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ABSTRACT
Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to
their linearization. They are the two Perlick systems [Ballesteros et al., Classical Quantum Gravity 25, 165005 (2008)], the Taub–NUT system
[Ballesteros et al., SIGMA 7, 048 (2011)], and all the 17 superintegrable systems for the four types of Darboux spaces as determined by Kalnins
et al. [J. Math. Phys. 44, 5811–5848 (2003)].

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0041130

I. INTRODUCTION
In Ref. 1, we have shown that all classical superintegrable systems (and their generalizations, not necessarily superintegrable) in two-

dimensional real Euclidean space E2
2 possess hidden symmetries leading to their linearization, as well as the Tremblay–Turbiner–Winternitz

system,3 and a superintegrable system that is separable in Cartesian coordinates and admits a third-order integral of motion as derived by
Gravel in Ref. 4. Then, we have conjectured that superintegrable systems in two-dimensional non-Euclidean space can also be reduced to
linear equations by means of their hidden symmetries. In this paper, we consider the two Perlick systems on two-dimensional non-Euclidean
spaces,5–8 the two-dimensional Taub–NUT system,9–11 and all the superintegrable systems for the four types of Darboux spaces as determined
in Refs. 12 and 13. We show that they are all intrinsically linear by determining their hidden Lie symmetries. As in Refs. 1 and 14–17, we
also make use of the reduction method.18 More details on superintegrable systems and their hidden linearity have been described in Ref. 1. In
particular, it is regardless of the separability of the corresponding Hamilton–Jacobi equation as shown in Ref. 15 for the Kepler problem in
Cartesian coordinates and in Ref. 16 for a superintegrable system in E2 that does not allow separation of variables.19

II. PERLICK TYPE I
We consider the so-called Hamiltonian of Perlik type I,8 i.e.,

HI =
(1 + kr2

)
2

2
(p2

r +
p2

θ
r2 ) + A

1 − kr2

r
, (1)

that generates the Hamiltonian equations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = pr(1 + kr2
)

2,

θ̇ =
pθ(1 + kr2

)
2

r2 ,

ṗr =
((1 − kr2

)p2
θ − 2kr4p2

r + Ar)(1 + kr2
)

r3 ,

ṗθ = 0.

(2)

The last equation can be easily integrated to give pθ = w = constant. If we apply the reduction method developed in Ref. 18 to the three
remaining equations of system (2) and choose θ as a new independent variable y, then we obtain the following two equations:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

dr
dy
=

prr2

w
,

dpr

dy
=
(1 − kr2

)w2
− 2kr4p2

r + Ar
rw(1 + kr2)

.
(3)

If we derive pr from the first equation of system (3) and replace it into the second equation, then we obtain the following second-order
equation in r:

d2r
dy2 =

Ar3
+ (1 − kr2

)w2r2
+ 2w2

( dr
dy)

2

w2r(1 + kr2)
. (4)

This equation admits an eight-dimensional Lie symmetry algebra isomorphic to sl(3,R) and thus is linearizable. A two-dimensional Abelian
intransitive subalgebra is that generated by the two operators

Γ7 =
cos(y)r2

1 + kr2 ∂r , Γ8 =
sin(y)r2

1 + kr2 ∂r (5)

that can be put into the canonical form20 ∂r̃ , ỹ∂r̃ by means of the transformation

ỹ = tan(y), r̃ =
kr − r−1

− A/w2

cos(y)
. (6)

Then, Eq. (4) becomes the free-particle equation

d2 r̃
dỹ2 = 0.

Instead, if we only make the transformation of the dependent variable u = kr − r−1
− A/w2, then Eq. (4) becomes the equation of the harmonic

oscillator

d2u
dy2 = −u.

III. PERLICK TYPE II
We consider the so-called Hamiltonian of Perlik type II,8 i.e.,

HII =
(1 − λ2r4

)
2

2(1 + λ2r4 − 2δr2)
(p2

r +
p2

θ
r2 ) +

Br2

1 + λ2r4 − 2δr2 , (7)

that generates the Hamiltonian equations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ =
pr(1 − λ2r4

)
2

1 + λ2r4 − 2δr2 ,

θ̇ =
pθ(1 − λ2r4

)
2

r2(1 + λ2r4 − 2δr2)
,

ṗr =
1 − λ2r4

r3(1 + λ2r4 − 2δr2)2 (2r2p2
r(λ

4r6
+ 3λ2r2

− δ − 3δλ2r4
)

+ p2
θ(1 + λ4r8

+ 6λ2r4
− 4δλ2r6

− 4δr2
) − 2Br4

),

ṗθ = 0.

(8)

The last equation can be easily integrated to give pθ = w = constant. If we apply the reduction method developed in Ref. 18 to the three
remaining equations of system (8) and choose θ as a new independent variable y, then we obtain the following two equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr
dy
=

prr2

w
,

dpr

dy
=

1
wr(1 + λ2r4 − 2δr2)(1 − λ2r4)

(2r2p2
r(λ

4r6
+ 3λ2r2

− δ − 3δλ2r4
)

+w2
(1 + λ4r8

+ 6λ2r4
− 4δλ2r6

− 4δr2
) − 2Br4

).

(9)

If we derive pr from the first equation of system (9) and replace it into the second equation, then we obtain the following second-order
equation in r:

d2r
dy2 =

w2
(2( dr

dy)
2
(λ4r6

+ 3λ2r2
− δ − 3δλ2r4

) + 1 + λ4r8
+ 6λ2r4

− 4δλ2r6
− 4δr2

) − 2Br4

wr(1 + λ2r4 − 2δr2)(1 − λ2r4)
, (10)

which admits a three-dimensional symmetry algebra sl(2,R), unless B = 2w2
(λ2
− δ2
), in which case it admits an eight-dimensional Lie

symmetry algebra sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any
second-order ordinary differential equation that admits a Lie symmetry algebra sl(2,R). If we solve Eq. (10) with respect to B and derive once
with respect to y, then we obtain the following third-order equation:

d3r
dy3 =

dr
dy

r2(1 − λ2r4)

⎛

⎝
3r(3 + λ2r4

)
d2r
dy2 − 12(

dr
dy
)

2

− 4r2
(1 − λ2r4

)
⎞

⎠
, (11)

which admits a seven-dimensional Lie symmetry algebra and therefore is linearizable. Indeed, the new dependent variable r̃ = 1+λ2r4

2r2

transforms Eq. (11) into the linear equation

d3 r̃
dy3 = −4

dr̃
dy

,

which is a once-derived linear harmonic oscillator with frequency equal to 2.

A. Taub–NUT
The following Taub–NUT Hamiltonian10,11

HTN(η) =
1
2

r
η + r

(p2
r +

1
r2 p2

φ) −
α

η + r
(12)

yields the Hamiltonian equations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ =
rpr

η + r
,

φ̇ =
pφ

(η + r)r
,

ṗr = −
2(αr − p2

φ)r + η(r2p2
r − p2

φ)

2(η + r)2r2
,

ṗφ = 0.

(13)

The last equation can be easily integrated to give pφ = w0 = constant. If we apply the reduction method developed in Ref. 18 to the three
remaining equations of system (13) and choose φ as a new independent variable y, then we obtain the following two equations:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

dr
dy
=

r2

w0
pr ,

dpr

dy
=

2(αr −w2
0)r + η(r2p2

r −w
2
0)

2(η + r)rw0
.

(14)

Solving the first equation for pr and substituting into the second yields

d2u
dy2 =

3η + 4u
2u(η + u)

(
du
dy
)

2

−
u(2αu2

− ηw2
0 − 2w2

0u)
2w2

0(η + u)
, (15)

with u ≡ r. Equation (15) admits a three-dimensional Lie symmetry algebra spanned by the following operators:

Θ1 = ∂y, Θ2 = cos(y)∂y +
u(η + u)

η
sin(y)∂u,

Θ3 = sin(y)∂y −
u(η + u)

η
cos(y)∂u.

(16)

However, if α = 0, then the equation admits an eight-dimensional Lie symmetry algebra. Therefore, if we solve Eq. (15) with respect to α and
derive once with respect to y, then we get the following third-order equation:

u2 d3u
dy3 +

du
dy

⎡
⎢
⎢
⎢
⎢
⎣

u2
− 6u

d2u
dy2 + 6(

du
dy
)

2⎤
⎥
⎥
⎥
⎥
⎦

= 0, (17)

which is linearizable since it admits a seven-dimensional Lie symmetry algebra spanned by the following operators:

Π1 = ∂y, Π2 = cos(y)∂y + u sin(y)∂u, Π3 = sin(y)∂y − u cos(y)∂u,

Π4 = u∂u, Π5 = u2∂u, Π6 = u2 cos(y)∂u, Π7 = u2 sin(y)∂u.
(18)

A two-dimensional Abelian intransitive subalgebra is that generated by the operators Π6 and Π7. If we put them into the canonical form
∂U , Y∂U , then the transformation

Y =
sin(y)
cos(y)

, U = −
1

u cos(y)
(19)
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changes Eq. (15) into the following linear equation:

d3U
dY3 = −3

Y2

1 + Y2
d2U
dY2 . (20)

Moreover, if we consider the transformation v = − 1
u , then Eq. (15) becomes the once-derived linear harmonic oscillator with frequency equal

to 1, i.e.,

d3v

dy3 = −
dv
dy

. (21)

This shows the connection between the Taub–NUT Hamiltonian (12) and the harmonic oscillator.

