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Abstract

Several different versions of the theory of numerosities have been in-
troduced in the literature. Here, we unify these approaches in a consistent
frame through the notion of set of labels, relating numerosities with the
Kiesler field of Euclidean numbers. This approach allows to easily intro-
duce, by means of numerosities, ordinals and their natural operations, as
well as the Lebesgue measure as a counting measure on the reals.
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1 Introduction

The techniques of nonstandard analysis allow to construct several different hy-
perreal fields which, for many pratical purposes, are equivalent. However, there
is a unique hyperreal field which is isomorphic to the closed real field having
the cardinality of the first strongly inaccessible1 uncountable cardinal number.
Such a field has been introduced in [19] and we refer to it as to the Keisler field.

Given a ring of sets R (closed for cartesian product) and a non Archimedean
field K, the numerosity is a function

num : R → K (1)

which satisfies the following properties:

� Finite sets principle: if A is a finite set, then num (A) = |A| (|A| denotes
the cardinality of A);

� Euclid’s principle: if A ⊂ B, then num (A) < num (B);

� Sum principle: if A ∩B = ∅, then num (A ∪B) = num (A) + num (B);

� Product principle: num (A×B) = num (A) · num (B) .

The notion of numerosity has been introduced in [1],[5] and developed in
several directions ([4],[6],[7],[8],[9],[14],[16],[17],[21])2. Since its beginning, nu-
merosity theory has been strictly related to some hyperreal field, namely the
field K in (1) must be hyperreal.

The aim of this paper is to relate the theory of numerosity to the Keisler field
in such a way that most of the properties investigated in the previous papers
are preserved and unified in a consistent frame.

In particular, we want at least the following three properties to be satisfied:

� (Consistency with the theory of cardinal numbers) if A,B ⊂ A
then

|A| < |B| ⇒ num (A) < num (B) .

where |E| denotese the cardinality of E.

1κ is strongly inaccessible if it is uncountable, it is not a sum of fewer than κ cardinals
smaller than κ and, for all α < κ, 2α < κ.

2See also [10] for a historical survay of the ideas related to the measure of the size of infinite
sets.
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� (Consistency with the theory of ordinal numbers) if COrd is the
set of the Cantor ordinal numbers smaller than the first inaccessible un-
countable cardinal number and Num is the set of numerosities, then there
is a map

Ψ : COrd→ Num

such that

1. Ψ(σ) = num ({Ψ(τ) | τ < σ});
2. Ψ (σ ⊕ τ) = Ψ (σ) + Ψ (τ) ;

3. Ψ (σ ⊗ τ) = Ψ (σ) ·Ψ (τ) ,

where ⊕ and ⊗ denote the natural operations between ordinal numbers (see
Section 4.2).

� (Consistency with the Lebesgue measure) if E ⊂ R is a Lebesgue
measurable set, then

mL (E) = st

(
num (E)

num ([0, 1))

)
, (2)

where mL (E) denotes the Lebesgue measure of E and st(ξ) denotes the
standard part of ξ.

To this aim we build a field which, following [9], we will call field of Eu-
clidean numbers. This field is isomorphic to the Keisler field and its construc-
tion presents an extra structure that allows to build a numerosity theory which
satisfies, among others, the above requests.

2 The Euclidean numbers

In this section we introduce the field of Euclidean numbers. As we are going
to show, this is a hyperreal field constructed by means of a minor modification
of the usual superstructure construction, so to implement a development of the
theory of numerosity with certain useful peculiarities (see Remark 7).

2.1 Non Archimedean fields

Here, we recall the basic definitions and some facts regarding non Archimedean
fields. In the following, K will denote an ordered field. We recall that such
a field contains (a copy of) the rational numbers. Its elements will be called
numbers.

Definition 1. Let K be an ordered field. Let ξ ∈ K. We say that:

� ξ is infinitesimal if, for all positive n ∈ N, |ξ| < 1
n ;

� ξ is finite if there exists n ∈ N such that |ξ| < n;
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� ξ is infinite if, for all n ∈ N, |ξ| > n (equivalently, if ξ is not finite).

Definition 2. An ordered field K is called non Archimedean if it contains an
infinitesimal ξ 6= 0.

Infinitesimal numbers can be used to formalize the notion of ”infinitely
close”:

Definition 3. We say that two numbers ξ, ζ ∈ K are infinitely close if ξ − ζ
is infinitesimal. In this case we write ξ ∼ ζ.

Clearly, the relation ”∼” of infinite closeness is an equivalence relation.

Theorem 4. If K ⊃ R is an ordered field, then it is non Archimedean and every
finite number ξ ∈ K is infinitely close to a unique real number r ∼ ξ, called the
the standard part of ξ.

The standard part can be regarded as a function:

st : {x ∈ K | x is finite} → R. (3)

Moreover, with some abuse of notation, we can extend st to all K by setting

st (ξ) =

{
+∞ if ξ is a positive infinite number;
−∞ if ξ is a negative infinite number.

2.2 Construction of the Euclidean numbers

Given any set E we let V(E) be the superstructure on E, namely the family of
sets which is inductively defined as follows:

V0(E) = E;

Vn+1(E) = Vn(E) ∪ ℘ (Vn(E)) ;

V(E) =

∞⋃
n=0

Vn(E).

If an object x ∈ Vn+1(E) \ Vn(E) we say that its rank is n + 1, and we
write rank(x) = n+ 1. With the usual identifications of pairs with Kuratowski
pairs and functions and relations with their graphs, we have that V(E) contains
all the usual mathematical objects that can be constructed from E. Moreover,
notice that if E is finite then also each finite level Vn(E) of the superstructure
on E is finite.

Now we let A be a set of atoms whose cardinality κ is the first strongly
uncountable inaccessible cardinal number, and we assume that R ⊂ A. The
mathematical universe we will consider in this paper is

Λ = {E ∈ V(A) | E is an atom or a set such that |E| < κ}
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where |E| denotes the cardinality of E.
We let L be the family of finite subsets of Λ:

L = ℘fin(Λ).

L, ordered by the inclusion relation ⊆, is a directed set; if E is any set, we call
net (with values in E) any function

ϕ : L→ E.

From now on, we will denote by v a partial order relation over Λ that extends
the inclusion, namely such that ∀λ, µ ∈ L,

λ ⊆ µ⇒ λ v µ.

We assume that also (L,v) is a directed set; for the moment we will not make
any other assumption on E. One of the main task of this paper is to define v
in such a way to get a numerosity theory which satisfies the requests described
in the introduction.

Let
F (L,R) =

{
ϕ ∈ RL | ∃A ∈ Λ, ϕ (λ ∩A) = ϕ (λ)

}
3

be endowed with the natural operations

(ϕ+ ψ) (λ) = ϕ(λ) + ψ(λ);

(ϕ · ψ) (λ) = ϕ(λ) · ψ(λ)

and the partial ordering

ϕ ≥ ψ ⇔ ∀λ ∈ L, ϕ(λ) ≥ ψ(λ).

The field of Euclidean numbers is defined as follows4:

Definition 5. The field of Euclidean numbers E ⊃ R is a field so that there
exists a surjective map

J : F (L,R)→ E

with the following properties:

(i) Ring homomorphism: J is a ring homomorphism, namely for all ϕ,ψ ∈
F (L,R)

� J (ϕ+ ψ) = J (ϕ) + J (ψ) ;

� J (ϕ · ψ) = J (ϕ) · J (ψ) .

3The choice of this particular space is due to the fact that we want to end with the unique
hyperreal field whose cardinality is the first inaccessible, see [19].

4This construction can be seen as an extension of α-theory, see e.g. [3].
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(ii) Monotonicity: for all ϕ ∈ F (L,R), for all r ∈ R, if eventually ϕ(λ) ≥ r
(namely there exists λ0 ∈ L such that ∀λ w λ0, ϕ(λ) ≥ r), then

J (ϕ) ≥ r.

Let us show that such a field exists5.

Proof. Let U be a fine ultrafilter on L, namely a filter of sets such that

� Maximality: Q ∈ U ⇔ L\Q /∈ U ;

� Finess: ∀λ ∈ L, Q [λ] ∈ U , where

Q [λ] := {µ ∈ L | µ w λ} . (4)

The existence of U is a well known and easy consequence of Zorn’s Lemma.
We use U to introduce an equivalence relation on nets, by letting for all ψ,ϕ ∈
F (B,R)

ϕ ≈U ψ ⇐⇒ ∃Q ∈ U ∀λ ∈ Q, ϕ (λ) = ψ (λ) .

We set
Ẽ := F (L,R) / ≈U

and we denote by [ϕ]U the equivalence classes. Now we take a injective map

Φ : Ẽ→ A

such that ∀r ∈ R,
Φ ([cr]U ) = r

were cr is the net identically equal to r. Finally we set

E = Φ
(
Ẽ
)
.

The operations on E can be easily defined by letting

Φ ([ϕ]U ) + Φ ([ψ]U ) = Φ ([ϕ+ ψ]U ) ; Φ ([ϕ]U ) · Φ ([ψ]U ) = Φ ([ϕ · ψ]U ) .

