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Several examples of classical superintegrable systems in a two-dimensional space
are shown to possess hidden symmetries leading to their linearization. They include
those determined fifty years ago in the work of Friš et al. [Phys. Lett. 13, 354–356
(1965)], their generalizations, and the more recent Tremblay-Turbiner-Winternitz
system [F. Tremblay et al., J. Phys. A: Math. Theor. 42, 242001 (2009)]. We
conjecture that all classical superintegrable systems in the two-dimensional space
have hidden symmetries that make them linearizable. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974264]

I. INTRODUCTION

Fifty years ago in a seminal paper,1 the authors considered Hamiltonian systems with Hamilto-
nian given either in Cartesian coordinates, i.e.,

H =
1
2
�
p2

1 + p2
2

�
+ V (x1, x2), (1)

or in polar coordinates, i.e.,

H =
1
2
*
,
p2
r +

p2
ϕ

r2
+
-
+ V (r, ϕ). (2)

Their purpose was to determine all the potentials such that the corresponding Hamiltonian system
admits two first integrals that are quadratic in the momenta, in addition to the Hamiltonian. No
assumption about the separation of variables in the Hamilton-Jacobi equation was made a priori.
Four independent potentials were found and it was proven that the corresponding Hamilton-Jacobi
equation was separable in at least two different coordinate systems. Two of the four potentials were
given in Cartesian coordinates,

VI(x1, x2) = ω2

2
(x2

1 + x2
2) +

β1

x2
1

+
β2

x2
2

, (3a)

VII(x1, x2) = ω2

2
(4x2

1 + x2
2) + β1x1 +

β2

x2
2

, (3b)

while the other two were given in polar coordinates,

VIII(r, ϕ) = α

r
+

1
r2

*
,

β1

cos2
�ϕ

2

� + β2

sin2 �ϕ
2

� +
-
, (3c)

VIV(r, ϕ) = α

r
+

1
√

r

(
β1 cos

(
ϕ

2

)
+ β2 sin

(
ϕ

2

))
. (3d)
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These four cases belong to the class of two-dimensional superintegrable systems, namely, those
Hamiltonian systems that admit three first integrals. Actually these four cases are also maximally
superintegrable. In fact a Hamiltonian system with n degrees of freedom is called superintegrable if
allows n + 1 integrals, and maximally superintegrable if the integrals are 2n − 1. For n = 2, the two
definitions coincide.

More details and insights into classical and quantum superintegrability can be found in a recent
review.2

In any undergraduate text of Mechanics, e.g., Ref. 3, it is shown that the Kepler problem in
polar coordinates is linearizable, namely, that one can exactly transform its nonlinear equations
of motion into the equation of an harmonic linear oscillator. In Ref. 4, it was shown that such a
linearization can be achieved by means of the reduction method that was proposed in Ref. 5 in order
to find hidden symmetries of the Kepler problem. Moreover, the reduction method was successfully
applied to generalizations of the Kepler problem with and without drag in order to find their hidden
linearity, although not all of them admit a Lagrangian description.6

In 2009, a new two-dimensional superintegrable system was determined,7 and it has been
known since as the Tremblay-Turbiner-Winternitz (TTW) system.

In 2011, a two-dimensional superintegrable system such that the corresponding Hamilton-
Jacobi equation does not admit the separation of variables in any coordinates was studied in Ref. 8.
In Ref. 9, it was found that its Lagrangian equations can be transformed into a linear third-order
equation by applying the reduction method.5

In the present paper, we show that the Lagrangian equations corresponding to the potentials
VI,VII,VIII and their generalizations (not necessary superintegrable) are all linearizable by means
of their hidden symmetries. The hidden symmetries that we determined are more general than
those considered in Ref. 10, which really are symmetries of the Hamiltonian, in the sense that
they are canonical transformations where both positions and momenta change, and that leave the
Hamiltonian function unchanged.

We also prove that the TTW system is linearizable, and determine the hidden linearity of the
Hamiltonian equations with Hamiltonian

HG =
1
2
(p2

1 + p2
2) + β1

√
x1 + β2

√
x2, (4)

namely, Case iii (p. 1012) among the superintegrable systems that are separable in Cartesian coor-
dinates and admit a third-order integral of motion as derived by Gravel in Ref. 11. This case was
suggested to us by Ian Marquette.