IV. DARBOUX I
Three superintegrable systems were determined in Ref. 12, where the problem of superintegrability for the Hamiltonian

HDI =
1

4u
(p2

u + p2
v) + V(u, v) (22)

was addressed, namely, finding the potentials V(u, v) such that HDI admits at least two extra quadratic integrals. We show that all of three
systems have hidden symmetries that make them linear.

A. Case (1)
The Hamiltonian

HDI1 =
1

4u
(p2

u + p2
v) + b1

4u2
+ v2

4u
+

b2

u
+

b3

uv2 (23)

yields the Hamiltonian equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ =
pu

2u
,

v̇ =
pv
2u

,

ṗu =
v2
(p2

u + p2
v) + b1v

2
(v2
− 4u2

) + 4b2v
2
+ 4b3

4u2v2 ,

ṗv =
4b3 − b1v

4

2uv3 .

(24)

If we apply the reduction method developed in Ref. 18 and choose v as a new independent variable y, then we obtain the following three
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dy
=

pu

pv
,

dpu

dy
=

y2
(p2

u + p2
v) + b1y2

(y2
− 4u2

) + 4b2y2
+ 4b3

2uy2pv
,

dpv
dy
=

4b3 − b1y4

y3pv
.

(25)

The last equation can be easily integrated, i.e.,

pv = ±
√

2w0b1y2 − b1y4 − 8w0b3y2 − 4b3

y
, (26)
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with w0 being an arbitrary constant. Moreover, if we derive pu from the first equation of system (25) and replace it into the second equation,
then we obtain the following second-order equation in u:

d2u
dy2 =

1
2u
(

du
dy
)

2

+
u(b1y4

− b3)
du
dy + y3

(w0b1 − 2b1u2
+ 2b2 − 4w0b3)

yu(2w0b1y2 − b1y4 − 8w0b3y2 − 4b3)
, (27)

which admits a three-dimensional symmetry algebra sl(2,R), unless b2 = 0, in which case it admits an eight-dimensional Lie symmetry algebra
sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any second-order ordinary
differential equation that admits a Lie symmetry algebra sl(2,R). If we solve Eq. (27) with respect to b2 and derive once with respect to y, then
we obtain the following linear third-order equation:

d3u
dy3 =

(b1y4
− 4b3)(

du
dy − y d2u

dy2 )

y2(2w0b1y2 − b1y4 − 8w0b3y2 − 4b3)
. (28)

B. Case (2)
The Hamiltonian

HDI2 =
1

4u
(p2

u + p2
v) +

a1

u
+

a2v

u
+ a3

u2
+ v2

u
(29)

yields the Hamiltonian equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ =
pu

2u
,

v̇ =
pv
2u

,

ṗu =
p2

u + p2
v + 4a1 + 4a2v

2
− 4a3(u2

− v2
)

4u2 ,

ṗv = −
a2 + 2a3v

u
.

(30)

If we apply the reduction method developed in Ref. 18 and choose v as a new independent variable y, then we obtain the following three
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dy
=

pu

pv
,

dpu

dy
=

4a1 + 4a2y − 4a3u2
+ 4a3y2

+ p2
u + p2

v

2upv
,

dpv
dy
= −2

a2 + 2a3y
pv

.

(31)

The last equation can be easily integrated, i.e.,

pv = ±2
√

a2w0 − a2y − a3y2, (32)

with w0 being an arbitrary constant. Moreover, if we derive pu from the first equation of system (31) and substitute it into the second equation,
then we obtain the following second-order equation in u:

d2u
dy2 =

(a2w0 − a2y − a3y2
)( du

dy )
2
+ (a2 + 2a3y)u du

dy − a3u2
+ a1 + a2w0

2u(a2w0 − a2y − a3y2)
, (33)
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which admits a three-dimensional symmetry algebra sl(2,R), unless a1 + a2w0 = 0, in which case it admits an eight-dimensional Lie symmetry
algebra sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any second-order
ordinary differential equation that admits a Lie symmetry algebra sl(2,R). If we solve Eq. (33) with respect to a1 and derive once with respect
to y, then we obtain the following linear third-order equation:

d3u
dy3 =

3(a2 + 2a3y)
2(a2w0 − a2y − a3y2)

d2u
dy2 . (34)

C. Case (3)
The Hamiltonian

HDI3 =
1

4u
(p2

u + p2
v) +

a
u

(35)

yields the Hamiltonian equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ =
pu

2u
,

v̇ =
pv
2u

,

ṗu =
4a + p2

u + p2
v

4u2 ,

ṗv = 0.

(36)

The last equation can be easily integrated, i.e., pv = w0, with w0 being an arbitrary constant. If we apply the reduction method developed in
Ref. 18 and choose v as new independent variable, then system (36) reduces to the following two equations:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

du
dy
=

pu

w0
,

dpu

dy
=

4a + p2
u +w

2
0

2uw0
.

(37)

If we derive pu from the first equation of system (37) and replace it into the second equation, then we obtain the following second-order
equation in u:

d2u
dy2 =

1
2u
(

du
dv
)

2
+

4a +w2
0

2w2
0u

, (38)

which admits a three-dimensional symmetry algebra sl(2,R), unless 4a +w2
0 = 0, in which case it admits an eight-dimensional Lie symmetry

algebra sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any second-order
ordinary differential equation that admits a Lie symmetry algebra sl(2,R). If we solve Eq. (38) with respect to a and derive once with respect
to y, then we obtain the following linear third-order equation:

d3u
dy3 = 0. (39)

V. DARBOUX II
Four superintegrable systems were determined in Ref. 13, where the problem of superintegrability for the Hamiltonian

HDII =
w2

1

w2
1 + 1

(w2
3 +w

2
4) + V(w1,w2) (40)

was addressed, namely, finding the potentials V(w1,w2) such that HDII admits at least two extra quadratic integrals.
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A. Case (A)
The Hamiltonian

HDIIA =
w2

1

w2
1 + 1

(w2
3 +w

2
4 + a1(

w2
1

4
+w2

2) + a2w2 +
a3

w2
1
) (41)

yields the Hamiltonian equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 = 2
w2

1w3

w2
1 + 1

,

ẇ2 = 2
w2

1w4

w2
1 + 1

,

ẇ3 = −w1
4w2

3 + 4w2
4 + a1w

4
1 + 2a1w

2
1 + 4a1w

2
2 + 4a2w2 − 4a3

2(w2
1 + 1)2 ,

ẇ4 = −w
2
1

2a1w2 + a2

w2
1 + 1

.

(42)

If we apply the reduction method developed in Ref. 18 and choose w1 as a new independent variable y, then we obtain the following three
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dw2

dy
=
w4

w3
,

dw3

dy
= −

4w2
3 + 4w2

4 + a1y4
+ 2a1y2

+ 4a1w
2
2 + 4a2w2 − 4a3

2yw3(w2
1 + 1)

,

dw4

dy
= −

2a1w2 + a2

w3
.

(43)

If we solve the second equation with respect to a3 and then derive once with respect to y, then we obtain the following second-order equation
in w3(y):

w′′3 = −
w′3(yw

′
3 + 3w3) + a1y

yw3
, (44)

which admits an eight-dimensional Lie symmetry algebra sl(3,R) and therefore is linearizable. In this case, Lie canonical transformation is

w̃3 =
y2w3

2
+

a1y4

8
, ỹ = y2

Ô⇒
d2w̃3

dỹ2 = 0, (45)

and consequently,

w3 = ±

√
8C2y2 + 8C1 − a1y4

2y
, (46)

with C1, C2 being arbitrary integration constants, although only one is really arbitrary since there is a relationship between them and a3. Then,
if we solve the first equation in (43) with respect to w4 and replace it into the third equation, we obtain the following linear second-order
equation in w2(y):

w′′2 =
−(a1y4

+ 8C1)w
′
2 + 4a1y3w2 + 2a2y3

a1y5 − 8C1y − 8C2y3 . (47)
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Its general solution is

w2 = (a1y2
− 4C2)C3 +

√
a1y4 − 8C1 − 8C2y2C4 −

a2

2a1
, (48)

with C3, C4 being arbitrary integration constants.

