilities. After measurement µ, it produces samples according
to approximate probabilities.

D
(network)

Sample

Discriminator parameters
(weights)

Label

(b) A discriminator is a neural network that labels a
sample as true or fake.

Generator training

Optimizer hyper-parameters

G µ D

Discriminator training

Optimizer hyper-parameters

D

G µ

Discriminator parameters
(weights)

Generator parameters

Updated generator
parameters

Generated data
(multiple samples)

True data batch sampled
from target distribution

Discriminator parameters
(weights)

Updated discriminator
parameters (weights)

(c) The training of a qGAN alternates the training of the generator and of the discriminator. The generator training has access to both
the generator and the discriminator, but not to true data. Conversely, the discriminator training has no direct access to the generator, as
it works by comparing generated data with true data. Quantum data are marked by a Bloch sphere.

q0 : RY(θ0) • • RY(θ3) • • RY(θ6)

q1 : RY(θ1) • • RY(θ4) • • RY(θ7)

q2 : RY(θ2) • • RY(θ5) • • RY(θ8)

(d) The ansatz is a layered quantum circuit based on qubits. Here the ansatz
for the case of n = 3 qubits and k = 2 repetitions is shown. Rotation layers are
composed of RY gates, while entanglement layers are made of cZ.

x1

x2

xn

y

(e) The discriminative network is a classical deep neu-
ral network with two hidden layers. Activation func-
tions are Leaky-ReLU for the intermediate nodes, and
a sigmoid for the output.

Figure 1. The schematic representation of the qGAN, composed by a generator quantum circuit and the discriminator neural networks.

(a) (b)

6 of 35

the effect of insufficient gradient of the generator which can be observed in the simplest
minimax formulation [12].

G
(ansatz)

Generator parameters

Quantum
state

µ Sample

(a) In the case of a qGAN, the generator is an ansatz parametric quantum
circuit. It produces a quantum state, in which squared amplitudes encode ap-
proximate probabilities. After measurement µ, it produces samples according
to approximate probabilities.

D
(network)

Sample

Discriminator parameters
(weights)

Label

(b) A discriminator is a neural network that labels a
sample as true or fake.

Generator training

Optimizer hyper-parameters

G µ D

Discriminator training

Optimizer hyper-parameters

D

G µ

Discriminator parameters
(weights)

Generator parameters

Updated generator
parameters

Generated data
(multiple samples)

True data batch sampled
from target distribution

Discriminator parameters
(weights)

Updated discriminator
parameters (weights)

(c) The training of a qGAN alternates the training of the generator and of the discriminator. The generator training has access to both
the generator and the discriminator, but not to true data. Conversely, the discriminator training has no direct access to the generator, as
it works by comparing generated data with true data. Quantum data are marked by a Bloch sphere.

q0 : RY(θ0) • • RY(θ3) • • RY(θ6)

q1 : RY(θ1) • • RY(θ4) • • RY(θ7)

q2 : RY(θ2) • • RY(θ5) • • RY(θ8)

(d) The ansatz is a layered quantum circuit based on qubits. Here the ansatz
for the case of n = 3 qubits and k = 2 repetitions is shown. Rotation layers are
composed of RY gates, while entanglement layers are made of cZ.

x1

x2

xn

y

(e) The discriminative network is a classical deep neu-
ral network with two hidden layers. Activation func-
tions are Leaky-ReLU for the intermediate nodes, and
a sigmoid for the output.

Figure 1. The schematic representation of the qGAN, composed by a generator quantum circuit and the discriminator neural networks.

(c)

6 of 35

the effect of insufficient gradient of the generator which can be observed in the simplest
minimax formulation [12].

G
(ansatz)

Generator parameters

Quantum
state

µ Sample

(a) In the case of a qGAN, the generator is an ansatz parametric quantum
circuit. It produces a quantum state, in which squared amplitudes encode ap-
proximate probabilities. After measurement µ, it produces samples according
to approximate probabilities.

D
(network)

Sample

Discriminator parameters
(weights)

Label

(b) A discriminator is a neural network that labels a
sample as true or fake.

Generator training

Optimizer hyper-parameters

G µ D

Discriminator training

Optimizer hyper-parameters

D

G µ

Discriminator parameters
(weights)

Generator parameters

Updated generator
parameters

Generated data
(multiple samples)

True data batch sampled
from target distribution

Discriminator parameters
(weights)

Updated discriminator
parameters (weights)

(c) The training of a qGAN alternates the training of the generator and of the discriminator. The generator training has access to both
the generator and the discriminator, but not to true data. Conversely, the discriminator training has no direct access to the generator, as
it works by comparing generated data with true data. Quantum

q0 : RY(θ0) • • RY(θ3) • • RY(θ6)

q1 : RY(θ1) • • RY(θ4) • • RY(θ7)

q2 : RY(θ2) • • RY(θ5) • • RY(θ8)

(d) The ansatz is a layered quantum circuit based on qubits. Here the ansatz
for the case of n = 3 qubits and k = 2 repetitions is shown. Rotation layers are
composed of RY gates, while entanglement layers are made of cZ.

x1

x2

xn

y

(ut.

Figure 1. The schematic representation of the qGAN, composed by a generator quantum circuit and the discriminator neural networks.

6 of 35

the effect of insufficient gradient of the generator which can be observed in the simplest
minimax formulation [12].

G
(ansatz)

Generator parameters

Quantum
state

µ Sample

(a) In the case of a qGAN, the generator is an ansatz parametric quantum
circuit. It produces a quantum state, in which squared amplitudes encode ap-
proximate probabilities. After measurement µ, it produces samples according
to approximate probabilities.

D
(network)

Sample

Discriminator parameters
(weights)

Label

(b) A discriminator is a neural network that labels a
sample as true or fake.

Generator training

Optimizer hyper-parameters

G µ D

Discriminator training

Optimizer hyper-parameters

D

G µ

Discriminator parameters
(weights)

Generator parameters

Updated generator
parameters

Generated data
(multiple samples)

True data batch sampled
from target distribution

Discriminator parameters
(weights)

Updated discriminator
parameters (weights)

(c) The training of a qGAN alternates the training of the generator and of the discriminator. The generator training has access to both
the generator and the discriminator, but not to true data. Conversely, the discriminator training has no direct access to the generator, as
it works by comparing generated data with true data. Quantum

q0 : RY(θ0) • • RY(θ3) • • RY(θ6)

q1 : RY(θ1) • • RY(θ4) • • RY(θ7)

q2 : RY(θ2) • • RY(θ5) • • RY(θ8)

(d) The ansatz is a layered quantum circuit based on qubits. Here the ansatz
for the case of n = 3 qubits and k = 2 repetitions is shown. Rotation layers are
composed of RY gates, while entanglement layers are made of cZ.

x1

x2

xn

y

(ut.

Figure 1. The schematic representation of the qGAN, composed by a generator quantum circuit and the discriminator neural networks.

(d) (e)

Figure 1. The training of a qGAN alternates the training of the generator and of the discriminator.
The generator training has access to both the generator and the discriminator, but not to true data.
Conversely, the discriminator training has no direct access to the generator, as it works by comparing
generated data with true data. Quantum data are marked by a Bloch sphere. (a) In the case of a qGAN,
the generator is an ansatz parametric quantum circuit. It produces a quantum state, in which squared
amplitudes encode approximate probabilities. After measurement µ, it produces samples according
to approximate probabilities. (b) A discriminator is a neural network that labels a sample as true or
fake. (c) The training of a qGAN alternates the training of the generator and of the discriminator.
The generator training has access to both the generator and the discriminator, but not to true data.
Conversely, the discriminator training has no direct access to the generator, as it works by comparing
generated data with true data. Quantum data are marked by a Bloch sphere. (d) The ansatz is a
layered quantum circuit based on qubits. Here, the ansatz for the case of n = 3 qubits and k = 2
repetitions is shown. Rotation layers are composed of RY gates, while entanglement layers are made
of cZ. (e) The discriminative network is a classical deep neural network with two hidden layers.
Activation functions are Leaky ReLU for the intermediate nodes, and a sigmoid for the output.

Quantum Rep. 2022, 4 82

4.2. Design of the Classical Discriminative Deep Neural Network

The discriminative network takes one sample in input at a time, and returns a number
between 0 and 1, which aims at indicating how likely the sample is to have been drawn
from the generated distribution rather than from the target discretized one.

Suppose the target distribution has d dimensions, then one sample can be represented
as a d-tuple (l1, ..., ld), where lj is a label in {0, 1, . . . , 2nj} and nj is the number of qubits
used to represent the j-th dimension. In previous implementations, labels lj were fed to
the discriminator, which then had d input nodes. In our case, conversely, each individual
qubit is an input node such that we end up with a much bigger input layer of 2n nodes,
where n = ∑j nj. Such choice is agnostic to the data structure, as it removes the implicit
assumption that the most significant digits in the labels should have a stronger effect on
the network. On the other side, it induces a higher cost in terms of training time, since the
input layer of the discriminator has more nodes than that adopted in literature. This choice
should be reconsidered when the number of qubits grows to validate if the training time
remains sustainable.

As a consequence of the aforementioned choice, we treat univariate and multivariate
distributions alike. More explicitly, take any integer a, and consider two different distributions,
X and Y. The former is a univariate (i.e., d = 1) ranged in {0, . . . , 2a − 1}, namely n1 = a.
The latter, instead, is a multivariate with d = a dimensions, each ranged in {0, 1} (i.e.,
n1, . . . , nd = 1). Additionally, assume that X and Y have the same probabilities, in the
following sense: for all l ∈ {0, . . . , 2a − 1}, let pX(l) = p(Y1,...Yd)

([l]1, . . . , [l]d), where [l]j
represents the j-th digit of l as a binary string. Under these conditions, the two distributions
are trained and loaded in the same manner by our qGAN.

Following the approach of Ref. [8], the network has two hidden layers with H1 and
H2 nodes, respectively (see Figure 1e). Activation functions are Leaky ReLU for the
intermediate nodes, and a sigmoid for the output.

4.3. Optimization of the qGAN Accuracy and Comparison with Benchmarks

To improve the fit of the generated distribution, in addition to the modification of the
discriminator design described in Section 4.2, we also fine-tuned the hyper-parameters
of the optimizer. Such an objective is achieved through an extensive testing campaign,
extensively detailed in Appendix A. The main outcome for n = 3 qubits is that a high
accuracy can be obtained with the Adam AMSGRAD optimizer with a discriminator
learning rate of 10−3 (see Figure A4), and a generator learning rate between 5× 10−4 and
10−3 (see again Figure A4). The beta parameters of the optimizers can be chosen to be
(β1, β2) = (0.7, 0.99) for both the discriminator and the generator (compare
Figures A4 and A5). Under such conditions, the discriminator size—given by the number
H1 and H2 of nodes in the two hidden layers—does not influence the result substantially
as far as both H1 and H2 are greater or equal to the critical value of 8 (see Figure A2). An
appropriate number of shots is s = 2000 (see Figure A6). These results are obtained by
means of the χ2 test for goodness of fit, as motivated in Section 5.2.

Results of the training with such hyper-parameters are shown in Figure A3, where
we calculate two other metrics, namely the Kolmogorov–Smirnov statistic and the relative
entropy, for comparison with prior art (we refer to Table I in [8]). For both metrics, lower
values mean a better performance. In conditions similar to ours, namely a 3-qubit log-
normal target distribution and k = 1 layers, with random initialization, the previous
benchmark was µKS = 0.0821 and µRE = 0.0916, with deviations σKS = 0.0466 and σRE =
0.0678. By picking instead the best initialization strategy therein proposed, which was
the ‘uniform’ initialization in the specific case, the previous paper achieved µKS = 0.0522
and µRE = 0.0454, with deviations σKS = 0.0214 and σRE = 0.0856. Such results were
obtained with a discriminator size of (H1, H2) = (50, 20). In contrast, with an even smaller
discriminator size of (H1, H2) = (8, 8), we can get µKS = 0.0296 and µRE = 0.0082, with
lower deviations σKS = 0.0149 and σRE = 0.0071, giving an improvement of 64% in the
KS against the similar case, and of 43% against the best case. We also prove consistency of

Quantum Rep. 2022, 4 83

such a result when modifying the discriminator size (see Figure A3), with an average result
of µKS = 0.0299 and µRE = 0.0123, and deviations of σKS = 0.0183 and σRE = 0.0313.

Appendix A also contains the hyper-parameter tuning for the SPSA optimizer and the
case of n = 4 qubits. For such cases, though, there are no benchmarks in the literature, to
the best of our knowledge.

All the simulations were obtained with a lognormal target distribution and with the
design of the ansatz described in Section 4.1. Therefore, our results are contextual to such
choices. Nonetheless, no previous work showed a specific favorable link between the
lognormal distribution and our ansatz, nor is such a link implied by any simple theoretical
argument. So, we can expect our result to be representative of the general case.

4.4. Trade-Off between Accuracy and Training Time: The Effect of the Optimizer and of Other
Hyper-Parameters

Now let us analyze the trade-off between solution accuracy and training time. We
focus our analysis on the simple case of 3 qubits, while we discuss in Section 5.4 that an
asymptotic study of the performance needs some key assumptions on the respective scaling
of involved variables. Such assumptions require a testing campaign for multiple, high
values of n, that is not feasible for the state of the art, given the practical limits of simulators
and the scarcity of available computing time on quantum devices.

Figure 2 visualizes the trade-off between training complexity on one side, and accuracy
on the other side, for a 3-qubit training problem. The former is expressed through a
complexity cost function, representing the number of elementary operations performed. It
is calculated according to Equations (8) and (9) given in Section 5.4, with some additional
simplifications: (a) we discarded the optimizer-specific multiplicative constants, namely
CAdam and CSPSA, that express the number of evaluations of the objective function performed
in each direction explored by the optimizer in each training step; (b) we discarded the
number b of batches in which the training set is split during each training epoch, as we
assume it to be fixed, and therefore a multiplicative constant as well; (c) we dropped
the quantum training cost of the discriminator cq

discr train from Formula (9) since it never
dominates the quantum training cost of the generator cq

gen train. Accuracy, instead, is

measured by the p-values of a χ2 test for goodness of fit, as discussed in Section 5.2. The
values are calculated for five different scenarios, summarized in Table 2 and further detailed
in Table A2.

It is clear from the figure that a longer training time in a single run, does not directly
imply better accuracy. Indeed, a longer training on a single shot simply means that the
optimizer had to explore a wider space before reaching convergence, which may be due
only to an unfavorable random initialization.

The figure should be better read under another lens: it is of interest to identify whether
a scenario (namely, a set of hyper-parameters) has an effect in terms of the training time and
achieved quality in its average run. A trade-off is realized when one dimension improves
and the other worsens. Figure 2a shows that the increase in the discriminative network size
(case b) implies a significant cost overhead in the classical computation, but no relevant
quality improvement, compared to the baseline case a, so a appears certainly preferable to b
In Figure 2b,c, we can observe the effect—visible but not dramatically so—of a sub-optimal
choice of the learning rate (case c). Again, a is preferable to b. We can also notice that
an increase in the number of shots (case d) does not have a major impact on the classical
computational cost: in other words, the increased time spent in each epoch is balanced by a
reduced number of epochs necessary to achieve convergence. Case d is preferable to a in
terms of the quantum training cost.

Quantum Rep. 2022, 4 84

9 of 34

metrics. In Figures 2b and 2c we represented through case e. the adoption of SPSA in the
generator, keeping Adam for the discriminator. We show that the cost of SPSA is lower,
but the quality of the output is dramatically degraded. We did not include in the Figure
the case of SPSA in the discriminator, or SPSA in both the generator and the discriminator,
as they achieve even worse accuracy. The interested reader can refer to Appendix A for
these additional cases, as well as for a more detailed analysis of all the hyper-parameters.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

·1011

p-value of the χ2 test

C
os

to
ft

he
cl

as
si

ca
lp

ar
to

ft
ra

in
in

g

a.
b.
c.
d.
e.

(a) Classical training complexity vs quality.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

·107

p-value of the χ2 test

C
os

to
ft

he
cl

as
si

ca
lp

ar
to

ft
ra

in
in

g

a.
b.
c.
d.
e.

(b) Detail of Subfigure (a). Here test case b.
was excluded, to allow rescaling in the ver-
tical axis.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

·108

p-value of the χ2 test

C
os

to
ft

he
qu

an
tu

m
pa

rt
of

tr
ai

ni
ng

a.
b.
c.
d.
e.

(c) Quantum training complexity vs qual-
ity.

Figure 2. Visualization of the trade-off between training complexity and quality, for the test cases listed in Table 2. On the vertical axis,
the complexity, calculated according to Equations (8) and (9). On the horizontal axis, the p-value of the χ2 test after training, as a metric
for accuracy. Each dot represents a test execution, whereas dots with the same color are the result of different random initializations
obtained with the same hyper-parameters. Tests are the same across the three plots. The best runs are in the bottom right corner of each
plot, since they have high accuracy and low computational cost. Each ellipse is a synthetic representation of the respective scenario:
their center corresponds to the average of the 10 runs in the scenario, and its axes correspond to the standard deviations.

Case n k H1 H2 Generator Discriminator Shots
a. Baseline 3 1 8 8 Adam, lr=10−3, β1=0.7, β2=0.99 Adam, lr=10−3, β1=0.7, β2=0.99 2000
b. Big discriminator size 3 1 128 128 Adam, lr=10−3, β1=0.7, β2=0.99 Adam, lr=10−3, β1=0.7, β2=0.99 2000
c. Low generator learning rate 3 1 8 8 Adam, lr=0.5 · 10−3, β1=0.7, β2=0.99 Adam, lr=10−3, β1=0.7, β2=0.99 2000
d. Many shots 3 1 8 8 Adam, lr=10−3, β1=0.7, β2=0.99 Adam, lr=10−3, β1=0.7, β2=0.99 8000
e. SPSA in generator 3 1 8 8 SPSA, lr=0.01, perturbation=0.1 Adam, lr=10−3, β1=0.7, β2=0.99 2000

Table 2. Test cases used in Figure 2. More details can be found in Table A2a.

3.5. Isolation of the best runs

When repeating the training of a qGAN multiple times, one gets different results,
according to the different random initialization of the training process, as detailed in
Subsection 4.2. As expected, the optimization does not always reach the global optimum,
but gets often stuck in local sub-optima. As a consequence, if we measure the p-value of
the χ2 test (which is our key measure for goodness of fit, refer again to Subsection 4.2) after
many training processes, we obtain different values.