We do not consider the Hamiltonian system with potential VIV because it is a subcase of the lin-
earizable systems determined in Ref. 4, where the following Newtonian equations were considered:

r̈ − r ϕ̇2 + g = 0, (5)
r ϕ̈ + 2ṙ ϕ̇ + h = 0, (6)

with

g =
U ′′(ϕ) +U(ϕ)

r2 + 2
W ′(ϕ)
r3/2 , h =

W (ϕ)
r3/2 . (7)

The Hamiltonian system with potential VIV corresponds to the substitution Ref. 6,

U = α, W =
1
2

(
β1 sin

(
ϕ

2

)
− β2 cos

(
ϕ

2

))
. (8)

See also Ref. 12. Therefore, all the details of the linearization of the Hamiltonian system with
potential VIV can be found in Ref. 4.

We would like to remark that the hidden linearity that we find in superintegrable systems is
regardless of the separability of the corresponding Hamilton-Jacobi equation: an example has been
shown in Ref. 9 as stated above.

Let us then show that the classical two-dimensional Kepler problem in Cartesian coordinates
is linearizable by means of hidden symmetries. The linearization of the three-dimensional Kepler
problem in Cartesian coordinates was dealt in Ref. 13. The Lagrangian of the two-dimensional
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Kepler problem in Cartesian coordinates is

LK =
1
2
(ẋ2

1 + ẋ2
2) +

µ
x2

1 + x2
2

. (9)

It admits two Noether symmetries, translation in time t and rotation of the plane x1, x2, that yield
the conservation of energy and of angular momentum, respectively. The Hamiltonian (namely, the
energy) of the two-dimensional Kepler problem in Cartesian coordinates is

HK =
1
2
(p2

1 + p2
2) −

µ
x2

1 + x2
2

, (10)

and the corresponding Hamiltonian equations are:

ẋ1 = p1,

ẋ2 = p2,

ṗ1 = −
µx1

(x2
1 + x2

2)3/2
, (11)

ṗ2 = −
µx2

(x2
1 + x2

2)3/2
.

We apply the reduction method5 by choosing x2 = y as a new independent variable. Then system
(11) becomes a system of three first-order equations, i.e.,

dx1

dy
=

p1

p2
,

dp1

dy
= − µx1

p2(x2
1 + y2)3/2

, (12)

dp2

dy
= − µy

p2(x2
1 + y2)3/2

.

Noether’s theorem gives the conservation of angular momentum, i.e.,

x2p1 − x1p2 = A0 = const. (13)

We can derive p2, i.e.,

p2 =
x2p1 − A0

x1
, (14)

that replaced into system (12) yields a system of two first-order equations, i.e.,

dx1

dy
=

x1p1

yp1 + A0
, (15)

dp1

dy
= −

µx2
1

(x2
1 + y2)3/2(yp1 + A0) . (16)

If we further get p1 from (15) and replace it into Equation (16), then we obtain the following
second-order equation in the unknown x1 = x1(y):

d2x1

dy2 = −
µ

(
x1 − y

dx1

dy

)3

A2
0(x2

1 + y2)3/2
, (17)

that admits an eight-dimensional Lie point symmetry algebra, and therefore it is linearizable.14

The linearizing transformation is obtained by means of Lie’s canonical representation of a two-
dimensional abelian intransitive subalgebra.14 One such subalgebra is that generated by the follow-
ing two operators:

x1
�
y∂y + x1∂x1

�
, y

�
y∂y + x1∂x1

�
, (18)
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that we have to put in the canonical form ∂x̃1, ỹ∂x̃1. Consequently, the transformation

ỹ =
y

x1
=

x2

x1
, x̃1 = −

1
x1
+

µ


x2
1 + y2

A2
0x1

= − 1
x1
+

µ


x2
1 + x2

2

A2
0x1

(19)

takes Equation (17) into the free particle equation,

d2x̃1

d ỹ2 = 0. (20)

Thus, we have shown that there are hidden symmetries in the two-dimensional Kepler problem in
Cartesian coordinates that takes the Kepler system (11) into the linear equation (20).

All the superintegrable systems that we consider in the present paper are in the real Euclidean
space. In a forthcoming paper,15 we will show that many known superintegrable systems in the
space of non-constant curvature are also linearizable, e.g., the three superintegrable systems for the
Darboux space of Type I determined in Ref. 16.

We conclude with a conjecture, namely, that all two-dimensional superintegrable systems are
linearizable by means of their hidden symmetries.