B. Case (B)
The Hamiltonian

HDIIB =
w2

1

w2
1 + 1

(w2
3 +w

2
4 + b1(w

2
1 +w

2
2) +

b2

w2
1
+

b3

w2
2
) (49)

yields the Hamiltonian equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 = 2
w2

1w3

w2
1 + 1

,

ẇ2 = 2
w2

1w4

w2
1 + 1

,

ẇ3 = −2w1
w2

2w
2
3 +w

2
2w

2
4 + b1w

4
1w

2
2 + 2b1w

2
1w

2
2 + b1w

4
2 − b2w

2
2 + b3

w2
2(w

2
1 + 1)2 ,

ẇ4 = −2w2
1

b1w
4
2 − b3

w3
2(w

2
1 + 1)

.

(50)

If we apply the reduction method developed in Ref. 18 and choose w1 as a new independent variable y, then we obtain the following three
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dw2

dy
=
w4

w3
,

dw3

dy
= −

w2
2w

2
3 +w

2
2w

2
4 + b1y4w2

2 + 2b1y2w2
2 + b1w

4
2 − b2w

2
2 + b3

w2
2w3y(y2 + 1)

,

dw4

dy
= −

b1w
4
2 − b3

w3
2w3

.

(51)

If we solve the second equation with respect to b2 and then derive once with respect to y, then we obtain the following second-order equation
in w3(y):

w′′3 = −
w′3(yw

′
3 + 3w3) + 4b1y

yw3
, (52)

which is exactly the linearizable equation (44) if a1 is replaced with 4b1, and consequently,

w3 = ±

√
8C2y2 + 8C1 − 4b1y4

2y
, (53)

with C1, C2 being arbitrary integration constants.
Another reduction would also lead to linearity. If we choose w2 as a new independent variable y, then we obtain the following three

equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dw1

dy
=
w3

w4
,

dw3

dy
= −

y2w2
3 + y2w2

4 + b1w
4
1y2
+ 2b1w

2
1y2
+ b1y4

− b2y2
+ b3

w1w4y2(w2
1 + 1)

,

dw4

dy
= −

b1y4
− b3

y3w4
,

(54)
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and we can easily integrate the third equation, i.e.,

w4 = ±
1
y

√
2b1w0y2 − b1y4 − 2b3w0y2 − b3, (55)

with w0 being an arbitrary integration constant. Then, if we solve the first equation in (54) with respect to w3 and replace it into the second
equation, we obtain the following second-order equation in w1(y):

w′′1 =
−w′21

w1(w2
1 + 1)

+
(b1y4

− b3)w
′
1

y(2(b1 − b3)w0y2 − b1y4 − b3)
− y2 b1(w

4
1 + 2w2

1 + 2w0) − b2 − 2b3w0

w1(w2
1 + 1)(2(b1 − b3)w0y2 − b1y4 − b3)

, (56)

which admits a three-dimensional symmetry algebra sl(2,R), unless b2 = 2(b1 − b3)w0 − b1, in which case it admits an eight-dimensional
Lie symmetry algebra sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any
second-order ordinary differential equation that admits a Lie symmetry algebra sl(2,R). If we solve Eq. (56) with respect to b2 and derive
once with respect to y, then we obtain the following third-order equation:

w′′′1 = −3
w′1w

′′
1

w1
+ 3

b1y4
− b3

2(b1 − b3)w0y2 − b1y4 − b3
(
w′′1
y
+

w′21

yw1
−
w′1
y2 ), (57)

which admits a seven-dimensional Lie symmetry algebra and therefore is linearizable. Indeed, the new dependent variable U = 1
2w2

1
and

independent variable Y = b1y2
+w0(b3 − b1) transform Eq. (57) into the linear equation

d3U
dY3 = −

3Y d2U
dY2

Y2 − b2
3w

2
0 + b1b3 + 2b1b3w2

0 − b2
1w

2
0

.

C. Case (C)
The Hamiltonian

HDIIC =
w2

3 +w
2
4 + a1 +

a2
w2

1
+ a3

w2
2

w2
1 +w

2
2 +

1
w2

1
+ 1

w2
2

(58)

yields the Hamiltonian equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 = 2
w2

1w
2
2w3

(w2
1w

2
2 + 1)(w2

1 +w
2
2)

,

ẇ2 = 2
w2

1w
2
2w4

(w2
1w

2
2 + 1)(w2

1 +w
2
2)

,

ẇ3 = 2w1w
2
2
(a1w

2
2 + a3 + (w

2
3 +w

2
4)w

2
2)(w

4
1 − 1) + (w4

2 + 1 + 2w2
1w

2
2)a2

(w2
1w

2
2 + 1)2(w2

1 +w
2
2)

2 ,

ẇ4 = 2w2
1w2
(a1w

2
1 + a2 + (w

2
3 +w

2
4)w

2
1)(w

4
2 − 1) + (w4

1 + 2w2
1w

2
2 + 1)a3

(w2
1w

2
2 + 1)2(w2

1 +w
2
2)

2 .

(59)

Before applying the reduction method,18 we introduce the following transformations of the dependent variables in order to avoid the
mishandling of formulas with square roots by either REDUCE or MAPLE, i.e.,

w1 =
√

r1, w2 =
√

r2, w3 =
√

r3, w4 =
√

r4, (60)
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and then choose r2 as a new independent variable y that gives rise to the following three equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr1

dy
=

√
r1r3

yr4
,

dr3

dy
=

√
r3

yr1r4

(a1y + a3 + (r3 + r4)y)(r2
1 − 1) + (y2

+ 1 + 2r1y)a2

(r1y + 1)(r1 + y)
,

dr4

dy
=
(a1r1 + a2 + (r3 + r4)r1)(y2

− 1) + (r2
1 + 1 + 2r1y)a3

y(r1y + 1)(r1 + y)
.

(61)

From the Hamiltonian HDIIC, i.e.,

HDIIC =
r3 + r4 + a1 +

a2
r1
+ a3

y

r1 + y + 1
r1
+ 1

y
= h0, (62)

we can derive

r3 =
(r1y + 1)(r1 + y)h0 − r1r4y − a3r1 − a2y − a1yr1

yr1
, (63)

with h0 being an arbitrary constant. Consequently, the third equation in (61) becomes

dr4

dy
=

a3 + (y2
− 1)h0

y2 , (64)

which can be easily integrated, i.e.,

r4 =
w0y − a3 + (y2

+ 1)h0

y2 , (65)

with w0 being an arbitrary constant. Finally, we are left with the first equation in (61), i.e.,

dr1

dy
=

√
h0r2

1 − (a1 +w0)r1 − a2 + h0
√

h0y2 +w0y − a3 + h0
, (66)

which can be solved by quadratures. However, if we solve it with respect to a2 and derive once by y, then the following linear second-order
equation is obtained:

2(a3 −w0y − (y2
+ 1)h0)

d2r1

dy2 − (w0 + 2h0y)
dr1

dy
+ 2h0r1 −w0 − a1 = 0. (67)

D. Case (D)
The Hamiltonian

HDIID =
w2

1

w2
1 + 1

(w2
3 +w

2
4 + d) (68)
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yields the Hamiltonian equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 = 2
w2

1w3

w2
1 + 1

,

ẇ2 = 2
w2

1w4

w2
1 + 1

,

ẇ3 = −2w1
w2

3 +w
2
4 + d

(w2
1 + 1)2 ,

ẇ4 = 0.

(69)

The last equation yields w4 = w0. If we apply the reduction method developed in Ref. 18 and choose w2 as a new independent variable y, then
we obtain the following two equations:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

dw1

dy
=
w3

w0
,

dw3

dy
= −

w2
3 +w

2
0 + d

w0w1(w2
1 + 1)

.
(70)

Then, if we solve the first equation in (70) with respect to w3 and replace it into the second equation, we obtain the following second-order
equation in w1(y):

w′′1 = −
w2

0w
′2
1 +w

2
0 + d

w2
0w1(w2

1 + 1)
, (71)

which admits a three-dimensional symmetry algebra sl(2,R), unless d = −w2
0 , in which case it admits an eight-dimensional Lie symmetry

algebra sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any second-order
ordinary differential equation that admits a Lie symmetry algebra sl(2,R). If we solve Eq. (71) with respect to d and derive once with respect
to y, then we obtain the following third-order equation:

w′′′1 = −
3w′1w

′′
1

w1
, (72)

which admits a seven-dimensional Lie symmetry algebra and therefore is linearizable. Indeed, the new dependent variable r1 = w
2
1 transforms

Eq. (72) into the linear equation

r′′′1 = 0. (73)

VI. DARBOUX III
Five superintegrable cases were determined in Ref. 13, where the problem of superintegrability for the Hamiltonian

HDIII =
e2u
(p2

u + p2
v)

4eu+1 (74)

was addressed.