It is very well known (see e.g. [19]) and simple to show that, thanks to U
being an ultrafilter, E endowed with the above operations is a field; moreover,
it can be made an ordered field by endowing it with the following ordering:

∀ϕ,ψ ∈ F (L,R) , Φ ([ϕ]U ) ≥ Φ ([ψ]U ) :⇐⇒ ∃Q ∈ U , ∀λ ∈ Q ϕ (λ) ≥ ψ (λ) .

Remark 6. E is an hyperreal field whose cardinality is κ; such a field is unique
up to isomorphisms (see [19]); namely, changing ”v” we get an isomorphic
hyperreal field. However, we will choose ”v” in such a way to get interesting
interactions with other mathematical structures.

5Readers with a basic knowledge of nonstandard analysis will recognize immediately that
our construction is a minor modification of the usual limit ultrapower construction.
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The number J (ϕ) is called the Λ-limit of the net ϕ and will be denoted by

J (ϕ) = lim
λ↑Λ

ϕ(λ).

The reason of this name and notation is that the operation

ϕ 7→ lim
λ↑Λ

ϕ(λ)

satisfies many of the properties of the usual Cauchy limit, but with the stronger
property of existing for every net. More exactly, it satisfies the following prop-
erties:

� Existence: Every net ϕ : L→ R has a unique limit L ∈ E.

� Monotonicity: For all r ∈ R if eventually ϕ(λ) ≥ r, then

lim
λ↑Λ

ϕ(λ) ≥ r;

� Sum and product: For all ϕ,ψ : L→ R

lim
λ↑Λ

ϕ(λ) + lim
λ↑Λ

ψ(λ) = lim
λ↑Λ

(ϕ(λ) + ψ(λ)) ,

lim
λ↑Λ

ϕ(λ) · lim
λ↑Λ

ψ(λ) = lim
λ↑Λ

(ϕ(λ) · ψ(λ)) .

Notice that, if limλ→Λ ϕ(λ) denotes the usual Cauchy limit of ϕ, the rela-
tionship between the Cauchy limit and the Λ-limit is

lim
λ→Λ

ϕ(λ) = st

(
lim
λ↑Λ

ϕ(λ)

)
.

Remark 7. The notion of Eucliean field defined by Definition 5 has been used
in several papers with ”⊆” instead of ”v” (e.g. [2], [11], [12]). Now, we will
explain the main technical reason for using an Euclidean field rather than a
”generic” hyperreal field. A set F ⊂ Λ∗ is called hyperfinite if

F = lim
λ↑Λ

Fλ =

{
lim
λ↑Λ

ϕ(λ) | ϕ(λ) ∈ Fλ
}

where the sets Fλ ∈ Λ are finite. Hyperfinite sets play a crucial role in many ap-
plications of nonstandard analysis. If we use a Euclidean field, we can associate
to every set E ∈ Λ a unique hyperfinite set E~ defined as follows

E~ = lim
λ↑Λ

E ∩ λ =

{
lim
λ↑Λ

ϕ(λ) | ϕ(λ) ∈ E ∩ λ
}
.

The set E~ satisfies the property6

Eσ ⊂ E~ ⊂ E∗
6Here, as usual, we have set

Eσ = {x∗ | x ∈ E} .
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which is very useful in the applications. Moreover, using an Euclidean field we
can easily define the numerosity function over any set E ∈ Λ by setting (see
Section 3)

num (E) := lim
λ↑Λ
|E ∩ λ| . (5)

In this paper, replacing with ”⊆” with a suitable ”v”, the numerosity theory
given by Equation (5) is consistent with the main features of the numerosity
theories present in the litterature (e.g. [1], [4], [5], [6], [7], [8], [9], [14], [16],
[17], [21]).

2.3 Labelled sets

The notion of labelled set has been introduced in [1] and [5] to construct a
numerosity theory for countable sets. Here we extend this notion to adapt it to
the study of numerosity theories for larger sets.

Definition 8. We call label set a family of sets B ⊂ L such that

(i) ∀s, t ∈ B, s ∩ t, s ∪ t ∈ B;

(ii) ∀s ∈ B, s ∩ L = ∅;

(iii)
⋃

s∈B V (s) = Λ.

Requirement (i) gives to B a lattice structure, whilst requirement (ii) entails
that the elements of a label are either atoms or infinite sets.

Having fixed the notion of ”labels”, we can now introduce the notion of
”labelling”:

Definition 9. Let B be a set of labels. We call B-labelling the map

` : Λ→ B

defined as follows:

`(a) =
⋂
µ∈Ia

µ,

where Ia = {µ ∈ B | a ∈ V(µ)}. For every a ∈ L we call `(a) the label of a.

Roughly speaking, the label of an object a ∈ Λ is a finite set whose elements
allow to define a by the fundamental finitistic set operations.

There is plenty of sets of labels: just set

Bmax = {t ∈ L | t ∩ L = ∅} . (6)

Obviously, Bmax is a label set; more importantly, every label set B is a subset
of Bmax.

Example 10. Let a = N. Then, using the Bmax-labelling,

` (N) = {N}.
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Now we will describe some properties of a set of labels B and the corre-
sponding B-labelling:

Proposition 11. Let B be a set of labels, and let s ∈ B. Then

(i) V(s) is countable;

(ii) V(s) \ s consists only of finite sets;

(iii) for all s, t ∈ B, for all m ∈ N we have that

Vm(s) ⊆ Vm(t)⇔ s ⊆ t;

(iv) for all s, t ∈ B, V(s ∩ t) = V(s) ∩ V(t);

(v) If a ∈ L and t ∈ B, then {a} ∈ V(t)⇔ a ∈ V(t).

Proof. (i) s is finite, hence by induction it trivially holds that Vn (s) is finite for
every n ∈ N. Therefore V (s) is countable.

(ii) As s is finite, by induction it is immediate to prove that Vn+1(s) \ s
consists only of finite sets, hence the thesis follows straightforwardly.

(iii) The implication ⇐ is trivial. Let us prove the other implication. If
Vm(s) ⊆ Vm(t) then, in particular, s ∈ Vm(t). Now, if s = {a1, . . . , an}, all
a1, . . . , an are either atoms or infinite sets, hence by (i), a1, . . . , an ∈ t.

(iv) The inclusion ⊆ is trivial. For the reverse inclusion, let η ∈ V(s)∩V(t).
In particular, η ∈ Vn(s) ∩ Vm(t) and so, if l = max{n,m}, we have that η ∈
Vl(s)∩Vl(t). We proceed by induction on l to show that Vl(s)∩Vl(t) ⊆ V(s∩t).

If l = 0, then η ∈ V0(s) ∩ V0(t) if and only if η = s = t, and the desired
inclusion trivially holds.

Now let us suppose the inclusion to hold for l ∈ N, and let η ∈ Vl+1(s) ∩
Vl+1(t). If η ∈ Vl(s) ∩ Vl(t) we are done by inductive hypothesis; if not, there
are A ∈ Vl(s), B ∈ Vl(t) such that η ∈ ℘(A)∩℘(B). In particular, η ∈ ℘(A∩B).
But A∩B ∈ Vl(s)∩Vl(t), so by induction A∩B ∈ V(s∩ t), hence η ∈ V(s∩ t)
as desired.

(v) The implication ⇐ is trivial. For the reverse implication, let

l = min{n ∈ N | a ∈ Vn(t)}.

In particular, we have that l ≥ 1. In fact, if l = 0 then {a} = t, and this cannot
happen as t ∩ L = ∅. Hence a ∈ Vl−1(t) and we are done.

As we will see in Section 5, the freedom of choosing a particular set of labels
allows to impose certain additional arithmetical properties on numerosities.

Proposition 12. Let B be a set of labels and let ` be a B-labelling. The
following properties hold:

(i) ∀a, b ∈ Λ, a ⊆ b⇒ `(a) ⊆ `(b);

(ii) ∀a ∈ Λ, `(a) ⊇ `({a}), and equality holds if a ∈ L;
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(iii) ∀a, b ∈ Λ, a ∈ b⇒ `({a}) ⊆ `(b);

(iv) ∀λ ∈ B, λ ∈ V (`(λ)) ;

(v) ∀s ∈ B, ` (s) = s;

(vi) ∀s ∈ B,∀m ∈ N, ` (Vm(s)) = s;

(vii) ∀a ∈ Λ,∀s ∈ B, ` (a) ⊆ s⇔ a ∈ V(s);

(viii) ∀a, b ∈ Λ, ` ({a, b}) = ` (a) ∪ `(b);

(ix) ∀a, b ∈ Λ, ` ((a, b)) = `(a) ∪ `(b).

(x) ∀E ∈ Λ, ∀λ ∈ L if we set

Eλ := {x ∈ E | ` (x) ⊆ ` (λ)}

then
Eλ = E ∩ V(` (λ));

(xi) ∀E ∈ Λ, the set Eλ is finite.