II. LINEARITY OF THE LAGRANGIAN EQUATIONS WITH POTENTIALS VI, VII, AND VIII

The Lagrangian corresponding to the Hamiltonian (1) in Cartesian coordinates is

L =
1
2
�
ẋ2

1 + ẋ2
2

�
− V (x1, x2), (21)

while the Lagrangian corresponding to the Hamiltonian (2) in polar coordinates is

L =
1
2
(ṙ2 + r2ϕ̇2) − V (r, ϕ). (22)

Remark 1. We have applied Douglas’ method17 to the Lagrangian equations corresponding to
the four potentials. The two potentials VI and VII lead to many different Lagrangians, while in the
case of potentials VIII and VIV, there exists only one Lagrangian in analogy with Kepler’s problem. ■

A. The potential VI

The Lagrangian equations corresponding to the Lagrangian (21) with V = VI are

ẍ1 = −ω2x1 +
2β1

x3
1

,

ẍ2 = −ω2x2 +
2β2

x3
2

. (23)

This Lagrangian admits three Noether symmetries generated by the operators

Σ1 = ∂t, Σ2 = cos(2ωt)∂t − ωx1 sin(2ωt)∂x1 − ωx2 sin(2ωt)∂x2,

Σ3 = sin(2ωt)∂t + ωx1 cos(2ωt)∂x1 + ωx2 cos(2ωt)∂x2,
(24)

which correspond to the algebra sl(2,R). The application of Noether’s theorem yields three first
integrals. From Σ1 comes the Hamiltonian, i.e.,

HI =
1
2
�
ẋ2

1 + ẋ2
2

�
+
ω2

2
(x2

1 + x2
2) +

β1

x2
1

+
β2

x2
2

, (25)

and from Σ2 and Σ3 the following two time-dependent integrals,

K2 =



β1

x2
1

+
β2

x2
2

+
1
2
(ẋ2

1 + ẋ2
2) −

ω2

2
(x2

1 + x2
2)


cos(2ωt) + ω(x1ẋ1 + x2ẋ2) sin(2ωt) (26)
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and

K3 =



β1

x2
1

+
β2

x2
2

+
1
2
(ẋ2

1 + ẋ2
2) −

ω2

2
(x2

1 + x2
2)


sin(2ωt) − ω(x1ẋ1 + x2ẋ2) cos(2ωt), (27)

respectively.

Remark 2. Another time-independent first integral can be obtained by the following ubiquitous
combination:

H2
I − K2

2 − K2
3 = ω2 *

,
2β1 + 2β2 + 2β1

x2
2

x2
1

+ 2β2
x2

1

x2
2

+ (x2ẋ1 − x1ẋ2)2+
-
. (28)

Such a combination can be found in other instances where a couple of time-dependent first integrals
is derived from Noether’s theorem. ■

The presence of the algebra sl(2,R) suggests to eliminate the two parameters β1 and β2 by
raising the order, as it was done in Ref. 18 in the case of the isotonic oscillator. We solve system (23)
with respect to β1 and β2, i.e.,

β1 =
1
2
(x3

1ẍ1 + ω
2x4

1),

β2 =
1
2
(x3

2ẍ2 + ω
2x4

2), (29)

and then we differentiate them with respect to t in order to get the following two third-order
equations:

...
x 1 = −

ẋ1

x1
(4ω2x1 + 3ẍ1),

...
x 2 = −

ẋ2

x2
(4ω2x2 + 3ẍ2). (30)

This system admits a thirteen-dimensional Lie point symmetry algebra generated by the following
operators:

Γ1 = cos(2ωt)∂t − ω sin(2ωt) �x1∂x1 + x2∂x2

�
, Γ2 = sin(2ωt)∂t + ω cos(2ωt) �x1∂x1 + x2∂x2

�
,

Γ3 = ∂t, Γ4 =
cos(2ωt)

x1
∂x1, Γ5 =

sin(2ωt)
x1

∂x1, Γ6 =
cos(2ωt)

x2
∂x2, Γ7 =

sin(2ωt)
x2

∂x2,

Γ8 =
x2

2

x1
∂x1, Γ9 = x1 ∂x1, Γ10 =

1
x1

∂x1, Γ11 =
x2

1

x2
∂x2, Γ12 = x2∂x2, Γ13 =

1
x2

∂x2.