A. Case (A)
The Hamiltonian

HDIIIA =
w2

3 +w
2
4 + a1w1 + a2w2 + a3

4 +w2
1 +w

2
2

(75)
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yields the Hamiltonian equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 =
2w3

w2
1 +w

2
2 + 4

,

ẇ2 =
2w4

w2
1 +w

2
2 + 4

,

ẇ3 =
2a2w1w2 + a1(w

2
1 −w

2
2 − 4) + 2a3w1 + 2w1(w

2
3 +w

2
4)

(w2
1 +w

2
2 + 4)2 ,

ẇ4 =
2a1w1w2 − a2(w

2
1 −w

2
2 − 4) + 2a3w2 + 2w2(w

2
3 +w

2
4)

(w2
1 +w

2
2 + 4)2 .

(76)

We apply the reduction method18 by choosing w2 as a new independent variable y that gives rise to the following three equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dw1

dy
=
w3

w4
,

dw3

dy
=

2a2w1y + a1(w
2
1 − y2

− 4) + 2a3w1 + 2w1(w
2
3 +w

2
4)

2w4(w2
1 + y2 + 4)

,

dw4

dy
=

2a1w1y − a2(w
2
1 − y2

− 4) + 2a3y + 2w2(w
2
3 +w

2
4)

2w4(w2
1 + y2 + 4)

.

(77)

From the Hamiltonian HDIIIA, i.e.,

HDIIIA =
w2

3 +w
2
4 + a1w1 + a2y + a3

4 +w2
1 + y2 = h0, (78)

we can derive

w3 = ±

√

h0(w2
1 + y2) + 4h0 − a1w1 − a2y − a3 −w2

4 , (79)

with h0 being an arbitrary constant. Consequently, the third equation in (77) becomes

dw4

dy
=

2h0y − a2

2w4
, (80)

which can be easily integrated, i.e.,

w4 = ±
√

a2(w0 − y) + h0y2, (81)

with w0 being an arbitrary constant. Finally, we are left with the first equation in (77), i.e.,

dw1

dy
=

√
h0(w2

1 + 4) − a1w1 − a2w0 − a3
√

a2(w0 − y) + h0y2
, (82)

which can be solved by quadratures. However, if we solve it with respect to a3 and derive once by y, then the following linear second-order
equation is obtained:

2((w0 − y)a2 + h0y2
)

d2w1

dy2 + (a2 − 2h0y)
dw1

dy
+ 2h0w1 −w0 − a1 = 0. (83)
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B. Case (B)
The Hamiltonian

HDIIIB =
w2

3 +w
2
4 +

b1
w2

1
+ b2

w2
2
+ b3

4 +w2
1 +w

2
2

(84)

yields the Hamiltonian equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 =
2w3

w2
1 +w

2
2 + 4

,

ẇ2 =
2w4

w2
1 +w

2
2 + 4

,

ẇ3 = 2
(b2 + b3w

2
2 + (w

2
3 +w

2
4)w

2
2)w

4
1 + (w

2
2 + 4 + 2w2

1)b1w
2
2

(w2
1 +w

2
2 + 4)2w3

1w
2
2

,

ẇ4 = 2
(b1 + b3w

2
1 + (w

2
3 +w

2
4)w

2
1)w

4
2 + (2(w

2
2 + 2) +w2

1)b2w
2
1

(w2
1 +w

2
2 + 4)2w2

1w
3
2

.

(85)

Before applying the reduction method,18 we introduce the following transformations of dependent variables, in order to render the next
calculations more amenable to computer algebraic software such as REDUCE, i.e.,

w1 =
√

r1, w2 = ±
√

r2, (86)

and then choose r2 as a new independent variable y that gives rise to the following three equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr1

dy
=

√
r1w3
√yw4

,

dw3

dy
=
(b2 + b3y + (w2

3 +w
2
4)y)r

2
1 + (y + 4 + 2r1)b1y

2yr1
√yr1(r1 + y + 4)w4

,

dw4

dy
=
(b1 + b3r1 + (w

2
3 +w

2
4)r1)y2

+ (2(y + 2) + r1)b2r1

2y2r1(r1 + y + 4)w4
.

(87)

From the Hamiltonian HDIIIB, i.e.,

HDIIIB =
w2

3 +w
2
4 +

b1
r1
+ b2

y + b3

4 + r1 + y
= h0, (88)

we can derive

w3 = ±

¿
Á
ÁÀ(h0(y + 4 + r1) − b3 −w2

4)yr1 − b2r1 − b1y
yr1

, (89)

with h0 being an arbitrary constant. Consequently, the third equation in (87) becomes

dw4

dy
=

b2 + h0y2

2w4y2 , (90)

which can be easily integrated, i.e.,

w4 = ±

¿
Á
ÁÀh0y(y −w0) − b2(1 +w0y)

y
, (91)
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with w0 being an arbitrary constant. Finally, we are left with the first equation in (87), i.e.,

dr1

dy
=

¿
Á
ÁÀb1 + (b3 − b2w0)r1 − h0r1(r1 +w0 + 4)

b2(1 +w0y) + h0y(w0 − y)
, (92)

which can be solved by quadratures. However, if we solve it with respect to b1 and derive once by y, then the following linear second-order
equation is obtained:

d2r1

dy2 = −
(b2w0 + h0w0 − 2h0y) dr1

dy + 2h0r1 + b2w0 − b3 + h0w0 + 4h0

2(b2(1 +w0y) + h0y(w0 − y))
. (93)

C. Case (C)
The Hamiltonian

HDIIIC =
w2

1w
2
3 −w

2
2w

2
4 + c1(w1 +w2) + c2

w1+w2
w1w2

+ c3
w2

1−w2
2

w2
1w

2
2

(w1 +w2)(2 +w1 −w2)
(94)

yields the Hamiltonian equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 =
2w2

1w3

(w1 +w2)(2 +w1 −w2)
,

ẇ2 = −
2w2

2w4

(w1 +w2)(2 +w1 −w2)
,

ẇ3 = 2
(w2

3 −w
2
4)w1w

2
2 − 2w2

3w1w2 −w
2
1w

2
3 −w

2
2w

2
4

(w1 +w2)2(2 +w1 −w2)2 +
c1

(2 +w1 −w2)2

+ c2
2w1 −w2 + 2

(2 +w1 −w2)2w2
1w2
+ 2c3

w2
1 − 2w1w2 +w1 +w

2
2 − 2w2

(2 +w1 −w2)2w3
1w

2
2

,

ẇ4 = −2
(w2

3 −w
2
4)w

2
1w2 −w

2
3w

2
1 − (2w1 +w2)w2w

2
4

(w1 +w2)2(2 +w1 −w2)2 −
c1

(2 +w1 −w2)2

+c2
w1 − 2w2 + 2

(2 +w1 −w2)2w1w2
2
+ 2c3

w2
1 − 2w1w2 + 2w1 +w

2
2 −w2

(2 +w1 −w2)2w2
1w

3
2

.

(95)

We apply the reduction method18 by choosing w2 as a new independent variable y that gives rise to the following three equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dw1

dy
= −

w2
1w3

y2w4
,

dw3

dy
= −
(w2

3 −w
2
4)w1y2

− 2w2
3w1y −w2

1w
2
3 − y2w2

4

(w1 + y)(2 +w1 − y)y2w4
− c1

w1 + y
2(2 +w1 − y)y2w4

− c2
(2w1 − y + 2)(w1 + y)
2(2 +w1 − y)w2

1y3w4
− c3
(w2

1 − 2w1y +w1 + y2
− 2y)(w1 + y)

(2 +w1 − y)w3
1y4w4

,

dw4

dy
=
w2

1y(w2
3 −w

2
4) −w

2
1w

2
3 − 2w1w

2
4y −w2

4y2

(w1 + y)(2 +w1 − y)w4y2 + c1
w1 + y

2(2 +w1 − y)w4y2

− c2
(w1 + y)(w1 − 2y + 2)
2(2 +w1 − y)w1w4y4 − c3

(w2
1 − 2w1y + 2w1 + y2

− y)(w1 + y)
(2 +w1 − y)w2

1w4y5 .

