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Abstract

We study the problem of online multiclass classification in a setting where the
learner’s feedback is determined by an arbitrary directed graph. While including
bandit feedback as a special case, feedback graphs allow a much richer set of
applications, including filtering and label efficient classification. We introduce
GAPPLETRON, the first online multiclass algorithm that works with arbitrary feed-
back graphs. For this new algorithm, we prove surrogate regret bounds that hold,
both in expectation and with high probability, for a large class of surrogate losses.
Our bounds are of order B

√
ρKT , where B is the diameter of the prediction space,

K is the number of classes, T is the time horizon, and ρ is the domination number
(a graph-theoretic parameter affecting the amount of exploration). In the full in-
formation case, we show that GAPPLETRON achieves a constant surrogate regret
of order B2K. We also prove a general lower bound of order max

{
B2K,

√
T
}

showing that our upper bounds are not significantly improvable. Experiments on
synthetic data show that for various feedback graphs our algorithm is competitive
against known baselines.

1 Introduction

In online multiclass classification a learner interacts with an unknown environment in a sequence
of rounds. At each round t, the learner observes a feature vector xt ∈ Rd and outputs a prediction
y′t for the label yt ∈ {1, . . . ,K} associated with xt. If y′t 6= yt, then the learner is charged with a
mistake. Kakade et al. (2008) introduced the bandit version of online multiclass classification, where
the only feedback received by the learner after each prediction is the loss 1[y′t 6= yt]. Hence, if a
mistake is made at time t (and K > 2), the learner cannot uniquely identify the true label yt based on
the feedback information.

Although bandits are a canonical example of partial feedback, they fail to capture a number of
important practical scenarios of online classification. Consider for example spam filtering, where an
online learner is to classify emails as spam or non-spam based on their content. Whenever the learner
classifies an email as legitimate, the recipient gets to see it, and can inform the learner whether the
email was correctly classified of not. However, when the email is classified as spam, the learner
does not get any feedback because the email is not checked by the recipient. Another example is
label efficient multiclass classification. Here, instead of making a prediction, the learner can ask a
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human expert for the true label. At the steps when predictions are made, however, the learner does not
receive any feedback information (not even their own loss). A further example is disease prevention:
if we predict an outburst of disease in a certain area, we can preemptively stop it by vaccinating the
local population. This intervention would prevent us from observing whether our prediction was
correct, but would still allow us to observe an outburst occurring in a different area.

Unlike bandits, the amount of feedback obtained by the learner in these examples depends on the
predicted class, and can vary from full information to no feedback at all. This scenario has been
previously considered in the framework of online learning with feedback graphs (Mannor and Shamir,
2011; Alon et al., 2015, 2017). A feedback graph is a directed graph G = (V, E) where each node
in V receives at least one edge from some other node in V (possibly from itself). The nodes in V
correspond to actions, and a directed edge (a, b) ∈ E indicates that by playing action a the learner
observes the loss of action b. This generalizes the well-known online learning settings of experts
(where G is the complete graph, including self-loops) and bandits (where G has only self-loops).
Note that it is easy to model spam filtering and label efficient prediction using feedback graphs. For
spam filtering, G contains only two actions s and n (corresponding, respectively, to the learner’s
predictions for spam and non-spam), and the edge set is E =

{
(n, n), (n, s)

}
. For label efficient

multiclass prediction, G contains a node for each class, plus an extra node corresponding to issuing a
label request. It is important to observe that all previous analyses of feedback graphs only apply to
the abstract setting of prediction with experts, where any dependence of the loss on feature vectors
is ignored. This hampers the application of those results to online multiclass classification. In this
work we build on previous results on online learning and classification with bandit feedback to design
and analyze the first algorithm for online multiclass classification with arbitrary feedback graphs. In
doing so, we also improve the analyses of the previously studied special cases (full information and
bandit feedback) of multiclass classification.

In the online multiclass classification setting, the goal is bound the number of mistakes made by the
learner. The mistake bounds take the following form:

T∑
t=1

1[y′t 6= yt] =

T∑
t=1

`t(U) +RT , (1)

where `t is a surrogate loss, U ∈ W ⊆ Rd×K is the matrix of reference predictors, andRT is called
the surrogate regret. In this work we provide two types of bounds on the surrogate regret: bounds
that hold in expectation and bounds that hold with high probability. Note that equation (1) could also
be written as

∑T
t=1

(
1[y′t 6= yt]− `t(U)

)
= RT . However, we prefer the former former sinceRT is

not a proper regret: because the zero-one loss is non-convex we compare it with a surrogate loss.