(31)

Therefore system (30) is linearizable. In order to find the linearizing transformation we could use
the method in Refs. 19 and 20 based on the classification of the four-dimensional abelian subalge-
bras.21 Instead we recall that the following linear system, namely, the derivative with respect to t of
the equations of a two-dimensional isotropic oscillator with frequency 2ω:

...
u 1 = −4ω2u̇1,
...
u 2 = −4ω2u̇2, (32)

admits a thirteen-dimensional Lie point symmetry algebra generated by the following operators:

Γ1 = cos(2ωt)∂t − 2ω sin(2ωt) �u1∂u1 + u2∂u2

�
, Γ2 = sin(2ωt)∂t + 2ω cos(2ωt) �u1∂u1 + u2∂u2

�
,

Γ3 = ∂t, Γ4 = cos(2ωt) ∂u1, Γ5 = sin(2ωt) ∂u1, Γ6 = cos(2ωt) ∂u2, Γ7 = sin(2ωt) ∂u2,

Γ8 = u2 ∂u1, Γ9 = u1 ∂u1, Γ10 = ∂u1, Γ11 = u1 ∂u2, Γ12 = u2 ∂u2, Γ13 = ∂u2.

(33)

Consequently, if we make the following transformation:

u1 =
x2

1

2
, u2 =

x2
2

2
, (34)
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system (23) becomes the linear system (32).
More recently the following generalization of the potential VI has been proposed and proved

superintegrable:22–25

V gen
I (x1, x2) =

ω2
1

2
x2

1 +
ω2

2

2
x2

2 +
β1

x2
1

+
β2

x2
2

. (35)

Applying the same procedure as described above to the corresponding Lagrangian equations, i.e.,

ẍ1 = −ω2
1x1 +

2β1

x3
1

,

ẍ2 = −ω2
2x2 +

2β2

x3
2

, (36)

yields the following system of two third-order equations:
...
x 1 = −

ẋ1

x1
(4ω2

1x1 + 3ẍ1),
...
x 2 = −

ẋ2

x2
(4ω2

2x2 + 3ẍ2), (37)

which admits a nine-dimensional Lie point symmetry algebra generated by the operators Γ3, Γ4, Γ5,
Γ6, Γ7, Γ8, Γ10, Γ11, and Γ13 in (31). Indeed by applying again the transformation (34), we obtain that
the system (37) is transformed into the following linear system:

...
u 1 = −4ω2

1u̇1,
...
u 2 = −4ω2

2u̇2, (38)

namely, the derivative with respect to t of the equations of a two-dimensional anisotropic oscillator.

B. The potential VII

The Lagrangian equations corresponding to the Lagrangian (21) with V = VII are

ẍ1 = −4ω2x1 − β1, (39a)

ẍ2 = −ω2x2 +
2β2

x3
2

. (39b)

This Lagrangian admits three Noether symmetries generated by the following operators:

Υ1 = ∂t, Υ2 = sin(2ωt)∂x1, Υ3 = cos(2ωt)∂x1, (40)

that is the algebra A3,6 ≃ ⟨Υ1/(2ω),Υ3,Υ2⟩ in the classification given in Ref. 21. The application of
Noether’s theorem yields three first integrals. From Υ1 comes the Hamiltonian, i.e.,

HII =
1
2
�
ẋ2

1 + ẋ2
2

�
+
ω2

2
(4x2

1 + x2
2) + β1x1 +

β2

x2
2

, (41)

and from Υ2 and Υ3 the following two time-dependent integrals:

Y2 = cos(2ωt)β1 + 4 cos(2ωt)ω2x1 − 2 sin(2ωt)ω ẋ1 (42)

and

Y3 = −2 cos(2ωt)ω ẋ1 − sin(2ωt)β1 − 4 sin(2ωt)ω2x1, (43)

respectively.

Remark 3. The following combination of (42) and (43) yields the Hamiltonian for the Equation
(39a) only, i.e.,

H1 =
Y 2

2 + Y 2
3

8ω2 =
1
2

ẋ2
1 + 2ω2x2

1 + β1x1 +
β2

1

8ω2 . (44)
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The following combination of (44) and the Hamiltonian (41) yields the Hamiltonian for the
Equation (39b) only, i.e.,

H2 = HII −
Y 2

2 + Y 2
3

8ω2 =
1
2

ẋ2
2 +

1
2
ω2x2

2 +
β2

x2
2

−
β2

1

8ω2 . (45)

Of course, the addition/subtraction of the constant
β2

1

8ω2 does not influence either the Hamiltonian
H1 or H2. ■

We solve system (39a) and (39b) with respect to β1 and β2, i.e.,

β1 = −ẍ1 − 4ω2x1,

β2 =
1
2
(x3

2ẍ2 + ω
2x4

2), (46)

and then we take the derivative with respect to t in order to get the following system of two
third-order equations:

...
x 1 = −4ω2ẋ1,

...
x 2 = −

ẋ2

x2
(4ω2x2 + 3ẍ2). (47)

It should not be a surprise that this system admits a thirteen-dimensional Lie symmetry algebra.
Consequently, the transformation

u1 = x1, u2 =
x2

2

2
(48)

takes system (47) into the linear system (32), namely, that obtained by taking the derivative with
respect to t of the equations of a two-dimensional isotropic oscillator with frequency 2ω.