(96)

From the Hamiltonian HDIIIC, i.e.,

HDIIIC =
w2

1w
2
3 − y2w2

4 + c1(w1 + y) + c2
w1+y
w1y + c3

w2
1−y2

w2
1 y2

(w1 + y)(2 +w1 − y)
= h0, (97)

J. Math. Phys. 62, 073503 (2021); doi: 10.1063/5.0041130 62, 073503-15

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

we can derive

w3 = ±

√
w2

1w
2
4y4 −w1y(w1 + y)(c1w1y + c2) + c3(y2 −w2

1) + h0(w1 + y)(2 +w1 − y)w2
1y2

w2
1y

, (98)

with h0 being an arbitrary constant. Consequently, the third equation in (96) becomes

dw4

dy
=

2w2
4y4
− c1y3

+ c2y + 2c3 + 2y3h0(1 − y)
2w4y5 , (99)

which can be easily integrated, i.e.,

w4 = ±

√
w0y2 + c1y3 + c2y + c3 + h0y3(y − 2)

y2 , (100)

with w0 being an arbitrary constant. Finally, we are left with the first equation in (96), i.e.,

dw1

dy
= −

√
w0w2

1 − c1w3
1 − c2w1 + c3 + h0w3

1(w1 + 2)
√
w0y2 + c1y3 + c2y + c3 + h0y3(y − 2)

, (101)

which could be solved by quadratures. If we introduce new parameters in order to simplify this equation, i.e.,

c1 = C1 + 2h0, c2 = C2C1, c3 = C3C1, h0 = H0C1, w0 =W0C1, (102)

and the new dependent variable u = −w1, then Eq. (101) becomes

u′(y) ≡
du
dy
=

√
C2u + C3 +H0u4 +W0u2 + u3
√

C2y + C3 +H0y4 +W0y2 + y3
. (103)

If we solve this first-order equation with respect to C3 and derive once by y, then a second-order equation is obtained. If we solve this second-
order equation with respect to W0 and derive once by y, then a third-order equation is obtained. Finally, if we solve this third-order equation
with respect to H0 and derive once by y, then the following fourth-order equation is obtained:

u(iv) = −
α1u′′3 + α2u′′2 − α3u′′u′′′ − α4u′′ + α5u′′′2 − 6α7u′′′ + α8

3(C2 − uy)(uu′′ − 2u′2 − 2u′ − u′′y)(u2 − y2)
, (104)

with

α1 = 9(u − y)[C2(3u + 5y) − 2u2y − 5uy2
− y3
],

α2 = C2(36u + 54y + 36uu′ − 54u′2y) − 36u2u′2y + 72uu′2y2
+ 18u′2y3

+ 18u3u′ − 72u2u′y − 18uu′y2
+ 36u′y3

− 18u2y − 72uy2,

α3 = 3(u − y)[C2(13uu′ + 15u′y + 5u + 7y) − 12u2u′y − 15uu′y2
− u′y3

+ u3
− 5u2y − 8uy2

],

α4 = 18u′(u′ + 1)[C2(u′2 − 1) − 4uu′2y + u′2y2
+ 3u2u′ − 3u′y2

− u2
+ 4uy],

α5 = 5(u + y)(u − y)2
(C2 − uy),

α7 = u′(u′ + 1)[C2(3uu′ + 5u′y − 5u − 3y) − 2u2u′y − 5uu′y2
− u′y3

+ u3
+ 5u2y + 2uy2

],

α8 = 36u′2(u′ − 1)(u′ + 1)2
(u − u′y).

It admits a fourth-dimensional Lie symmetry algebra 2A2 generated by the following operators:

J. Math. Phys. 62, 073503 (2021); doi: 10.1063/5.0041130 62, 073503-16

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Γ1 =
3

u − y
(−(C2

2 + uy3
)∂y + (C2

2 + u3y)∂u), (105)

Γ2 =
u + y
u − y

(−(C2 + y2
)∂y + (u2

+ C2)∂u), (106)

Γ3 =
1

u − y
((uy − 2C2 − y2

)∂y + (2C2 + u2
− uy)∂u), (107)

Γ4 = −
1

3(u − y)
((C2 − 2uy − y2

)∂y + (u2
− C2 + 2uy)∂u). (108)

In order to follow the classification of the fourth-dimensional Lie symmetry algebra in Ref. 22 and the fourth-order equations, admitting them
as derived in Ref. 23, we choose another representation of the operators that generate 2A2, i.e.,

X1 = Γ1 − 3C2Γ3, X2 = Γ2, X3 =
1
3

Γ3 + Γ4, X4 =
1
3

Γ3 − 2Γ4. (109)

We thank Nicola Ciccoli for his invaluable help on this issue. A two-dimensional Abelian intransitive subalgebra of the Lie symmetry algebra
2A2 is that generated by X1 and X2, and the corresponding canonical transformations20 are

ỹ =
u + y

3(uy − C2)
, ũ = −

1
uy − 3C2

.

Then, Eq. (104) turns into the following fourth-order equation:

d4ũ
dỹ4 = (3

d2ũ
dỹ2 + 5ỹ

d4ũ
dỹ4 )

d3ũ
dỹ3

3ỹ d2ũ
dỹ2

. (110)

If we make the substitution

d2ũ
dỹ2 = R(ỹ),

then Eq. (110) becomes the following second-order equation:

d2R
dỹ2 = (3R + 5ỹ

dR
dỹ
)

dR
dỹ

3ỹR
, (111)

which admits an eight-dimensional Lie symmetry algebra sl(3,R) and therefore is linearizable.20 Indeed, the transformation Y = R2/3,
U = ỹ2

2 R2/3 yields

d2U
dY2 = 0⇒ U = A1Y + A2,

with A1, A2 being arbitrary constants. Consequently, the general solution of Eq. (111) is

R =
2A2
√

2A2

(ỹ2 − 2A1)
√

ỹ2 − 2A1
, (112)

which integrated twice yields the general solution of Eq. (110), i.e.,

ũ =
A2

A1

√
2A2(ỹ2 − 2A1) + A3ỹ + A4, (113)

J. Math. Phys. 62, 073503 (2021); doi: 10.1063/5.0041130 62, 073503-17

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

with A3, A4 being arbitrary constants. Finally, the general solution of Eq. (104) is

u =
β2y2
+ β1y + β0 +

√
γ4y4 + γ3y3 + γ2y2 + γ1y + γ0

9A1(A2
4A1 + 4A3

2)y2 + 6A2
1A3A4y + A2

1A2
3 − 2A3

2
, (114)

with

β2 = −3A2
1A3A4,

β1 = 9A2
1A2

4C2 − 3A2
1A4 + 2A3

2 − A2
1A2

3 + 36A3
2A1C2,

β0 = A2
1A3(3C2A4 − 1),

γ4 = −18A2
1A2

3 + 9A2
4A1 + 36A3

2,

γ3 = −36A2
1A3,

γ2 = 18A2
4A1C2 − 6A4A1 + 72A3

2C2 − 36A2
1A2

3C2 − 18A2
1,

γ1 = −36A2
1C2A3,

γ0 = −18A2
1A2

3C2
2 + 9A1A2

4C2
2 − 6A1C2A4 + A1 + 36A3

2C2
2 .

We would like to remark that if we solve the fourth-order equation (104) with respect to C2 and derive once by y, then a fifth-order equation
is obtained, which admits an eight-dimensional Lie symmetry algebra and can be transformed into a third-order linearizable equation since
it admits a seven-dimensional Lie symmetry algebra, quite similar to the fourth-order equation that we discuss in detail here.

D. Case (D)
The Hamiltonian

HDIIID =
w2

1w
2
3 −w

2
2w

2
4 + d1w1 + d2w2 + d3(w

2
1 +w

2
2)

(w1 +w2)(2 +w1 −w2)
(115)

yields the Hamiltonian equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 =
2w2

1w3

(w1 +w2)(2 +w1 −w2)
,

ẇ2 = −
2w2

2w4

(w1 +w2)(2 +w1 −w2)
,

ẇ3 =
1

(w1 +w2)2(2 +w1 −w2)2 (2(w1w
2
2(w

2
3 −w

2
4) − 2w1w2w

2
3 −w

2
2w

2
4 −w

2
1w

2
3)

+ d1(w
2
1 +w

2
2 − 2w2) + 2d2w2(w1 + 1) + 2d3(w

2
2 −w

2
1 + 2w1w

2
2 − 2w1w2)),

ẇ4 =
1

(w1 +w2)2(2 +w1 −w2)2 (2(w
2
1w2(w

2
4 −w

2
3) + 2w1w2w

2
4 +w

2
2w

2
4 +w

2
1w

2
3)

+ 2d1w1(1 −w2) − d2(w
2
1 +w

2
2 + 2w1) − 2d3(w

2
2 −w

2
1 + 2w2

1w2 + 2w1w2)).

