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di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy

(Received 24 January 2016; accepted 17 April 2017; published online 11 May 2017)

In this paper, we study the integrability of a class of nonlinear non-autonomous
quad graph equations compatible around the cube introduced by Boll in the frame-
work of the generalized Adler, Bobenko, and Suris (ABS) classification. We show
that all these equations possess three-point generalized symmetries which are sub-
cases of either the Yamilov discretization of the Krichever–Novikov equation or
of its non-autonomous extension. We also prove that all those symmetries are
integrable as they pass the algebraic entropy test. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4982747]

I. INTRODUCTION

In 1983, Yamilov33 classified all differential difference equations of the class

u̇n = f (un−1, un, un+1) (1)

using the generalized symmetry method. From the generalized symmetry method, one obtains inte-
grability conditions which allow us to check whether a given equation is integrable. Moreover in many
cases, these conditions enable us to classify equations, i.e., to obtain complete lists of integrable equa-
tions belonging to a certain class. As integrability conditions are only necessary conditions for the
existence of generalized symmetries and/or conservation laws, one then has to prove that the equations
of the resulting list really possess generalized symmetries and conservation laws of sufficiently high
order. One constructs them using Miura-type transformations and master symmetries, proving the
existence of Lax pairs.34,35 The result of Yamilov classification, up to Miura transformation, are the
Toda equation and the so-called Yamilov discretization of the Krichever Novikov equation (YdKN),
a differential difference equation depending on 6 arbitrary coefficients

dqk

dt
=

A(qk)qk+1qk−1 + B(qk)(qk+1 + qk−1) + C(qk)
qk+1 − qk−1

, (2)

where
A(qk)= aq2

k + 2bqk + c, (3a)

B(qk)= bq2
k + dqk + e, (3b)

C(qk)= cq2
k + 2eqk + f . (3c)

The integrability of (2) is proven by the existence of point symmetries24 and of a master symmetry35

from which one is able to construct an infinite hierarchy of generalized symmetries. The problem
of finding the Bäcklund transformation and Lax pair in the general case when all the parameters are
different from zero seems to be still open. Some partial results are contained in Ref. 4.

In Refs. 25 and 26, the authors constructed a set of five conditions necessary for the existence
of generalized symmetries for (1). They used the conditions to propose the integrability of a few
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equations: a non-autonomous generalization of the Toda lattice, of the Volterra equation, and of YdKN.
These are the only key equations which, up to Miura transformations, appear in the classification
of differential difference equations on three points. Here, in the following, for its relevance in the
present work, we present just the non-autonomous generalization of the YdKN

dqk

dt
=

Ak(qk)qk+1qk−1 + Bk(qk)(qk+1 + qk−1) + Ck(qk)
qk+1 − qk−1

, (4)

where the k-dependent coefficients are now given by

Ak(qk)= aq2
k + 2bkqk + ck , (5a)

Bk(qk)= bk+1q2
k + dqk + ek+1, (5b)

Ck(qk)= ck+1q2
k + 2ekqk + f (5c)

with bk , ck , and ek 2-periodic functions. Eq. (4) has conservation laws of second and third order and
two generalized local symmetries of order i and i + 1, with i < 4.

It was proved in Ref. 23 that the three-point symmetries of the equations belonging to the so-
called ABS classification,1 found systematically in Ref. 28, are all particular cases of (2). Here in this
note, we will show that the three-point generalized symmetries of all the equations coming from the
classification of Boll,2,6–8 which extends the ABS one,1 are all particular cases of the YdKN or the
non-autonomous YdKN. In particular, we will present the symmetries of all the classes of equations
H4 and H6, noting that the symmetries of the rhombic H4 have been found first in Ref. 32. For the
remaining classes of equations, namely, the trapezoidal H4 and the H6 equations, which were found
to be linearizable in Ref. 19, this is the first time that their generalized symmetries are presented.
Furthermore, we also present a new suggestion for the integrability of the non-autonomous YdKN
(4) based on the algebraic entropy test and use the same criterion to prove the integrability of the
other non-autonomous equations of the H4 and H6 classes.

In Section II, we present the three-point generalized symmetries of the H4 and H6 classes and
identify them with subcases of the YdKN or of its non-autonomous extension. We present in Section III
the master symmetries associated with H4 and H6 classes, while in Section IV, we compute the
algebraic entropy for the non-autonomous YdKN and its subcases obtained before. In Section V, we
present some brief conclusions.

II. THREE POINT GENERALIZED SYMMETRIES AND THEIR IDENTIFICATION

In this section, we consider the various classes of equations coming from the classification of
Boll,2,6–8 as presented in Ref. 19, show their symmetries and show the identification of the fluxes of
such symmetries with the YdKN and its non-autonomous extension.