C. The potential VIII

The Lagrangian equations corresponding to the Lagrangian (22) with V = VIII are

r̈ =
α

r2 + r ϕ̇2 +
2
r3

*
,

β1

cos2
�ϕ

2

� + β2

sin2 �ϕ
2

� +
-
,

ϕ̈ = −2
r

ṙ ϕ̇ − 1
r4

*
,

β1 sin
�ϕ

2

�

cos3
�ϕ

2

� −
β2 cos

�ϕ
2

�

sin3 �ϕ
2

� +
-
. (49)

This Lagrangian admits one Noether symmetry, i.e., translation in t, and the Noether theorem yields
the Hamiltonian. We now write the two second-order Lagrangian equations (49) as the following
four first-order equations:

ẇ1 = w3,

ẇ2 = w4,

ẇ3 =
α

w2
1

+ w1w
2
4 +

2
w3

1

*
,

β1

cos2
� w2

2

� + β2

sin2 � w2
2

� +
-
, (50)

ẇ4 = −
2
w1

w3w4 −
1
w4

1

*
,

β1 sin
� w2

2

�

cos3
� w2

2

� −
β2 cos

� w2
2

�

sin3 � w2
2

� +
-
,

with the identification

(w1, w2, w3, w4) ≡ (r, ϕ, ṙ , ϕ̇). (51)
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We apply the reduction method5 by choosing w2 = y as the new independent variable, and conse-
quently the following system of three first-order equations is obtained:

dw1

dy
=

w3

w4
, (52)

dw3

dy
=

α

w2
1w4
+ w1w4 +

2
w3

1w4

*
,

β1

cos2
� y

2

� + β2

sin2 � y
2

� +
-
, (53)

dw4

dy
= − 2

w1
w3 −

1
w4

1w4

*
,

β1 sin
� y

2

�

cos3
� y

2

� −
β2 cos

� y
2

�

sin3 � y
2

� +
-
. (54)

We derive w3 from Equation (52), i.e.,

w3 = w4
dw1

dy
, (55)

and consequently Equation (54) becomes

dw4

dy
+

2w4

w1

dw1

dy
+

1
w4

1w4

*
,

β1 sin
� y

2

�

cos3
� y

2

� −
β2 cos

� y
2

�

sin3 � y
2

� +
-
= 0, (56)

which can be simplified by means of the following transformation, i.e.,

w4 =
r4

w2
1

, (57)

with r4 a new function of y that then has to satisfy the following equation:

dr4

dy
= − 1

r4

*
,

β1 sin
� y

2

�

cos3
� y

2

� −
β2 cos

� y
2

�

sin3 � y
2

� +
-
. (58)

Its general solution is easily obtained to be

r4 = ±


a1 − 2 *

,

β1 sin
� y

2

�

cos
� y

2

� +
β2 cos

� y
2

�

sin
� y

2

� +
-
, (59)

with a1 an arbitrary constant. Finally, Equation (53) becomes the following second-order differential
equation:

d2w1

dy2 =
2
w1

(
dw1

dy

)2

+
w1(αw1 + a1) sin2 � y

2

�
cos2 � y

2

�

a1 sin2 � y
2

�
cos2

� y
2

�
− 2β1 sin2 � y

2

�
− 2β2 cos2

� y
2

�

+
β1 sin4 � y

2

�
− β2 cos4 � y

2

�

sin
� y

2

�
cos

� y
2

� �
a1 sin2 � y

2

�
cos2

� y
2

�
− 2β1 sin2 � y

2

�
− 2β2 cos2

� y
2

�� dw1

dy
. (60)

This equation admits an eight-dimensional Lie point symmetry algebra, which means that it is
linearizable. The linearizing transformation is obtained by means of Lie’s canonical representation
of a two-dimensional abelian intransitive subalgebra.14 One such subalgebra is that generated by the
following two operators:

Ξ1 = (2β1 − 2β2 − cos(y)a1)w2
1∂w1,

Ξ2 =


4β2 cos(y) − 4β1 cos(y) + a1 cos2(y) + 4β1 + 4β2 − a1w

2
1∂w1, (61)

that we have to put in the canonical form ∂w̃1, ỹ∂w̃1. Therefore the transformation