Proof. (i) If a ⊆ b, then trivially a ∈ V(t) whenever b ∈ V(t) and hence

`(a) =
⋂
{V(t) | t ∈ B, a ∈ V(t)} ⊆

⋂
{V(t) | t ∈ B, b ∈ V(t)} = `(b).

(ii) Trivially, for all t ∈ B, if a ∈ V(t) then also {a} ∈ V(t), hence `({a}) ⊆
`({a}. The second claim follows from the fact that, by Proposition 11.(v),
a ∈ V(t)⇔ {a} ∈ V(t).

(iii) If a ∈ b, then {a} ⊆ b and by (i) and (ii), we have that

`(a) = `({a}) ⊆ `(b).

(iv) By definition, ∀µ ∈ Ia, a ∈ V(µ); hence

a ∈
⋂
µ∈Ia

V(µ) = V

 ⋂
µ∈Ia

µ

 = V (`(a)) .

(v) We have that s = V0(s) ∈ V(s); hence s ∈ Is and so `(s) ⊆ s. Moreover,
if t ∈ Is, s ∈ V(t) and since s is a label, s ⊂ t and so

s ⊆
⋂
t∈Is

t = `(s).

(vi) If s ∈ B, then ∀t ∈ B, by Proposition 11.(iv) we have that

Vm(s) ∈ V(t)⇔ s ⊆ t⇔ s ∈ V(t).
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Then

IVm(s) = {t ∈ B | Vm(s) ∈ V(t)} = {t ∈ B | s ⊆ t} (7)

= {t ∈ B | s ∈ V(t)} = Is,

hence the thesis follows by the definition of B-labeling.
(vii) (⇒) If ` (a) ⊆ s, then, by (i), V (` (a)) ⊆ V (s) ; therefore, by (iv), a ∈

V (s) .
(⇐) If a ∈ V(s), then s ∈ Ia and so `(a) ⊆ s.
(viii) For t ∈ I{a,b}, since {a, b} ∈ V(t), but {a, b} /∈ t, we have that a ∈ V(t)

and b ∈ V(t); then

I{a,b} = {t ∈ B | a ∈ V(t) and b ∈ V(t)}
= {t ∈ B | a ∈ V(t)} ∩ {t ∈ B | b ∈ V(t)} = Ia ∩ Ib.

Hence

`({a, b}) =
⋂

t∈I{a,b}

t =
⋂

t∈Ia∩Ib

t = {x ∈ Λ | x ∈ t and t ∈ Ia ∩ Ib}

= {x ∈ Λ | (x ∈ t and t ∈ Ia) or (x ∈ t and t ∈ Ib)}
= {x ∈ Λ | (x ∈ t and t ∈ Ia)} ∪ {x ∈ Λ | (x ∈ t and t ∈ Ib)}

=

(⋂
t∈Ia

t

)
∪

(⋂
t∈Ib

t

)
= `(a) ∪ `(b).

(ix) We have that

` ((a, b)) = ` ({a, {a, b}}) = ` (a)∪` ({a, b}) = ` (b) ` (a)∪` (a)∪` (b) = ` (a)∪` (b) .

(x) First set s = ` (λ) . Let us first prove the inclusion ⊆. Let x ∈ E be such
that `(x) ⊆ s. By the definition of labelling then x ∈ V(s), and the inclusion is
proven. For the reverse inclusion, let x ∈ E ∩ V(s). In particular, it must be
`(x) ⊆ s, and we are done.

(xi) If E ∈ Λ then E has a finite rank n, which means that E ∩ V(s) = E ∩
Vn(s), and the conclusion follows by (x) as, by construction, Vn(s) is finite.

The notion of B-labelling allows to equip L with a partial order structure
v:

Definition 13. We set

L0 (B) := {Vm(t) | m ∈ N0, t ∈ B}

and for every λ, µ ∈ L, we set

λ v µ⇔ λ ⊆
⋂
{τ ∈ L0 | µ ⊆ τ} .
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Notice that, by definition

λ v µ⇔ Iλ ⊆ Iµ,

where Iλ has been introduced in Definition 9, and that

L0 (L0 (B)) = L0 (B) .

Clearly v induces a lattice structure on L0 (B), since

λ ∨ µ :=
⋂
{τ ∈ L0 | λ ∪ µ ⊆ τ} ;

λ ∧ µ :=
⋃
{τ ∈ L0 | τ ⊆ λ ∩ µ} .

Since λ ⊆ µ ⇒ λ v µ, we can use the directed set (L0 (B) ,v) to define a field
of Euclidean numbers as in Definition 5. From now on, E will denote such a
field.

Remark 14. Now the idea is to construct a suitable set of labels in such a
way that the relation v carry all the informations needed for a ”good” numeros-
ity theory. All these informations depend on v and not on the choice of the
ultrafilter used in the construction of E.

3 The general theory of numerosities

Different versions of the notion of numerosity have already been studied in
several previous papers [1, 5, 6, 7, 8, 14, 16, 17]; we refer also to the book [4] for
a complete overview of the countable case. In this paper, we want to show how
the new definition of labels and of the Euclidean field allows to easily provide the
most interesting features of the theory of numerosities. In particular, we show
how numerosities can be used to simultaneously unify and generalize objects
and results coming from different areas, like (a version of) Lagrange’s Theorem
for groups, the Peano-Jordan measure and the Lebesgue measure.

3.1 Definition and first properties

Definition 15. Let E be a set in Λ. We call numerosity of E the Euclidean
number

num (E) := lim
λ↑Λ
|E ∩ λ| .

The set of numerosities will be denoted by Num.

The notion of numerosity allows to ”give a name” to some hyperreal number.
We set

α = num (N) ; β = num ([0, 1)) . (8)

The numerosity of a set depends on the choice of the set of labels B, as
well as on the ultrafilter U on B chosen to construct E. However the properties
which will be listed below are independent of any choice.
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Theorem 16. Let E,F be sets in Λ. Numerosities satisfy the following prop-
erties:

(i) Finite sets principle: if E is a finite set, then num (E) = |E|;

(ii) Euclid’s principle: if E ⊂ F then num (E) < num (F );

(iii) Labels principle: if

Eλ = {x ∈ E | ` (x) ⊆ ` (λ)} .

then, if λ ∈ L0 (B), Eλ = E ∩ λ and hence

num (E) = lim
λ↑Λ
|Eλ| ;

(iv) Comparison principle: if Φ : E → F is a bijection that preserves labels,
namely such that for all x ∈ E

`(Φ (x)) = ` (x) ,

then num (E) = num (F );

(v) Sum principle: if E ∩ F = ∅ then num (E ∪ F ) = num (E) + num (F ) ;

(vi) Product principle: num (E × F ) = num (E) · num (F );

(vii) Finite parts principle: num (℘fin (E)) = 2num(E);

(viii) Finite functions principle: let E be nonempty, and

Ffin (X,E) := {f : D → E | D ∈ ℘fin(X)} .

Then, if a ∈ E, we have

num (Ffin (X,E\ {a})) = num (E)
num(X)

.

Proof. (i) If |E| = n < ∞, then for every λ ∈ L, we have |E ∩ λ| = n, and the
thesis then follows by taking the λ-limit.

(ii) If E ⊂ F , eventually |E ∩ λ| < |F ∩ λ|, so limλ↑Λ |E ∩ λ| < limλ↑Λ |E ∩ λ|.
(iii) Take λ = Vm(s) with m ≥ rank(E) and s ∈ B. Then, by Proposition

12.12
E ∩ λ = E ∩ Vm(s) = E ∩ V(s) = Eλ.

(iv) By hypothesis we have that for all λ ∈ L |Eλ| = |Fλ|, and so by the
labels principle

num (E) = lim
λ↑Λ
|E ∩ λ| = lim

λ↑Λ
|F ∩ λ| = num (F ) . (9)

(v) Just notice that |E ∪F |λ = |Eλ|+ |Fλ| for every λ ∈ L, hence the thesis
follows by Definition 5.(2) and by the labels principle.
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(vi) Let λ ∈ L. By property (ix) in Proposition 12, we have that (E × F )λ =
Eλ×Fλ, hence | (E × F )λ | = |Eλ×Fλ| = |Eλ| · |Fλ|, and the thesis then follows
immediately, again by the labels principle.

(vii) Let λ = Vm(s) ∈ L0 (m > rank(E)), and let a ∈ ℘fin (E) ∩ V(s).
Then by Proposition 12.(x) we have that it must be a ∈ ℘fin (Eλ). Conversely,
if a ∈ ℘fin (Eλ) it is immediate to see that a ∈ ℘fin (E) ∩ V(s). Hence, by
Proposition 12 we have∣∣[℘fin (E)]λ

∣∣ = |℘fin (E) ∩ V(s)| = |℘fin (Eλ)| = 2|Eλ|,

and so by the labels principle

num (℘fin (E)) = lim
λ↑Λ

2|Eλ| = 2num(E).