Our results build on recent work by van der Hoeven (2020), who showed that one can exploit the gap
between the surrogate loss and the zero-one loss to derive improved surrogate regret bounds in the
full information and bandit settings of online multiclass classification. We modify the GAPTRON
algorithm (van der Hoeven, 2020) to make it applicable to the feedback graph setting. In the
analysis of the resulting algorithm, called GAPPLETRON1, we use several new insights to show that
it has O(B

√
ρKT ) surrogate regret in expectation and O

(√
ρKT (B2 + ln(1/δ))

)
surrogate regret

with probability at least 1 − δ for any feedback graph with domination number2 ρ, and for any∥∥vec(U)
∥∥ ≤ B for some norm

∥∥·∥∥ (if
∥∥·∥∥ is the Euclidean norm, then

∥∥vec(U)
∥∥ is the Frobenius

norm of U ). For example, in both spam filtering and label efficient classification we have ρ = 1.
So in the label efficient setting, where each label request counts as a mistake, with high probability
GAPPLETRON makes at most order of B

√
KT mistakes while requesting at most order of B

√
KT

labels. Note that we are not aware of previously known high-probability bounds on the surrogate
regret. Furthermore, whereas the results of van der Hoeven (2020) only hold for a limited number of
surrogate loss functions, our results hold for the larger class of regular surrogate losses.

Interestingly, with feedback graphs the surrogate regret for online multiclass classification has, in
general, a better dependence on T than the regret for online learning. Indeed, Alon et al. (2015) show
that the best possible online learning regret is Ω(T 2/3) for certain feedback graphs that are called

1Our algorithm is called after the apple tasting feedback model, which is the original name of the spam
filtering graph.

2The domination number is the cardinality of the smallest dominating set.
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Upper bounds Partial Full

Non-separable B
√
ρKT KB2

Separable B
√
ρT B2

Lower bounds

Non-separable KB2

Separable
√
T B2

Table 1: Overview of the surrogate regret bounds
in the separable and non-separable case. The up-
per bounds hold with high probability, while the
lower bounds apply to any randomized prediction
algorithm. All bounds are novel except for the
lower bound in the full information separable case
(Beygelzimer et al., 2019, Theorem 11).

0.1

0.2

0.3

er
ro

r 
ra

te

Algorithm Banditron Gappletron PNewtron SOBAdiag

Figure 1: Error rate in non-separable synthetic bandit
experiments showcasing GAPPLETRON against known
baselines. The points are the means and the whiskers
are minimum and maximum error rate over ten repeti-
tions (details in Section 6).

weakly observable (e.g., the graphs for label efficient classification). In contrast, we prove a O(T 1/2)
upper bound on the surrogate regret for any feedback graph, including weakly observable ones.

Our results cannot be significantly improved in general: we prove a Ω(B2K +
√
T ) lower bound on

the surrogate regret. Due to the new insights required by their proofs, we believe the high-probability
bounds and the lower bounds are our strongest technical contributions.

We provide several other new results. In the separable case, when there exists a U for which∑T
t=1 `t(U) = 0, GAPPLETRON has O(B

√
ρT ) surrogate regret in expectation. Even though

O(B2K) mistake bounds are possible in the separable setting (Beygelzimer et al., 2019), ours is the
first algorithm that has satisfactory surrogate regret in the non-separable case and has an improved
surrogate regret in the separable case. Note that although BANDITRON (Kakade et al., 2008) also
makes O(B

√
KT ) mistakes in the separable case, it suffers O(K1/3(BT )2/3) surrogate regret in

the non-separable case. Our results for the separable case in the full information setting improve
results of van der Hoeven (2020) by a factor of K: GAPPLETRON suffers O(B2) surrogate regret
both in expectation and with high probability, thus matching the bounds of the classical PERCEPTRON
algorithm (Rosenblatt, 1958; Novikov, 1962) — see Table 1 for a summary of our theoretical results.
Finally, we also evaluated the performance of GAPPLETRON in several experiments, showing that
GAPPLETRON is competitive against known baselines in the full information, bandit, and multiclass
spam filtering setting, in which predicting a certain class provides full information feedback and all
other predictions do not provide any information (see Figure 1 for an experimental result in the bandit
setting).