A key finding of our testing campaign on Adam AMSGRAD for 3 qubits, is that there
is no continuum in the p-values obtained after training. On the contrary, the best runs
concentrate around a p-value of 0.9, with some tails as low as 0.8, and are well isolated
from the other runs, which achieve values below 0.6 (see Figures A2f, A4f, and A5f).

(a) (b) (c)

Figure 2. Visualization of the trade-off between training complexity and quality, for the test cases listed
in Table 2. On the vertical axis, the complexity, calculated according to Equations (8) and (9). On the
horizontal axis, the p-value of the χ2 test after training is a metric for accuracy. Each dot represents
a test execution, whereas dots with the same color are the result of different random initializations
obtained with the same hyper-parameters. Tests are the same across the three plots. The best runs
are in the bottom right corner of each plot since they have high accuracy and low computational
cost. Each ellipse is a synthetic representation of the respective scenario: its center corresponds to the
average of the converging runs in the scenario, and its radii correspond to the standard deviations. (a)
Classical training complexity vs. quality. (b) Detail of subfigure (a). Here, test case (b) was excluded
to allow rescaling in the vertical axis. (c) Quantum training complexity vs. quality.

Finally, we can compare the performance of two optimizers: namely, Adam AMSGRAD,
which is a widely used [8] gradient-based technique, and SPSA, which is a gradient-free
method. The latter is potentially faster, as it does not need to calculate the complete gradient,
thus requiring significantly fewer evaluations of the circuit when the number of ansatz
parameters grows (see Section 5.4). Unfortunately, after our testing campaign, we conclude
that the faster convergence of SPSA comes at the cost of an accuracy of the solution that
is hardly acceptable under our metrics. In Figure 2b,c, we represented through case e the
adoption of SPSA in the generator, keeping Adam for the discriminator. We show that
the quantum cost of SPSA is lower in case e, compared to a, but the quality of the output
is dramatically degraded. Notably, the classical cost increases, as the number of epochs
before convergence is higher. We did not include in the Figure the case of SPSA in the
discriminator, or SPSA in both the generator and the discriminator, as they achieve even
worse accuracy. The interested reader can refer to Appendix A for these additional cases,
as well as for a more detailed analysis of all the hyper-parameters.

In conclusion, with the Adam optimizer, the hyper-parameters do not exhibit any
trade-off between accuracy and training time, as each hyper-parameter mostly affects one
of them. Vice versa, there is a trade-off between Adam and SPSA, in the sense that Adam
provides highly accurate results, whilst the latter is faster in terms of quantum training.

Table 2. Test cases used in Figure 2. More details can be found in Table A2.

Case n k H1 H2 Generator Discriminator Shots

a. Baseline 3 1 8 8 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 2000
b. Big discriminator size 3 1 128 128 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 2000
c. Low generator learning rate 3 1 8 8 Adam, lr = 0.5× 10−3, β1 = 0.7, β2 = 0.99 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 2000
d. Many shots 3 1 8 8 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 8000
e. SPSA in generator 3 1 8 8 SPSA, lr = 0.01, perturbation = 0.1 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 2000

4.5. Isolation of the Best Runs

When repeating the training of a qGAN multiple times, one obtains different results,
according to the different random initialization of the training process, as detailed in
Section 5.2. As expected, the optimization does not always reach the global optimum but

Quantum Rep. 2022, 4 85

gets often stuck in local sub-optima. As a consequence, if we measure the p-value of the χ2

test (which is our key measure for goodness of fit; refer again to Section 5.2) after many
training processes, we obtain different values.

A key finding of our testing campaign on Adam AMSGRAD for 3 qubits is that there
is no continuum in the p-values obtained after training. On the contrary, the best runs
concentrate around a p-value of 0.9, with some tails as low as 0.8, and are well isolated
from the other runs, which achieve values below 0.6 (see Figures A2f, A4f and A5f).

Therefore, in order to achieve a high quality approximation, is it more important
to try many initial configurations, rather than training only one very carefully. Indeed,
perturbations of the optimal hyper-parameters do not affect results as dramatically as the
initial conditions or the choice of the optimizer do (Appendix A).

The phenomenon is the result of an intrinsic characteristic of the training problem, not
previously reported, to the best of the authors’ knowledge. Better understanding the reason
of such behavior may provide insights for a more effective choice of the initial parameters,
or for the early discarding of ill choices. We conducted a preliminary study detailed in
Appendix B that suggests that an elbow in the parameters before convergence likely means
optimality, while sub-optimal runs have either slow or oscillatory convergence, or residual
dynamics after convergence (see Figure A14).

The isolation was observed with clarity under specific conditions: the optimizer
Adam AMSGRAD, n = 3 qubits, the lognormal target distribution, and the ansatz design
illustrated in Section 4.1. Our tests on other optimizers and number of qubits do not allow
us to either accept nor reject with confidence the generality of the behavior.

5. Methods

The current section collects the methods applied to obtain results. Much of the design
follows Ref. [8], so for clarity, we anticipate here the key differences. We define the concept
of converging run, which was absent in the previous paper and we mostly resort to the
χ2 test for assessing the solution quality instead of the Kolmogorov–Smirnov statistic. We
test the behavior of the SPSA optimizer in addition to Adam AMSGRAD and we modify
the design of the discriminative network, as explained in Section 4.2. Finally, we conduct
a broader testing campaign on the hyper-parameters, and study their influence on the
converging rate, on the output accuracy, and on the computational cost.

5.1. Testing Conditions

We conduct our tests through the ‘Qiskit’ library [52]. Qiskit allows for the circuits
to be run on different device types: (a) the statevector simulator, which can compute the
exact state resulting after the circuit application, under perfect conditions, (b) the noiseless
simulator, which emulates the circuit behavior in ideal conditions, but applies a number of
measurements according to the number of shots provided, thus resulting in an approximate
knowledge of the circuit output, (c) the noisy simulators, which apply a noise model
whenever gates are executed, and (d) real hardware, typically resorting to the devices
provided by IBM in cloud.

Preliminary tests highlight a significant difference in the convergence behavior of the
training process, between the results obtained on the statevector simulation compared to the
noiseless simulation since the approximation induced by a finite number of measurements
gives stronger oscillations to the neural network and forces to consider bigger neighborhoods
of the network parameters for the evaluation of gradient to avoid local flatness. Vice versa,
the difference between noiseless and noisy simulators is negligible. Such an observation
can be explained with the resiliency of neural networks to noise, and with the shallow
depth of our circuits. The execution time, nonetheless, is much higher in noisy simulations,
due to the need to artificially reproduce noise in the simulator. The execution of extensive
testing campaigns of hybrid algorithms on quantum hardware is difficult at the current
state of the art due to the long delay required to connect to the backends. Provided such
considerations, our training process is carried on the noiseless simulator, which provides

Quantum Rep. 2022, 4 86

the best trade-off in terms of execution time versus result significance, for our purposes, at
the time of writing.

We test the training of a univariate lognormal with parameters µ = 1 and σ = 1,
discretized in 2n bins in the domain [0, 8]. The choice of the lognormal is inherited from
prior work [8], and it is motivated by its usefulness in the financial domain. A univariate
distribution allows for direct comparison with previous literature, and at the same time,
does not imply a loss in generality since our design of the discriminator makes the training
of the univariate fully equivalent to that of a multivariate, as explained in Section 4.2.

The training set is made of 20,000 samples, which decreases after binning, since tails
are trimmed. This way, we obtain around 17,200 samples, which is the number S of samples
that we use to feed the training.

Before applying the ansatz, the circuit is prepared to the initial state |0〉⊗n. In each
epoch, following once again the approach of Ref. [8], the training data set is shuffled and
split into batches. We take the batch size of 2000, namely around one tenth of the data
set size.

Each quantum circuit is evaluated on s shots, as indicated in Table A1, in order to
properly account for the statistical nature of measurement.

5.2. Run Evaluation

In our testing campaign, described in Appendix A, we execute many different simulations.
Every test is repeated 10 times to ensure robustness of the outcomes. Therefore, the
10 simulations differ for the random initialization of the generator parameters of the
discriminator parameters and of all randomized behaviors in the optimizers (seed, batching,
etc.). The metrics of each run are calculated individually and then aggregated among the
10 runs, giving rise to an average-case result and a best-case result.

Indeed, let us emphasize that independent runs obtained with the same hyper-
parameters are far from being uniform in terms of training results, as shown in Appendix A.
Nonetheless, an appropriate choice of the hyper-parameters increases the probability of
obtaining better outcomes.

In order to assess a single run, we have to address two key aspects: (a) We must ensure
that the training process comes to convergence before reaching the end of the available
training epochs, and this means that we need a formal definition for training convergence.
(b) We also need to measure the quality of the output and compare it to a fixed threshold,
which is our acceptable precision.

Let us start by discussing the convergence. Due to the randomness of the input data,
it is expected and a priori acceptable to have oscillations in the solution. What we need
to check is that oscillations happen around a target value, and there is no substantial
movement of any parameter in a given direction (see Figure 3b–d). A run converges to a
local solution in j epochs, if all the generator parameters are substantially stable for a given
number m of epochs after j. Based on that, we can provide the definition of convergence: let
M be the total number of epochs in our test, then for each parameter and for each candidate
epoch j starting from 0 and increasing, we make a linear regression along the m = M/200
subsequent epochs and check whether the absolute value of the line slope is controlled by
1/10 of the generator learning rate. If so, we find j (when the learning rate is variable, we
check the slope is controlled by 10−4, which is consistent with the baseline learning rate of
10−3). Notice that we deliberately neglect to verify the convergence of the discriminator
parameters, because our core objective is obtaining the generator parameters only, as they
contain the representation of the approximated distribution. In other words, we accept an
under-determined discriminator, as long as it is able to drive the generator to convergence.

Quantum Rep. 2022, 4 87

11 of 34

robustness of the outcomes. Therefore, the 10 simulations differ for the random initializa-
tion of the generator parameters, of the discriminator parameters, and of all randomized
behaviors in the optimizers (seed, batching, etc.). The metrics of each run are calculated
individually, and then aggregated among the 10 runs, giving rise to an average-case result
and a best-case result.

In order to assess a single run, we have to address two key aspects: (a) we must ensure
that the training process comes to convergence before reaching the end of the available
training epochs, and this means that we need a formal definition for training convergence,
and (b) we need to measure the quality of the output, and compare it to a fixed threshold
which is our acceptable precision.

Let us start by discussing the convergence. Due to the randomness of input data, it is
expected and a priori acceptable to have oscillations in the solution. What we need to check,
is that oscillations happen around a target value, and there is no substantial movement of
any parameter in a given direction (see Fig. 3b to 3d). A run converges to a local solution
in j epochs, if all the generator parameters are substantially stable for a given number m
of epochs after j. Based on that, we can provide the definition of convergence: let M be
the total number of epochs in our test, then for each parameter, and for each candidate
epoch j starting from 0 and increasing, we make a linear regression along the m = M/200
subsequent epochs, and check whether the absolute value of the line slope is controlled by
1/10 of the generator learning rate. If so, we found j (when the learning rate is variable, we
check the slope is controlled by 10−4, which is consistent with the baseline learning rate of
10−3). Notice that we deliberately neglect to verify the convergence of the discriminator
parameters, because our core objective is obtaining the generator parameters only, as they
contain the representation of the approximated distribution. In other words, we accept an
under-determined discriminator, as long as it is able to drive the generator to convergence.

0 500 1000 1500 2000

0

0.2

0.4

epochs
pr

ob
ab

ili
ty

0 500 1000 1500 2000

0

2

4

6

8

epochs

ge
ne

ra
to

r
pa

ra
m

et
er

s

(a) A divergent run: parameters (in
the bottom plot) do not stabilize.

0 500 1000 1500 2000

0

0.2

0.4

epochs

0 500 1000 1500 2000

0

2

4

6

8

epochs

(b) A convergent run, with
strong oscillations in the
generator parameters and in
the resulting distribution.

0 500 1000 1500 2000

0

0.2

0.4

epochs

0 500 1000 1500 2000

0

2

4

6

8

epochs

(c) A convergent run, with
poor solution quality: in the
top plot, e.g., the red line
and blue line are far from
the target circles.

0 500 1000 1500 2000

0

0.2

0.4

epochs

0 500 1000 1500 2000

0

2

4

6

8

epochs

(d) A convergent run achiev-
ing a good quality of the so-
lution.

Figure 3. Different training processes, obtained with different hyper parameters and different initial random conditions. In all plots,
the horizontal axis represents training time. In the top plots, each color is related to a value of the discretized random variable, the
lines represent the probability density of the generated distribution, and the circles on the right represent the target distribution. In
the bottom plots, the evolution of the ansatz parameters during the training. Vertical dashed lines mark the convergence epoch, as
detected by our rule. More details on how runs are generated can be found in Table A2b.

(a) (b) (c) (d)

Figure 3. Different training processes, obtained with different hyper-parameters and different initial
random conditions. In all plots, the horizontal axis represents training time. In the top plots, each
color is related to a value of the discretized random variable, the lines represent the probability
density of the generated distribution, and the circles on the right represent the target distribution. In
the bottom plots, the evolution of the ansatz parameters during the training. Vertical dashed lines
mark the convergence epoch j, according to our convention. More details on how runs are generated
can be found in Table A3. (a) A divergent run: parameters (in the bottom plot) do not stabilize. (b) A
convergent run, with strong oscillations in the generator parameters and in the resulting distribution.
(c) A convergent run, with poor solution quality: in the top plot, e.g., the red line and blue line are far
from the target circles. (d) A convergent run achieving a good quality of the solution.

The second topic is the quality of the solution: indeed, a convergent run may still find
a bad approximation of the target distribution (see Figure 3c), either due to the optimizer
finding a sub-optimal solution, or due to the ansatz not reaching any point close enough to
the target. As said in Section 5.1, the training process is performed on a noiseless simulator.
Nonetheless, after completing the training, we measure the quality of the solution by
evaluating the circuit with the trained parameters on a statevector simulator such that we
remove the effect of a finite number of measurements. The topic of selecting evaluation
metrics for GANs is open and broadly discussed [12]. For our purposes, we evaluate
the quality of the solution by performing a χ2 test, for goodness of fit. We choose the
χ2 test instead of the Kolmogorov–Smirnov test used in previous literature [8], as it is
more representative for discrete variables with a small number of domain buckets, and
more easily exportable to multivariates. We also run the Kolmogorov–Smirnov test for
comparison with prior work in Section 4. Since we are looking for approximate solutions,
the target distribution is not exactly the trained distribution, and if a χ2 test is run with
a huge sample size, one will certainly discriminate them and reject the null hypothesis.
On the contrary, being able to well approximate a distribution means making it hard to
discriminate the generated distribution from the target one, when looking at a relatively
small, fixed number s of samples. Figure 4 shows that the χ2 test gets easily confused when
the number of samples is small, and improves at discriminating when the sample size
grows. For the experiments in Section 4, we calculated the p-value based on a 2-sample test
where we used the full sample S of around 17,200 values for the target distribution and a
size s = 1024 for the generated distribution by recurring to the ’scipy´ implementation [53].

Quantum Rep. 2022, 4 88

12 of 34

The second topic is the quality of the solution: indeed a convergent run may still find
a bad approximation of the target distribution (see Fig. 3c), either due to the optimizer
finding a sub-optimal solution, or due to the ansatz not reaching any point close enough
to the target. As said in Subsection 4.1, the training process is performed on a noiseless
simulator. Nonetheless, after completing the training, we measure the quality of the
solution by evaluating the circuit with the trained parameters on a statevector simulator,
so that we remove the effect of a finite number of measurements. The topic of selecting
evaluation metrics for GANs is open and broadly discussed [12]. For our purposes, we
evaluate the quality of the solution by performing a χ2 test, for goodness of fit. We choose
the χ2 test instead of the Kolmogorov-Smirnov test used in previous literature [8], as it is
more representative for discrete variables with a small number of domain buckets, and
more easily exportable to multivariates. We also run the Kolmogorov-Smirnov test for
comparison with prior art, in Section 3. Since we are looking for approximate solutions,
the target distribution is not exactly the trained distribution, and if a χ2 test is ran with
a huge sample size, one will certainly discriminate them and reject the null hypothesis.
On the contrary, being able to well approximate a distribution means making it hard to
discriminate the generated distribution from the target one, when looking at a relatively
small, fixed number s of samples. Fig. 4 shows that the χ2 test gets easily confused when
the number of samples is small, and improves at discriminating when the sample size
grows. For the experiments in Section 3, we calculated the p-value based on a 2-sample test
where we used the full sample S of around 17,200 values for the target distribution, and a
size s = 1024 for the generated distribution, by recurring to the ’scipy´ implementation
[48].

Figure 4. The χ2 test conducted to test the null hypothesis of the generated distribution to be independent and identically distributed
like the target distribution. The plot is created by testing samples taken from the same generated distribution against the same target
distribution, and varying the number of samples s.

4.3. Objective function and optimizers

We study the training process with two different optimizers, the Adam AMSGRAD
and the SPSA. The former is used as a benchmark, following Ref. [8], while the latter is
particularly interesting as it is a gradient-free optimizer.

Gradient-free optimizers are becoming popular in quantum computing [49,50]. On
one side, they are an attempt to mitigate the barren plateau effect [51–54], even if their

Figure 4. The χ2 test conducted to test the null hypothesis of the generated distribution to be
independent and identically distributed like the target distribution. The plot is created by testing
samples taken from the same generated distribution against the same target distribution, and varying
the number of samples s.

5.3. Objective Function and Optimizers

We study the training process with two different optimizers, the Adam AMSGRAD
and the SPSA. The former is used as a benchmark, following Ref. [8], while the latter is
particularly interesting, as it is a gradient-free optimizer.

Gradient-free optimizers are becoming popular in quantum computing [54,55]. On one
side, they promise to mitigate the barren plateau effect [56–59], even if their actual ability to
overcome such a problem is still debated [60]. Moreover, they require fewer evaluations of
the objective function when the dimension is high (see Section 5.4), suggesting a potential
benefit in terms of training times (discussed in Section 4.4 for the qGAN problem).