(116)

We apply the reduction method18 by choosing w2 as a new independent variable y that gives rise to the following three equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dw1

dy
= −

w2
1w3

y2w4
,

dw3

dy
= −

1
2w4y2(w1 + y)(2 +w1 − y)

(2(w1y2
(w2

3 −w
2
4) − 2w1yw2

3 − y2w2
4 −w

2
1w

2
3)

+ d1(w
2
1 + y2

− 2y) + 2d2y(w1 + 1) + 2d3(y2
−w2

1 + 2w1y2
− 2w1y)),

dw4

dy
= −

1
2w4y2(w1 + y)(2 +w1 − y)

(2(w2
1y(w2

4 −w
2
3) + 2w1yw2

4 + y2w2
4 +w

2
1w

2
3)

+ 2d1w1(1 − y) − d2(w
2
1 + y2

+ 2w1) − 2d3(y2
−w2

1 + 2w2
1y + 2w1y)).

(117)

J. Math. Phys. 62, 073503 (2021); doi: 10.1063/5.0041130 62, 073503-18

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

From the Hamiltonian HDIIID, i.e.,

HDIIID =
w2

1w
2
3 − y2w2

4 + d1w1 + d2y + d3(w
2
1 + y2

)

(w1 + y)(2 +w1 − y)
= h0, (118)

we can derive

w3 = ±

√
(h0 − d3)w2

1 + (2h0 − d1)w1 + (2h0 − d2)y − (d3 + h0)y2 +w2
4y2

w1
, (119)

with h0 being an arbitrary constant. Consequently, the third equation in (117) becomes

dw4

dy
=

d2 − 2h0 + 2(d3 + h0)y − 2w2
4y

2w4y2 , (120)

which can be easily integrated, i.e.,

w4 = ±

√
(d2 − 2h0)y + (d3 + h0)y2 +w0

y
, (121)

with w0 being an arbitrary constant. Let us introduce new parameters that simplify the formula for w3 and w4, i.e.,

D1 = 2h0 − d1, D2 = d2 − 2h0, D3 = d3 + h0, (122)

and consequently,

w3 = ±

√
(2h0 −D3)w2

1 +D1w1 +w0

w1
, w4 = ±

√
D2y +D3y2 +w0

y
. (123)

Finally, we are left with the first equation in (117), i.e.,

dw1

dy
= −

w1
√
(2h0 −D3)w2

1 +D1w1 +w0

y
√

D3y2 +D2y +w0
, (124)

which can be solved by quadratures. However, if we solve it with respect to D1 and derive once by y, then the following second-order equation
is obtained:

2y2w1(D3y2
+D2y +w0)

d2w1

dy2 − 3y2
(D3y2

+D2y +w0)(
dw1

dy
)

2

+ (4D3y2
+ 3D2y + 2w0)yw1

dw1

dy
+ (D3 − 2h0)w

4
1 +w0w

2
1 = 0, (125)

which admits a three-dimensional symmetry algebra sl(2,R), unless D3 = 2h0, in which case it admits an eight-dimensional Lie symmetry
algebra sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any second-order
ordinary differential equation that admits a Lie symmetry algebra sl(2,R). If we solve Eq. (125) with respect to h0 and derive once with respect
to y, then we obtain the following third-order equation:
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2yw2
1

3
(D3y2

+D2y +w0)
d3w1

dy3 = −4y(D3y2
+D2y +w0)(

dw1

dy
)

3

+ 2w1(4D3y2
+ 3D2y + 2w0)(

dw1

dy
)

2

− 2(2D3y +D2)w
2
1

dw1

dy

+(4yw1(D3y2
+D2y +w0)

dw1

dy
− (4D3y2

+ 3D2y + 2w0)w
2
1)

d2w1

dy2 , (126)

which admits a seven-dimensional Lie symmetry algebra and therefore is linearizable. Indeed, the new dependent and independent variables,
i.e.,

w̃1 = −
1
w1

, ỹ =
2D3y +D2

y
, (127)

transform Eq. (126) into the linear equation

d3w̃1

dỹ3 =
3(4D3w0 −D2

2 − 2w0ỹ)
2(w0ỹ2 + (4D3w0 −D2

2)(D3 − ỹ))
d2w̃1

dỹ2 . (128)

E. Case (E)
The Hamiltonian

HDIIIE =
w2

3 +w
2
4 + c

4 +w2
1 +w

2
2

(129)

is a subcase of Hamiltonian HDIIIA, with a1 = a2 = 0 and a3 = c. Consequently, its corresponding Hamiltonian equations, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 =
2w3

w2
1 +w

2
2 + 4

,

ẇ2 =
2w4

w2
1 +w

2
2 + 4

,

ẇ3 =
2w1(c +w2

3 +w
2
4)

(w2
1 +w

2
2 + 4)2 ,

ẇ4 =
2w2(c +w2

3 +w
2
4)

(w2
1 +w

2
2 + 4)2 ,

(130)

can be reduced to the following linear equation in w1 = w1(w2):

(2w0 −w
2
2)

d2w1

dw2
2
−w2

dw1

dw2
+w1 = 0 (131)

with

w3 = ±

√

h0(w2
1 +w

2
2) + 4h0 − c −w2

4 (132)

and

w4 = ±

√

h0(w2
2 − 2w0). (133)
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VII. DARBOUX IV
Four superintegrable systems were determined in Ref. 13, where the problem of superintegrability for the Hamiltonian

HDIV = −sin2
(2u)

p2
u + p2

v

2 cos(2u) + a
(134)

was addressed.

A. Case (A)
The Hamiltonian

HDIVA = −4w2
1w

2
2

w2
3 +w

2
4 + a1 + a2(

1
w2

1
+ 1

w2
2
) + a3(w

2
1 +w

2
2)

(a + 2)w2
1 + (a − 2)w2

2
(135)

yields the Hamiltonian equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 = −
8w2

1w
2
2w3

a(w2
1 +w

2
2) + 2(w2

1 −w
2
2)

,

ẇ2 = −
8w2

1w
2
2w4

a(w2
1 +w

2
2) + 2(w2

1 −w
2
2)

,

ẇ3 =
8w1w

2
2

(a(w2
1 +w

2
2) + 2(w2

1 −w
2
2))

2 (aa3(w
2
1 +w

2
2)

2
+ aw2

2(w
2
3 +w

2
4) + a1w

2
2(a − 2) − 4a2

+ 2a3(w
4
1 −w

4
2 − 2w2

1w
2
2) − 2w2

2(w
2
3 +w

2
4)),

ẇ4 =
8w2

1w2

(a(w2
1 +w

2
2) + 2(w2

1 −w
2
2))

2 (aa3(w
2
1 +w

2
2)

2
+ aw2

1(w
2
3 +w

2
4) + a1w

2
1(a + 2) + 4a2

+ 2a3(w
4
1 −w

4
2 + 2w2

1w
2
2) + 2w2

1(w
2
3 +w

2
4)).

(136)

In order to simplify the calculations, we make the following substitutions of the four dependent variables:

w1 =
√

r1, w2 =
√

r2, w3 =
√

r3, w4 =
√

r4, (137)

and consequently, system (136) is transformed into the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ1 = −
16r1
√

r1r3r2

a(r1 + r2) + 2(r1 − r2)
,

ṙ2 = −
16r2
√

r2r4r1

a(r1 + r2) + 2(r1 − r2)
,

ṙ3 =
16
√

r1r3r2

(a(r1 + r2) + 2(r1 − r2))
2 (aa3(r1 + r2)

2
+ ar2(r3 + r4) + a1r2(a − 2) − 4a2

+ 2a3(r2
1 − r2

2 − 2r1r2) − 2r2(r3 + r4)),

ṙ4 =
16
√

r2r4r1

(a(r1 + r2) + 2(r1 − r2))
2 (aa3(r1 + r2)

2
+ +ar1(r3 + r4) + a1r1(a + 2) + 4a2

+ 2a3(r2
1 − r2

2 + 2r1r2) + 2r1(r3 + r4)).

(138)

We apply the reduction method18 by choosing r2 as a new independent variable y that gives rise to the following three equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr1

dy
=

√
r1r3

yr4
,

dr3

dy
= −

√
r1r3

r1
√yr4(a(r1 + y) + 2(r1 − y))

(aa3(r1 + y)2
+ ay(r3 + r4) + a1y(a − 2) − 4a2

+ 2a3(r2
1 − y2

− 2r1y) − 2y(r3 + r4)),
dr4

dy
=

1
y(a(r1 + y) + 2(r1 − y))

(aa3(r1 + y)2
+ ar1(r3 + r4) + a1r1(a + 2) + 4a2

+ 2a3(r2
1 − y2

+ 2r1y) + 2r1(r3 + r4)).