Additional related work. The full information and bandit versions of the online multiclass classi-
fication setting have been extensively studied. Here we provide the most relevant references and defer
the reader to van der Hoeven (2020) for a more extensive literature review. Algorithms for the full
information setting include: the PERCEPTRON, its multiclass versions (Rosenblatt, 1958; Crammer
and Singer, 2003; Fink et al., 2006) and many variations thereof, second-order algorithms such as
AROW (Crammer et al., 2009) and the second-order PERCEPTRON (Cesa-Bianchi et al., 2005), and
various algorithms for online logistic regression — see Foster et al. (2018) and references therein. In
the bandit setting, we mention the algorithms BANDITRON (Kakade et al., 2008), NEWTRON (Hazan
and Kale, 2011), SOBA (Beygelzimer et al., 2017), and OBAMA (Foster et al., 2018).

Online learning with feedback graphs has been investigated both in the adversarial and stochastic
regimes. In the adversarial setting, variants where the graph changes over time and is partially known
or stochastic have been studied by Cohen et al. (2016); Kocák et al. (2016). Regret bounds that
scale with the loss of the best action have been obtained by Lykouris et al. (2018). Other variants
include sleeping experts (Cortes et al., 2019), switching experts (Arora et al., 2019), and adaptive
adversaries (Feng and Loh, 2018). Some works use feedback graphs to bound the regret in auctions
(Cesa-Bianchi et al., 2017; Feng et al., 2018; Han et al., 2020). In the stochastic setting, regret
bounds for Thompson sampling and UCB have been analyzed by Tossou et al. (2017); Liu et al.
(2018); Lykouris et al. (2020). Finally, feedbacks graphs can also be viewed as a special case of the
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partial monitoring framework for sequential decisions, see (Lattimore and Szepesvári, 2020) for an
introduction to the area.

Helmbold et al. (2000) introduced online filtering as “apple tasting”. However, their analysis applies
to a restricted version of online learning in which instances xt belong to a finite domain, and the labels
yt are such that yt = f(xt) for all t and for some fixed f in a known class of functions. Practical
applications of online learning to spam filtering have been investigated by Cesa-Bianchi et al. (2003);
Sculley (2008).

Notation. Let 1 and 0 denote, respectively, the all-one and all-zero vectors, and let ek be the basis
vector in direction k. Let [K] = {1, . . . ,K} and let R+ be the non-negative real numbers. We use
〈g,w〉 to denote the inner product between vectors g,w ∈ Rd. The rows of matrix W ∈ RK×d
are denoted by W 1, . . . ,WK . Whenever possible, we use the same symbol W to denote both a
K × d matrix and a column vector vec(W ) = (W 1, . . . ,WK) in RKd. We use ‖x‖2 to denote the
Euclidean norm of a vector x and ‖x‖ to denote an arbitrary norm. The Kronecker product between
matrices W and U is denoted by W ⊗U . We assume W ∈ W for some convexW ⊆ RK×d. This
is equivalent to say that vec(W ) belongs to a convex subset of RKd, for example a p-norm ball. As
in previous works, we assume instance-label pairs (xt, yt) are generated by an adversary who is
oblivious to the algorithm’s internal randomization. Finally, for any round t, Pt[·] and Et[·] denote
the conditional probability and expectation, given the randomized predictions y′1, y

′
2, . . . , y

′
t−1 and

the corresponding feedback.

A feedback graph is any directed graph G = (V, E), with edges E and nodes V , such that for
any y ∈ V there exists some y′ ∈ V such that (y′, y) ∈ E , where we allow y′ = y. In online
multiclass classification, V = [K] and E specifies which predictions observe which outcomes. Let
out(y′) = {y ∈ V : (y′, y) ∈ E} be the out-neighbourhood of y′. If the learner predicts y′t at time t,
then the feedback received by the learner is the set of pairs

(
y,1[y 6= yt]