More specifically, we resort to the Adam AMSGRAD optimizer provided by Qiskit for
the discriminator, while we use its implementation in Pytorch ([61]), which is linked into
Qiskit itself, for the discriminator. As far as SPSA is concerned, we exploit the Qiskit version.

The most relevant hyper-parameters of Adam AMSGRAD that affect performance
are the learning rate, β1 and β2, while those of SPSA are the learning rate and the
perturbation factor.

5.4. Estimating Complexity

When measuring computational complexity, two different processes have to be considered:
the training process, which is performed once for a given distribution, and the process of
loading data into a quantum computer through previously trained parameters, which can
be performed multiple times for the same distribution, depending on the subsequent use
of the loaded data. In this subsection, we derive an estimate for both the loading and the
training costs.

Quantum Rep. 2022, 4 89

First of all, let us call cq
gen eval the cost of evaluating the ansatz, namely, running the

ansatz circuit once with the given parameters. We measure the computational complexity
of quantum circuits in terms of circuit depth such that we obtain

cq
gen eval = n(k + 1) + 1, (1)

where n is the number of qubits, and k the number of repetitions, defined in Section 4.1.
The superscript q indicates that the cost is due to quantum operations.

The complexity of loading approximate data into the quantum computer with a qGAN
is, by definition,

cq
load = cq

gen eval. (2)

The training complexity is the number of operations required to obtain the approximately
optimal generator parameters. The training process involves both classical and quantum
computations. Indeed, the basic building blocks of the process are the execution of the
ansatz on the quantum side, whose complexity equals cq

gen eval and the evaluation of the
discriminative network on the classical side at a cost which is essentially given by amount
of matrix–vector multiplications, namely,

cc
discr eval = nH1 + H1H2 + H2, (3)

where H1 and H2 are the number of nodes in the hidden layers, as usual.
During each epoch, and for each batch, a training step of the generator and a training

step of the discriminator are performed. Indeed, the generator and discriminator parameters
are updated by the optimizer, according to the descent direction.

Each generator training step requires the quantum circuit to be evaluated multiple
times, depending on the optimizer. Ref. [55] shows that the number of evaluations is
constant for SPSA and scales linearly with the number of parameters for gradient-based
methods, which is n(k + 1),

cq
gen train =

{
CSPSA · s · cq

gen eval for SPSA

CAdam · [n(k + 1)] · s · cq
gen eval for Adam,

(4)

where the constant Coptimizer is a characteristic of the optimizer used by the generator,
and s is the number of shots of the quantum circuit. For each generator training step, the
discriminator must be evaluated too, giving rise to a classical cost

cc
gen train =

{
CSPSA · cc

discr eval for SPSA
CAdam · [n(k + 1)] · cc

discr eval for Adam.
(5)

During the discriminator training, instead, the generator is evaluated just once during
each training step, independently, on the number of evaluations of the discriminator such
that the the quantum cost is simply

cq
discr train = s · cq

gen eval (6)

Therefore, the complexity is essentially that of a usual classical training step for a
feed-forward network with nH1 + H1H2 + H2 parameters, namely,

cc
discr train =

{
CSPSA · cc

discr eval for SPSA
CAdam · [nH1 + H1H2 + H2] · cc

discr eval for Adam.
(7)

Therefore, by multiplying by the number of steps, which is the number b of batches
times the number j of epochs to reach convergence, we obtain that the total training cost
is essentially

Quantum Rep. 2022, 4 90

cc
train = j · b · (cc

gen train + cc
discr train), (8)

cq
train = j · b · (cq

gen train + cq
discr train). (9)

Equations (2), (8), and (9) fully describe the loading and training complexity through
qGANs. An asymptotic study of such quantities would require assumptions on the scaling
of k, H1, H2, and j as functions of n, as well as the identification of the bottleneck,
either in the classical or in the quantum processing. Unfortunately we cannot infer
similar information after our study, as we necessarily focused on small values of n due to
technological constraints.

6. Conclusions

To conclude, we improved the state-of-the-art accuracy of approximate distributions
obtained after the qGAN training by means of a fine tuning of the hyper-parameters, as
well as by adjusting the discriminator network. We discussed the choice of two different
optimizers, showing that SPSA achieves faster convergence at the cost of a loss in accuracy,
which we consider insufficient according to our metrics, as the p-values obtained for
3 qubits are always below 0.5 when SPSA is applied in the generator and below 0.001 when
it is applied to the discriminator, while Adam achieves values over 0.95. The increase in the
number of qubits implies a significant decrease in the accuracy measured by the χ2 test for
goodness of fit. The random initial parameters for training strongly affect the ability to reach
an optimal rather than a sub-optimal accuracy. Indeed, attempting the training multiple
times with different initial parameters is a major strategy to reach satisfactory outcomes,
and is even more important than fine tuning the hyper-parameters. We also highlighted a
peculiar phenomenon of a net separation of the runs achieving optimal accuracy, whose
p-values are clustered far away from sub-optimal runs, and provided a first qualitative
analysis, suggesting that an elbow in parameters before convergence could be an indicator
of an optimal run, while slow, oscillatory behaviors are likely symptoms of sub-optimal
runs. Our improved results were achieved by means of a testing campaign, as well as a
slight redesign of the discriminative network. The modification of the discriminator also
allowed us to treat univariate and multivariate distributions similarly, thus giving value to
our study in the context of multivariates.

Given the relatively small size of the problem we could test, we necessarily focused on
memorization (the ability to fully replicate a data set), rather than generalization (the ability
to produce data that resemble those in the training data set, producing realistic but unseen
data). It is known for classical GANs that memorization is harder than generalization and
generally discouraged [12,62].

As a consequence, natural research paths for the future are the validation of the results
with a higher number of qubits and a scaling study.

Author Contributions: Conceptualization, G.A. and E.P.; software, G.A.; validation, E.P.; writing—
original draft preparation, G.A.; writing—review and editing, E.P.; supervision, E.P. All authors have
read and agreed to the published version of the manuscript.

Funding: The access to the IBM Quantum Research Program was granted by IBM.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: The authors are thankful for the access to the IBM Quantum Researchers
Program. G.A. is grateful to Christa Zoufal for the profitable conversations.

Conflicts of Interest: The authors declare no conflict of interest.

Quantum Rep. 2022, 4 91

Appendix A. Tuning a qGAN

When trying to implement a qGAN for a specific application, one needs to identify the
‘optimal’ setting so that the trained circuit closely approximates the target distribution. Here,
optimality is defined at least by two conflicting metrics: training time and approximation
quality. On one hand, the training should be as fast as possible, meaning that a high
probability of convergence is targeted, together with a low number of convergence epochs
j. On the other hand, the generated distribution should resemble the original one as closely
as possible, so we want a high p-value for accepting the trained circuit. The testing policies
and metrics are defined more precisely in Section 5 and particularly in Section 5.2.

Appendix A.1. Summary of Choices and Tunable Degrees of Freedom

The generator and discriminator size are levers that affect the training process quality.
The number n of qubits impacts on the input size of the discriminator and the output of
the generator. As discussed in Section 4.1, the generator is a quantum circuit composed
by two types of layers (see Figure 1d). In a rotation layer, single-qubit rotations with free
parameters are applied to all qubits. In an entanglement layer, selected qubits are coupled
through entangling gates. Rotation layers and entanglement layers follow one another
multiple times, so that the generator size is driven by the number k of repetitions. The
discriminator instead is a classical neural network, with two hidden layers (see Section 4.2).
Its size depends on the number of nodes H1 and H2 in the hidden layers.

As a consequence, in order to tune the setting of a qGAN for a given target data set,
one wants to study the optimal j, k, H1 and H2 by varying n. As well as in classical machine
learning, the training of a qGAN requires the execution of a training algorithm, which is
a classical optimizer, in line with the state of the art [46]. This means that the results are
strongly affected by the choice of the optimizer, both in terms of quality and time. Therefore,
we must care about the optimizer used and its main hyper-parameters: specifically, the
learning rates and betas for the Adam AMSGRAD optimizer, and the learning rate and
perturbation for the SPSA optimizer, respectively. Lastly, given the probabilistic nature of
quantum measurements, the number of shots s (that is, the number of executions of the
quantum circuit) affects the result, as well. Refer to Section 5.3 for more details.

Appendix A.2. The Testing Campaign

The tuning of the qGAN is performed through a testing campaign, articulated in
different test sets. Each test set is characterized by some fixed settings and some free
hyper-parameters: for instance, test set A performs a sensitivity analysis of the generator
and discriminator learning rates for the 3 qubit case, while keeping fixed the optimizers
and the network size, as well as the number of maximum allowed epochs and the number
of shots. Each test set, then, is composed of multiple test cases: in the example of test set A,
a specific test case has lrgen = 0.001 and lrdiscr = 0.001. Finally, each test case is repeated 10
times, so that the 10 runs differ by various choices of the random seed, affecting the starting
initialization of the network parameters, the random behavior of the optimizers and the
randomness of simulated quantum measurements.

The list of the main test sets is contained in Table A1 and commented in the remainder
of the section.

Quantum Rep. 2022, 4 92

Table A1. The enumeration of the most relevant tests. Every test set provides a sensitivity analysis
over some parameters, marked with a star (*) in the table.

Test Set n k H1 H2 Generator Optimizer Discriminator Optimizer Max Epochs Shots

A 3 1 8 16 Adam, lr = *, β1 = 0.7, β2 = 0.99 Adam, lr = *, β1 = 0.7, β2 = 0.99 2000 2000
B 3 1 * * Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 2000 2000
C 3 1 * * Adam, lr = 0.5× 10−3, β1 = 0.7, β2 = 0.99 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 2000 2000
D 3 1 * * Adam, lr = 0.5× 10−3, β1 = 0.9, β2 = 0.99 Adam, lr = 10−3, β1 = 0.9, β2 = 0.99 2000 2000
E 3 1 8 8 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 2000 *
F 3 1 8 8 SPSA, lr = *, perturb = * Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 10000 2000
G 3 1 8 8 SPSA, lr = 10−3, perturb = 10−2 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 10,000 *
H 3 1 8 8 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 SPSA, lr = *, perturb = * 10,000 2000
I 3 1 8 8 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 SPSA, lr = 10−3, perturb = 10−2 10,000 *
J 4 1 * * Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 2000 2000
K 4 1 32 16 Adam, lr = *, β1 = 0.7, β2 = 0.99 Adam, lr = *, β1 = 0.7, β2 = 0.99 2000 2000
L 4 1 32 16 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 Adam, lr = 10−3, β1 = 0.7, β2 = 0.99 2000 *

Table A2. Test cases used in Section 4.4 are selected from tests in Table A1.

Case Originating Test Set

a. Baseline B with (H1, H2) = (8, 8)
b. Big discriminator size B with (H1, H2) = (128, 128)

c. Low generator learning rate C with (H1, H2) = (8, 8)
d. Many shots E with shots = 8000

e. SPSA in generator F with lr = 0.01 and ratio = 0.1

Table A3. Each run used in Section 5.2 is selected from the 10 runs in the specified test case of
Table A1.

Run Originating Test Set

(a) Divergent B with (H1, H2) = (4, 16)
(b) Oscillatory B with (H1, H2) = (128, 16)

(c) Poor solution quality B with (H1, H2) = (256, 256)
(d) Good solution quality B with (H1, H2) = (32, 128)

Let us start with the case of n = 3 qubits and, specifically, with the Adam optimizer.
Figure A1 shows a fine tuning of the learning rates for fixed (H1, H2) = (8, 16), showing
that a discriminator learning rate as low as 5× 10−4 provides very unlikely convergence.
Compared to the other scenarios, a discriminator learning rate of 10−3 provides better
results in terms of the p-value. Then, we choose the generator learning rate: in this case,
both 10−3 and 5× 10−4 are good options, with the latter being more dispersed around
the mean.

Consequently, in the test sets B (Figure A2) and C (Figure A4), we focus respectively
on those values of learning rates, and we try to observe consistency when changing H1
and H2. The outcome is that both 10−3 and 5× 10−4 are confirmed to be good values for
the generator learning rate, with the former being more prone to speed and the second to
quality, as one expects. A small network size (H1 = 4 or H2 = 4) provides much lower
convergence probabilities, and this effect is more visible with lrgen = 5× 10−4 than 10−3.
Interestingly though, beyond the critical value of H1, H2 ≥ 8, further increasing the size of
the network slightly reduces the convergence epochs, but does not substantially improve
on the result quality.

Quantum Rep. 2022, 4 93
19 of 35

cvg 0.0005 0.001 0.002

0.0005 2 8 9
0.001 3 9 10
0.002 4 9 10

(a) Converging runs, out of 10.

epochs 0.0005 0.001 0.002

0.0005 1,588 862 1,067
0.001 1,359 681 747
0.002 963 839 396

(b) Number of epochs before convergence, on average.

p avg 0.0005 0.001 0.002

0.0005 0.192 0.451 0.384
0.001 0.315 0.367 0.171
0.002 0.017 0.332 0.249

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 0.0005 0.001 0.002

0.0005 0.383 0.939 0.567
0.001 0.730 0.927 0.385
0.002 0.051 0.816 0.857

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(0.0005, 0.0005)
(0.0005, 0.001)
(0.0005, 0.002)
(0.001, 0.0005)

(0.001, 0.001)
(0.001, 0.002)

(0.002, 0.0005)
(0.002, 0.001)
(0.002, 0.002)

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(0.0005, 0.0005)
(0.0005, 0.001)
(0.0005, 0.002)
(0.001, 0.0005)

(0.001, 0.001)
(0.001, 0.002)

(0.002, 0.0005)
(0.002, 0.001)
(0.002, 0.002)

(f) Visual representation of the p-value.

Figure A1. The test set A provides a sensitivity analysis on the learning rates for Adam. In Subfigures A1a-A1d the rows represent the
generator learning rate, and the columns represent the discriminator learning rate. In Subfigures A1e-A1f, the couples on the vertical
axis are (lrgen, lrdiscr), marker shapes represent lrgen and marker colors represent lrdiscr.

(a) (b)

19 of 35

cvg 0.0005 0.001 0.002

0.0005 2 8 9
0.001 3 9 10
0.002 4 9 10

(a) Converging runs, out of 10.

epochs 0.0005 0.001 0.002

0.0005 1,588 862 1,067
0.001 1,359 681 747
0.002 963 839 396

(b) Number of epochs before convergence, on average.

p avg 0.0005 0.001 0.002

0.0005 0.192 0.451 0.384
0.001 0.315 0.367 0.171
0.002 0.017 0.332 0.249

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 0.0005 0.001 0.002

0.0005 0.383 0.939 0.567
0.001 0.730 0.927 0.385
0.002 0.051 0.816 0.857

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(0.0005, 0.0005)
(0.0005, 0.001)
(0.0005, 0.002)
(0.001, 0.0005)

(0.001, 0.001)
(0.001, 0.002)

(0.002, 0.0005)
(0.002, 0.001)
(0.002, 0.002)

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(0.0005, 0.0005)
(0.0005, 0.001)
(0.0005, 0.002)
(0.001, 0.0005)

(0.001, 0.001)
(0.001, 0.002)

(0.002, 0.0005)
(0.002, 0.001)
(0.002, 0.002)

(f) Visual representation of the p-value.

Figure A1. The test set A provides a sensitivity analysis on the learning rates for Adam. In Subfigures A1a-A1d the rows represent the
generator learning rate, and the columns represent the discriminator learning rate. In Subfigures A1e-A1f, the couples on the vertical
axis are (lrgen, lrdiscr), marker shapes represent lrgen and marker colors represent lrdiscr.

(c) (d)

18 of 34

B. Best run isolation: a deeper dive

We already highlighted that the best runs with Adam AMSGRAD obtain p-values
greater than 0.8, and are remarkably separated from sub-optimal runs, whose p-values
lie under 0.6. An early identification of the best runs, during the training, would allow to
iteratively restart the process, in order to increase the success rate. Consequently we are
interested in understanding if any feature of the training process can be used as a predictor.

As a qualitative study case, we focus on the case (H1, H2) = (64, 8) from test set B,
visualized by the red pentagons in Figure A2f. The case is interesting because there is a
relevant number of optimal runs, namely three. Figure A14 represents the training process
of the three optimal cases (achieving a p-value of 0.9450, 0.9163, and 0.9016, respectively),
and of three archetype sub-optimal cases (with p-values 0.3029, 0.2744, and 0.3610, respec-
tively). The analysis suggests that optimal runs have an elbow in the parameters right at the
time of convergence, while sub-optimal runs have either slow convergence, or oscillatory
behaviors around the convergence value, or residual dynamics after convergence.

cvg 0.0005 0.001 0.002

0.0005 2 8 9
0.001 3 9 10
0.002 4 9 10

(a) Converging runs, out of 10.

epochs 0.0005 0.001 0.002

0.0005 1588 862 1067
0.001 1359 681 747
0.002 963 839 396

(b) Number of epochs before convergence, on average.

p avg 0.0005 0.001 0.002

0.0005 0.192 0.451 0.384
0.001 0.315 0.367 0.171
0.002 0.017 0.332 0.249

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 0.0005 0.001 0.002

0.0005 0.383 0.939 0.567
0.001 0.730 0.927 0.385
0.002 0.051 0.816 0.857

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1000 1250 1500 1750 2000

(0.0005, 0.0005)
(0.0005, 0.001)
(0.0005, 0.002)
(0.001, 0.0005)

(0.001, 0.001)
(0.001, 0.002)

(0.002, 0.0005)
(0.002, 0.001)
(0.002, 0.002)

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(0.0005, 0.0005)
(0.0005, 0.001)
(0.0005, 0.002)
(0.001, 0.0005)

(0.001, 0.001)
(0.001, 0.002)

(0.002, 0.0005)
(0.002, 0.001)
(0.002, 0.002)

(f) Visual representation of the p-value.

Figure A1. The test set A provides a sensitivity analysis on the learning rates for Adam. In Subfigures A1a-A1d the rows represent the
generator learning rate, and the columns represent the discriminator learning rate. In Subfigures A1e-A1f, the couples on the vertical
axis are (lrgen, lrdiscr), marker shapes represent lrgen and marker colors represent lrdiscr.