ỹ = −


4β2 cos(y) − 4β1 cos(y) + a1 cos2(y) + 4β1 + 4β2 − a1

−2β1 + 2β2 + cos(y)a1
, (62)

w̃1 =
1

(−2β1 + 2β2 + cos(y)a1)w1
(63)

takes Equation (60) into a linear equation of the type
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d2w̃1

d ỹ2 = F( ỹ). (64)

Actually (63) suggests the simpler transformation

u =
1
w1

, (65)

that applied to Equation (60) yields the following linear equation:

ü =
u̇
�
β1 sin4 � y

2

�
− β2 cos4 � y

2

��
− (α − a1u) sin3 � y

2

�
cos3 � y

2

�
�
a1 sin2 � y

2

�
cos2

� y
2

�
− 2β1 sin2 � y

2

�
− 2β2 cos2

� y
2

��
sin

� y
2

�
cos

� y
2

� . (66)

There exists a generalization of the potential VIII, i.e.,

V gen
III (r, ϕ) = A

r
+

f (ϕ)
r2 , (67)

where f is an arbitrary function of ϕ. Then the corresponding equations are

r̈ = r ϕ̇2 +
A
r2 +

2 f (ϕ)
r3 , (68)

ϕ̈ = −2
ṙ
r
ϕ̇ − f ′(ϕ)

r2 , (69)

where prime indicates the derivative of f with respect to ϕ. Introducing the new variables w1, w2, w3,
w4 as in (51) yields the following Hamilton equations:

ẇ1 = w3, (70)

ẇ2 =
w4

w2
1

, (71)

ẇ3 =
Aw1 + 2 f (w2) + w2

4

w3
1

, (72)

ẇ4 = −
f ′(w2)
w2

1

. (73)

We apply the reduction method5 by choosing w2 = y as the new independent variable, and conse-
quently the following system of three first-order equations is obtained:

dw1

dy
=

w3w
2
1

w4
, (74)

dw3

dy
=

Aw1 + 2 f (y) + w2
4

w1w4
, (75)

dw4

dy
= − f ′(y)

w4
. (76)

Equation (76) can be integrated to give

w4 = ±


J − 2 f (y), (77)

with J an arbitrary constant. Finally, eliminating w3 by means of (74), i.e.,

w3 =
w4

w2
1

dw1

dy
, (78)

yields the following second-order equation for w1 = w1(y):

d2w1

dy2 =

2(J − 2 f (y))
(

dw1

dy

)2

+ f ′(y)w1
dw1

dy
+ Aw3

1 + w2
1 J

w1(J − 2 f (y)) . (79)

This equation is linearizable since it admits an eight-dimensional Lie symmetry algebra. As in the
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case of Equation (60), the transformation (65) yields the linear equation

ü =
f ′(y)u̇ − Ju − A

J − 2 f (y) . (80)

A particular case of the potential (67) is a deformed Kepler-Coulomb potential dependent on an
indexing parameter k studied in Ref. 26, which corresponds to

f (ϕ) = αk2

4 cos2
�
k
2 ϕ

� + βk2

4 sin2 � k
2 ϕ

� .

III. THE TREMBLAY-TURBINER-WINTERNITZ SYSTEM

We now consider the superintegrable Tremblay-Turbiner-Winternitz (TTW) system,7 namely,
an Hamiltonian system with a potential that generalizes VI in (3a), i.e.,

VTTW(r, ϕ) = ω2r2 +
k2

r2

(
β1

cos2(kϕ) +
β2

sin2(kϕ)
)
. (81)

The corresponding Lagrangian, i.e.,

LTTW =
1
4
�
ṙ2 + r2ϕ̇2� − ω2r2 − k2

r2

(
β1

cos2(kϕ) +
β2

sin2(kϕ)
)
, (82)

yields the following Lagrangian equations:

r̈ = −4ω2r + r ϕ̇2 +
4k2

r3

(
β1

cos2 (kϕ) +
β2

sin2 (kϕ)
)
, (83a)

ϕ̈ = −2
r

ṙ ϕ̇ − 4k3

r4

(
β1 sin (kϕ)
cos3 (kϕ) −

β2 cos (kϕ)
sin3 (kϕ)

)
, (83b)

that admit a three-dimensional Lie point symmetry algebra sl(2,R) spanned by

Σ1 = ∂t, Σ2 = cos(4ωt)∂t − 2ω sin(4ωt)r∂r ,
Σ3 = sin(4ωt)∂t + 2ω cos(4ωt)r∂r , (84)

which are also Noether symmetries of the Lagrangian (82). The application of Noether’s theorem
yields three first integrals, one being the Hamiltonian, i.e.,