)
for all y ∈ out(y′). Due to

the structure of the zero-one loss, if a node has K − 1 outgoing edges, we always add the missing
edge to E as this does not change the information available to the learner. We say that an outcome
y′ is revealing if predicting that outcome provides the learner with full information feedback, i.e.,
out(y′) = [K], and we denote the set of revealing outcomes by Q. For example, in label efficient
classification, querying the true label yt corresponds to playing a revealing outcome. We say that a
set of nodes S is a dominating set if for each y ∈ V there is a node y′ ∈ S such that y ∈ out(y′). The
number of nodes in a smallest dominating set is called the domination number, and we denote it by
ρ. Note that GAPPLETRON is run using the minimum dominating set S, which is known to be hard
to recover in general. However, if the algorithm is fed with any other dominating set S ′ of bigger
cardinality ρ′, our results continue to hold with ρ replaced by ρ′ (recall that a dominating set of size
at most (ln ρ+ 2)ρ can be efficiently found via a greedy approximation algorithm).

Regular surrogate losses. Fix a convex domainW . Let ` :W ×Rd × [K]→ R+ be any function
convex onW such that, for all W ∈ W , x ∈ Rd, and y ∈ [K]\{y?} (with y? = arg maxk〈W k,x〉)
we have

K − 1

K
`(W ,x, y) +

1

K
`(W ,x, y?) ≥ 1. (2)

Then `t = `(·,xt, yt) is a regular surrogate loss if

‖∇`t(W )‖2 ≤ 2L `t(W ) W ∈ W (3)

for some norm ‖ · ‖. When ‖ · ‖ is the Euclidean norm, the condition on the gradient is satisfied by all
L-smooth surrogate loss functions (see, for example, (Zhou, 2018, Lemma 4)).

Examples of regular surrogate losses are the smooth hinge loss (Rennie and Srebro, 2005) and
the logistic loss with base K, defined by `t(Wt) = − logK q(Wt,xt, yt), where q is the softmax
function. Even though the hinge loss is not a regular surrogate loss, in Appendix A we show that
a particular version of the hinge loss satisfies all the relevant properties of regular surrogate losses.
Also, note that in the feedback graph setting, this particular version of the hinge loss we use is random
whenever the learner’s predictions are randomized.
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Algorithm 1: GAPPLETRON

Input: Set of revealing actions Q ⊆ [K], minimum dominating set S, OCO algorithm A with
domainW ⊆ Rd, γ ≥ 0, and gap map a : RK×d × Rd → [0, 1]

1: for t = 1 . . . T do
2: Obtain xt
3: Let y?t = arg maxk〈W k

t ,xt〉 . max-margin prediction
4: if y?t ∈ Q then
5: Set γt = 0
6: else
7: Set γt = min

{
1
2 , γ
/√∣∣{s ≤ t : y?s 6∈ Q}

∣∣} . exploration rate

8: Set ζt = 1[γt ≤ a(Wt,xt)]
9: p′t =

(
1− ζta(Wt,xt)− (1− ζt)γt

)
ey?t + ζta(Wt,xt)

1
K1 + (1− ζt)γtρ 1S

10: Predict with label y′t ∼ p′t

11: Compute vt =
1[yt ∈ out(y′t)]
Pt(yt ∈ out(y′t))

. yt is observed only when yt ∈ out(y′t)

12: Set ̂̀t(Wt) = vt`t(Wt) . compute loss estimates
13: Send ̂̀t to A and get Wt+1 in return

2 Gappletron

In this section we introduce GAPPLETRON, whose pseudocode is presented in Algorithm 1. As input,
the algorithm takes information about the graph G in the form of a minimum dominating set S and a
(possibly empty) set of revealing actionsQ. GAPPLETRON maintains a parameter Wt ∈ W ⊆ Rd×K
and uses some full information Online Convex Optimization (OCO) algorithm A to update the vector
form of Wt. Our results hold whenever A satisfies the condition that

∑T
t=1

(̂̀
t(Wt)− ̂̀t(U)