(e)

19 of 35

cvg 0.0005 0.001 0.002

0.0005 2 8 9
0.001 3 9 10
0.002 4 9 10

(a) Converging runs, out of 10.

epochs 0.0005 0.001 0.002

0.0005 1,588 862 1,067
0.001 1,359 681 747
0.002 963 839 396

(b) Number of epochs before convergence, on average.

p avg 0.0005 0.001 0.002

0.0005 0.192 0.451 0.384
0.001 0.315 0.367 0.171
0.002 0.017 0.332 0.249

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 0.0005 0.001 0.002

0.0005 0.383 0.939 0.567
0.001 0.730 0.927 0.385
0.002 0.051 0.816 0.857

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(0.0005, 0.0005)
(0.0005, 0.001)
(0.0005, 0.002)
(0.001, 0.0005)

(0.001, 0.001)
(0.001, 0.002)

(0.002, 0.0005)
(0.002, 0.001)
(0.002, 0.002)

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(0.0005, 0.0005)
(0.0005, 0.001)
(0.0005, 0.002)
(0.001, 0.0005)

(0.001, 0.001)
(0.001, 0.002)

(0.002, 0.0005)
(0.002, 0.001)
(0.002, 0.002)

(f) Visual representation of the p-value.

Figure A1. The test set A provides a sensitivity analysis on the learning rates for Adam. In Subfigures A1a-A1d the rows represent the
generator learning rate, and the columns represent the discriminator learning rate. In Subfigures A1e-A1f, the couples on the vertical
axis are (lrgen, lrdiscr), marker shapes represent lrgen and marker colors represent lrdiscr.

(f)

Figure A1. Test set A provides a sensitivity analysis on the learning rates for Adam. (a–d) The rows
represent the generator learning rate, and the columns represent the discriminator learning rate.
(e,f) The couples on the vertical axis are (lrgen, lrdiscr). The marker shapes represent lrgen and marker
colors represent lrdiscr. (a) Converging runs, out of 10. (b) Number of epochs before convergence,
on average. (c) p-value for the χ2 test once convergence is reached (average over converging runs).
(d) p-value for the χ2 test once convergence is reached (best run). (e) Visual representation of the
epochs before convergence. (f) Visual representation of the p-value.

20 of 35

cvg 4 8 16 32 64 128 256

4 6 2 6 6 8 10 9
8 4 9 9 9 9 10 9

16 9 9 9 10 10 10 8
32 9 10 10 10 10 9 10
64 10 10 10 10 9 10 10
128 10 9 10 10 10 9 10
256 9 10 10 9 10 10 10

(a) Converging runs, out of 10.

epochs 4 8 16 32 64 128 256

4 920 1,254 1,032 1,052 984 720 724
8 811 881 674 617 636 726 512
16 833 1,032 689 857 756 367 534
32 1,061 645 659 832 531 516 479
64 763 712 548 523 600 756 476

128 518 542 660 529 699 475 444
256 548 556 546 640 453 706 581

(b) Number of epochs before convergence, on average.

p avg 4 8 16 32 64 128 256

4 0.218 0.442 0.431 0.396 0.362 0.333 0.390
8 0.105 0.320 0.282 0.511 0.412 0.564 0.411

16 0.306 0.424 0.259 0.398 0.503 0.314 0.396
32 0.252 0.287 0.334 0.446 0.381 0.489 0.367
64 0.311 0.543 0.305 0.295 0.338 0.405 0.446
128 0.350 0.360 0.362 0.498 0.315 0.450 0.375
256 0.416 0.496 0.426 0.459 0.567 0.395 0.366

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 4 8 16 32 64 128 256

4 0.924 0.581 0.934 0.810 0.832 0.826 0.836
8 0.272 0.845 0.523 0.949 0.524 0.949 0.949
16 0.905 0.882 0.503 0.939 0.944 0.521 0.949
32 0.835 0.528 0.531 0.930 0.947 0.944 0.538
64 0.466 0.945 0.532 0.510 0.535 0.530 0.930

128 0.526 0.542 0.930 0.945 0.540 0.951 0.940
256 0.952 0.942 0.926 0.909 0.951 0.536 0.951

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(4, 4)
(4, 8)

(4, 16)
(4, 32)
(4, 64)

(4, 128)
(4, 256)

(8, 4)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(8, 256)

(16, 4)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(16, 256)

(32, 4)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(32, 256)

(64, 4)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(64, 256)

(128, 4)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)
(128, 256)

(256, 4)
(256, 8)

(256, 16)
(256, 32)
(256, 64)

(256, 128)
(256, 256)

(e) Visual representation of the epochs before convergence.

Figure A2. (Figure continues in the next page. See caption at the end of the Figure.)

(a) (b)

20 of 35

cvg 4 8 16 32 64 128 256

4 6 2 6 6 8 10 9
8 4 9 9 9 9 10 9

16 9 9 9 10 10 10 8
32 9 10 10 10 10 9 10
64 10 10 10 10 9 10 10
128 10 9 10 10 10 9 10
256 9 10 10 9 10 10 10

(a) Converging runs, out of 10.

epochs 4 8 16 32 64 128 256

4 920 1,254 1,032 1,052 984 720 724
8 811 881 674 617 636 726 512
16 833 1,032 689 857 756 367 534
32 1,061 645 659 832 531 516 479
64 763 712 548 523 600 756 476

128 518 542 660 529 699 475 444
256 548 556 546 640 453 706 581

(b) Number of epochs before convergence, on average.

p avg 4 8 16 32 64 128 256

4 0.218 0.442 0.431 0.396 0.362 0.333 0.390
8 0.105 0.320 0.282 0.511 0.412 0.564 0.411

16 0.306 0.424 0.259 0.398 0.503 0.314 0.396
32 0.252 0.287 0.334 0.446 0.381 0.489 0.367
64 0.311 0.543 0.305 0.295 0.338 0.405 0.446
128 0.350 0.360 0.362 0.498 0.315 0.450 0.375
256 0.416 0.496 0.426 0.459 0.567 0.395 0.366

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 4 8 16 32 64 128 256

4 0.924 0.581 0.934 0.810 0.832 0.826 0.836
8 0.272 0.845 0.523 0.949 0.524 0.949 0.949
16 0.905 0.882 0.503 0.939 0.944 0.521 0.949
32 0.835 0.528 0.531 0.930 0.947 0.944 0.538
64 0.466 0.945 0.532 0.510 0.535 0.530 0.930

128 0.526 0.542 0.930 0.945 0.540 0.951 0.940
256 0.952 0.942 0.926 0.909 0.951 0.536 0.951

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(4, 4)
(4, 8)

(4, 16)
(4, 32)
(4, 64)

(4, 128)
(4, 256)

(8, 4)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(8, 256)
(16, 4)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(16, 256)

(32, 4)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(32, 256)

(64, 4)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(64, 256)
(128, 4)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)
(128, 256)

(256, 4)
(256, 8)

(256, 16)
(256, 32)
(256, 64)

(256, 128)
(256, 256)

(e) Visual representation of the epochs before convergence.

Figure A2. (Figure continues in the next page. See caption at the end of the Figure.)

(c) (d)

Figure A2. Cont.

Quantum Rep. 2022, 4 94

19 of 34

cvg 4 8 16 32 64 128 256

4 6 2 6 6 8 10 9
8 4 9 9 9 9 10 9

16 9 9 9 10 10 10 8
32 9 10 10 10 10 9 10
64 10 10 10 10 9 10 10
128 10 9 10 10 10 9 10
256 9 10 10 9 10 10 10

(a) Converging runs, out of 10.

epochs 4 8 16 32 64 128 256

4 920 1254 1032 1052 984 720 724
8 811 881 674 617 636 726 512
16 833 1032 689 857 756 367 534
32 1061 645 659 832 531 516 479
64 763 712 548 523 600 756 476

128 518 542 660 529 699 475 444
256 548 556 546 640 453 706 581

(b) Number of epochs before convergence, on average.

p avg 4 8 16 32 64 128 256

4 0.218 0.442 0.431 0.396 0.362 0.333 0.390
8 0.105 0.320 0.282 0.511 0.412 0.564 0.411

16 0.306 0.424 0.259 0.398 0.503 0.314 0.396
32 0.252 0.287 0.334 0.446 0.381 0.489 0.367
64 0.311 0.543 0.305 0.295 0.338 0.405 0.446
128 0.350 0.360 0.362 0.498 0.315 0.450 0.375
256 0.416 0.496 0.426 0.459 0.567 0.395 0.366

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 4 8 16 32 64 128 256

4 0.924 0.581 0.934 0.810 0.832 0.826 0.836
8 0.272 0.845 0.523 0.949 0.524 0.949 0.949
16 0.905 0.882 0.503 0.939 0.944 0.521 0.949
32 0.835 0.528 0.531 0.930 0.947 0.944 0.538
64 0.466 0.945 0.532 0.510 0.535 0.530 0.930

128 0.526 0.542 0.930 0.945 0.540 0.951 0.940
256 0.952 0.942 0.926 0.909 0.951 0.536 0.951

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1000 1250 1500 1750 2000

(4, 4)
(4, 8)

(4, 16)
(4, 32)
(4, 64)

(4, 128)
(4, 256)

(8, 4)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(8, 256)

(16, 4)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(16, 256)

(32, 4)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(32, 256)

(64, 4)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(64, 256)

(128, 4)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)
(128, 256)

(256, 4)
(256, 8)

(256, 16)
(256, 32)
(256, 64)

(256, 128)
(256, 256)

(e) Visual representation of the epochs before convergence.

Figure A2. (Figure continues in the next page. See caption at the end of the Figure.)

(e)

21 of 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(4, 4)
(4, 8)

(4, 16)
(4, 32)
(4, 64)

(4, 128)
(4, 256)

(8, 4)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(8, 256)

(16, 4)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(16, 256)

(32, 4)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(32, 256)

(64, 4)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(64, 256)

(128, 4)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)
(128, 256)

(256, 4)
(256, 8)

(256, 16)
(256, 32)
(256, 64)

(256, 128)
(256, 256)

(f) Visual representation of the p-value.

Figure A2. The test set B provides a sensitivity analysis on the discriminator size. In Subfigures A2a-A2d the rows represent H1 and
the columns H2. In Subfigures A2e-A2f, the couples on the vertical axis are (H1, H2), marker shapes represent H1 and marker colors
represent H2.

(f)

Figure A2. Test set B provides a sensitivity analysis on the discriminator size. (a–d) The rows
represent H1 and the columns H2. (e,f) The couples on the vertical axis are (H1, H2). Marker shapes
represent H1 and marker colors represent H2. (a) Converging runs, out of 10. (b) Number of epochs
before convergence, on average. (c) p-value for the χ2 test once convergence is reached (average
over converging runs). (d) p-value for the χ2 test once convergence is reached (best run). (e) Visual
representation of the epochs before convergence. (f) Visual representation of the p-value.

Quantum Rep. 2022, 4 95

Another very notable remark arises by looking at the distribution of the p-values. Most
runs fall in the area of p ≤ 0.6, but there is a significant number of spikes well isolated in
the interval p ∈ [0.9, 1]. This means that, depending on the randomly initialized conditions,
the optimizer may or may not get close to a global optimum. The number of good spikes
is not clearly related to the network size, according to our findings. As a consequence,
with this problem dimension, it is more relevant to run multiple independent training runs,
rather than spending resources in each run.

22 of 35

(H1,H2) mean KS std dev KS mean RE std dev RE

(4,4) 0.0602 0.0466 0.0788 0.0850
(4,8) 0.0497 0.0243 0.0273 0.0304
(4,16) 0.0552 0.0537 0.0635 0.1210
(4,32) 0.0279 0.0235 0.0189 0.0338
(4,64) 0.0318 0.0117 0.0059 0.0027

(4,128) 0.0291 0.0105 0.0076 0.0037
(4,256) 0.0315 0.0138 0.0062 0.0030
(8,4) 0.0683 0.0378 0.0815 0.1148
(8,8) 0.0296 0.0149 0.0082 0.0071
(8,16) 0.0225 0.0087 0.0071 0.0026
(8,32) 0.0282 0.0126 0.0075 0.0028
(8,64) 0.0294 0.0096 0.0065 0.0034

(8,128) 0.0223 0.0092 0.0077 0.0041
(8,256) 0.0243 0.0082 0.0077 0.0026
(16,4) 0.0277 0.0068 0.0063 0.0029
(16,8) 0.0254 0.0090 0.0066 0.0038

(16,16) 0.0277 0.0095 0.0089 0.0049
(16,32) 0.0259 0.0057 0.0074 0.0036
(16,64) 0.0268 0.0109 0.0075 0.0048

(16,128) 0.0291 0.0079 0.0067 0.0033
(16,256) 0.0253 0.0110 0.0081 0.0043

(32,4) 0.0307 0.0160 0.0096 0.0043
(32,8) 0.0272 0.0080 0.0073 0.0038

(32,16) 0.0209 0.0108 0.0079 0.0029
(32,32) 0.0243 0.0065 0.0051 0.0012
(32,64) 0.0235 0.0074 0.0071 0.0035

(32,128) 0.0249 0.0088 0.0057 0.0036
(32,256) 0.0230 0.0102 0.0060 0.0033

(64,4) 0.0275 0.0084 0.0089 0.0047
(64,8) 0.0262 0.0106 0.0062 0.0030

(64,16) 0.0322 0.0147 0.0073 0.0026
(64,32) 0.0329 0.0183 0.0126 0.0154
(64,64) 0.0229 0.0081 0.0053 0.0027

(64,128) 0.0236 0.0067 0.0065 0.0022
(64,256) 0.0295 0.0252 0.0129 0.0231
(128,4) 0.0277 0.0082 0.0082 0.0042
(128,8) 0.0271 0.0115 0.0072 0.0033

(128,16) 0.0366 0.0140 0.0094 0.0065
(128,32) 0.0260 0.0113 0.0070 0.0038
(128,64) 0.0299 0.0090 0.0092 0.0049
(128,128) 0.0260 0.0071 0.0068 0.0037
(128,256) 0.0272 0.0086 0.0074 0.0039
(256,4) 0.0286 0.0144 0.0077 0.0049
(256,8) 0.0288 0.0227 0.0086 0.0116

(256,16) 0.0304 0.0156 0.0069 0.0028
(256,32) 0.0282 0.0095 0.0073 0.0044
(256,64) 0.0253 0.0113 0.0059 0.0028
(256,128) 0.0310 0.0108 0.0078 0.0037
(256,256) 0.0241 0.0082 0.0095 0.0042

Grand total 0.0299 0.0183 0.0123 0.0313

Figure A3. The values of the Kolmogorov-Smirinov statistic and the relative entropy, at the end of the training, from test set B. For
both metrics, the lower the better. Notice that we included in the sample also non-convergent runs.Figure A3. The values of the Kolmogorov–Smirinov statistic and the relative entropy at the end of

the training, from test set B. For both metrics, the lower the better. Notice that we included in the
sample also non-convergent runs.

Quantum Rep. 2022, 4 96
23 of 35

cvg 4 8 16 32 64 128

4 3 0 4 7 8 9
8 5 9 9 8 9 7

16 7 9 8 10 9 9
32 6 9 9 8 8 8
64 9 8 9 9 9 10
128 9 10 10 9 9 8

(a) Converging runs, out of 10.

epochs 4 8 16 32 64 128

4 1,207 831 1,219 1,162 1,031
8 1,485 1,166 1,074 831 580 707
16 1,050 1,028 818 964 869 884
32 1,191 963 707 1,027 1,065 721
64 998 915 894 893 956 729

128 1,110 941 855 823 842 467

(b) Number of epochs before convergence, on average.

p avg 4 8 16 32 64 128

4 0.315 0.382 0.346 0.357 0.495
8 0.390 0.278 0.564 0.405 0.262 0.512

16 0.582 0.468 0.447 0.538 0.468 0.446
32 0.306 0.317 0.474 0.419 0.316 0.362
64 0.459 0.473 0.447 0.415 0.385 0.633
128 0.352 0.355 0.402 0.413 0.495 0.254

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 4 8 16 32 64 128

4 0.944 0.945 0.552 0.564 0.958
8 0.930 0.890 0.954 0.541 0.556 0.958
16 0.927 0.957 0.957 0.955 0.952 0.552
32 0.415 0.566 0.957 0.938 0.561 0.948
64 0.930 0.952 0.960 0.943 0.567 0.958

128 0.560 0.544 0.955 0.954 0.934 0.552

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(4, 4)
(4, 8)

(4, 16)
(4, 32)
(4, 64)

(4, 128)
(8, 4)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(16, 4)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(32, 4)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(64, 4)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(128, 4)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)

(e) Visual representation of the epochs before convergence.

Figure A4. (Figure continues in the next page. See caption at the end of the Figure.)

(a) (b)

23 of 35

cvg 4 8 16 32 64 128

4 3 0 4 7 8 9
8 5 9 9 8 9 7

16 7 9 8 10 9 9
32 6 9 9 8 8 8
64 9 8 9 9 9 10
128 9 10 10 9 9 8

(a) Converging runs, out of 10.

epochs 4 8 16 32 64 128

4 1,207 831 1,219 1,162 1,031
8 1,485 1,166 1,074 831 580 707
16 1,050 1,028 818 964 869 884
32 1,191 963 707 1,027 1,065 721
64 998 915 894 893 956 729

128 1,110 941 855 823 842 467

(b) Number of epochs before convergence, on average.

p avg 4 8 16 32 64 128

4 0.315 0.382 0.346 0.357 0.495
8 0.390 0.278 0.564 0.405 0.262 0.512

16 0.582 0.468 0.447 0.538 0.468 0.446
32 0.306 0.317 0.474 0.419 0.316 0.362
64 0.459 0.473 0.447 0.415 0.385 0.633
128 0.352 0.355 0.402 0.413 0.495 0.254

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 4 8 16 32 64 128

4 0.944 0.945 0.552 0.564 0.958
8 0.930 0.890 0.954 0.541 0.556 0.958
16 0.927 0.957 0.957 0.955 0.952 0.552
32 0.415 0.566 0.957 0.938 0.561 0.948
64 0.930 0.952 0.960 0.943 0.567 0.958

128 0.560 0.544 0.955 0.954 0.934 0.552

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(4, 4)
(4, 8)

(4, 16)
(4, 32)
(4, 64)

(4, 128)
(8, 4)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(16, 4)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(32, 4)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(64, 4)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(128, 4)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)

(e) Visual representation of the epochs before convergence.