HTTW =
1
4
�
ṙ2 + r2ϕ̇2� + ω2r2 +

k2

r2

(
β1

cos2(kϕ) +
β2

sin2(kϕ)
)
. (85)

The other two first integrals depend on t, i.e.,

K2TTW
=


1
4
�
ṙ2 + r2ϕ̇2� − ω2r2 +

k2

r2

(
β1

cos2(kϕ) +
β2

sin2(kϕ)
)

cos(4ωt)

+ ωrṙ sin(4ωt), (86)

K3TTW
=


1
4
�
ṙ2 + r2ϕ̇2� − ω2r2 +

k2

r2

(
β1

cos2(kϕ) +
β2

sin2(kϕ)
)

sin(4ωt)

− ωrṙ cos(4ωt). (87)

Remark 4. Another time-independent first integral can be obtained by the following combina-
tion:

H2
TTW − K2

2TTW
− K2

3TTW
= r4ϕ̇2 + 4k2

(
β1

cos2(kϕ) +
β2

sin2(kϕ)
)
. (88)

■

The presence of the algebra sl(2,R) suggests to eliminate the two parameters β1 and β2 by raising
the order. We solve system (83) with respect to β1 and β2, and then we take the derivative with
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respect to t which yields the following two third-order equations:

r
...
r + ṙ(16ω2r + 3r̈) = 0, (89)

cos(kϕ) sin(kϕ)r2...ϕ + 3 cos2(kϕ)kr2ϕ̇ϕ̈ + 6 cos2(kϕ)krṙ ϕ̇2

+ 16 cos(kϕ) sin(kϕ)k2ω2r2ϕ̇ − 4 cos(kϕ) sin(kϕ)k2r2ϕ̇3 + 4 cos(kϕ) sin(kϕ)k2rr̈ ϕ̇

+ 6 cos(kϕ) sin(kϕ)rṙ ϕ̈ + 2 cos(kϕ) sin(kϕ)rr̈ ϕ̇

+ 6 cos(kϕ) sin(kϕ)ṙ2ϕ̇ − 3 sin2(kϕ)kr2ϕ̇ϕ̈ − 6 sin2(kϕ)krṙ ϕ̇2 = 0. (90)

Equation (89) admits a seven-dimensional Lie symmetry algebra generated by the following opera-
tors:

X1 = ∂t, X2 = cos(4ωt)∂t − 2ω sin(4ωt)r∂r , X3 = sin(4ωt)∂t + 2ω cos(4ωt)r∂r ,
X4 =

cos(4ωt)
r

∂r , X5 =
sin(4ωt)

r
∂r , X6 = r∂r , X7 =

1
r
∂r , (91)

and consequently it is linearizable. We find that a two-dimensional non-abelian intransitive subalge-
bra is that generated by X6 and X7, and following Lie’s classification,14 if we transform them into
their canonical form, i.e., ∂u,u∂u, then we obtain that the new dependent variable is given by

u =
r2

2
,

and consequently Equation (89) becomes
...
u = −16ω2u̇, (92)

namely, the derivative with respect to t of the equation of a linear harmonic oscillator with fre-
quency 4ω. Thus, the general solution of (89) is

r =


a1 + a2 cos(4ωt) + a3 sin(4ωt). (93)

Equation (90) is also linearizable since it admits a seven-dimensional Lie symmetry algebra gener-
ated by

Ω = s1(t)∂t + −cos2(kϕ)s2(t) + 2ks3(t)
2 cos(kϕ) sin(kϕ)k ∂ϕ, (94)

with s1, s2, s3 that satisfy the following seventh-order linear system:

r2...s 1 + 4ṡ1r̈ k2r − 4ṡ1r̈r + 16ṡ1k2ω2r2 − 8r̈ ṙ k2s1 + 8r̈ ṙ s1 − 32ṙ k2ω2s1r + 32ṙω2s1r = 0, (95a)

r2ṡ2 − s̈1r2 + 2ṡ1rṙ + 2rr̈ s1 − 2ṙ2s1 = 0, (95b)

r2...s 3 + 6s̈3ṙr + 4ṡ3r̈ k2r + ṡ3r̈r + 6ṡ3ṙ2 + 16ṡ3k2ω2r2 = 0, (95c)

with r given in (93). Similarly to Equation (89), we find that a two-dimensional non-abelian
intransitive subalgebra is generated by the operators