(139)
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From the Hamiltonian HDIVA, i.e.,

HDIVA = −4r1y
r3 + r4 + a1 + a2(

1
r1
+ 1

y) + a3(r1 + y)

(a + 2)r1 + (a − 2)y
= h0, (140)

we can derive

r3 = −
4r1r4y + ((a + 2)r1 + (a − 2)y)h0 + 4a1r1y + 4a2(r1 + y) + 4a3r1y(r1 + y)

4r1y
, (141)

with h0 being an arbitrary constant. Consequently, the third equation in (139) becomes

dr4

dy
=
(a + 2)h0 + 4a2 − 4a3y2

4y2 , (142)

which can be easily integrated, i.e.,

r4 =
4r0y − (a + 2)h0 − 4a2 − 4a3y2

4y
, (143)

with r0 being an arbitrary constant. Finally, we are left with the first equation in (139), i.e.,

dr1

dy
=

¿
Á
ÁÀ(2 − a)h0 − 4a2 − 4r1(a1 + r0) − 4a3r2

1
−(a + 2)h0 − 4a2 − 4a3y2 + 4r0y

, (144)

which could be easily solved by quadratures. If we introduce a new parameter b2 = −(a + 2)h0 − 4a2 such that a2 = −((a + 2)h0 + b2)/4 and
then solve the first-order equation (144) with respect to a1 and derive once by y, then a second-order equation is obtained. If we solve this
second-order equation with respect to h0 and derive once by y, then the following linear third-order equation is obtained:

(b2 + 4r0y − 4a3y2
)

d3r1

dy3 − 6(2a3y − r0)
d2r1

dy2 = 0. (145)

B. Case (B)
The Hamiltonian

HDIVB = −
sin2
(2w1)(w

2
3 +w

2
4 +

b2
sinh2(w2) +

b3
cosh2(w2)) + b1

2 cos(2w1) + a
(146)

can be written in the following equivalent form with sinh and cosh replaced by exp:

HDIVB = −
sin2
(2w1)(w

2
3 +w

2
4 +

4b2
(ew2−e−w2 )2 +

4b3
(ew2+e−w2 )2 ) + b1

2 cos(2w1) + a
. (147)

We apply the reduction method18 by choosing r2 = ew2 as a new independent variable y that gives rise to the following three equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dw1

dy
=

w3

yw4
,

dw3

dy
=

N
sin(2w1)w4(y4 − 1)2[a + 2 cos(2w1)]

,

dw4

dy
=

4y2
[(b2 + b3)y8

+ 4(b2 − b3)y6
+ 6(b2 + b3)y4

+ 4(b2 − b3)y2
+ b2 + b3]

w4(y4 − 1)3 ,

(148)
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where

N = −[4(w2
3 +w

2
4)y

8
+ 16(b2 + b3)y6

− 8(w2
3 +w

2
4 − 4b2 + 4b3)y4

+ 16(b2 + b3)y2
+ 4(w2

3 +w
2
4)] cos (2w1)

2

− 2a[(w2
3 +w

2
4)y

8
+ 4(b2 + b3)y6

− 2(w2
3 +w

2
4 − 4b2 − 4b3)y4

+ 4(b2 + b3)y2
+w2

3 +w
2
4] cos(2w1)

+ [−2(w2
3 +w

2
4)y

8
− 8(b2 + b3)y6

+ 4(w2
3 +w

2
4 − 4b2 + 4b3)y4

− 8(b2 + b3)y2
− 2(w2

3 +w
2
4)] sin (2w1)

2

− 2b1y8
+ 4b1y4

− 2b1. (149)

We can solve the third equation with respect to w4, i.e.,

w4 = ±
2

15
√

15(y4 − 1)

√
3375(b3 − b2)(y8 + 1) − 3375(b3 + b2)(y4 + 1)y2 − 4(625b2 + 81b3)(y4 − 1)2w0. (150)

Then, the first equation in (148) yields

w3 = yw4
dw1

dy
, (151)

which replaced into the second equation in (148) gives rise to a second-order equation in w1 that we solve with respect to b1. Then, we derive
once with respect to y and the following third-order equation is obtained (w1 = u):

d3u
dy3 = −6 cot(2u)

du
dy

d2u
dy2 −

3
y(y4 − 1)

P1(y)
Q(y)

d2u
dy2 + 4(

du
dy
)

3

−
6 cot(2u)
y(y4 − 1)

P1(y)
Q(y)

(
du
dy
)

2

+
3

y2(y4 − 1)2
P2(y)
Q(y)

du
dy

, (152)

where

P1 = [(2500b2 + 324b3)w0 + 3375(b2 − b3)]y12
− [(7500b2 + 972b3)w0 + 16 875(b2 − b3)]y8

− 20 250(b2 + b3)y6

+ [(7500b2 + 972b3)w0 − 10 125(b2 − b3)]y4
− 6750(b2 + b3)y2

− (2500b2 + 324b3)w0 − 3375(b2 − b3), (153)

P2 = [(2500b2 + 324b3)w0 + 3375(b2 − b3)]y16
− [(10 000b2 + 1296b3)w0 − 20 250(b2 − b3)]y12

− 33 750(b2 + b3)y10
+ [(15 000b2 + 1944b3)w0 − 47 250(b2 − b3)]y8

− 67 500(b2 + b3)y6

− [(10 000b2 + 1296b3)w0 − 47 250(b2 − b3)]y4
− 6750(b2 + b3)y2

+ (2500b2 + 324b3)w0 + 3375(b2 − b3), (154)

Q = [(2500b2 + 324b3)w0 + 3375(b2 − b3)]y8
+ 3375(b2 + b3)y6

− (5000b2 + 648b3)w0y4

+ 3375(b2 + b3)y2
+ (2500b2 + 324b3)w0 + 3375(b2 − b3). (155)

Equation (152) is linearizable since it admits a seven-dimensional Lie symmetry algebra. In fact, the two-dimensional Abelian intransitive
subalgebra generated by the two operators

−
cos(2u)

2 sin(2u)
∂u,

1
sin(2u)

∂u (156)

when put into the canonical form ∂ũ, ỹ∂ũ yields the new dependent and independent variables, i.e.,

ũ = −
1
2

cos(2u), ỹ =
−B2y4

− B2 + 4B3y2
+ 96W0y2

6y2 , (157)
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where we have introduced new constants B2, B3, W0 such that

b2 =
B2 − B3 − 12W0

40 500
, b3 =

B2 + B3 + 12W0

40 500
, w0 =

3375(B3 + 18W0)

4(353B2 − 272B3 − 3264W0)
. (158)

Then, Eq. (152) transforms into the linear equation

d3ũ
dỹ3 =

9
2

d2ũ
dỹ2

B2
2 + 48B3W0 + 1152W2

0 − 72W0ỹ
B2

2B3 + 24(B2
2 + 2B2

3)W0 + 2304B3W2
0 + 27 648W3

0 − 3(B2
2 + 48B3W0 + 1152W2

0)ỹ + 108W0ỹ2 . (159)

C. Case (C)
The original Hamiltonian

HDIVC = −
w2

3 +w
2
4 +

c1
cos2(w1) +

c2
cosh2(w2) + c3(

1
sin2(w1) −

1
sinh2(w2))

a+2
sinh2(2w2) +

a−2
sin2(2w1)

(160)

can be written in the following equivalent form with sinh and cosh replaced by exp:

HDIVC = −

w2
3 +w

2
4 +

c1
cos2(w1) +

c2

( ew2 +e−w2
2 )2 + c3(

1
sin2(w1) −

1
( ew2−e−w2

2 )2 )

a+2

( e2w2−e−2w2
2 )2 +

a−2
sin2(2w1)

. (161)

Before applying the reduction method,18 we introduce the following transformations of dependent variables, in order to render the next
calculations more amenable to computer algebraic software such as REDUCE and MAPLE, i.e.,

w1 = arccos r1, w2 = log r2, w3 =
√

r3, w4 =
√

r4, (162)

and then choose r2 as a new independent variable y that gives rise to the following three equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr1

dy
= −

1
y

√
r3(1 − r2

1)

r4
,

dr3

dy
= −

2
√

r3N3

y
√

1 − r12√r4r1D
,

dr4

dy
=

8N4

(y4 − 1)D
,

(163)

where

N3 = 16y4
(c1 − c3)(a + 2)r1

4
+ [(14c1 + 8c2 + 10c3)a + 36c1 − 16c2 − 20c3]y4

+ [2(y − 1)2
(y + 1)2

(y2
+ 1)

2
(a − 2)r3 + 2(y − 1)2

(y + 1)2
(y2
+ 1)

2
(a − 2)r4

+ 8y2
((c2 − c3)(a − 2)y4

+ ((−4c1 − 2c2 − 2c3)a − 8c1 + 4c2 + 4c3)y2
+ (c2 − c3)(a − 2))]r1

2

− (y − 1)2
(y + 1)2

(y2
+ 1)