Figure A4. (Figure continues in the next page. See caption at the end of the Figure.)

(c) (d)

23 of 35

cvg 4 8 16 32 64 128

4 3 0 4 7 8 9
8 5 9 9 8 9 7

16 7 9 8 10 9 9
32 6 9 9 8 8 8
64 9 8 9 9 9 10
128 9 10 10 9 9 8

(a) Converging runs, out of 10.

epochs 4 8 16 32 64 128

4 1,207 831 1,219 1,162 1,031
8 1,485 1,166 1,074 831 580 707
16 1,050 1,028 818 964 869 884
32 1,191 963 707 1,027 1,065 721
64 998 915 894 893 956 729

128 1,110 941 855 823 842 467

(b) Number of epochs before convergence, on average.

p avg 4 8 16 32 64 128

4 0.315 0.382 0.346 0.357 0.495
8 0.390 0.278 0.564 0.405 0.262 0.512

16 0.582 0.468 0.447 0.538 0.468 0.446
32 0.306 0.317 0.474 0.419 0.316 0.362
64 0.459 0.473 0.447 0.415 0.385 0.633
128 0.352 0.355 0.402 0.413 0.495 0.254

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 4 8 16 32 64 128

4 0.944 0.945 0.552 0.564 0.958
8 0.930 0.890 0.954 0.541 0.556 0.958
16 0.927 0.957 0.957 0.955 0.952 0.552
32 0.415 0.566 0.957 0.938 0.561 0.948
64 0.930 0.952 0.960 0.943 0.567 0.958

128 0.560 0.544 0.955 0.954 0.934 0.552

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1000 1250 1500 1750 2000

(4, 4)
(4, 8)

(4, 16)
(4, 32)
(4, 64)

(4, 128)
(8, 4)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(16, 4)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(32, 4)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(64, 4)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(128, 4)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)

(e) Visual representation of the epochs before convergence.

Figure A4. (Figure continues in the next page. See caption at the end of the Figure.)

(e)

24 of 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(4, 4)
(4, 8)

(4, 16)
(4, 32)
(4, 64)

(4, 128)
(8, 4)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(16, 4)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(32, 4)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(64, 4)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(128, 4)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)

(f) Visual representation of the p-value.

Figure A4. The test set C provides a sensitivity analysis on the discriminator size. In Subfigures A4a-A4d the rows represent H1 and
the columns H2. In Subfigures A4e-A4f, the couples on the vertical axis are (H1, H2), marker shapes represent H1 and marker colors
represent H2.

(f)

Figure A4. Test set C provides a sensitivity analysis on the discriminator size. (a–d) The rows
represent H1 and the columns H2. (e,f) The couples on the vertical axis are (H1, H2). Marker shapes
represent H1 and marker colors represent H2. (a) Converging runs, out of 10. (b) Number of epochs
before convergence, on average. (c) p-value for the χ2 test once convergence is reached (average
over converging runs). (d) p-value for the χ2 test once convergence is reached (best run). (e) Visual
representation of the epochs before convergence. (f) Visual representation of the p-value.

Quantum Rep. 2022, 4 97

Test set D (in Figure A5) is derived from C by modifying the beta parameters. The new
setting does not provide dramatically different outcomes and, compared to the previous
one, it shows a preference for scenarios with high H1 and low H2.

25 of 35

cvg 8 16 32 64 128

4 3 2 3 8 7
8 5 6 9 7 7

16 5 7 9 8 9
32 10 9 6 9 9
64 9 7 10 8 8
128 9 9 8 10 9

(a) Converging runs, out of 10.

epochs 8 16 32 64 128

4 1,337 1,556 1,182 1,212 952
8 1,030 1,300 1,002 981 1,246
16 851 1,248 1,207 1,048 872
32 1,193 1,067 1,191 958 973
64 956 809 880 767 667

128 739 1,191 1,013 933 1,042

(b) Number of epochs before convergence, on average.

p avg 8 16 32 64 128

4 0.125 0.232 0.208 0.332 0.389
8 0.561 0.402 0.300 0.364 0.255

16 0.455 0.413 0.532 0.383 0.392
32 0.418 0.502 0.495 0.406 0.228
64 0.498 0.431 0.363 0.483 0.307
128 0.392 0.462 0.423 0.392 0.423

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 8 16 32 64 128

4 0.364 0.346 0.333 0.500 0.541
8 0.946 0.503 0.510 0.552 0.546
16 0.509 0.842 0.954 0.950 0.955
32 0.949 0.943 0.940 0.545 0.461
64 0.947 0.947 0.949 0.954 0.547

128 0.947 0.954 0.957 0.951 0.953

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(4, 8)
(4, 16)
(4, 32)
(4, 64)

(4, 128)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)

(e) Visual representation of the epochs before convergence.

Figure A5. (Figure continues in the next page. See caption at the end of the Figure.)

(a) (b)

25 of 35

cvg 8 16 32 64 128

4 3 2 3 8 7
8 5 6 9 7 7

16 5 7 9 8 9
32 10 9 6 9 9
64 9 7 10 8 8
128 9 9 8 10 9

(a) Converging runs, out of 10.

epochs 8 16 32 64 128

4 1,337 1,556 1,182 1,212 952
8 1,030 1,300 1,002 981 1,246
16 851 1,248 1,207 1,048 872
32 1,193 1,067 1,191 958 973
64 956 809 880 767 667

128 739 1,191 1,013 933 1,042

(b) Number of epochs before convergence, on average.

p avg 8 16 32 64 128

4 0.125 0.232 0.208 0.332 0.389
8 0.561 0.402 0.300 0.364 0.255

16 0.455 0.413 0.532 0.383 0.392
32 0.418 0.502 0.495 0.406 0.228
64 0.498 0.431 0.363 0.483 0.307
128 0.392 0.462 0.423 0.392 0.423

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 8 16 32 64 128

4 0.364 0.346 0.333 0.500 0.541
8 0.946 0.503 0.510 0.552 0.546
16 0.509 0.842 0.954 0.950 0.955
32 0.949 0.943 0.940 0.545 0.461
64 0.947 0.947 0.949 0.954 0.547

128 0.947 0.954 0.957 0.951 0.953

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(4, 8)
(4, 16)
(4, 32)
(4, 64)

(4, 128)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)

(e) Visual representation of the epochs before convergence.

Figure A5. (Figure continues in the next page. See caption at the end of the Figure.)

(c) (d)

25 of 35

cvg 8 16 32 64 128

4 3 2 3 8 7
8 5 6 9 7 7

16 5 7 9 8 9
32 10 9 6 9 9
64 9 7 10 8 8
128 9 9 8 10 9

(a) Converging runs, out of 10.

epochs 8 16 32 64 128

4 1,337 1,556 1,182 1,212 952
8 1,030 1,300 1,002 981 1,246
16 851 1,248 1,207 1,048 872
32 1,193 1,067 1,191 958 973
64 956 809 880 767 667

128 739 1,191 1,013 933 1,042

(b) Number of epochs before convergence, on average.

p avg 8 16 32 64 128

4 0.125 0.232 0.208 0.332 0.389
8 0.561 0.402 0.300 0.364 0.255

16 0.455 0.413 0.532 0.383 0.392
32 0.418 0.502 0.495 0.406 0.228
64 0.498 0.431 0.363 0.483 0.307
128 0.392 0.462 0.423 0.392 0.423

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 8 16 32 64 128

4 0.364 0.346 0.333 0.500 0.541
8 0.946 0.503 0.510 0.552 0.546
16 0.509 0.842 0.954 0.950 0.955
32 0.949 0.943 0.940 0.545 0.461
64 0.947 0.947 0.949 0.954 0.547

128 0.947 0.954 0.957 0.951 0.953

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1000 1250 1500 1750 2000

(4, 8)
(4, 16)
(4, 32)
(4, 64)

(4, 128)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)

(e) Visual representation of the epochs before convergence.

Figure A5. (Figure continues in the next page. See caption at the end of the Figure.)

(e)

26 of 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(4, 8)
(4, 16)
(4, 32)
(4, 64)

(4, 128)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)

(f) Visual representation of the p-value.

Figure A5. The test set D provides a sensitivity analysis on the discriminator size. In Subfigures A5a-A5d the rows represent H1 and
the columns H2. In Subfigures A5e-A5f, the couples on the vertical axis are (H1, H2), marker shapes represent H1 and marker colors
represent H2.

cvg 500 1000 2000 4000 8000

4 8 6 7 9

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

873 1,189 788 776 1,052

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.159 0.306 0.487 0.373 0.398

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.369 0.647 0.876 0.880 0.932

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500
1000
2000
4000
8000

(f) Visual representation of the p-value.

Figure A6. The test set E provides a sensitivity analysis on the number of shots s.

(f)

Figure A5. Test set D provides a sensitivity analysis on the discriminator size. (a–d) The rows
represent H1 and the columns H2. (e,f) The couples on the vertical axis are (H1, H2). The marker
shapes represent H1 and marker colors represent H2. (a) Converging runs, out of 10. (b) Number
of epochs before convergence, on average. (c) p-value for the χ2 test once convergence is reached
(average over converging runs). (d) p-value for the χ2 test once convergence is reached (best run).
(e) Visual representation of the epochs before convergence. (f) Visual representation of the p-value.

Quantum Rep. 2022, 4 98

The last parameter we test is the number of shots, that is, the number of times the
generator circuit is executed and measured at each evaluation of the generator (that happens
multiple times for each epoch). Test set E (in Figure A6) highlights that the effect on the
number of converging runs and convergence epochs is negligible, while the spikes of high
p-values appear to increase weakly with the number of epochs.

26 of 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(4, 8)
(4, 16)
(4, 32)
(4, 64)

(4, 128)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)

(f) Visual representation of the p-value.

Figure A5. The test set D provides a sensitivity analysis on the discriminator size. In Subfigures A5a-A5d the rows represent H1 and
the columns H2. In Subfigures A5e-A5f, the couples on the vertical axis are (H1, H2), marker shapes represent H1 and marker colors
represent H2.

cvg 500 1000 2000 4000 8000

4 8 6 7 9

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

873 1,189 788 776 1,052

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.159 0.306 0.487 0.373 0.398

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.369 0.647 0.876 0.880 0.932

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500
1000
2000
4000
8000

(f) Visual representation of the p-value.

Figure A6. The test set E provides a sensitivity analysis on the number of shots s.

(a) (b)

26 of 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(4, 8)
(4, 16)
(4, 32)
(4, 64)

(4, 128)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)

(f) Visual representation of the p-value.

Figure A5. The test set D provides a sensitivity analysis on the discriminator size. In Subfigures A5a-A5d the rows represent H1 and
the columns H2. In Subfigures A5e-A5f, the couples on the vertical axis are (H1, H2), marker shapes represent H1 and marker colors
represent H2.

cvg 500 1000 2000 4000 8000

4 8 6 7 9

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

873 1,189 788 776 1,052

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.159 0.306 0.487 0.373 0.398

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.369 0.647 0.876 0.880 0.932

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500
1000
2000
4000
8000

(f) Visual representation of the p-value.

Figure A6. The test set E provides a sensitivity analysis on the number of shots s.

(c) (d)

25 of 34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(4, 8)
(4, 16)
(4, 32)
(4, 64)

(4, 128)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)

(f) Visual representation of the p-value.

Figure A5. The test set D provides a sensitivity analysis on the discriminator size. In Subfigures A5a-A5d the rows represent H1 and
the columns H2. In Subfigures A5e-A5f, the couples on the vertical axis are (H1, H2), marker shapes represent H1 and marker colors
represent H2.

cvg 500 1000 2000 4000 8000

4 8 6 7 9

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

873 1189 788 776 1052

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.159 0.306 0.487 0.373 0.398

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.369 0.647 0.876 0.880 0.932

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1000 1250 1500 1750 2000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500
1000
2000
4000
8000

(f) Visual representation of the p-value.

Figure A6. The test set E provides a sensitivity analysis on the number of shots s.

(e)

26 of 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(4, 8)
(4, 16)
(4, 32)
(4, 64)

(4, 128)
(8, 8)

(8, 16)
(8, 32)
(8, 64)

(8, 128)
(16, 8)

(16, 16)
(16, 32)
(16, 64)

(16, 128)
(32, 8)

(32, 16)
(32, 32)
(32, 64)

(32, 128)
(64, 8)

(64, 16)
(64, 32)
(64, 64)

(64, 128)
(128, 8)

(128, 16)
(128, 32)
(128, 64)

(128, 128)

(f) Visual representation of the p-value.

Figure A5. The test set D provides a sensitivity analysis on the discriminator size. In Subfigures A5a-A5d the rows represent H1 and
the columns H2. In Subfigures A5e-A5f, the couples on the vertical axis are (H1, H2), marker shapes represent H1 and marker colors
represent H2.

cvg 500 1000 2000 4000 8000

4 8 6 7 9

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

873 1,189 788 776 1,052

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.159 0.306 0.487 0.373 0.398

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.369 0.647 0.876 0.880 0.932

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500
1000
2000
4000
8000

(f) Visual representation of the p-value.

Figure A6. The test set E provides a sensitivity analysis on the number of shots s.

(f)

Figure A6. Test set E provides a sensitivity analysis on the number of shots s. (a) Converging
runs, out of 10. (b) Number of epochs before convergence, on average. (c) p-value for the χ2

test once convergence is reached (average over converging runs). (d) p-value for the χ2 test once
convergence is reached (best run). (e) Visual representation of the epochs before convergence.
(f) Visual representation of the p-value.

As a conclusion on tests for Adam with n = 3, we can say that a good performance is a
p-value above 0.4 for the average run, and that for n = 3, we can often expect to find a best
run of p ≥ 0.9. Let us remark that we achieved significantly improved performance with
respect to the state of the art as an effect of a different definition of the generator network
(refer to Section 4.1) and of a better fine-tuning of the optimization hyper-parameters.
Indeed, as a benchmark, we calculated the Kolmogorov–Smirnov statistic and the relative
entropy of the different runs in Figure A3, for comparison with Table I of Ref. [8], providing
a value of mean KS equal to 0.0821, variance 0.0466, mean RE 0.0916 and variance 0.0678.
Our average performance is as low as 36% of the benchmark in terms of KS, considering all
runs in Figure A3, and 25% for the best choice (H1, H2) = (32, 16). It comes at a slightly
higher cost in terms of training time since our first layer of the generator is bigger than
those adopted in previous literature.

Let us now introduce the evaluation of the SPSA optimizer. Test set F (in Figure A7)
shows the effect of the adoption of SPSA in the generator and Adam in the discriminator.
We extended the maximum allowed numbers of epochs to 10,000, taking into account that
each epoch is faster with SPSA; see Section 5.4. With SPSA in the generator, we get to
convergence in a very small number of epochs if we choose the optimal learning rate of
0.01 and perturbation of 0.1. Unluckily, this result is obtained at the expense of a degraded
quality: with SPSA, the average p-value hardly goes above 0.1, and we have no example of
any good spike. The test set G (in Figure A8) shows the effect of different shot numbers; no
remarkable effect can be observed.

Quantum Rep. 2022, 4 99 27 of 35

cvg 0.0001 0.001 0.01

0.1 1 10 10
1 0 9 10
10 0 0 6

(a) Converging runs, out of 10.

epochs 0.0001 0.001 0.01

0.1 8,800 1,529 105
1 2,492 103
10 5,895

(b) Number of epochs before convergence, on average.

p avg 0.0001 0.001 0.01

0.1 0.136 0.102 0.092
1 0.035 0.058
10 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 0.0001 0.001 0.01

0.1 0.136 0.354 0.413
1 0.158 0.305
10 0.001

(d) p-value for the χ2 test once convergence is reached (best run).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

(0.0001, 10)
(0.0001, 1)

(0.0001, 0.1)
(0.001, 10)

(0.001, 1)
(0.001, 0.1)

(0.01, 10)
(0.01, 1)

(0.01, 0.1)

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(0.0001, 10)
(0.0001, 1)

(0.0001, 0.1)
(0.001, 10)

(0.001, 1)
(0.001, 0.1)

(0.01, 10)
(0.01, 1)

(0.01, 0.1)

(f) Visual representation of the p-value.

Figure A7. The test set F provides a sensitivity analysis on the parameters for SPSA in the generator. In Subfigures A7a-A7d the
rows represent the ratio between learning rate and perturbation factor, and the columns represent the generator learning rate. In
Subfigures A7e-A7f, the couples on the vertical axis are (lr, ratio), marker shapes represent the learning rate and marker colors
represent the ratio.

(a) (b)

27 of 35

cvg 0.0001 0.001 0.01

0.1 1 10 10
1 0 9 10
10 0 0 6

(a) Converging runs, out of 10.

epochs 0.0001 0.001 0.01

0.1 8,800 1,529 105
1 2,492 103
10 5,895

(b) Number of epochs before convergence, on average.

p avg 0.0001 0.001 0.01

0.1 0.136 0.102 0.092
1 0.035 0.058
10 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 0.0001 0.001 0.01

0.1 0.136 0.354 0.413
1 0.158 0.305
10 0.001

(d) p-value for the χ2 test once convergence is reached (best run).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

(0.0001, 10)
(0.0001, 1)

(0.0001, 0.1)
(0.001, 10)
(0.001, 1)

(0.001, 0.1)
(0.01, 10)
(0.01, 1)

(0.01, 0.1)

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(0.0001, 10)
(0.0001, 1)

(0.0001, 0.1)
(0.001, 10)
(0.001, 1)

(0.001, 0.1)
(0.01, 10)
(0.01, 1)

(0.01, 0.1)

(f) Visual representation of the p-value.

Figure A7. The test set F provides a sensitivity analysis on the parameters for SPSA in the generator. In Subfigures A7a-A7d the
rows represent the ratio between learning rate and perturbation factor, and the columns represent the generator learning rate. In
Subfigures A7e-A7f, the couples on the vertical axis are (lr, ratio), marker shapes represent the learning rate and marker colors
represent the ratio.