− 1
2k

cot(kϕ)∂ϕ, 2
sin(2kϕ)∂ϕ, (96)

that put into the canonical form yield the new dependent variable

v = − 1
2k

cos2(kϕ),
and consequently Equation (90) becomes linear, i.e.,

...
v = −6ṙ

r
v̈ − 2

r2

�
3ṙ2 + 8k2ω2r2 +

�
2k2 + 1

�
rr̈
�
v̇ . (97)

Remark 5. The TTW system admits closed orbits if k is rational, as it has been shown by
various methods in Refs. 27–29. We observe that Equation (97) yields solutions of (83) in terms of
hypergeometric and trigonometric functions if k is rational, although the linearization that we have
achieved remains valid even for k irrational. ■
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IV. A GRAVEL’S SUPERINTEGRABLE SYSTEM

The Hamiltonian equations corresponding to Hamiltonian (4) are

ẋ1 = p1,

ẋ2 = p2,

ṗ1 = −
β1

2
√

x1
, (98)

ṗ2 = −
β2

2
√

x2
.

We make the substitution

x1 = r2
1, x2 = r2

2, (99)

with r1,r2 two new variables in order to render system (98) more amenable to a computer algebraic
software such as REDUCE, i.e.,

ṙ1 =
p1

2r1
,

ṙ2 =
p2

2r2
,

ṗ1 = −
β1

2r1
, (100)

ṗ2 = −
β2

2r2
.

Then we derive r1 and r2 from the third and fourth equation of system (100), respectively, i.e.,

r1 = −
β1

2ṗ1
, r2 = −

β2

2ṗ2
, (101)

and consequently we obtained the following two second-order equations:

p̈1 = −
2
β2

1

p1ṗ3
1, (102)

p̈2 = −
2
β2

2

p2ṗ3
2. (103)

Each equation admits an eight-dimensional Lie symmetry algebra and therefore is linearizable.14

The linearizing transformation is obtained by means of Lie’s canonical representation of a two-
dimensional abelian intransitive subalgebra.14 One such subalgebra is that generated by the follow-
ing two operators:

pj∂t, ∂t, ( j = 1,2) (104)

that we have to put in the canonical form ∂p̃ j
, t̃ j∂p̃ j

. Consequently, the transformations

t̃1 =
1
p1
, p̃1 =

t
p1
−

p2
1

3β2
1

(105)

and

t̃2 =
1
p2
, p̃2 =

t
p2
−

p2
2

3β2
2

(106)

take Equations (102) and (103) into the free particle equation

d2p̃1

dt̃2
1

= 0, (107)
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and

d2p̃2

dt̃2
2

= 0, (108)

respectively. Therefore, the general solution of system (102) and (103) is

t
p1
−

p2
1

3β2
1

− A1

p1
− A2 = 0,

t
p2
−

p2
2

3β2
2

− A3

p2
− A4 = 0 (109)

with Ai(i = 1, . . . ,4) arbitrary constants.

V. CONCLUSIONS

In this paper, we have considered classical superintegrable systems on two-dimensional real
Euclidean space E2 and shown that they possess hidden symmetries leading to linearization. Ac-
tually, we have also demonstrated that some of their generalizations are also linearizable, e.g.,
Lagrangian equations (68) and (69). Moreover, we have determined hidden linearity regardless of
the separation of variables and the degree of the known first integrals.

In Ref. 30, each classical superintegrable system in Ref. 1 was shown to admit an exactly
solvable quantum mechanical counterpart, namely, quantum system characterized by the fact that
in its solution space one can indicate explicitly an infinite flag of functional linear spaces, which
is preserved by the Hamiltonian. The authors conjectured that the property of exact solvability
will remain valid for higher dimensional superintegrable systems with integrals given by second
order differential operators. At present, it is not known if classical superintegrable systems with
third-order integrals admit an exactly solvable quantum counterpart.

Several classical superintegrable systems have been determined in two-dimensional non-
Euclidean spaces, i.e., in two-dimensional space with non-constant curvature. Examples of such
systems are the Perlick system,31 the Taub-NUT system,32 superintegrable systems for the Darboux
space of Type I,16 and others,33,34

In a forthcoming paper,15 we will show that also superintegrable systems in a two-dimensional
non-Euclidean space can be reduced to linear equations by means of their hidden symmetries.

Consequently, we conclude with a conjecture, namely, that all two-dimensional superintegrable
systems are linearizable by means of their hidden symmetries.

It remains an open-problem to see if linear equations are hidden in (maximally?) superinte-
grable systems in N > 2 dimensions, regardless of the separability of the corresponding Hamilton-
Jacobi equation, and the degree of the known first integrals.
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