(viii) We set λ = Vm(s) ∈ L0, m > rank(f). Let f ∈ Ffin (X,E\{a})∩V(s),
and let D be the domain of f . By identifying functions with Kuratowski pairs,
and by our definition of labellings on pairs, it is immediate to see that f ∈
Ffin (X,E\{a}) ∩ V(s) if and only if D (f) ⊂ X ∩ V(s) = Xλ and Im (f) ⊂
(E\{a}) ∩ V(s) = Eλ\{a}. Therefore

Ffin (X,E\{a}) ∩ V(s) = Ffin (Xλ, Eλ\{a}) .

Notice that
|Ffin (Xλ, Eλ\{a})| = |F (Xλ, Eλ)| .

In fact, the association g ∈ Ffin (Xλ, Eλ\{a})→ g̃ ∈ F (Xλ, Eλ), with

g̃(x) =

{
g(x), if x ∈ Xλ;

a, otherwise

is a bijection. Hence, again by the labels principle,

num (Ffin (X,E\{a})) = lim
λ↑Λ
|Ffin (X,E\{a}) ∩ V(λ)| = lim

λ↑Λ
|F (Xλ, Eλ)|

= lim
λ↑Λ
|Eλ||Xλ| = num (E)

num(X)
.

4 Ordinal numbers and numerosities

In this section we will select a subset of the numerosities which we will call
ordinal numerosities (or simply ordinals). This set, equipped with its natural
order relation <, is isomorphic to the set of ordinal numbers. In Section 4.2 we
will show that this correspondence is deeper than expected since it preserves
also the natural operations between ordinals.
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4.1 The ordinal numerosities

Let Num be the set of numerosities.

Definition 17. The set Ord ⊂ Num of ordinal numerosities is defined as
follows: τ ∈ Ord if and only if

τ = num (Ωτ ) ,

where
Ωτ = {x ∈ Ord | x < τ} .

It is easy to see by transfinite induction that this is a good definition. In
fact, it is immediate to check that

� 0 ∈ Ord;

� if τ ∈ Ord, then τ + 1 = num (Ωτ ∪ {τ}) ∈ Ord (and hence N ⊂ Ord).

Moreover, if τk = num (Ωk) , k ∈ K, (|K| < κ) are ordinal numerosities, then

τ := num

( ⋃
k∈K

Ωk

)
∈ Ord.

In fact, this holds as
⋃
k∈K

Ωk = {x ∈ Ord | x < τ}: the inclusion
⋃
k∈K

Ωk ⊆

{x ∈ Ord | x < τ} holds trivially, as if x ∈
⋃
k∈K

Ωk then x ∈ Ord and x ∈ Ωk

for some k, and so x < τk < τ ; conversely, if x ∈ Ord is such that x < τ , if

x /∈
⋃
k∈K

Ωk we would have that Ωx ⊇
⋃
k∈K

Ωk, and so by taking numerosities we

would get x ≥ τ , which is absurd.

Definition 18. If τk, k ∈ K, (|K| < κ) are ordinals, we set

sup
k∈K

τk = num

( ⋃
k∈K

Ωτk

)
,

where τk = num (Ωτk) .

Then τ = supk∈K τk is the least element in Ord equal or greater than every
τk, namely τ ∈ Ord and

∀k ∈ K, τ ≥ τk; (10)

∀k ∈ K, ∀ξ ≥ τk ⇒ ξ ≥ τ . (11)

However τ is not the least element in Num greater or equal to every τk. In
fact, as we have seen, if supk∈K τk is not a maximum, there are numerosities
ξ ∈ E , greater that every τk and smaller than τ , e.g. (supk∈K τk)− 1.
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Our construction of the ordinal numbers is similar to the construction of
Von Neumann. However, whilst a Von Neumann ordinal τ is the set of all
the Von Neumann ordinals contained in τ , in our construction an ordinal τ is
the numerosity of the set of ordinals smaller than τ . Hence, here, an ordinal
number, as any other numerosity, is an atom.

Obviously, not all numerosities are ordinals: for example, num (N) is not an
ordinal. In fact, if α = num (N) were an ordinal then:

α = num( {x ∈ Ord | x < num (N)}) = num(N0)

= num(N ∪ {0}) = α+ 1.

In a similar way, one can prove that no infinite numerosity smaller than num (N)
is an ordinal. However, α+ 1 is an ordinal:

α+ 1 = num (N0) = num ({x ∈ Ord | x < α}) .

Actually α+ 1 is the smallest infinite ordinal. From now on, we will call it ω.
As we expect, Ord is a well ordered set; in fact is E ⊂ Ord, the minimum

is given by
min E = sup {x ∈ Ord | ∀a ∈ E, x ≤ a} .

4.2 Sums and products of ordinals

In this section we will show that the set of ordinal numerosities is closed under
sums and products, and we will show that there is relationship between sums
and products of ordinal numerosities and the natural operations between Cantor
ordinals.

First, we start by showing that the operations between numerosities are
consistent with the order structure over the ordinals.

Theorem 19. For all ordinal numbers σ, τ ∈ Ord we have that

num(Ωσ) + num(Ωτ ) = num(Ωσ+τ );

num(Ωσ) · num(Ωτ ) = num(Ωστ ).

In particular, σ + τ ∈ Ord and στ ∈ Ord.

Proof. First let us prove that

num(Ωσ+τ ) = num(Ωσ) + num(Ωτ )

acting by induction on τ . If τ = 0, then this relation is obvious. If τ = γ + 1,
then

num(Ωσ+τ ) = num(Ωσ+γ+1) = num(Ωσ+γ ∪ {σ + γ + 1})
= num(Ωσ+γ) + num({σ + γ + 1}) = num(Ωσ) + num(Ωγ) + 1

= num(Ωσ) + num(Ωγ ∪ {γ + 1}) = num(Ωσ) + num(Ωτ ).
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If τ = supk∈K τk, (where τk = num (Ωk)), is a limit ordinal, then

num(Ωσ+τ ) = sup
k∈K

num(Ωσ+τk) = sup
k∈K

[num(Ωσ) + num(Ωτk)] .

Since σ + τk = num(Ωσ) + num(Ωτk) is an ordinal number, τ satisfies (10) and
(11) and hence,

∀k ∈ K, σ + τ ≥ σ + τk;

∀k ∈ K, ∀ξ ∈ Ord σ + ξ ≥ σ + τk ⇒ σ + ξ ≥ σ + τ .

Then,
sup
k∈K

(σ + τk) = σ + sup
k∈K

τk

and so

num(Ωσ+τ ) = σ+ sup
k∈K

τk = num(Ωσ) + sup
k∈K

[num(Ωτk ] = num(Ωσ) + num(Ωτ ).

Similarly we act with the product. If τ = 0, then this relation is obvious. If
τ = γ + 1, then

num(Ωστ ) = num(Ωσ(γ+1)) = num(Ωσγ+σ) = num(Ωσγ) + num(Ωσ)

= num(Ωσ) · num(Ωγ) + num(Ωσ) = num(Ωσ) [num(Ωγ) + 1]

= num(Ωσ) · num(Ωτ ).

If τ = supk∈K τk (where τk = num (Ωk)), is a limit ordinal, then

num(Ωστ ) = sup
k∈K

num(Ωστk) = sup
k∈K

[num(Ωσ) · num(Ωτk)] .

Since τ satisfies (10) and (11),

∀k ∈ K, στ ≥ στk;

∀k ∈ K, ∀ξ ∈ Ord σξ ≥ στk ⇒ σξ ≥ στ.

Then
sup
k∈K

(στk) = σ · sup
k∈K

τk,

hence
num(Ωστ ) = σ · sup

k∈K
τk = num(Ωσ) · num(Ωτ ).

4.3 Numerosities and Cantor ordinals

The relation with the Cantor definition of ordinal is the following: if τ ∈ Ord,
Ωτ is a well ordered set and hence ot(Ωτ ) (the order type of Ωτ ) is a Cantor
ordinal. From now on, to avoid confusion, we will denote the Cantor ordinals
by τ̄ and their set by COrd. Whilst a Cantor ordinal is an equivalence class
of well-ordered sets, in our definition an ordinal is the numerosity of a suitable
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well ordered set; in particular, if we let ω be the smallest infinite ordinal, then
ω = num (N0) and ω̄ = ot(N0).

Now, let us consider the map

Φ : Ord→ COrd : Φ (τ) = ot(Ωτ ) := τ̄ (12)

which identifies the ”numerosity ordinals” with the ”Cantor ordinals”. So,
by construction Φ is an isomorphism between the ordered sets (Ord, <) and
(COrd, <) .