)
be at

most of order h(U)
√∑T

t=1 ‖∇̂̀t(Wt)‖2, where ̂̀t are the estimated losses computed at line 12 of
Algorithm 1 and h : W → R+ is any upper bound on the norm of U ∈ W . Since practically any
OCO algorithm can be tuned to have such a guarantee — see (Orabona and Pál, 2018) — this is a
mild requirement. Whereas GAPTRON is only able to use Online Gradient Descent (OGD) with a
fixed learning rate, GAPPLETRON allows for more flexibility, which in turn may lead to different
guarantees on the surrogate regret. For example, if the learner runs an OCO algorithm with a good
dynamic regret bound (Zinkevich, 2003), then GAPPLETRON enjoys a good dynamic surrogate regret
bound. Furthermore, the guarantee of A allows us to derive stronger results in the separable setting
while maintaining a similar guarantee as GAPTRON in the non-separable setting, which is not possible
when using OGD with a fixed learning rate. Additional inputs to GAPPLETRON are γ > 0, which is
used to control the exploration rate of the algorithm in the partial information setting, and the gap
map a, whose role we explain below.

The predictions of Algorithm 1 are sampled from p′t defined in line 9, where ey?t is the basis vector
in the direction of the margin-based linear prediction y?t = arg maxk〈W k

t ,xt〉. The gap map
a : RK×d × Rd → [0, 1] controls the mixture between ey?t and the uniform exploration term 1

K1.
For brevity, we sometimes write at instead of a(Wt,xt). The single most important property of
GAPPLETRON is presented in the following Lemma.

Lemma 1. Fix any feedback graph G and suppose that, for all t, `t is a regular surrogate loss with
respect to `. Then GAPPLETRON, run on G with a such that a(Wt,xt) = `(Wt,xt, y

?
t ), satisfies∑

y∈[K]

p′t(y)1[y 6= yt] ≤
K − 1

K
`t(Wt) + γt.

Proof. First, observe that
∑
y∈[K] p

′
t(y)1[y 6= yt] ≤ (1−at)1[y?t 6= yt]+at

K−1
K +γt, since ζ , (1−ζ),

and the cost of exploration are at most 1. To conclude the proof we claim that the first two terms in
the right-hand side are upper bounded by K−1

K `t(Wt). We show that by considering two cases. In the
first case y?t = yt and the inequality simply follows by substituting at = `

(
Wt,xt, y

?
t

)
= `t(Wt).
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In the second case y?t 6= yt and we have that

(1− at)1[y?t 6= yt] + at
K − 1

K
= 1− 1

K
`
(
Wt,xt, y

?
t

)
= 1− 1

K
`
(
Wt,xt, y

?
t

)
− K − 1

K
`
(
Wt,xt, yt

)
+
K − 1

K
`t(Wt) ≤

K − 1

K
`t(Wt),

where the inequality is due to equation (2) in the definition of regular surrogate losses.

Although the GAPTRON algorithm uses similar predictions, it is not clear how to choose a such that a
property similar to the one described in Lemma 1 holds. Rather, van der Hoeven (2020) derives a
different gap map for the hinge loss, the smooth hinge loss, and the logistic loss, and analyses the
surrogate regret separately for each loss. With Lemma 1 in hand, we simplify the analysis and —
at the same time — also generalize the results of van der Hoeven (2020) to other surrogate losses.
Furthermore, Lemma 1 also allows us derive surrogate regret bounds that hold with high probability.

What Lemma 1 states is that with regular surrogate losses and a(Wt,xt) = `
(
Wt,xt, y

?
t

)
the

expected zero-one loss of GAPPLETRON can be upper bounded by K−1
K `t(Wt) plus the cost of

exploration. While at first this may seem of little interest, note that we want to bound the zero-one
loss in terms of `t rather than K−1

K `t. Compared to standard algorithms, this gains us a − 1
K `t(Wt)

term in each round, which we can use to derive our results. To see how, observe that GAPPLETRON
uses an OCO algorithm A to update vec(Wt) on each round. Suppose that, for some h : W → R
and U ∈ W , Algorithm A satisfies

T∑
t=1

(̂̀
t(Wt)− ̂̀t(U)

)
≤ h(U)

√√√√ T∑
t=1

‖ĝt‖2, (4)

where ĝt = vt∇`t(Wt). For simplicity, now assume we are in the full information setting (e.g.,
vt = 1 for all t). Since `t is a regular surrogate loss, we can use ‖∇`t(W )‖2 ≤ 2L `t(W ) and√
ab = 1

2 infη>0 {a/η + ηb} to show that

h(U)

√√√√ T∑
t=1

‖ĝt‖2 −
T∑
t=1

1

K
`t(Wt) ≤ h(U)

√√√√ T∑
t=1

2L`t(Wt)−
T∑
t=1

1

K
`t(Wt) ≤

KLh(U)2

2
.