A. Rhombic H4 equations

Once written on the Z2
(n,m) lattice, according to Ref. 32, the three equations belonging to this

class have the form

rHε
1 : (un,m − un+1,m+1) (un+1,m − un,m+1) − (α − β)

+ ε(α − β)
(
F(+)

n+m un+1,mun,m+1 + F(−)
n+m un,mun+1,m+1

)
= 0, (6a)

rHε
2 : (un,m − un+1,m+1)(un+1,m − un,m+1) +

+ (β − α)(un,m + un+1,m + un,m+1 + un+1,m+1) − α2 + β2

− ε (β − α)3 − ε (β − α)
(
2F(−)

n+mun,m + 2F(+)
n+mun+1,m + α + β

)
·

·
(
2F(−)

n+mun+1,m+1 + 2F(+)
n+mun,m+1 + α + β

)
= 0, (6b)
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rHε
3 : α(un,mun+1,m + un,m+1un+1,m+1)

− β(un,mun,m+1 + un+1,mun+1,m+1) + (α2 − β2)δ

−
ε(α2 − β2)

αβ

(
F(+)

n+m un+1,mun,m+1 + F(−)
n+m un,mun+1,m+1

)
= 0, (6c)

where

F±k =
1 ± (−1)k

2
, k ∈ Z. (7)

Their three-point symmetries32 are given by

X̂ rHε
1

n =
1 − ε

(
F(+)

n+mun+1,mun−1,m + F(−)
n+mu2

n,m

)
un+1,m − un−1,m

∂un,m , (8a)

X̂ rHε
1

m =
1 − ε

(
F(+)

n+mun,m+1un,m−1 + F(−)
n+mu2

n,m

)
un,m+1 − un,m−1

∂un,m , (8b)

X̂ rHε
2

n =



(
1 − 4εαF(−)

n+m

) (
un+1,m + un−1,m

)
− 4εF(+)

n+mun+1,mun−1,m

un+1,m − un−1,m
+

+
2α − 4εα2 − 4εF(−)

n+mu2
n,m +

(
1 − 4εαF(−)

n+m

)
un,m

un+1,m − un−1,m


∂un,m , (8c)

X̂ rHε
2

m =



(
1 − 4ε βF(−)

n+m

) (
un,m+1 + un,m−1

)
− 4εF(+)

n+mun,m+1un,m−1

un,m+1 − un,m−1
+

+
2β − 4ε β2 − 4εF(−)

n+mu2
n,m +

(
1 − 4ε βF(−)

n+m

)
un,m

un,m+1 + un,m−1


∂un,m , (8d)

X̂ rHε
3

n =

[
1
2

un,m
(
un+1,m + un−1,m

)
+ 2δα

un+1,m − un−1,m
−

−
ε

α

(
F(+)

n+mun+1,mun−1,m + F(−)
n+mu2

n,m

)
un+1,m − un−1,m


∂un,m , (8e)

X̂ rHε
3

m =

[
1
2

un,m
(
un,m+1 + un,m−1

)
+ 2δ β

un,m+1 + un,m−1
−

−
ε

β

(
F(+)

n+mun,m+1un,m−1 + F(−)
n+mu2

n,m

)
un,m+1 + un,m−1


∂un,m . (8f)

As stated in Ref. 32, the fluxes of the symmetries (8) are readily identified with the corresponding
cases of the non-autonomous YdKN Equation (4). Such identification is, in this paper, made explicit
by showing the appropriate values of the coefficients of (4) in Table I.

B. Trapezoidal H4 equations

We now consider the trapezoidal H4 equations, which appeared in Refs. 7 and 8 and whose
non-autonomous form was given in Ref. 19

tH1 :
(
un,m − un+1,m

) (
un,m+1 − un+1,m+1

)
−

− α2ε
2
(
F(+)

m un,m+1un+1,m+1 + F(−)
m un,mun+1,m

)
− α2 = 0, (9a)
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TABLE I. Identification of the coefficients in the symmetries of the rhombic H4 equations with those of the non-autonomous
YdKN equation.

Eq. k a bk ck d ek f

rHε
1 n 0 0 −εF(+)

n+m 0 0 1

m 0 0 −εF(+)
n+m 0 0 1

rHε
2 n 0 0 −4εF(+)

n+m 0 1 − 4εαF(−)
n+m 2 α − 4εα2

m 0 0 −4εF(+)
n+m 0 1 − 4εβF(−)

n+m 2 β − 4εβ2

rHε
3 n 0 0 −

εF(+)
n+m
α

1
2 0 δα

m 0 0 −
εF(+)

n+m
β

1
2 0 δβ

tH2 :
(
un,m − un+1,m

) (
un,m+1 − un+1,m+1

)
− α2

(
un,m + un+1,m + un,m+1 + un+1,m+1

)
+
εα2

2

(
2F(+)

m un,m+1 + 2α3 + α2

) (
2F(+)

m un+1,m+1 + 2α3 + α2

)
+
εα2

2

(
2F(−)

m un,m + 2α3 + α2

) (
2F(−)

m un+1,m + 2α3 + α2

)
+ (α3 + α2)2 − α2

3 − 2εα2α3 (α3 + α2)= 0, (9b)

tH3 : α2
(
un,mun+1,m+1 + un+1,mun,m+1

)
−

(
un,mun,m+1 + un+1,mun+1,m+1

)
− α3

(
α2

2 − 1
)
δ2 +

−
ε2(α2

2 − 1)