In general, the map does not preserve the operations +, ·, as + and · are
commutative on Num ⊂ N∗ but not on COrd. However, the situation is more
interesting if we consider the natural operations ⊕,⊗ between ordinals. We
recall that each ordinal σ̄ has a unique normal form

σ̄ =

m∑
n=0

ω̄jnan

where an ∈ N and n1 < n2 ⇒ jn1
> jn2

.
By using the normal form, the natural ordinal operations can be defined as

follows: given

σ̄ =

m∑
n=0

ω̄jnan and τ̄ =

m∑
n=0

ω̄jnbn (13)

we let

σ̄ ⊕ τ̄ =

m∑
n=0

ω̄jn (an + bn) and σ̄⊗τ̄ =

m⊕
n,h=0

anbhω̄
jn⊕jh , (14)

where an + bn and albm are the usual operations on natural numbers.
In order to compare the operations between numerosities and the natural

ordinal operations, we extend a notion used for the Cantor ordinals to the
numerosities .

Definition 20. An ordinal θ > 0 is called irreducible if

σ, τ , γ < θ ⇒ στ + γ < θ

If θ is irreducible then

σ, τ ∈ Ωθ ⇒ σ + γ < θ and στ < θ;

we need to prove that σ + γ and στ ∈ Ωθ.
We denote by θj , j ∈ Ord the sequence of irreducible ordinals, namely

� θ0 = ω,

� θj = min {x ∈ Ord | ∀m ∈ N0, ∀k < j, x > θmk } .
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Proposition 21. If τ ∈ Ord, we have that

τ < θj+1 ⇔ τ =

m∑
k=0

bkθ
k
j

with bk ∈ Ωθj .

Proof. This proof is based only on the order structure of Ord and hence it could
be considered well known. However we will report it for completeness and for
the sake of the reader.

(⇐) trivial.
(⇒) If τ < θj+1, we take

n = max
{
m ∈ N0 | θmj ≤ τ

}
Such an m exists by the definition of θj+1. Then we set

bm = sup
{
x ∈ Ωθj | xθ

m
j ≤ τ

}
and

yj,m = τ − bmθmj
Then,

∀z ∈ Ωθj , yj,m ≤ z. (15)

Now, by inducion over k = m− 1, ..., 0, we set

bk = sup

{
x ∈ Ωθj |

m∑
l=k+1

blθ
l
j + xθkj ≤ τ

}

and

yj,k = τ −
m∑
l=k

blθ
l
j

so we have that,
∀z ∈ Ωθj , yj,m ≤ z (16)

Now we claim that

τ −
m∑
k=0

bkθ
k
j = 0 (17)

In order to prove this we argue by iduction over j ∈ Ord ∪ {−1} by proving
that

yjk = 0. (18)

If j = −1, τ ∈ Ωθ0 = N0, then ∀n ∈ N0, y00 ≤ 0 and hence y00 = 0. If (18)
holds ∀τ ∈ Ωθj , then by (15) and (16), equality (18) holds also for τ ∈ Ωθj+1

.

Corollary 22. If σ, τ ∈ Ord, then σ + τ ∈ Ord and στ ∈ Ord
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Proof. By Prop. 21,

σ =

n∑
k=0

akθ
k
j , τ =

n∑
k=0

bkθ
k
j

for some j ∈ Ord and hence

σ + τ =

n∑
k=0

(ak + bk) θkj ; στ =

n∑
h,k=0

(ahbk) θh+k
j .

Now we describe the sequence of the irreducible ordinal numerosities: we set

� θ0 = ω̄

� θj̄ = sup
{
θnk̄ | n ∈ N, k̄ < j̄

}
So we have that

θ0 = ω,

θ1 = ωω,

θ2 = ωω
ω

. . .

θj+1 = θωj

. . .

θω = ε0

. . .

and so on. Since the definiton of θj depends only on the order structure of
(Ord, <), then

Φ (θj) = θ̄j .

It is well known and easy to check that any ordinal number τ̄ ∈ COrd,τ̄ <
θ̄j+1, can be written as follows:

τ̄ =

m⊕
n=0

ān ⊗ θ̄
n
j ; ān < θ̄j

and the natural operations ⊕,⊗ take the following form:(
m⊕
n=0

ān ⊗ θ̄
n
j

)
⊕

(
m⊕
n=0

b̄n ⊗ θ̄
n
j

)
=

m⊕
n=0

(
ān ⊕ b̄n

)
⊗ θ̄nj

σ̄⊗τ̄ =

m⊕
n,h=0

(
ān ⊗ b̄h

)
⊗ θ̄n+h

j
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Theorem 23. The map (12) is an isomorphism between the semirings (Ord,+, ·)
and (COrd,⊕,⊗), namely

Φ (σ + τ) = σ̄ ⊕ τ̄
Φ (στ) = σ̄ ⊗ τ̄

Proof. Let τ =
∑m
k=0 bkθ

k
j be an ordinal numerosity. Then

m∑
n=0

b̄n ⊗ θ̄
n
j = ot

({
m⊕
n=0

ān ⊗ θ̄
n
j ∈ COrd |

m⊕
n=0

ān ⊗ θ̄
n
j <

m⊕
n=0

b̄n ⊗ θ̄
n
j

})

= ot

({
m∑
n=0

anθ
n
j ∈ Ord |

m∑
n=0

anθ
n
j <

m∑
n=0

bnθ
n
j

})
= ot (Ωτ ) = τ̄ ,

namely

Φ (τ) = Φ

(
m∑
n=0

bnθ
n
j

)
=

m⊕
n=0

b̄n ⊗ θ̄
n
j = τ̄ .

Hence Φ is an isomorphism.

Remark 24. Theorems 23 and 19 provide a new interpretation for the natural
operations ⊕ and ⊗ namely

σ̄ ⊕ τ = ot(Ωσ+τ ) and σ̄⊗τ̄ = ot(Ωστ )

This fact is somewhat surprising since the operation + and · between numerosi-
ties have been introduced in a natural way for the numerosity theory and, a
priori, they should not have any realation with the natural operations between
ordinal numbers.

Notice, however, that not all operations are the same between numerosity or-
dinals and Cantor ordinals: for example, let ε̄0 = θ̄ω̄ be the Cantor ordinal that
corresponds to the numerosity ordinal θω. If we use the ordinal exponentiation,
we have that

ω̄ε̄0 = ε̄0,

whilst on the contrary, if we use the Euclidean exponentiation, we get that

ωε0 > θω.

In particular the equation
ω̄x = ε̄0

in the world of Cantor ordinals has the solution x = ε̄0 while the equation

ωx = ε0

in the world of Euclidean numbers, has the solution ξ = logω ε0. ξ is a well
defined Euclidean number, but it is not an ordinal number since

ξ < ε0 = num

(⋃
k<ω

Ωθk

)
.
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However it is easy to prove that the ordinal exponentiation agrees with the
Euclidean exponentiation for numbers in Ωθω .

5 Numerosities of some denumerable sets

There are many different ways of definining a label set according to Definition 8.
Different label sets might give different algebraical properties to the numerosity;
moreover, in some cases particular choices of the label sets may lead to other
concepts (e.g. Lebesgue measure for the reals). In this and the next Sections,
we want to show several examples of these facts.

5.1 The general strategy

Theorem 16 describes the fundamental properties of numerosities, which are
satisfied for all choices of the label set B (and of the ultrafilter U). However,
certain additional properties are satisfied only for some choices of B: in fact,
they depend on the ultrafilter U over ℘fin (B), whose existence depends on
Zorn’s lemma which cannot be explicit and hence it is impossible to prove or
disprove some of them. However, if we choose a suitable label set B (and, conse-
quently we restrict the choice of U), it is possible to show that some properties,
as the ones mentioned in the Introduction, are satisfied independently of U . The
goal of Section 5 is to show how a suitable choice of B allows the numerosity
function to satisfy interesting properties in many specific cases.

The smaller the set B is, the more properties are satisfied by the numerosity
function. So the idea is to begin with a set Bmax = {t ∈ L | t ∩ L = ∅} and
to construct smaller label sets Bmax ⊃ B1 ⊃ B2 ⊃ . . . which provide a richer
and richer structure to the theory. In this paper we are interested in the nu-
merosity of some specific subsets of N0, Z, Q, R and so we will construct set of
labels Bmax ⊃ B (N0) ⊃ · · · ⊃ B (R). Each set of labels allows to enrich the
theory with new theorems; all these theorems are independent of the ultrafilter
employed in the sense that every ultrafilter which satisfies the finess property7

does the job8.
The construction which we will present in the next sections is based on the

following definition:

Definition 25. If D ⊂ Bmaxis a directed set (wih respect to ⊆), we define

D = G ({s ∈ Bmax | ∃t ∈ D, s w t}) ,

where GF denotes the smallest lattice containing F.

Notice that, by Definition, if D ⊂ Bmax is a directed set then

D = D.
7The finess property has been introduced in the proof of the existence of the field of

Euclidean numbers.
8Of course a smaller set of labels reduces the choice of the ultrafilter. More precisely if

B1 ⊃ B2, an ultrafilter constructed over B2 makes B1 to be a qualified set.
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Lemma 26. For every D ⊂ Bmax, D is a label set.