2
(a − 2)r3 − (y − 1)2

(y + 1)2
(y2
+ 1)

2
(a − 2)r4

+ (c1 − c3)(a − 2)y8
− 4(c2 − c3)(a − 2)y6

− 4(c2 − c3)(a − 2)y2
+ (c1 − c3)(a − 2), (164)
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N4 = 8y2
[(y4
+ 1)r3 + (y4

+ 1)r4 + 2y2
(c2 − c3)](a + 2)r1

4

+ 8y2
[−(y4

+ 1)(r3 + r4) + (c1 − c3)y4
+ (−2c2 + 2c3)y2

+ c1 − c3](a + 2)r1
2

+ (c2 − c3)(a − 2)y8
+ [(−8c1 − 4c2 − 4c3)a − 16c1 + 8c2 + 8c3]y6

+ 6(c2 − c3)(a − 2)y4

+ [(−8c1 − 4c2 − 4c3)a − 16c1 + 8c2 + 8c3]y2
+ (c2 − c3)(a − 2), (165)

D = −16y4
(a + 2)r1

4
+ 16y4

(a + 2)r1
2
+ (y4

− 1)
2
(a − 2). (166)

From the Hamiltonian HDIVC, i.e.,

HDIVC =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

[4(y4
− 1)

2
(r3 + r4) + 16y2

((c2 − c3)(y4
+ 1) − 2(c2 + c3)y2

)]r4
1 − 4c1(y4

− 1)
2

−[4(y4
− 1)

2
(r3 + r4) − 4(c1 − c3)(y8

+ 1) + 16(c2 − c3)y2
(y4
+ 1) + 8(c1 − 4c2 − 5c3)y4

]r2
1

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(y4 − 1)2
(a − 2) − 16y4(a + 2)r2

1(r12 − 1)
= h0, (167)

we can derive

r3 = −r4 −
c1

r2
1
−

4y2c2

(y2 + 1)2 +
(4r2

1y2
+ y4
− 6y2

+ 1)c3

(y2 − 1)2(r2
1 − 1)

+
(a − 2)h0

4r2
1(r

2
1 − 1)

−
4(a + 2)h0y4

(y4 − 1)2 , (168)

with h0 being an arbitrary constant. Consequently, the third equation in (163) becomes

dr4

dy
= 8y
(y − 1)4

(y + 1)4c2 − (y2
+ 1)4c3 + 2h0y2

(y4
+ 1)(a + 2)

(y4 − 1)3 , (169)

which can be easily integrated, i.e.,

r4 = 4c2
(y2
+ 1)2

− y2

(y2 + 1)2 + 4c3
y4
− y2
+ 1

(y2 − 1)2 − 2(a + 2)h0
y8
+ 1

(y4 − 1)2 +w0, (170)

with w0 being an arbitrary constant. If we introduce new constants C2, C3, C1, A as

c2 = C2 + c3, c3 =
4h0 −w0 − C3 − 4C2 + 2ah0

8
, c1 =

−2ah0 − C1 + 4h0

8
, a =

4C2 + 9C3 +w0 − A − C1

4h0
, (171)

then we are left with the following simplified expression of the first equation in (163):

dr1

dy
=

y4
− 1

2yr1

¿
Á
ÁÀ 8C3r4

1 − Ar2
1 − C1

2C3y8 + 8C2y6 + 4w0y4 + 8C2y2 + 2C3
, (172)

which could be solved by quadratures. However, if we solve it with respect to A and derive once by y, then a second-order equation is obtained
that admits a three-dimensional Lie symmetry algebra sl(2,R), and as a particular case, if C1 is equal to zero, then it is linearizable since it
admits an eight-dimensional Lie symmetry algebra sl(3,R). If we solve this second-order equation with respect to C1 and derive once by y,
then the following third-order equation is obtained (r1 ≡ u):
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d3 u
dy3 = −

3
u

du
dy

d2u
dy2 −

3[C3y12
− (5C3 + 2w0)y8

− 24C2y6
− (3C3 + 6w0)y4

− 8C2y2
− C3]

y(y4 − 1)(C3y8 + 4C2y6 + 2w0y4 + 4C2y2 + C3)

⎡
⎢
⎢
⎢
⎢
⎣

d2u
dy2 +

1
u
(

d2u
dy2 )

2⎤
⎥
⎥
⎥
⎥
⎦

+
3[C3y16

− (6C3 + 2w0)y12
− 40C2y10

− 2(7C3 + 10w0)y8
− 80C2y6

− 2(7C3 + 5w0)y4
− 8C2y2

+ C3]

y2(y4 − 1)2(C3y8 + 4C2y6 + 2w0y4 + 4C2y2 + C3)

du
dy

, (173)

which is linearizable since it admits a seven-dimensional Lie symmetry algebra. In fact, the two-dimensional Abelian intransitive subalgebra
generated by the two operators

u−1∂u,
C3 + 2C2y2

+ C3y4

uy2 ∂u (174)

when put into the canonical form ∂ũ, ỹ∂ũ yield the new dependent and independent variables, i.e.,

ũ =
u2

2
, ỹ =

C3 + 2C2y2
+ C3y4

y2 , (175)

which transform Eq. (173) into the linear equation

d3ũ
dỹ3 =

3ỹ
ω2 − ỹ2

d2ũ
dỹ2 , (176)

with ω2
= 2(2C2

2 + C2
3 − C3w0).

D. Case (D)
The Hamiltonian

HDIVD = −4w2
1w

2
2

w2
3 +w

2
4 + d( 1

w2
1
+ 1

w2
2
)

(a + 2)w2
1 + (a − 2)w2

2
(177)

is a subcase of Hamiltonian HDIVA, with a1 = a3 = 0 and a2 = d. Consequently, its corresponding Hamiltonian equations, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 = −
8w2

1w
2
2w3

a(w2
1 +w

2
2) + 2(w2

1 −w
2
2)

,

ẇ2 = −
8w2

1w
2
2w4

a(w2
1 +w

2
2) + 2(w2

1 −w
2
2)

,

ẇ3 =
8w1w

2
2

(a(w2
1 +w

2
2) + 2(w2

1 −w
2
2))

2 (aw
2
2(w

2
3 +w

2
4) − 4d − 2w2

2(w
2
3 +w

2
4)),

ẇ4 =
8w2

1w2

(a(w2
1 +w

2
2) + 2(w2

1 −w
2
2))

2 (aw
2
1(w

2
3 +w

2
4) + 4d + 2w2

1(w
2
3 +w

2
4)),

(178)

can be reduced to the following system of three equations, after making the substitutions (137) and choosing r2 as a new independent
variable y:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr1

dy
=

√
r1r3

yr4
,

dr3

dy
= −

√
r1r3

r1
√yr4(a(r1 + y) + 2(r1 − y))

(ay(r3 + r4) − 4d − 2y(r3 + r4)),

dr4

dy
=

1
y(a(r1 + y) + 2(r1 − y))

(ar1(r3 + r4) + 4d + 2r1(r3 + r4)).

(179)
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Then,

r3 = −
4r1r4y + ((a + 2)r1 + (a − 2)y)h0 + 4d(r1 + y)

4r1y
(180)

and

r4 =
4r0y − (a + 2)h0 − 4d

4y
, (181)

and the first equation in (179) becomes

dr1

dy
=

¿
Á
ÁÀ(2 − a)h0 − 4d − 4r1r0)

−(a + 2)h0 − 4 d + 4r0y
, (182)

which could be easily solved by quadratures. However, if we make the simplifying substitution d = D − (a + 2)h0/4, solve the first-order
equation (182) with respect to h0, and derive once with respect to y, then the following linear second-order equation is obtained:

2(r0y −D)
d2r1

dy2 + r0
dr1

dy
+ r0 = 0. (183)

VIII. CONCLUSIONS
In this paper, 19 classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries

leading to linearity. This fulfills the conjecture that we made in Ref. 1, namely that all classical superintegrable systems in two-dimensional
space hide linearity regardless of the separation of variables of the corresponding Hamilton–Jacobi equation and of the order of the first
integrals.

In some cases, we have used the Hamiltonian in order to derive one of the two momenta as a function of the other momentum and
coordinates. None of the other two known first integrals have been used. In other cases, one of the equations of the Hamiltonian system could
be integrated by quadrature, and that was all we needed in order to then find the hidden symmetries leading to the linear equation of either
second or third order.

As we stated in Ref. 1, it remains an open-problem to see if linear equations are hidden in (maximally) superintegrable systems in N > 2
dimensions, regardless of the separability of the corresponding Hamilton–Jacobi equation and the degree of the known first integrals.
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