This means that in the full information setting the surrogate regret of GAPPLETRON is independent of
the number of rounds. In the partial information setting some additional steps are required, but the
idea remains essentially the same. We formalize the aforementioned ideas in the following Lemma,
whose proof is deferred to Appendix B.
Lemma 2. Fix any feedback graph G and suppose that, for all t, `t is a regular surrogate loss
with respect to `. If A satisfies equation (4) then, for any realization of the randomized predictions
y′1, . . . , y

′
T , GAPPLETRON, run on G with gap map a such that a(Wt,xt) = `(Wt,xt, y

?
t ), satisfies

T∑
t=1

∑
y∈[K]

p′t(y)1[y 6= yt] ≤
T∑
t=1

̂̀
t(U) +

T∑
t=1

γt

+ inf
η>0

{
h(U)2

2η
+

T∑
t=1

(
K − 1

K
`t(Wt)− vt`t(Wt) + ηv2tL`t(Wt)

)}
∀U ∈ W .

3 Bounds that Hold in Expectation

In this section we present bounds on the surrogate regret that hold in expectation. For brevity we use
MT =

∑T
t=1 1[y′t 6= yt]. We now state a simplified version of Theorem 4, whose full statement and

proof can be found in Appendix C.
Theorem 1. Let G be any feedback graph with dominating number ρ and revealing action set Q.
Suppose that, for all t, `t is a regular surrogate loss with respect to `. If A satisfies equation (4) then
GAPPLETRON, run on G and A with gap map a such that a(Wt,xt) = `(Wt,xt, y

?
t ), satisfies

E [RT ] = O

(
E
[
max

{
K2Lh(U)2

max{1, |Q|}
, h(U)

√
ρKL

∣∣{t : y?t 6∈ Q}
∣∣]}) ∀U ∈ W .
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Furthermore, for all U ∈ W such that
∑T
t=1 `t(U) = 0, GAPPLETRON satisfies:

E [MT ] = O

(
E
[
max

{
h(U)

√
ρL
∣∣{t : y?t 6∈ Q}

∣∣, KLh(U)2

max{1, |Q|}

}]
− 1

K
E

[
T∑
t=1

`t(Wt)

])
.

In the full information setting we clearly have that Q = [K]. Hence, using OGD as A with an
appropriated learning rate, the second statement in Theorem 1 reduces to E

[
MT

]
≤ 4L‖U‖22 −∑T

t=1
1
K `t(Wt), which improves the results of GAPTRON in the separable case by at least a factor

K. Interestingly, compared to standard bounds for the separable case, such as the PERCEPTRON
bound, there is a negative term which seems to further lower the cost of learning how to separate the
data. Similarly, in the partial information setting, the bound for the separable case in Theorem 1 has a
reduced dependency on K compared to the non-separable case, obtaining similar improvements over
GAPTRON as in the full information setting.

For the non-separable case, Theorem 1 generalizes GAPTRON in two directions. The most prominent
direction is the extension is to feedback graphs, where our analysis reveals a surprising phenomenon:
Theorem 1 in fact shows that the surrogate regret in the label efficient setting (and in any setting
where ρ < K) is actually smaller than in the bandit setting, where ρ = K. Intuitively, this is due to
the fact that our algorithm only updates when yt is known. In the bandit setting, we need to explore
all labels to find yt, while in label efficient classification we can just play whichever action is the
revealing action, and find yt. This implies that exploration in label efficient classification is easier
than in the bandit setting. Note that in the bandit setting, playing y′t 6= yt also provides the learner
with information. Perhaps by using this information effectively, one is able to improve our surrogate
regret bounds, but as of yet it is not clear how to use knowledge of the wrong label. The second
extension is that the bounds in Theorem 1 hold for all regular surrogate loss functions with the same
gap map defined by the surrogate loss, rather than only for a limited number of loss functions and
ad-hoc gap maps as it was the case with GAPTRON.