Proof. Let us check that D satisfies the properties of Definition 8.
Property 8.(i) holds as D is a lattice by definition.
Property 8.(ii) holds as D ⊆ Bmax.
Property 8.(iii) holds as ∀a ∈ Λ,∃s ∈ Bmax, a ∈ V (s) and hence, if you take

any t ∈ D, a ∈ V (s ∪ t) ; on the other hand s∪ t ∈D and so
⋃

s∈D V (s) = Λ.

The numerosity of a set depends on the set of labels B and an ultrafilter U
consistent with B. As in this section we will discuss also coherence properties
between different label sets, we will use the notation numUB to denote the nu-
merosity function obtained using labels in B and the ultrafilter U and similarly
we denote by `B(x) the label relative to B (see Definition 9). This notation will
be used only when there is danger of confusion, as multiple sets of labels are
used at once. We will keep to use to the simpler notation num whenever there
is no danger of such confusion.

By definition, the D-labelling of a ∈ Λ is given by

`D(a) =
⋂
{s ∈ D | a ∈ V (s)} =

⋂
{s ∈ Bmax | a ∈ V (s) and ∃t ∈ D, s ⊇ t};

in particular, we have that

s ∈ D⇒ `D(s) = s. (19)

Proposition 27. If D1 ⊂ D2 then D1 ⊂ D2, hence for all ultrafilter U consis-
tent with D1, for every set A in Λ

numU
D1

(A) = numU
D2

(A).

Proof. The inclusion D1 ⊂ D2 holds trivially from Definition 25. The consis-
tency is immediate as if U contains D1 and D1 ⊂ D2 then necessarily U contains
D2.

Lemma 28. If λ ∈ D, then λ can be split as follows

λ = s ∪ t

where s ∈ D and t is such that

∀σ ∈ D, t ∩ σ = ∅.

Proof. Given λ ∈ D, we set

s :=
⋃
{u ∈ D | u ⊂ λ}

and
t := λ\s.
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Then s ∈ D, as D is a lattice and the union defining s is finite, and ∀σ ∈
D, t ∩ σ = ∅. In fact, if we set u = t ∩ σ then, as s ⊇ σ, we have

∅ = s ∩ t ⊇ σ ∩ t = u,

hence u = ∅.

Remark 29. We can look at the splitting given by Lemma 28 thinking of B as
a vector space over Z2; in this case we can write

B = D⊕D⊥

and the splitting λ = s ∪ t implies that

s ∈ D and t ∈ D⊥.

5.2 Numerosity of the natural numbers

In what follows, we set N := {1, 2, 3, . . . } and N0 := N∪{0}, and we let α denote
the numerosity of N. We will consider numbers in N0, as well as more generally
in R, as atoms. Our goal is to find a label set B(N0) ⊂ Bmax so that we can
prove some properties of α and to describe the numerosity of some subsets of
N0 by functions of α.

We define D (N0) as follows:

λ ∈ D(N0)⇔ ∃m ∈ N such that λ =
{

0, . . . ,m!m!
}
,

and we set
B(N0) := D(N0).

which, by Lemma 26, is a label set. By Definition, we have that for every
n ∈ N0,

`(n) = {0, . . . , f(n)} ,

where
f(n) := min

{
m!m! | m ∈ N, m!m! ≥ n

}
.

The main reason for such a peculiar labelling is to ensure the following
algebraical properties for α:

Proposition 30. Let n ∈ N. Then

(i) num({nm | m ∈ N}) = α
n ;

(ii) num({mn | m ∈ N}) = α
1
n .

Proof. (i) For i = 0, . . . , n− 1 let

Ai = {m ∈ N0 | m ≡ i mod n}.
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Then for every λ w {0, 1, . . . , n!n!}, with λ ∈ B (N0), for every 0 ≤ i, j < n we
have

|Ai ∩ λ| = |Aj ∩ λ|,
as λ ∩N = {0, 1, . . . , f(m)} for some m ≥ n, and n divides f(m) for every such
m. In particular, this shows that num (Ai) = num (Aj) for every 0 ≤ i, j < n,
hence

α = num (N0) =

n−1∑
i=0

num (Ai) = n · num (A0) .

(ii) Let λ w {1, . . . , n!n!}, with λ ∈ B (N0). As noticed in (i) above, it

must be λ ∩ N = {1, . . . ,m!m!} for some m ≥ n. If a = m!
m!
n , we can rewrite

{1, . . . ,m!m!} as {1, . . . , an}. Hence | {mn | m ∈ N} ∩ λ| = a = |N ∩ λ| 1n . The
thesis is reached by taking the Λ-limit on the above equality.

Remark 31. Of course, the choice of D (N0) is not intrinsic, and has been
done so to make it possible to have the properties listed in Proposition 30. Some
additional motivations for this choice of D (N0) can be found in [4]; different
motivations have lead the authors of [9] to make the following different choice:

λ ∈ D1(N0)⇔ ∃m ∈ N such that λ = {0, . . . , 2m − 1} .

This can be seen as a feature of this approach: different algebraical properties of
the numerosity can be rather easily obtained by changing the label set.

5.3 Numerosity of the integers

We proceed as in the case of the natural numbers. We define D(Z) as follows:

λ ∈ D (Z)⇔ ∃m ∈ N such that λ =
{
−m!m!, . . . ,m!m!

}
.

Clearly D (Z) ⊂ B(N0) and hence, by Lemma 26,

B(Z) := B (N0) ∩D(Z)

is a label set. Using this label basis for every z ∈ Z,

`(z) ∩ Z = {−n(z), . . . , n(z)},

where
n(z) := min

{
m!m! | m ∈ N, m!m! ≥ |z|

}
.

Moreover, as B(Z) ⊆ B(N), by Proposition 27 the numerosities constructed
with B(Z) are coherent with those constructed with B(N).

With this choice of D (Z) , num (Z) = 2α+ 1 and we have that

num (Z<0) = num (Z>0) = α; (20)

this equality agrees with the intuition that the positive numbers are as many as
the negative numbers.

Just as an example of a possible application, let us prove the following result
for subgroups of Z, which reminds Lagrange’s Theorem for finite groups:
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Theorem 32. Let S := mZ be a subgroup of (Z,+). Then

num (Z)

num (S)
∼ m = num (Zm) . (21)

Proof. By definition, S = {mn | n ∈ Z}. We write S = S+ ∪ S− ∪ {0}, where

S+ = {a ∈ S | a > 0}, S− = {a ∈ S | a < 0}.

By Proposition (30) we know that num (S+) = α
m , and it is trivial to show that

num (S−) = num (S+). Hence num (S) = num (S+) + num (S−) + 1 = 2 αm + 1.
As num (Z) = 2α+ 1, we have

num (Z)

num (S)
=

2α+ 1
2α
m + 1

=
2α+ 1

1
m (2α+m)

∼ m,

as α is infinite.

Remark 33. Let us notice that, with our labelling, in the above Proposition we
do not have the equality

num (Z)

num(S)
= m (22)

because not all lateral classes [k] in the quotient have the same numerosity:

num ([k]) =
2α

m
if k 6= 0; num ([0]) =

2α

m
+ 1.

If we want the equality in (21), then we can replace D (Z) with D1 (Z) defined
as follows:

λ ∈ D1 (Z)⇔ ∃m ∈ N such that λ =
{
−m!m! + 1, . . . ,m!m!

}
.

In this case, we get (22), but num (Z) = 2α and the equality (20) is violated.

5.4 Numerosity of the rationals

The labelling of Z given in Section 5.3 can be extended in several ways to the
rationals. A natural one is obtained by setting

D (Q) :=
{
Hn | ∃m ∈ N, n = m!m!

}
,

where
Hn :=

{a
n
| a ∈ Z, −n2 < a < n2

}
.

By Lemma 26,
B(Q) := D(Q)

is a label set.
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As D (Q) ⊂ B(Z), by Proposition 27 the numerosities constructed with
B(Q) are coherent with those constructed with B(Z). Using the label basis
B(Q) we have that, for every q ∈ Q,

`(q) ∩Q = Hn(q),

where
n(q) := min

{
m!m! | m ∈ N, m!m! ≥ |q|

}
.

This labelling has been chosen in order to have the following results:

Proposition 34. Using the labelling B(Q), the following properties hold

(i) for all n ∈ N0, num (Q ∩ [n, n+ 1)) = α;

(ii) for all p, q ∈ R with p < q, num(Q∩[p,q))
num(Q∩[0,1)) ∼ (p− q);

(iii) num (Q) = 2α2 + 1.

Proof. (i) Take Hm ∈ BQ with m larger than n + 1. Then | (Q ∩ [n, n+ 1)) ∩
Hm| = m, hence eventually | (Q ∩ [n, n+ 1))∩Hm| = |N∩Hm|, and the thesis
follows by taking the Λ-limit.

(ii) Take Hm ∈ BQ with m larger than |p|, |q|. Then (Q ∩ [p, q)) = (p− q)m
if p ∈ Hm, (Q ∩ [p, q)) = (p− q)m− 1 if p /∈ Hm. By taking the Λ-limit we have
that either num (Q ∩ [p, q)) = (p − q)α − 1 or num (Q ∩ [p, q)) = (p − q)α, and
the thesis follows as, by (i), num (Q ∩ [0, 1)) = α.