(c) (d)

26 of 34

cvg 0.0001 0.001 0.01

0.1 1 10 10
1 0 9 10
10 0 0 6

(a) Converging runs, out of 10.

epochs 0.0001 0.001 0.01

0.1 8800 1529 105
1 2492 103
10 5895

(b) Number of epochs before convergence, on average.

p avg 0.0001 0.001 0.01

0.1 0.136 0.102 0.092
1 0.035 0.058
10 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 0.0001 0.001 0.01

0.1 0.136 0.354 0.413
1 0.158 0.305
10 0.001

(d) p-value for the χ2 test once convergence is reached (best run).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

(0.0001, 10)
(0.0001, 1)

(0.0001, 0.1)
(0.001, 10)

(0.001, 1)
(0.001, 0.1)

(0.01, 10)
(0.01, 1)

(0.01, 0.1)

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(0.0001, 10)
(0.0001, 1)

(0.0001, 0.1)
(0.001, 10)

(0.001, 1)
(0.001, 0.1)

(0.01, 10)
(0.01, 1)

(0.01, 0.1)

(f) Visual representation of the p-value.

Figure A7. The test set F provides a sensitivity analysis on the parameters for SPSA in the generator. In Subfigures A7a-A7d the
rows represent the ratio between learning rate and perturbation factor, and the columns represent the generator learning rate. In
Subfigures A7e-A7f, the couples on the vertical axis are (lr, ratio), marker shapes represent the learning rate and marker colors
represent the ratio.

(e)

27 of 35

cvg 0.0001 0.001 0.01

0.1 1 10 10
1 0 9 10
10 0 0 6

(a) Converging runs, out of 10.

epochs 0.0001 0.001 0.01

0.1 8,800 1,529 105
1 2,492 103
10 5,895

(b) Number of epochs before convergence, on average.

p avg 0.0001 0.001 0.01

0.1 0.136 0.102 0.092
1 0.035 0.058
10 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 0.0001 0.001 0.01

0.1 0.136 0.354 0.413
1 0.158 0.305
10 0.001

(d) p-value for the χ2 test once convergence is reached (best run).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

(0.0001, 10)
(0.0001, 1)

(0.0001, 0.1)
(0.001, 10)

(0.001, 1)
(0.001, 0.1)

(0.01, 10)
(0.01, 1)

(0.01, 0.1)

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(0.0001, 10)
(0.0001, 1)

(0.0001, 0.1)
(0.001, 10)

(0.001, 1)
(0.001, 0.1)

(0.01, 10)
(0.01, 1)

(0.01, 0.1)

(f) Visual representation of the p-value.

Figure A7. The test set F provides a sensitivity analysis on the parameters for SPSA in the generator. In Subfigures A7a-A7d the
rows represent the ratio between learning rate and perturbation factor, and the columns represent the generator learning rate. In
Subfigures A7e-A7f, the couples on the vertical axis are (lr, ratio), marker shapes represent the learning rate and marker colors
represent the ratio.

(f)

Figure A7. Test set F provides a sensitivity analysis on the parameters for SPSA in the generator.
(a–d) The rows represent the ratio between learning rate and perturbation factor, and the columns
represent the generator learning rate. (e,f) The couples on the vertical axis are (lr, ratio). Marker
shapes represent the learning rate and marker colors represent the ratio. (a) Converging runs, out of
10. (b) Number of epochs before convergence, on average. (c) p-value for the χ2 test once convergence
is reached (average over converging runs). (d) p-value for the χ2 test once convergence is reached
(best run). (e) Visual representation of the epochs before convergence. (f) Visual representation of the
p-value.

If we conversely use SPSA in the discriminator and Adam in the generator, as shown
in the test set H (Figures A9 and A10), the solution quality degrades to a point that we
consider unacceptable.

Next, we turn to the case of n = 4 qubits. Starting again with Adam for both the
generator and the discriminator, in the test set J (Figure A11) we set the learning rate to
10−3 and we experiment with different values of H1 and H2. The p-values obtained are in
the order of 0.001, significantly worse than the ones we obtained for n = 3; indeed, all plots
dealing with the p-value for n = 4 are rescaled in the interval [0, 0.2]. By simply looking
at average and best values in Figure A11c,d, respectively, (H1, H2) = (32, 16) appears as
a particularly good choice, but with a deeper look to Figure A11f, this is due to a single,
spiky run, resulting in the effect of a particularly favorable random initialization: indeed,
the average p-value of the other nine runs with (H1, H2) = (32, 16) is below 0.001, in line
with the other experiments.

Quantum Rep. 2022, 4 100
28 of 35

cvg 500 1000 2000 4000 8000

10 10 10 10 10

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

1,670 1,015 1,366 1,745 2,021

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.085 0.040 0.053 0.091 0.043

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.288 0.138 0.236 0.236 0.149

(d) p-value for the χ2 test once convergence is reached (best run).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500
1000
2000
4000
8000

(f) Visual representation of the p-value.

Figure A8. The test set G provides a sensitivity analysis on the number of shots s, with SPSA in the generator.

cvg 10−7 10−6 10−5 10−4 10−3

0.01 2 1 N/A N/A N/A
0.1 7 5 5 5 0
1 2 1 5 3 1

(a) Converging runs, out of 10. Experiments marked with N/A
were excluded from the test set.

epochs 10−7 10−6 10−5 10−4 10−3

0.01 6,198 4,675 N/A N/A N/A
0.1 3,963 6,770 6,285 4,645
1 4,480 5,900 5,731 4,217 6,235

(b) Number of epochs before convergence, on average.

p avg 10−7 10−6 10−5 10−4 10−3

0.01 0.000 0.000 N/A N/A N/A
0.1 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 10−7 10−6 10−5 10−4 10−3

0.01 0.000 0.000 N/A N/A N/A
0.1 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000

(d) p-value for the χ2 test once convergence is reached (best run).

Figure A9. The test set H provides a sensitivity analysis on the parameters for SPSA in the discriminator. The rows represent the ratio
between learning rate and perturbation factor, and the columns represent the learning rate.

(a) (b)

28 of 35

cvg 500 1000 2000 4000 8000

10 10 10 10 10

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

1,670 1,015 1,366 1,745 2,021

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.085 0.040 0.053 0.091 0.043

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.288 0.138 0.236 0.236 0.149

(d) p-value for the χ2 test once convergence is reached (best run).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500
1000
2000
4000
8000

(f) Visual representation of the p-value.

Figure A8. The test set G provides a sensitivity analysis on the number of shots s, with SPSA in the generator.

cvg 10−7 10−6 10−5 10−4 10−3

0.01 2 1 N/A N/A N/A
0.1 7 5 5 5 0
1 2 1 5 3 1

(a) Converging runs, out of 10. Experiments marked with N/A
were excluded from the test set.

epochs 10−7 10−6 10−5 10−4 10−3

0.01 6,198 4,675 N/A N/A N/A
0.1 3,963 6,770 6,285 4,645
1 4,480 5,900 5,731 4,217 6,235

(b) Number of epochs before convergence, on average.

p avg 10−7 10−6 10−5 10−4 10−3

0.01 0.000 0.000 N/A N/A N/A
0.1 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 10−7 10−6 10−5 10−4 10−3

0.01 0.000 0.000 N/A N/A N/A
0.1 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000

(d) p-value for the χ2 test once convergence is reached (best run).

Figure A9. The test set H provides a sensitivity analysis on the parameters for SPSA in the discriminator. The rows represent the ratio
between learning rate and perturbation factor, and the columns represent the learning rate.

(c) (d)

27 of 34

cvg 500 1000 2000 4000 8000

10 10 10 10 10

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

1670 1015 1366 1745 2021

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.085 0.040 0.053 0.091 0.043

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.288 0.138 0.236 0.236 0.149

(d) p-value for the χ2 test once convergence is reached (best run).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500
1000
2000
4000
8000

(f) Visual representation of the p-value.

Figure A8. The test set G provides a sensitivity analysis on the number of shots s, with SPSA in the generator.

cvg 10−7 10−6 10−5 10−4 10−3

0.01 2 1 N/A N/A N/A
0.1 7 5 5 5 0
1 2 1 5 3 1

(a) Converging runs, out of 10. Experiments marked with N/A
were excluded from the test set.

epochs 10−7 10−6 10−5 10−4 10−3

0.01 6198 4675 N/A N/A N/A
0.1 3963 6770 6285 4645
1 4480 5900 5731 4217 6235

(b) Number of epochs before convergence, on average.

p avg 10−7 10−6 10−5 10−4 10−3

0.01 0.000 0.000 N/A N/A N/A
0.1 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 10−7 10−6 10−5 10−4 10−3

0.01 0.000 0.000 N/A N/A N/A
0.1 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000

(d) p-value for the χ2 test once convergence is reached (best run).

Figure A9. The test set H provides a sensitivity analysis on the parameters for SPSA in the discriminator. The rows represent the ratio
between learning rate and perturbation factor, and the columns represent the learning rate.

(e)

28 of 35

cvg 500 1000 2000 4000 8000

10 10 10 10 10

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

1,670 1,015 1,366 1,745 2,021

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.085 0.040 0.053 0.091 0.043

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.288 0.138 0.236 0.236 0.149

(d) p-value for the χ2 test once convergence is reached (best run).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500
1000
2000
4000
8000

(f) Visual representation of the p-value.

Figure A8. The test set G provides a sensitivity analysis on the number of shots s, with SPSA in the generator.

cvg 10−7 10−6 10−5 10−4 10−3

0.01 2 1 N/A N/A N/A
0.1 7 5 5 5 0
1 2 1 5 3 1

(a) Converging runs, out of 10. Experiments marked with N/A
were excluded from the test set.

epochs 10−7 10−6 10−5 10−4 10−3

0.01 6,198 4,675 N/A N/A N/A
0.1 3,963 6,770 6,285 4,645
1 4,480 5,900 5,731 4,217 6,235

(b) Number of epochs before convergence, on average.

p avg 10−7 10−6 10−5 10−4 10−3

0.01 0.000 0.000 N/A N/A N/A
0.1 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 10−7 10−6 10−5 10−4 10−3

0.01 0.000 0.000 N/A N/A N/A
0.1 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000

(d) p-value for the χ2 test once convergence is reached (best run).

Figure A9. The test set H provides a sensitivity analysis on the parameters for SPSA in the discriminator. The rows represent the ratio
between learning rate and perturbation factor, and the columns represent the learning rate.

(f)

Figure A8. Test set G provides a sensitivity analysis on the number of shots s, with SPSA in the
generator. (a) Converging runs, out of 10. (b) Number of epochs before convergence, on average.
(c) p-value for the χ2 test once convergence is reached (average over converging runs). (d) p-value
for the χ2 test once convergence is reached (best run). (e) Visual representation of the epochs before
convergence. (f) Visual representation of the p-value.

28 of 35

cvg 500 1000 2000 4000 8000

10 10 10 10 10

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

1,670 1,015 1,366 1,745 2,021

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.085 0.040 0.053 0.091 0.043

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.288 0.138 0.236 0.236 0.149

(d) p-value for the χ2 test once convergence is reached (best run).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500
1000
2000
4000
8000

(f) Visual representation of the p-value.

Figure A8. The test set G provides a sensitivity analysis on the number of shots s, with SPSA in the generator.

cvg 10−7 10−6 10−5 10−4 10−3

0.01 2 1 N/A N/A N/A
0.1 7 5 5 5 0
1 2 1 5 3 1

(a) Converging runs, out of 10. Experiments marked with N/A
were excluded from the test set.

epochs 10−7 10−6 10−5 10−4 10−3

0.01 6,198 4,675 N/A N/A N/A
0.1 3,963 6,770 6,285 4,645
1 4,480 5,900 5,731 4,217 6,235

(b) Number of epochs before convergence, on average.

p avg 10−7 10−6 10−5 10−4 10−3

0.01 0.000 0.000 N/A N/A N/A
0.1 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 10−7 10−6 10−5 10−4 10−3

0.01 0.000 0.000 N/A N/A N/A
0.1 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000

(d) p-value for the χ2 test once convergence is reached (best run).

Figure A9. The test set H provides a sensitivity analysis on the parameters for SPSA in the discriminator. The rows represent the ratio
between learning rate and perturbation factor, and the columns represent the learning rate.

(a) (b)

28 of 35

cvg 500 1000 2000 4000 8000

10 10 10 10 10

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

1,670 1,015 1,366 1,745 2,021

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.085 0.040 0.053 0.091 0.043

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.288 0.138 0.236 0.236 0.149

(d) p-value for the χ2 test once convergence is reached (best run).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500
1000
2000
4000
8000

(f) Visual representation of the p-value.

Figure A8. The test set G provides a sensitivity analysis on the number of shots s, with SPSA in the generator.

cvg 10−7 10−6 10−5 10−4 10−3

0.01 2 1 N/A N/A N/A
0.1 7 5 5 5 0
1 2 1 5 3 1

(a) Converging runs, out of 10. Experiments marked with N/A
were excluded from the test set.

epochs 10−7 10−6 10−5 10−4 10−3

0.01 6,198 4,675 N/A N/A N/A
0.1 3,963 6,770 6,285 4,645
1 4,480 5,900 5,731 4,217 6,235

(b) Number of epochs before convergence, on average.

p avg 10−7 10−6 10−5 10−4 10−3

0.01 0.000 0.000 N/A N/A N/A
0.1 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 10−7 10−6 10−5 10−4 10−3

0.01 0.000 0.000 N/A N/A N/A
0.1 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000

(d) p-value for the χ2 test once convergence is reached (best run).

Figure A9. The test set H provides a sensitivity analysis on the parameters for SPSA in the discriminator. The rows represent the ratio
between learning rate and perturbation factor, and the columns represent the learning rate.

(c) (d)

Figure A9. Test set H provides a sensitivity analysis on the parameters for SPSA in the discriminator.
The rows represent the ratio between learning rate and perturbation factor, and the columns represent
the learning rate. (a) Converging runs, out of 10. Experiments marked with N/A were excluded from
the test set. (b) Number of epochs before convergence, on average. (c) p-value for the χ2 test once
convergence is reached (average over converging runs). (d) p-value for the χ2 test once convergence
is reached (best run).

29 of 35

cvg 500 1000 2000 4000 8000

2 4 4 3 1

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

6,203 5,051 5,193 5,332 2,920

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.000 0.000 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.000 0.000 0.000 0.000 0.000

(d) p-value for the χ2 test once convergence is reached (best run).

Figure A10. The test set I provides a sensitivity analysis on the number of shots s, with SPSA in the discriminator.

cvg 8 16 32

8 8 9 8
16 10 9 10
32 9 10 9

(a) Converging runs, out of 10.

epochs 8 16 32

8 1,140 959 847
16 856 753 506
32 803 404 570

(b) Number of epochs before convergence, on average.

p avg 8 16 32

8 0.004 0.001 0.001
16 0.004 0.001 0.001
32 0.001 0.014 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 8 16 32

8 0.024 0.002 0.002
16 0.033 0.003 0.002
32 0.002 0.134 0.001

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(8, 8)
(8, 16)
(8, 32)
(16, 8)

(16, 16)
(16, 32)

(32, 8)
(32, 16)
(32, 32)

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

(8, 8)
(8, 16)
(8, 32)
(16, 8)

(16, 16)
(16, 32)

(32, 8)
(32, 16)
(32, 32)

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A11. The test set J provides a sensitivity analysis on the discriminator size for n = 4. In Subfigures A11a-A11d the rows
represent H1 and the columns H2. In Subfigures A11e-A11f, the couples on the vertical axis are (H1, H2), marker shapes represent H1

and marker colors represent H2.

(a) (b)

29 of 35

cvg 500 1000 2000 4000 8000

2 4 4 3 1

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

6,203 5,051 5,193 5,332 2,920

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.000 0.000 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.000 0.000 0.000 0.000 0.000

(d) p-value for the χ2 test once convergence is reached (best run).

Figure A10. The test set I provides a sensitivity analysis on the number of shots s, with SPSA in the discriminator.

cvg 8 16 32

8 8 9 8
16 10 9 10
32 9 10 9

(a) Converging runs, out of 10.

epochs 8 16 32

8 1,140 959 847
16 856 753 506
32 803 404 570

(b) Number of epochs before convergence, on average.

p avg 8 16 32

8 0.004 0.001 0.001
16 0.004 0.001 0.001
32 0.001 0.014 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 8 16 32

8 0.024 0.002 0.002
16 0.033 0.003 0.002
32 0.002 0.134 0.001

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(8, 8)
(8, 16)
(8, 32)
(16, 8)

(16, 16)
(16, 32)
(32, 8)

(32, 16)
(32, 32)

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

(8, 8)
(8, 16)
(8, 32)
(16, 8)

(16, 16)
(16, 32)
(32, 8)

(32, 16)
(32, 32)

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A11. The test set J provides a sensitivity analysis on the discriminator size for n = 4. In Subfigures A11a-A11d the rows
represent H1 and the columns H2. In Subfigures A11e-A11f, the couples on the vertical axis are (H1, H2), marker shapes represent H1

and marker colors represent H2.

(c) (d)

Figure A10. Test set I provides a sensitivity analysis on the number of shots s, with SPSA in the
discriminator. (a) Converging runs, out of 10. (b) Number of epochs before convergence, on average.
(c) p-value for the χ2 test once convergence is reached (average over converging runs). (d) p-value
for the χ2 test once convergence is reached (best run).

Quantum Rep. 2022, 4 101

Additionally, we pick (H1, H2) = (32, 16) and we make a sensitivity analysis over the
learning rates. The test set K (in Figure A12) shows the outcomes. On one hand, it is clear
that too small values of the learning rates lead to no convergence. On the other hand, large
values, especially in the generator, lead to poor quality. The best accuracy can be achieved
with a learning rate for the generator between 0.001 and 0.002 and for the discriminator,
between 0.001 and 0.01.

Finally, test set J (in Figure A13) deals with the number of shots: increasing s, it reaches
better accuracy. Let us remark again that achieving good quality for n = 4 is very rare:
besides any fine tuning of the hyper-parameters, the most relevant protocol to achieve good
outcomes is simply that of repeating experiments with different random initial points.

29 of 35

cvg 500 1000 2000 4000 8000

2 4 4 3 1

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

6,203 5,051 5,193 5,332 2,920

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.000 0.000 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.000 0.000 0.000 0.000 0.000

(d) p-value for the χ2 test once convergence is reached (best run).