4 Bounds that Hold with High Probability

We now present bounds on the surrogate regret that hold with high probability. After proving
a general surrogate regret bound, we derive a corresponding bound, with improved guarantees,
for the full information setting. The bound for the partial information setting can be found in
Theorem 5 in Appendix D, which implies Theorem 2 below. Let the maximum loss over all rounds
be `max = maxt,W∈W `t(W ).
Theorem 2. With probability at least 1− δ, GAPPLETRON satisfies:

RT = O
(√

(Lh(U)2 + `max ln(1/δ))KρT
)

∀U ∈ W

Furthermore, for all U ∈ W such that
∑T
t=1 `t(U) = 0, with probability at least 1−δ GAPPLETRON

satisfies:

MT = O
(√

(Lh(U)2 +K`max ln(1/δ)) ρT
)
.

Theorem 2 shows that Algorithm 1 has O(h(U)
√
ρKT ) surrogate regret in the worst case, with high

probability. As far as the authors are aware, this is the first high-probability surrogate regret bound
for a margin-based classifier in the partial information setting. Similarly to the bounds in expectation,
the worst-case surrogate regret is the largest in the bandit setting (ρ = K) and the smallest in label
efficient classification (ρ = 1). Unlike the bounds in expectation, where the surrogate regret was at
least a factor

√
K smaller in the separable case, the improvement in Theorem 2 is less apparent, but

the surrogate regret still has a better dependence on K in the separable case. In particular, all the
terms with h(U) have a better dependence on K.

In the full information setting the dependence on `max can be removed. This cannot be achieved in the
partial information setting, due to the necessity of estimating the surrogate loss. IfW has a bounded
radius B and `t has gradients bounded by G, then `max ≤ 1 +BG by convexity. The bound for the
full information setting can be found in Theorem 3. In the separable case of the full information
setting, the bound does not depend on K, which is not the case for Theorem 2 due to the need to
control the surrogate loss estimates.
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Theorem 3. Under the conditions of Lemma 2, with probability at least 1−δ, GAPPLETRON satisfies

MT ≤
T∑
t=1

`t(U) +KLh(U)2 +
3K + 1

2
ln

1

δ
∀U ∈ W .

Furthermore, for all U ∈ W such that
∑T
t=1 `t(U) = 0, then with probability at least 1 − δ,

GAPPLETRON satisfiesMT ≤ 4Lh(U)2 + 11
4 ln 1

δ .

We provide a proof sketch of the full information versions of Theorem 3. The proof for the partial
information setting is essentially the same, with some extra steps to control the estimates of the
surrogate losses. Let zt =

(
1[y′t 6= yt]−

∑
y∈[K] p

′
t(y)1[y 6= yt]

)
. The proof relies on (Beygelzimer

et al., 2011, Theorem 1) — see Lemma 4 in this paper, which, when translated to our setting, states
that with probability at least 1− δ,

T∑
t=1

zt ≤

√√√√3 ln
1

δ

T∑
t=1

Et [z2t ] + 2 ln
1

δ
.

Since the variance is bounded by the second moment, Et
[
z2t
]
≤ Et [1[y′t 6= yt]] ≤ K−1

K `t(Wt),
where the last inequality is due to Lemma 1. By using

√
ab = infη>0

a
2η + η

2 b and applying Lemma 2,
we find that

MT ≤
T∑
t=1

`t(U) + inf
η∈(0,1]

{
h(U)− 3 ln δ

2η
+

T∑
t=1

(
η

(
L+

K − 1

K

)
− 1

K

)
`t(Wt)

}
,

with probability at least 1−δ. After choosing an appropriate η, this gives us a O
(
Kh(U)2

)
surrogate

regret bound with high probability.

5 Lower Bounds

Corollary 1 below here shows that the bound of Theorem 1 cannot be significantly improved.
Corollary 1. Let A be a possibly randomized algorithm for the online multiclass classification
setting with feedback graphs. Then, for any B = Ω(1), the surrogate regret of A with respect to the
smooth hinge loss must satisfy

E [MT ] = min
U∈W

T∑
t=1

`t(U) + Ω
(
KB2 +

√
T
)

where K is the number of classes, the feature vectors xt satisfy
∥∥xt∥∥2 = Θ(1) for all t, and

W =
{
W :

∥∥W∥∥ ≤ B}.