(iii) Let us first compute num (Q>0). Let λ = Hn ∈ BQ. Then |Hn∩Q>0| =
n2, hence if ϕ is the enumeration of Q>0 and ψ is the enumeration of N, we
have that ϕ(λ) = ψ(λ)2, so

num (Q>0) = lim
λ↑Λ

ϕ(λ) = lim
λ↑Λ

ψ2(λ) =

(
lim
λ↑Λ

ψ(λ)

)2

= α2.

Therefore, as each Hn is symmetrical with respect to 0, we also have that
num (Q<0) = α2, and so

num (Q) = num (Q<0) + num (Q>0) + 1 = 2α2 + 1.

An example of a possible application, let us prove the following result:

Theorem 35. Let mPJ denote the Peano-Jordan measure of a mPJ -measurable
set E. Then

mPJ (E) = st

(
num (E ∩Q)

num ([0, 1) ∩Q)

)
= st

(
1

α
· num (E ∩Q)

)
. (23)

Proof. If E is an interval then the result follows from Proposition 34. We

can extend this result to a plurinterval E =
⋃
Ei by the Sum Principle (see
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Theorem 16.(v)). In general, if E is mPJ -measurable, ∀ε ∈ R>0 there are two
plurintervals A and B such that

A ⊆ E ⊆ B

|mPJ(B)−mPJ(E)| < ε and |mPJ(E)−mPJ(A)| < ε (24)

By the Euclid Principle (see Theorem 16.(ii)), we have that

num (A ∩Q) ⊆ num (E ∩Q) ⊆ num (E ∩Q) ,

then

mPJ(A) ≤ st
(

1

α
· num (E ∩Q)

)
≤ mPJ(B).

The conclusion follows by the inequality above, Equation (24) and the arbitrari-
ness of ε.

6 Numerosities of non-denumerable sets

6.1 A suitable labelling

Let R̂N , N ∈ N, R̂N ⊂ A, be a family of sets such that

R̂0 = R,
R̂N ⊂ R̂N+1

and each R̂N+1 is isomorphic to RN . This akward distinction between R̂N and
RN is useful since, in this contest, it is easier to deal with atoms and the points
of RN are N -ples. Moreover, we need to assume that the isomorphism

Ψ : RN → R̂N

preserves also the labels, namely, if (x1, . . . , xN ) ∈ RN , then

` [Ψ (x1, . . . , xN )] = max {` (x1) , . . . , ` (xN )} . (25)

IfA ∈ ℘
(
R̂N
)

for someN , we denote byHd (A) the normalized d-dimensional

Hausdorff measure9 in R̂N . We introduce on ℘ (A) the following order relation:
given A,B ∈ ℘ (A), if |A| 6= c, we let A v B ⇔ |A| ≤ |B|; if |A| = |B| = c, we
let

A v B ⇔ Hd
(
A ∩ R̂d

)
≤ Hd

(
B ∩ R̂d

)
. (26)

9The normalized d-dimensional Hausdorff measure is given by

Hd (A) = NdHd (A) ,

where Hd is the usual Hausdorff measure and the normalization factor is such that Hd (A)
coincides with the usual Lebesgue md measure for d ∈ N.
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If A v B and B v A, we will write A ≡ B.
We define D (A) as follows: λ ∈ D (A) if and only if

λ = Ξ ∪ A,

where

� Ξ ∈ B (Q);

� A ∈ ℘fin (℘ (A)) ;

� for all A,B ∈ A, the following property holds:

A v B ⇒ |A ∩ Ξ| ≤ |B ∩ Ξ| ; (27)

|A| > ℵ0 ⇒ |Ξ ∩A| > |Q ∩ Ξ|2 . (28)

Lemma 36. If A1, . . . , Al ⊂ A and F ⊂ A is a finite set, there exists Ξ ∈
℘fin (A) such that F ⊆ Ξ and

Ξ ∪ {A1, . . . , Al} ∈ D (A) .

Proof. Let A1, . . . , Al ⊂ A and F ⊂ A be given; first we prove the Lemma in
the case in which

Aj ∩Ak = ∅ for j 6= k. (29)

We order the Aj ’s so that

j < k ⇒ Aj v Ak,

and we construct a sequence of labels

λk = Ξk ∪ {A1, . . . , Ak} , k ≤ l

such that λk ∈ D (A) , λk ⊂ λk+1 and Ξk ⊇ F . We do it by induction: for
k = 1, we set

λ1 = Ξ1 ∪ {A1} ; Ξ1 = F.

Trivially λ1 ∈ D (A), since there is nothing to verify.
Now, if k < l, in order to define Ξk+1, we consider four cases:

(i) |Ak+1| ≤ ℵ0;

(ii) |Ak+1| > ℵ0, and Hd
(
Ak+1 ∩ R̂N

)
= 0;

(iii) |Ak+1| > ℵ0, and Hd
(
Ak+1 ∩ R̂N

)
> 0;

(iv) |Ak+1| > c.
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(i) We take a finite set Fk+1 ⊂ Ak+1 such that |Fk+1| > |Ak ∩ Ξk| and we
set

λk+1 = Ξk+1 ∪ {A1, . . . , Ak, Ak+1} , Ξk+1 = Ξk ∪ Fk+1.

Then λk ∈ D (A) since (27) holds.
(ii) We take a finite set Fk+1 ⊂ Ak+1\Q such that

|Fk+1| > max
{
|Ak ∩ Ξk| , |Q ∩ Ξk|2

}
and we set

λk+1 = Ξk+1 ∪ {A1, . . . , Ak+1} , Ξk+1 = Ξk ∪ Fk+1.

Then (27) trivially holds; moreover

|Ak+1 ∩ Ξk+1| = |Fk+1| > |Q ∩ Ξk|2 .

Then also (28) is satisfied.

(iii) if Hd
(
Ak+1 ∩ R̂N

)
> 0, then |Ak+1| ≥ c; if |Ak+1| > c we are in

case (iv); if |Ak+1| = c, we take Fk+1 ⊂
(
Ak+1 ∩ R̂N

)
\ (Q ∪ Ξk) such that

|Fk+1| > max
{
|Ak ∩ Ξk| , |Q ∩ Ξk|2

}
and we argue as in point (ii).

(iv) |Ak+1| > c, we argue as in point (ii).
Now let us consider the case in which A1, . . . , Al does not satisfy (29). In

this case we take a finite family of sets {B1, . . . , Bm} which satisfies (29) and
such that every Ak is the union of some Bj ’s. Then, given {B1, . . . , Bm} and
Ξ, we have proved that there exists

λ̄ = Ξ̄ ∪ {B1, . . . , Bm} ∈ D (A) , with F ⊆ Ξ̄.

Now, it is easy to chek that

λ = Ξ̄ ∪ {A1, . . . , Al, B1, . . . , Bm} ∈ D (A)

Lemma 37. We have that D (Q) ⊂ D (A) and (D (A) ,⊆) is a directed set.

Proof. Given Hn ∈ D (Q), eventually, there is a set A ∈ A such that Hn ∈ D (A)
and so D (Q) ⊂ D (A) .

For i = 1, 2 let

λi = Ξi ∪
{
Ai1, . . . , A

i
li

}
∈ D0 (A) .

We set
F = Ξ1 ∪ Ξ2;

then, by Lemma (36), we can add points to F and get a set Ξ ⊃ Ξ1∪Ξ2 so that
(27) and (28) are satisfied.

Using Lemma 26, we define the label set

B(A) := D (A). (30)
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6.2 Cardinal numbers and numerosities

A property that is natural to expect, when one has a numerosity theory for all
sets in Λ, is that it must be coherent with cardinalities, namely it must satisfy
the following property:

Cantor property: if A,B ⊂ Λ\A then

|A| < |B| ⇒ num (A) < num (B) . (31)

Using the labelling B(A) defined by (30), the following result holds:

Theorem 38. If A,B ⊂ A then

|A| < |B| ⇒ num (A) < num (B) .

Proof. Given two sets A,B ⊂ A with |A| < |B|, we take a label λ ⊇ λ0 :=
Ξ ∪ {A,B} ∈ B(A). Then, by (27)

|A ∩ λ| = |A ∩ Ξ| < |B ∩ Ξ| = |B ∩ λ| .

The conclusion follows taking the Λ-limit

By Theorem 16, it follows that the numerosity function is well defined for
every set belonging to the family

K = {E ∈ V (F ) | F ∈ ℘fin (A)} ,

since D(A) provides a label to the elements of K. In particular, by the Compar-
ison Principle (Theorem 16.(iv)) and (25), we have that for every set E ⊂ RN ,

num (E) = num [Ψ (E)] .

Now, we want to extend the notion of numerosity to any set A in Λ in such
a way that the Cantor property (31) be satisfied. The simplest way to realize
this task is to consider the family of infinite sets

S := Λ\ (L ∪ A)

and to assign a label to each of them. We can take an injective map

Φ : S→ A

and set
`(A) = `(Φ (A)).