Figure A10. The test set I provides a sensitivity analysis on the number of shots s, with SPSA in the discriminator.

cvg 8 16 32

8 8 9 8
16 10 9 10
32 9 10 9

(a) Converging runs, out of 10.

epochs 8 16 32

8 1,140 959 847
16 856 753 506
32 803 404 570

(b) Number of epochs before convergence, on average.

p avg 8 16 32

8 0.004 0.001 0.001
16 0.004 0.001 0.001
32 0.001 0.014 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 8 16 32

8 0.024 0.002 0.002
16 0.033 0.003 0.002
32 0.002 0.134 0.001

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(8, 8)
(8, 16)
(8, 32)
(16, 8)

(16, 16)
(16, 32)

(32, 8)
(32, 16)
(32, 32)

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

(8, 8)
(8, 16)
(8, 32)
(16, 8)

(16, 16)
(16, 32)

(32, 8)
(32, 16)
(32, 32)

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A11. The test set J provides a sensitivity analysis on the discriminator size for n = 4. In Subfigures A11a-A11d the rows
represent H1 and the columns H2. In Subfigures A11e-A11f, the couples on the vertical axis are (H1, H2), marker shapes represent H1

and marker colors represent H2.

(a) (b)

29 of 35

cvg 500 1000 2000 4000 8000

2 4 4 3 1

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

6,203 5,051 5,193 5,332 2,920

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.000 0.000 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.000 0.000 0.000 0.000 0.000

(d) p-value for the χ2 test once convergence is reached (best run).

Figure A10. The test set I provides a sensitivity analysis on the number of shots s, with SPSA in the discriminator.

cvg 8 16 32

8 8 9 8
16 10 9 10
32 9 10 9

(a) Converging runs, out of 10.

epochs 8 16 32

8 1,140 959 847
16 856 753 506
32 803 404 570

(b) Number of epochs before convergence, on average.

p avg 8 16 32

8 0.004 0.001 0.001
16 0.004 0.001 0.001
32 0.001 0.014 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 8 16 32

8 0.024 0.002 0.002
16 0.033 0.003 0.002
32 0.002 0.134 0.001

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(8, 8)
(8, 16)
(8, 32)
(16, 8)

(16, 16)
(16, 32)
(32, 8)

(32, 16)
(32, 32)

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

(8, 8)
(8, 16)
(8, 32)
(16, 8)

(16, 16)
(16, 32)
(32, 8)

(32, 16)
(32, 32)

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A11. The test set J provides a sensitivity analysis on the discriminator size for n = 4. In Subfigures A11a-A11d the rows
represent H1 and the columns H2. In Subfigures A11e-A11f, the couples on the vertical axis are (H1, H2), marker shapes represent H1

and marker colors represent H2.

(c) (d)

28 of 34

cvg 500 1000 2000 4000 8000

2 4 4 3 1

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

6203 5051 5193 5332 2920

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.000 0.000 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.000 0.000 0.000 0.000 0.000

(d) p-value for the χ2 test once convergence is reached (best run).

Figure A10. The test set I provides a sensitivity analysis on the number of shots s, with SPSA in the discriminator.

cvg 8 16 32

8 8 9 8
16 10 9 10
32 9 10 9

(a) Converging runs, out of 10.

epochs 8 16 32

8 1140 959 847
16 856 753 506
32 803 404 570

(b) Number of epochs before convergence, on average.

p avg 8 16 32

8 0.004 0.001 0.001
16 0.004 0.001 0.001
32 0.001 0.014 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 8 16 32

8 0.024 0.002 0.002
16 0.033 0.003 0.002
32 0.002 0.134 0.001

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1000 1250 1500 1750 2000

(8, 8)
(8, 16)
(8, 32)
(16, 8)

(16, 16)
(16, 32)

(32, 8)
(32, 16)
(32, 32)

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

(8, 8)
(8, 16)
(8, 32)
(16, 8)

(16, 16)
(16, 32)

(32, 8)
(32, 16)
(32, 32)

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A11. The test set J provides a sensitivity analysis on the discriminator size for n = 4. In Subfigures A11a-A11d the rows
represent H1 and the columns H2. In Subfigures A11e-A11f, the couples on the vertical axis are (H1, H2), marker shapes represent H1

and marker colors represent H2.

(e)

29 of 35

cvg 500 1000 2000 4000 8000

2 4 4 3 1

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

6,203 5,051 5,193 5,332 2,920

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.000 0.000 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.000 0.000 0.000 0.000 0.000

(d) p-value for the χ2 test once convergence is reached (best run).

Figure A10. The test set I provides a sensitivity analysis on the number of shots s, with SPSA in the discriminator.

cvg 8 16 32

8 8 9 8
16 10 9 10
32 9 10 9

(a) Converging runs, out of 10.

epochs 8 16 32

8 1,140 959 847
16 856 753 506
32 803 404 570

(b) Number of epochs before convergence, on average.

p avg 8 16 32

8 0.004 0.001 0.001
16 0.004 0.001 0.001
32 0.001 0.014 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 8 16 32

8 0.024 0.002 0.002
16 0.033 0.003 0.002
32 0.002 0.134 0.001

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(8, 8)
(8, 16)
(8, 32)
(16, 8)

(16, 16)
(16, 32)

(32, 8)
(32, 16)
(32, 32)

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

(8, 8)
(8, 16)
(8, 32)
(16, 8)

(16, 16)
(16, 32)

(32, 8)
(32, 16)
(32, 32)

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A11. The test set J provides a sensitivity analysis on the discriminator size for n = 4. In Subfigures A11a-A11d the rows
represent H1 and the columns H2. In Subfigures A11e-A11f, the couples on the vertical axis are (H1, H2), marker shapes represent H1

and marker colors represent H2.

(f)

Figure A11. Test set J provides a sensitivity analysis on the discriminator size for n = 4. (a–d) The
rows represent H1 and the columns H2. (e,f) The couples on the vertical axis are (H1, H2). The marker
shapes represent H1 and marker colors represent H2. (a) Converging runs, out of 10. (b) Number
of epochs before convergence, on average. (c) p-value for the χ2 test once convergence is reached
(average over converging runs). (d) p-value for the χ2 test once convergence is reached (best run).
(e) Visual representation of the epochs before convergence. (f) Visual representation of the p-value,
zoomed on p ≤ 0.2 as no points have p > 2.

Quantum Rep. 2022, 4 102
30 of 35

cvg 0.0001 0.001 0.002 0.01

0.0001 0 0 0 0
0.001 0 10 10 10
0.002 0 10 10 10
0.01 0 1 9 10

(a) Converging runs, out of 10.

epochs 0.0001 0.001 0.002 0.01

0.0001
0.001 607 774 470
0.002 682 414 334
0.01 28 221 166

(b) Number of epochs before convergence, on average.

p avg 0.0001 0.001 0.002 0.01

0.0001
0.001 0.001 0.015 0.000
0.002 0.006 0.009 0.012
0.01 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 0.0001 0.001 0.002 0.01

0.0001
0.001 0.002 0.144 0.002
0.002 0.048 0.085 0.118
0.01 0.000 0.000 0.003

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(0.001, 0.001)
(0.001, 0.002)

(0.001, 0.01)
(0.002, 0.001)
(0.002, 0.002)

(0.002, 0.01)
(0.01, 0.001)
(0.01, 0.002)

(0.01, 0.01)

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

(0.001, 0.001)
(0.001, 0.002)

(0.001, 0.01)
(0.002, 0.001)
(0.002, 0.002)

(0.002, 0.01)
(0.01, 0.001)
(0.01, 0.002)

(0.01, 0.01)

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A12. The test set K provides a sensitivity analysis on the learning rates for Adam, n = 4 qubits. In Subfigures A12a-A12d the
rows represent the generator learning rate, and the columns represent the discriminator learning rate. In Subfigures A12e-A12f, the
couples on the vertical axis are (lrgen, lrdiscr), marker shapes represent lrgen and marker colors represent lrdiscr.

(a) (b)

30 of 35

cvg 0.0001 0.001 0.002 0.01

0.0001 0 0 0 0
0.001 0 10 10 10
0.002 0 10 10 10
0.01 0 1 9 10

(a) Converging runs, out of 10.

epochs 0.0001 0.001 0.002 0.01

0.0001
0.001 607 774 470
0.002 682 414 334
0.01 28 221 166

(b) Number of epochs before convergence, on average.

p avg 0.0001 0.001 0.002 0.01

0.0001
0.001 0.001 0.015 0.000
0.002 0.006 0.009 0.012
0.01 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 0.0001 0.001 0.002 0.01

0.0001
0.001 0.002 0.144 0.002
0.002 0.048 0.085 0.118
0.01 0.000 0.000 0.003

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(0.001, 0.001)
(0.001, 0.002)

(0.001, 0.01)
(0.002, 0.001)
(0.002, 0.002)

(0.002, 0.01)
(0.01, 0.001)
(0.01, 0.002)

(0.01, 0.01)

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

(0.001, 0.001)
(0.001, 0.002)

(0.001, 0.01)
(0.002, 0.001)
(0.002, 0.002)

(0.002, 0.01)
(0.01, 0.001)
(0.01, 0.002)
(0.01, 0.01)

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A12. The test set K provides a sensitivity analysis on the learning rates for Adam, n = 4 qubits. In Subfigures A12a-A12d the
rows represent the generator learning rate, and the columns represent the discriminator learning rate. In Subfigures A12e-A12f, the
couples on the vertical axis are (lrgen, lrdiscr), marker shapes represent lrgen and marker colors represent lrdiscr.

(c) (d)

29 of 34

cvg 0.0001 0.001 0.002 0.01

0.0001 0 0 0 0
0.001 0 10 10 10
0.002 0 10 10 10
0.01 0 1 9 10

(a) Converging runs, out of 10.

epochs 0.0001 0.001 0.002 0.01

0.0001
0.001 607 774 470
0.002 682 414 334
0.01 28 221 166

(b) Number of epochs before convergence, on average.

p avg 0.0001 0.001 0.002 0.01

0.0001
0.001 0.001 0.015 0.000
0.002 0.006 0.009 0.012
0.01 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 0.0001 0.001 0.002 0.01

0.0001
0.001 0.002 0.144 0.002
0.002 0.048 0.085 0.118
0.01 0.000 0.000 0.003

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1000 1250 1500 1750 2000

(0.001, 0.001)
(0.001, 0.002)

(0.001, 0.01)
(0.002, 0.001)
(0.002, 0.002)

(0.002, 0.01)
(0.01, 0.001)
(0.01, 0.002)

(0.01, 0.01)

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

(0.001, 0.001)
(0.001, 0.002)

(0.001, 0.01)
(0.002, 0.001)
(0.002, 0.002)

(0.002, 0.01)
(0.01, 0.001)
(0.01, 0.002)

(0.01, 0.01)

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A12. The test set K provides a sensitivity analysis on the learning rates for Adam, n = 4 qubits. In Subfigures A12a-A12d the
rows represent the generator learning rate, and the columns represent the discriminator learning rate. In Subfigures A12e-A12f, the
couples on the vertical axis are (lrgen, lrdiscr), marker shapes represent lrgen and marker colors represent lrdiscr.

(e)

30 of 35

cvg 0.0001 0.001 0.002 0.01

0.0001 0 0 0 0
0.001 0 10 10 10
0.002 0 10 10 10
0.01 0 1 9 10

(a) Converging runs, out of 10.

epochs 0.0001 0.001 0.002 0.01

0.0001
0.001 607 774 470
0.002 682 414 334
0.01 28 221 166

(b) Number of epochs before convergence, on average.

p avg 0.0001 0.001 0.002 0.01

0.0001
0.001 0.001 0.015 0.000
0.002 0.006 0.009 0.012
0.01 0.000 0.000 0.000

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 0.0001 0.001 0.002 0.01

0.0001
0.001 0.002 0.144 0.002
0.002 0.048 0.085 0.118
0.01 0.000 0.000 0.003

(d) p-value for the χ2 test once convergence is reached (best run).

0 250 500 750 1,000 1,250 1,500 1,750 2,000

(0.001, 0.001)
(0.001, 0.002)

(0.001, 0.01)
(0.002, 0.001)
(0.002, 0.002)

(0.002, 0.01)
(0.01, 0.001)
(0.01, 0.002)

(0.01, 0.01)

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

(0.001, 0.001)
(0.001, 0.002)

(0.001, 0.01)
(0.002, 0.001)
(0.002, 0.002)

(0.002, 0.01)
(0.01, 0.001)
(0.01, 0.002)

(0.01, 0.01)

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A12. The test set K provides a sensitivity analysis on the learning rates for Adam, n = 4 qubits. In Subfigures A12a-A12d the
rows represent the generator learning rate, and the columns represent the discriminator learning rate. In Subfigures A12e-A12f, the
couples on the vertical axis are (lrgen, lrdiscr), marker shapes represent lrgen and marker colors represent lrdiscr.

(f)

Figure A12. Test set K provides a sensitivity analysis on the learning rates for Adam, n = 4 qubits.
(a–d) The rows represent the generator learning rate, and the columns represent the discriminator
learning rate. (e,f) The couples on the vertical axis are (lrgen, lrdiscr). The marker shapes represent
lrgen and marker colors represent lrdiscr. (a) Converging runs, out of 10. (b) Number of epochs
before convergence, on average. (c) p-value for the χ2 test once convergence is reached (average
over converging runs). (d) p-value for the χ2 test once convergence is reached (best run). (e) Visual
representation of the epochs before convergence. (f) Visual representation of the p-value, zoomed on
p ≤ 0.2, as no points have p > 2.

31 of 35

cvg 500 1000 2000 4000 8000

6 8 9 9 10

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

443 661 699 560 592

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.000 0.001 0.019 0.008 0.019

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.001 0.002 0.096 0.067 0.183

(d) p-value for the χ2 test once convergence is reached (best run).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

500
1000
2000
4000
8000

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A13. The test set L provides a sensitivity analysis on the number of shots s for n = 4 qubits.

(a) (b)

31 of 35

cvg 500 1000 2000 4000 8000

6 8 9 9 10

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

443 661 699 560 592

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.000 0.001 0.019 0.008 0.019

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.001 0.002 0.096 0.067 0.183

(d) p-value for the χ2 test once convergence is reached (best run).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

500
1000
2000
4000
8000

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A13. The test set L provides a sensitivity analysis on the number of shots s for n = 4 qubits.

(c) (d)

30 of 34

cvg 500 1000 2000 4000 8000

6 8 9 9 10

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

443 661 699 560 592

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.000 0.001 0.019 0.008 0.019

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.001 0.002 0.096 0.067 0.183

(d) p-value for the χ2 test once convergence is reached (best run).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

500
1000
2000
4000
8000

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A13. The test set L provides a sensitivity analysis on the number of shots s for n = 4 qubits.

(e)

31 of 35

cvg 500 1000 2000 4000 8000

6 8 9 9 10

(a) Converging runs, out of 10.

epochs 500 1000 2000 4000 8000

443 661 699 560 592

(b) Number of epochs before convergence, on average.

p avg 500 1000 2000 4000 8000

0.000 0.001 0.019 0.008 0.019

(c) p-value for the χ2 test once convergence is reached (average
over converging runs).

p best 500 1000 2000 4000 8000

0.001 0.002 0.096 0.067 0.183

(d) p-value for the χ2 test once convergence is reached (best run).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

500
1000
2000
4000
8000

(e) Visual representation of the epochs before convergence.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2

500
1000
2000
4000
8000

(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Figure A13. The test set L provides a sensitivity analysis on the number of shots s for n = 4 qubits.

(f)

Figure A13. Test set L provides a sensitivity analysis on the number of shots s for n = 4 qubits.
(a) Converging runs, out of 10. (b) Number of epochs before convergence, on average. (c) p-value for
the χ2 test once convergence is reached (average over converging runs). (d) p-value for the χ2 test
once convergence is reached (best run). (e) Visual representation of the epochs before convergence.
(f) Visual representation of the p-value, zoomed on p ≤ 0.2 as no points have p > 2.

Quantum Rep. 2022, 4 103

Appendix B. Additional Remarks on the Isolation of the Best Run

As stated, the best runs with Adam AMSGRAD obtain p-values greater than 0.8,
remarkably separated from sub-optimal runs, whose p-values lie under 0.6. An early
identification of the best runs during the training would allow to iteratively restart the process
in order to increase the success rate. Consequently, we are interested in understanding if any
feature of the training process can be used as a predictor.

As a qualitative study case, we focus on the case (H1, H2) = (64, 8) from test set B,
visualized by the red pentagons in Figure A2f. The case is interesting because there is
a relevant number of optimal runs, namely three. Figure A14 represents the training
process of the three optimal cases (achieving a p-value of 0.9450, 0.9163, and 0.9016,
respectively) and of three archetype sub-optimal cases (with p-values 0.3029, 0.2744,
and 0.3610, respectively). The analysis suggests that optimal runs have an elbow in the
parameters right at the time of convergence, while sub-optimal runs have either slow
convergence, oscillatory behaviors around the convergence value, or residual dynamics
after convergence.

31 of 34

0 500 1,000 1,500 2,000

0

0.2

0.4

pr
ob

ab
ili

ty

0 500 1000 1500 2000

0

2

4

6

8

epochs

ge
ne

ra
to

r
pa

ra
m

et
er

s

(a) An optimal case, with an elbow in the pa-
rameters at convergence time.

0 500 1,000 1,500 2,000

0

0.2

0.4

0 500 1000 1500 2000

0

2

4

6

8

epochs

(b) Another optimal case, with similar
behavior.

0 500 1,000 1,500 2,000

0

0.2

0.4

0 500 1000 1500 2000

0

2

4

6

8

epochs

(c) The third optimal run, with a less
characterized behavior.

0 500 1,000 1,500 2,000

0

0.2

0.4

pr
ob

ab
ili

ty

0 500 1000 1500 2000

0

2

4

6

8

epochs

ge
ne

ra
to

r
pa

ra
m

et
er

s

(d) A sub-optimal run characterized by slow
convergence.

0 500 1,000 1,500 2,000

0

0.2

0.4

0 500 1000 1500 2000

0

2

4

6

8

epochs

(e) A sub-optimal run characterized by
oscillations.

0 500 1,000 1,500 2,000

0

0.2

0.4

0 500 1000 1500 2000

0

2

4

6

8

epochs

(f) A sub-optimal run with non-steady
parameters after convergence.