Corollary 1 is implied by Theorems 6 and 7 in Appendix E. The proof of Theorem 6 builds on the
lower bound of Daniely et al. (2015) for strongly-adaptive regret. The feedback graph considered in
the proof is filtering with two classes: a blind class (no outgoing edges) and a revealing class. In the
proof, we show that the algorithm either explores too much, in which case the lower bound trivially
holds, or the algorithm explores too little, in which case the environment can trick the algorithm into
playing the wrong action by exploiting the blind class.

6 Experiments

We empirically evaluated the performance of GAPPLETRON on synthetic data in the bandit, multiclass
filtering, and full information settings. Similarly to the SynSep and NonSynSyp datasets described in
(Kakade et al., 2008), we generated synthetic datasets with d ∈ {80, 120, 160}, K ∈ {6, 9, 12}, and
the label noise rate in {0, 0.05, 0.1}. Due to space constraints, we only report part of the experiments
for the bandit setting in the main text, see Figure 2. In the bandit setting we used worst case tuning
for the algorithms with the parameters suggested by theory, or set all parameters to 1, except for
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Figure 2: Results of the synthetic experiments for the bandit setting. The plot shows the best results
of algorithms with parameters suggested by theory, or tuned with all parameters set to 1, except for T .
The rows indicate different values for K and the columns different values for d. Whiskers show the
minimum and the maximum error rate over ten repetitions.

T . Initially we only used theoretical tuning for all algorithms, but we found that two algorithms we
compared with did not have satisfactory results. A more detailed description of the results, including
how we generated data and tuned the algorithms, can be found in Appendix F.

In the bandit setting, we compared GAPPLETRON with the following baselines: PNewtron (the
diagonal version of Newtron, by Hazan and Kale (2011)), SOBAdiag (the diagonal version of
SOBA, by Beygelzimer et al. (2017)), and the importance weighted version of Banditron3 (Kakade
et al., 2008). We opted to use the diagonal versions of Newtron and SOBA for computational
reasons. We chose the importance weighted version of Banditron because the standard version did
not produce satisfactory results. We used three surrogate losses for GAPPLETRON: the logistic
loss `t(Wt) = − logK q(Wt,xt, yt) where q is the softmax, the hinge loss defined in (5), and
the smooth hinge loss (Rennie and Srebro, 2005), denoted by GapLog, GapHin, and GapSmH
respectively. The OCO algorithm used with all losses is Online Gradient Descent, with learning rate

ηt =
(

10−8 +
∑t
j=1 ‖∇̂̀j(Wt)‖22

)−1/2
and no projections.

As shown in Figure 2, on average all versions of GAPPLETRON outperform the baselines in the bandit
setting. GapHin appears to be more unstable than the other versions of GAPPLETRON. We suspect
this is due to the fact that GapHin explores less than its counterparts. In multiclass spam filtering
(Figure 8 in Appendix F), we see that GapLog makes more mistakes than its counterparts for K > 6.
We suspect this is due to the fact that with logistic loss, the gap map is never zero, which implies that
GapLog picks an outcome uniformly at random more often than GapHin and GapSmH, while not
gaining any information. Due to this behaviour GapLog makes more mistakes than necessary, which
we also observe in the full information setting. In the bandit setting, the additional exploration leads
to additional stability for GapLog, as indicated by the small range of performance of GapLog. In all
cases, increasing the exploration rate increased the stability of GAPPLETRON, which is very much
in agreement with Theorem 5. Additionally, in Appendix F we also compare GAPPLETRON with
GAPTRON and in these experiments GAPPLETRON makes less mistakes than GAPTRON.

7 Future work

There are several intriguing research directions left open to pursue. While our lower bound holds for
general feedback graphs, it is not clear whether our bounds are tight for the bandit setting. Either
providing a lower bound or an improved algorithm for the bandit setting remains thus open. Our
results show that it is possible to obtain improved bounds for the separable case while maintaining

3This is a version different from the one described by Kakade et al. (2008), in particular, we replaced Ũ t in
their Algorithm 1 with the gradient of the importance weighted hinge loss.
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satisfactory results for the non-separable case. However, as Beygelzimer et al. (2019) show, it is
possible to obtain even better guarantees in the separable case of the bandit setting. An algorithm
guaranteeing O(K‖U‖2) mistakes in the separable case and O(K

√
T ) surrogate regret in the

non-separable case, without prior knowledge of the separability, would therefore be an interesting
contribution.
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