Then, every set in Λ\A has a label in B(A). By the Comparison Principle
(Theorem 16.(iv)), we get our desired final result:

Theorem 39. If A,B ∈ Λ\A, then

|A| < |B| ⇒ num (A) < num (B) .
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7 Numerosity and measures

7.1 The general theory

Given a numerosity theory and a set E ∈ Λ, we put

µγ(E) = st

(
num (E)

γ

)
,

where γ ∈ N∗. µγ is called numerosity measure. As we will see, an interesting

case occurs if you take γ = num ([0, 1))
d

with d ∈ R≥0. In this case we will say
that µγ is the canonical d-dimensional numerosity measure.

Theorem 40. The numerosity measure µγ satisfies the following properties:

(i) it is finitely additive: for all sets A,B

µγ (A ∪B) = µγ (A) + µγ (B)− µγ (A ∩B) ;

(ii) it is superadditive, namely given a denumerable partition {An}n∈N of a
set A ⊂ R, then

µγ (A) ≥
∞∑
n=0

µγ (An) .

Proof. (i) This is a trivial consequence of the additivity of the numerosity.
(ii) By Theorem 16, we have that for all N ∈ N,

num (A) ≥ num

(
N⋃
n=0

An

)
=

N∑
n=0

num (An) ,

hence

st

(
num (A)

γ

)
≥ st

(
N∑
n=0

num (An)

γ

)
=

N∑
n=0

st

(
num (An)

γ

)
;

therefore,

µγ (A) ≥
N∑
n=0

µγ (An) .

The conclusion follows taking the Cauchy limit in the above inequality for N →
∞.

7.2 Numerosity of the subsets of RN

In this section, we will show that µβ agrees with the Lebesgue measure, namely,
if E is a Lebesgue measurable set, then

mL (E) = µβ (E) = st

(
num (E)

β

)
, (32)
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where
β := num ([0, 1)) . (33)

First, let we show that this holds for intervals:

Theorem 41. The numerosity measure µγ is translation invariant for any γ ∈
N∗. In particular, if γ = β then for any ε = a

b ∈ [0, 1) we have that µβ
(
[0, ab )

)
=

a
b .

Proof. Let r ∈ R, E ⊆ R. By Property 27, as E ≡ r + E (in the sense of
the ordering v), we have that for every λ ∈ B (A) , λ = Ξ ∪ A necessarily
|E ∩ Ξ| = |(E + r) ∩ Ξ|. By taking the Λ-limit, we get our first claim.

As for the second, we just have to observe that [0, 1) = [0, 1
b ) ∪ [ 1

b ,
2
b ) · · · ∪

[ b−1
b , 1), so by finite additivity and translation invariance we get µβ

(
[0, 1

b )
)

= 1
b ,

and the thesis follows as, similarly, [0, ab ) = [0, 1
b ) ∪ [ 1

b ,
2
b ) · · · ∪ [a−1

b , 1).

Moreover, we have the following property:

Proposition 42. The numerosity measure µβ is subadditive on the σ-algebra
of Lebesgue measurable sets.

Proof. Let E ∈ ℘(R); wlog, we assume E ∈ ℘ (R≥0), as the result for a generic
E will then follow easily by splitting E = E+ ∪ E−. Let

E =
⋃
j∈N

Ej

be a partition of E, with all Ej ’s Lebesgue measurable. Let ε = a
b ∈ [0, 1); for

N large enough we have

mL (E) ≤ mL

 N⋃
j=1

Ej

+ ε.

Now E ∩ [−1,−1 + ε] = ∅, so

mL (E) ≤ mL

 N⋃
j=1

Ej ∪ [−1,−1 + ε]

 .

By Property 36 of our labelling, where d = 1, we have

num (E) ≤ num

 N⋃
j=1

Ej ∪ [−1,−1 + ε]

 .

By Theorem 41

num

 N⋃
j=1

Ej ∪ [−1,−1 + ε]

 =

N∑
j=1

num (Ej)+num ([−1,−1 + ε]) ∼
N∑
j=1

num (Ej)+εβ,
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hence

µβ (E) ≤
N∑
j=1

µβ (Ej) + ε ≤
∞∑
j=1

µβ (Ej) + ε.

The arbitrariness of ε gives the desired inequality

µβ (E) ≤
∞∑
j=1

µβ (Ej) .

We can now prove our desired final result:

Theorem 43. µβ(E) = µL(E) for all Lebesgue measurable sets E ⊆ R.

Proof. By Theorems 40,41 and by Proposition 42 we have that µβ , restricted to
Lebesgue measurable sets, has the empty set property, it is countably additive
(as it is both subadditive and superadditive), it is invariant under translation
and it is normalized. Hence it must coincide with the Lebesgue measure.

The arguments above could be generalized to prove that for any measurable
set A ⊂ RN we have that

mN (A) = st

(
num (A)

βN

)
.

Similarly, we can define the ”fractal measure” any fractal set A ⊂ RN as follows:

md(A) = st

(
num (A)

βd

)
, d ∈ [0, N ] .

We are not gonna study this fractal measure in detail here; however, it is not
difficult to chek that md(A) concides with the normalized Hausdorff measure
Hd.

7.3 Numerosity and nonstandard measures

It is well known that the Lebesgue measure can be realized using a counting
procedure based on hyperfinite sets: this is, e.g., at the core of the construction
of Loeb measures, which is the most known and used of such constructions. Loeb
measures were introduced in mid-70’s, see [20]; see also [22] for an overview of
Loeb methods and applications, and [23] for an overview of other applications
of nonstandard analysis in measure theory. To confront Loeb construction with
our approach, here we shortly recall Loeb construction following Goldblatt’s
presentantion, see [18], Section 16.8.

Let N be an infinite hypernatural number, and let S = { kN | −N
2 ≤ k ≤

N2, k hyperinteger}. Let ℘I(S) the set of internal subsets of S, and for every
A ∈ ℘I(S) let

m(A) := st

(
|A|
N

)
,

34



where |A| denotes the internal cardinality of A. Then m : ℘I (S)→ [0,+∞] is a
finitely additive measure on ℘I (S). The Loeb measure is obtained by means of
the usual Carathéodory extension procedure applied to m (we will denote also
the Loeb measure by m). What Loeb proved is that the Lebesgue measure can
be seen as a restriction of m, in the sense that for every Lebesgue measurable set
X the Lebesgue measure mL(X) is equal to the Loeb measure of the so-called
pre-shadow st−1(X) of X, namely

mL(X) = st
(
m
(
st−1 (X)

))
,

where st−1(X) = {ξ ∈ S | st(ξ) ∈ X}.
The similarity between our approach is that we have that, actually, µβ is

obtained as the standard part of a quotient similar to Loeb’s one. In fact,

µβ (A) = st
(
|A∗∩Γ|
|[0,1)∗∩Γ|

)
, where:

1. | · | denotes the internal cardinality of a set;

2. Γ is the hyperfinite set obtained by taking limλ↑Λ λ ∩ R.

However, in our approach the use of Carathéodory extension procedure, as
well as of pre-shadows, is substituted with the choice of a particular labelling
set, which can be equivalently seen as a particular choice of the hyperfinite set
used in the quotient. A similar result in a general nonstandard setting was first
obtained by Bernstein and Wattenberg (see [13]; see also [15], Section 2, for a
comparison of Bernstein-Wattenberg’s result and Loeb measures), who in fact
proved that there exists hyperfinite subsets S ⊆ [0, 1]∗ such that for all Lebesgue
measurable A ⊆ [0, 1]

mL(A) = st

(
|A∗ ∩ S|
|S|

)
.

As we said before, Theorem 43 provides a new proof of the above result by
taking

S = lim
λ↑Λ

(λ ∩ R) .

Finally, the problem of the relationship between numerosities and Lebesgue
measure in general has been addressed in [7, 8]. In these papers, the authors
introduced the notion of ”elementary numerosity” (see [7], Definition 1.1), that
we recall:

Definition. An elementary numerosity on a set Ω is a function n : ℘ (Ω) →
[0,+∞) defined on all subsets of Ω, taking values in the non-negative part of an
ordered field F ⊇ R, and such that the following two conditions are satisfied:

1. n(x) = 1 for every point x ∈ Ω;

2. n(A ∪B) = n(A) + n(B) whenever A and B are disjoint.
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The main connection between the ”elementary numerosity” and Lebesgue
measure is given by the following result, which is one of the instances of Theorem
3.1 in [8]:

Theorem. There exists an elementary numerosity n : ℘ (R) → [0,+∞)F such

that mL(X) = st
(

n(X)
n([0,1))

)
for every Lebesgue measurable set X.

Once again, Theorem 43 provides another proof of the above result, as num,
when restricted to ℘ (R) is, in fact, an elementary numerosity on R.

The interest of Theorem 43 lies on the fact that it is based on a numerosity
theory which satisfies many other additional properties.
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