Figure A14. Focus on experiments (H1, H2) = (64, 8) from test set B. In each couple of plots, the one above represents the evolution of
the trained PDF, while the one below contains the evolution of parameters, as in Figure 3. Figures A14a to A14c are the optimal runs,
while Figures A14d to A14f are examples of sub-optimal runs. Vertical dashed lines mark the convergence epoch, as detected by our
rule (refer to Subsection 4.2).

(a) (b) (c)

31 of 34

0 500 1,000 1,500 2,000

0

0.2

0.4

pr
ob

ab
ili

ty

0 500 1000 1500 2000

0

2

4

6

8

epochs

ge
ne

ra
to

r
pa

ra
m

et
er

s

(a) An optimal case, with an elbow in the pa-
rameters at convergence time.

0 500 1,000 1,500 2,000

0

0.2

0.4

0 500 1000 1500 2000

0

2

4

6

8

epochs

(b) Another optimal case, with similar
behavior.

0 500 1,000 1,500 2,000

0

0.2

0.4

0 500 1000 1500 2000

0

2

4

6

8

epochs

(c) The third optimal run, with a less
characterized behavior.

0 500 1,000 1,500 2,000

0

0.2

0.4

pr
ob

ab
ili

ty

0 500 1000 1500 2000

0

2

4

6

8

epochs

ge
ne

ra
to

r
pa

ra
m

et
er

s

(d) A sub-optimal run characterized by slow
convergence.

0 500 1,000 1,500 2,000

0

0.2

0.4

0 500 1000 1500 2000

0

2

4

6

8

epochs

(e) A sub-optimal run characterized by
oscillations.

0 500 1,000 1,500 2,000

0

0.2

0.4

0 500 1000 1500 2000

0

2

4

6

8

epochs

(f) A sub-optimal run with non-steady
parameters after convergence.

Figure A14. Focus on experiments (H1, H2) = (64, 8) from test set B. In each couple of plots, the one above represents the evolution of
the trained PDF, while the one below contains the evolution of parameters, as in Figure 3. Figures A14a to A14c are the optimal runs,
while Figures A14d to A14f are examples of sub-optimal runs. Vertical dashed lines mark the convergence epoch, as detected by our
rule (refer to Subsection 4.2).

(d) (e) (f)

Figure A14. Focus on experiments (H1, H2) = (64, 8) from test set B. In each couple of plots, the
one above represents the evolution of the trained PDF, while the one below contains the evolution
of parameters, as in Figure 3. (a–c) The optimal runs. (d–f) Examples of sub-optimal runs. Vertical
dashed lines mark the convergence epoch, as detected by our rule (refer to Section 5.2). (a) An
optimal case, with an elbow in the parameters at convergence time. (b) Another optimal case, with
similar behavior. (c) The third optimal run, with a less characterized behavior. (d) A sub-optimal
run characterized by slow convergence. (e) A sub-optimal run characterized by oscillations. (f) A
sub-optimal run with non-steady parameters after convergence.

Quantum Rep. 2022, 4 104

References
1. Grover, L.K. Synthesis of Quantum Superpositions by Quantum Computation. Phys. Rev. Lett. 2000, 85, 1334–1337. [CrossRef]

[PubMed]
2. Grover, L.; Rudolph, T. Creating superpositions that correspond to efficiently integrable probability distributions. arXiv 2002,

arXiv:quant-ph/0208112.
3. Mitarai, K.; Kitagawa, M.; Fujii, K. Quantum Analog-Digital Conversion. Phys. Rev. 2019, 99, 012301. arXiv:1805.11250.

[CrossRef]
4. Sanders, Y.R.; Low, G.H.; Scherer, A.; Berry, D.W. Black-box quantum state preparation without arithmetic. Phys. Rev. Lett. 2019,

122, 020502. arXiv:1807.03206. [CrossRef]
5. Aaronson, S. Read the fine print. Nat. Phys. 2015, 11, 291–293. [CrossRef]
6. Giovannetti, V.; Lloyd, S.; Maccone, L. Architectures for a quantum random access memory. Phys. Rev. 2008, 78, 052310.

[CrossRef]
7. Le, P.Q.; Dong, F.; Hirota, K. A flexible representation of quantum images for polynomial preparation, image compression, and

processing operations. Quantum Inf. Process. 2011, 10, 63–84. [CrossRef]
8. Zoufal, C.; Lucchi, A.; Woerner, S. Quantum Generative Adversarial Networks for Learning and Loading Random Distributions.

Npj Quantum Inf. 2019, 5, 103. [CrossRef]
9. Nakaji, K.; Uno, S.; Suzuki, Y.; Raymond, R.; Onodera, T.; Tanaka, T.; Tezuka, H.; Mitsuda, N.; Yamamoto, N. Approximate

amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicator. arXiv 2021,
arXiv:2103.13211.

10. Niu, M.Y.; Zlokapa, A.; Broughton, M.; Boixo, S.; Mohseni, M.; Smelyanskyi, V.; Neven, H. Entangling Quantum Generative
Adversarial Networks. arXiv 2021, arXiv:2105.00080.

11. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

12. Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications.
arXiv 2020, arXiv:2001.06937.

13. Stamatopoulos, N.; Egger, D.J.; Sun, Y.; Zoufal, C.; Iten, R.; Shen, N.; Woerner, S. Option Pricing using Quantum Computers.
Quantum 2020, 4, 291. [CrossRef]

14. Agliardi, G.; Grossi, M.; Pellen, M.; Prati, E. Quantum integration of elementary particle processes. arXiv 2022, arXiv:2201.01547.
15. Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with

quantum-enhanced feature spaces. Nature 2019, 567, 209–212. [CrossRef]
16. Torrontegui, E.; García-Ripoll, J.J. Unitary quantum perceptron as efficient universal approximator. Epl. Europhys. Lett. 2019,

125, 30004. [CrossRef]
17. Maronese, M.; Prati, E. A continuous rosenblatt quantum perceptron. Int. J. Quantum Inf. 2021, 98, 2140002. [CrossRef]
18. Maronese, M.; Destri, C.; Prati, E. Quantum activation functions for quantum neural networks. arXiv 2022, arXiv:2201.03700
19. Wan, K.H.; Dahlsten, O.; Kristjánsson, H.; Gardner, R.; Kim, M.S. Quantum generalisation of feedforward neural networks. NPJ

Quantum Inf. 2017, 3, 1–8. [CrossRef]
20. Shao, C. A quantum model of feed-forward neural networks with unitary learning algorithms. Quantum Inf. Process. 2020,

19, 102. [CrossRef]
21. Fujii, K.; Nakajima, K. Quantum Reservoir Computing: A Reservoir Approach Toward Quantum Machine Learning on Near-Term

Quantum Devices. In Reservoir Computing; Nakajima, K., Fischer, I., Eds.; Natural Computing Series; Springer: Singapore, 2021;
pp. 423–450. [CrossRef]

22. Lazzarin, M.; Galli, D.E.; Prati, E. Multi-class quantum classifiers with tensor network circuits for quantum phase recognition.
arXiv 2021, arXiv:2110.08386.

23. Rocutto, L.; Destri, C.; Prati, E. Quantum Semantic Learning by Reverse Annealing of an Adiabatic Quantum Computer. Adv.
Quantum Technol. 2021, 4, 2000133. [CrossRef]

24. Rocutto, L.; Prati, E. A complete restricted Boltzmann machine on an adiabatic quantum computer. Int. J. Quantum Inf. 2021,
19, 2141003. [CrossRef]

25. Dallaire-Demers, P.L.; Killoran, N. Quantum generative adversarial networks. Phys. Rev. 2018, 98, 012324. [CrossRef]
26. Huang, H.L.; Du, Y.; Gong, M.; Zhao, Y.; Wu, Y.; Wang, C.; Li, S.; Liang, F.; Lin, J.; Xu, Y.; et al. Experimental Quantum Generative

Adversarial Networks for Image Generation. Phys. Rev. Appl. 2021, 16, 024051. [CrossRef]
27. Stein, S.A.; Baheri, B.; Chen, D.; Mao, Y.; Guan, Q.; Li, A.; Fang, B.; Xu, S. QuGAN: A Generative Adversarial Network Through

Quantum States. arXiv 2021, arXiv:2010.09036.
28. Montanaro, A. Quantum speedup of Monte Carlo methods. Proceedings. Math. Phys. Eng. Sci. 2015, 471, 20150301. [CrossRef]
29. Suzuki, Y.; Uno, S.; Raymond, R.; Tanaka, T.; Onodera, T.; Yamamoto, N. Amplitude estimation without phase estimation.

Quantum Inf. Process. 2020, 19, 75. arXiv:1904.10246, [CrossRef]
30. Grinko, D.; Gacon, J.; Zoufal, C.; Woerner, S. Iterative Quantum Amplitude Estimation. NPJ Quantum Inf. 2021, 7, 52. [CrossRef]
31. Egger, D.J.; Gutiérrez, R.G.; Mestre, J.C.; Woerner, S. Credit risk analysis using quantum computers. IEEE Trans. Comput. 2021, 70,

2136–2145 [CrossRef]

http://doi.org/10.1103/PhysRevLett.85.1334
http://www.ncbi.nlm.nih.gov/pubmed/10991545
http://dx.doi.org/10.1103/PhysRevA.99.012301
http://dx.doi.org/10.1103/PhysRevLett.122.020502
http://dx.doi.org/10.1038/nphys3272
http://dx.doi.org/10.1103/PhysRevA.78.052310
http://dx.doi.org/10.1007/s11128-010-0177-y
http://dx.doi.org/10.1038/s41534-019-0223-2
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.22331/q-2020-07-06-291
http://dx.doi.org/10.1038/s41586-019-0980-2
http://dx.doi.org/10.1209/0295-5075/125/30004
http://dx.doi.org/10.1142/S0219749921400025
http://dx.doi.org/10.1038/s41534-017-0032-4
http://dx.doi.org/10.1007/s11128-020-2592-z
http://dx.doi.org/10.1007/978-981-13-1687-6_18
http://dx.doi.org/10.1002/qute.202000133
http://dx.doi.org/10.1142/S0219749921410033
http://dx.doi.org/10.1103/PhysRevA.98.012324
http://dx.doi.org/10.1103/PhysRevApplied.16.024051
http://dx.doi.org/10.1098/rspa.2015.0301
http://dx.doi.org/10.1007/s11128-019-2565-2
http://dx.doi.org/10.1038/s41534-021-00379-1
http://dx.doi.org/10.1109/TC.2020.3038063

Quantum Rep. 2022, 4 105

32. Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett. 2009, 103, 150502.
[CrossRef] [PubMed]

33. Rebentrost, P.; Gupt, B.; Bromley, T.R. Quantum computational finance: Monte Carlo pricing of financial derivatives. Phys. Rev.
2018, 98, 022321. [CrossRef]

34. Pérez-Salinas, A.; Cervera-Lierta, A.; Gil-Fuster, E.; Latorre, J.I. Data re-uploading for a universal quantum classifier. Quantum
2020, 4, 226. [CrossRef]

35. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [CrossRef]
36. Boixo, S.; Isakov, S.V.; Smelyanskiy, V.N.; Babbush, R.; Ding, N.; Jiang, Z.; Bremner, M.J.; Martinis, J.M.; Neven, H. Characterizing

Quantum Supremacy in Near-Term Devices. Version: 3. Nat. Phys. 2018, 14, 595–600. [CrossRef]
37. Aaronson, S.; Chen, L. Complexity-Theoretic Foundations of Quantum Supremacy Experiments. arXiv 2016, arXiv:1612.05903.
38. Pednault, E.; Gunnels, J.A.; Nannicini, G.; Horesh, L.; Magerlein, T.; Solomonik, E.; Draeger, E.W.; Holland, E.T.; Wisnieff, R.

Pareto-Efficient Quantum Circuit Simulation Using Tensor Contraction Deferral. arXiv 2020, arXiv:1710.05867.
39. Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.H.; Zhou, X.Q.; Love, P.J.; Aspuru-Guzik, A.; O’Brien, J.L. A variational eigenvalue

solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213. [CrossRef]
40. McClean, J.R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J.

Phys. 2016, 18, 023023. [CrossRef]
41. Cortese, J.A.; Braje, T.M. Loading Classical Data into a Quantum Computer. arXiv 2018, arXiv:1803.01958.
42. Shende, V.V.; Bullock, S.S.; Markov, I.L. Synthesis of Quantum Logic Circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.

2006, 25, 1000–1010. [CrossRef]
43. Kerenidis, I.; Prakash, A. Quantum Recommendation Systems. arXiv 2016, arXiv:1603.08675.
44. Hann, C.T.; Zou, C.L.; Zhang, Y.; Chu, Y.; Schoelkopf, R.J.; Girvin, S.; Jiang, L. Hardware-Efficient Quantum Random Access

Memory with Hybrid Quantum Acoustic Systems. Phys. Rev. Lett. 2019, 123, 250501. [CrossRef] [PubMed]
45. Lloyd, S.; Weedbrook, C. Quantum Generative Adversarial Learning. Phys. Rev. Lett. 2018, 121, 040502. [CrossRef] [PubMed]
46. Bharti, K.; Cervera-Lierta, A.; Kyaw, T.H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J.S.;

Menke, T.; et al. Noisy intermediate-scale quantum (NISQ) algorithms. arXiv 2021, arXiv:2101.08448.
47. Schuld, M.; Sinayskiy, I.; Petruccione, F. The quest for a Quantum Neural Network. Quantum Inf. Process. 2014, 13, 2567–2586.

[CrossRef]
48. Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum Machine Learning. Nature 2017, 549, 195–202.

[CrossRef] [PubMed]
49. Coyle, B.; Henderson, M.; Le, J.C.J.; Kumar, N.; Paini, M.; Kashefi, E. Quantum versus Classical Generative Modelling in Finance.

arXiv 2020, arXiv:2008.00691.
50. Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al.

Variational Quantum Algorithms. arXiv 2020, arXiv:2012.09265.
51. Cheng, S.; Chen, J.; Wang, L. Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines.

Entropy 2018, 20, 583. [CrossRef]
52. Abraham, H.; Akhalwaya, I.Y.; Aleksandrowicz, G.; Alexander, T.; Alexandrowics, G.; Arbel, E.; Asfaw, A.; Azaustre, C.;

AzizNgoueya, P.B.; Barron, G. Qiskit: An open-source framework for quantum computing. Zenodo 2019, 2562111.
53. SciPy User Guide–SciPy v1.7.1 Manual. Available online: https://docs.scipy.org/doc/scipy/reference/ (accessed on 24 January 2022).
54. Benedetti, M.; Lloyd, E.; Sack, S.; Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci.

Technol. 2019, 4, 043001. [CrossRef]
55. Gacon, J.; Zoufal, C.; Carleo, G.; Woerner, S. Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher

Information. Quantum 2021, 5, 567. [CrossRef]
56. McClean, J.R.; Boixo, S.; Smelyanskiy, V.N.; Babbush, R.; Neven, H. Barren plateaus in quantum neural network training

landscapes. Nat. Commun. 2018, 9, 4812. [CrossRef] [PubMed]
57. Cerezo, M.; Sone, A.; Volkoff, T.; Cincio, L.; Coles, P.J. Cost function dependent barren plateaus in shallow parametrized quantum

circuits. Nat. Commun. 2021, 12, 1791. [CrossRef]
58. Wang, S.; Fontana, E.; Cerezo, M.; Sharma, K.; Sone, A.; Cincio, L.; Coles, P.J. Noise-Induced Barren Plateaus in Variational

Quantum Algorithms. arXiv 2021, arXiv:2007.14384.
59. Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci.

2021, 1, 403–409. [CrossRef]
60. Arrasmith, A.; Cerezo, M.; Czarnik, P.; Cincio, L.; Coles, P.J. Effect of barren plateaus on gradient-free optimization. Quantum

2021, 5, 558. Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften. [CrossRef]
61. torch.optim—PyTorch 1.8.1 Documentation. Available online: https://pytorch.org/docs/stable/optim.html (accessed on 6

January 2022).
62. Nagarajan, V.; Raffel, C.; Goodfellow, I.J. Theoretical Insights into Memorization in GANs; Neural Information Processing Systems

Workshop: Montréal, QC, Canada 2018; Volume 1.

http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://www.ncbi.nlm.nih.gov/pubmed/19905613
http://dx.doi.org/10.1103/PhysRevA.98.022321
http://dx.doi.org/10.22331/q-2020-02-06-226
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1038/s41567-018-0124-x
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/10.1109/TCAD.2005.855930
http://dx.doi.org/10.1103/PhysRevLett.123.250501
http://www.ncbi.nlm.nih.gov/pubmed/31922763
http://dx.doi.org/10.1103/PhysRevLett.121.040502
http://www.ncbi.nlm.nih.gov/pubmed/30095952
http://dx.doi.org/10.1007/s11128-014-0809-8
http://dx.doi.org/10.1038/nature23474
http://www.ncbi.nlm.nih.gov/pubmed/28905917
http://dx.doi.org/10.3390/e20080583
https://docs.scipy.org/doc/scipy/reference/
http://dx.doi.org/10.1088/2058-9565/ab4eb5
http://dx.doi.org/10.22331/q-2021-10-20-567
http://dx.doi.org/10.1038/s41467-018-07090-4
http://www.ncbi.nlm.nih.gov/pubmed/30446662
http://dx.doi.org/10.1038/s41467-021-21728-w
http://dx.doi.org/10.1038/s43588-021-00084-1
http://dx.doi.org/10.22331/q-2021-10-05-558
https://pytorch.org/docs/stable/optim.html

	Introduction
	Encoding and Loading Classical Information in Quantum Registers: Overcoming the Challenges of the NISQ Era
	Techniques for Exact Data Loading and Their Limitations
	Approximate Data Loading with qGANs

	From GANs to qGANs
	The Generative Interpretation of qGANs
	The Data-Compression Interpretation of qGANs

	Results
	Design of the Generative Quantum Circuit Network
	Design of the Classical Discriminative Deep Neural Network
	Optimization of the qGAN Accuracy and Comparison with Benchmarks
	Trade-Off between Accuracy and Training Time: The Effect of the Optimizer and of Other Hyper-Parameters
	Isolation of the Best Runs

	Methods
	Testing Conditions
	Run Evaluation
	Objective Function and Optimizers
	Estimating Complexity

	Conclusions
	Tuning a qGAN
	Summary of Choices and Tunable Degrees of Freedom
	The Testing Campaign

	Additional Remarks on the Isolation of the Best Run
	References