α3α2

(
F(+)

m un,m+1un+1,m+1 + F(−)
m un,mun+1,m

)
= 0. (9c)

We can easily calculate the three-point symmetries of tHε
2 (9b) and of tHε

3 (9c),

X̂ tHε
2

n =



(un,m + εα2
2F(+)

m )(un+1,m + un−1,m) − un+1,mun−1,m

un+1,m − un−1,m
−

−
u2

n,m − 2εF(+)
m α2

2un,m − α
2
2 + 4εF(+)

m α3
2 + 8εF(+)

m α2
2α3 + ε2F(+)

m α4
2

un+1,m − un−1,m


∂un,m , (10a)

X̂ tHε
2

m =



[
1
2 − ε(α2 + α3)F(+)

m

]
(un,m+1 + un,m−1) − εF(+)

m un,m+1un,m−1

un,m+1 − un,m−1
−

−
εF(−)

m u2
n,m −

[
1 − 2ε(α2 + α3)F(−)

m

]
un,m + α3 + ε(α2 + α3)2

un,m+1 − un,m−1


∂un,m , (10b)

X̂ tHε
3

n =



1
2α2(1 + α2

2)un,m(un+1,m + un−1,m) − α2
2un+1,mun−1,m

un+1,m − un−1,m
−

−
α2

2u2
n,m + ε2δ2(1 − α2

2)2F(+)
m

un+1,m − un−1,m


∂un,m , (10c)

X̂ tHε
3

m =



1
2α3un,m(un,m+1 + un,m−1) − ε2F(+)

m un,m+1un,m−1

un,m+1 − un,m−1
−

−
ε2F(−)

m u2
n,m + α2

3δ
2

un,m+1 − un,m−1


∂un,m . (10d)
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The symmetries in the n and m directions and the linearizations of the tHε
1 Equation (9a) have been

presented in Ref. 20. Their peculiarity is that they are written in terms of two arbitrary functions of one
continuous variable and one discrete index and by arbitrary functions of the lattice variables. This is the
first time that we find a lattice equation whose generalized symmetries depend on arbitrary functions.
Almost surely, this peculiarity is related to the very specific way in which tHε

1 is linearizable.18

Here we present only the sub-cases which are related to the YdKN equation in its autonomous or
non-autonomous form.

The general symmetry in the n direction is

X̂ tHε
1

n = F(+)
m




α2

(
v2 + ε2α2

2

)
(r − v) (r + v)

Bn

(
α2

r

)
−
α2

(
r2 + ε2α2

2

)
(r − v) (r + v)

Bn−1

(
α2

v

)
+

+


un,m −

(
r2 + ε2α2

2

)
v

(r − v) (r + v)


α + γm



∂un,m + F(−)

m

[
s2t2

(s − t) (s + t)
(Bn (s)−

− Bn−1 (t)) −
s2t

(s − t) (s + t)
α + δm

] (
1 + ε2u2

n,m

)
∂un,m , r � un+1,m − un,m,

s �
un+1,m − un,m

1 + ε2un+1,mun,m
, t �

un,m − un−1,m

1 + ε2un−1,mun,m
, v � un,m − xu−1,m, (11)

where Bn (x), γm, and δm are generic functions of their arguments and α is an arbitrary parameter.
When Bn (x)=−1/x, α = γm = δm = 0, we get a symmetry of YdKN type

X̂ tHε
1

n =



(
un+1,m − un,m

) (
un,m − un−1,m

)
un+1,m − un−1,m

− F(+)
m

ε2α2
2

un+1,m − un−1,m


∂un,m . (12)

The general symmetry in the m direction is

X̂ tHε
1

m = [F(+)
m

(
Bm

(
un,m+1 − un,m−1

1 + ε2un,m+1un,m−1

)
+ κm

)
+ F(−)

m

(
1 + ε2u2

n,m

) (
Cm

(
un,m+1 − un,m−1

)
+ λm

)
]∂un,m . (13)

When Bm(t) = 1/t, Cm(t) = 1/t and κm = λm = 0, (13) becomes

X̂ tHε
1

m = [F(+)
m

1 + ε2un,m+1un,m−1

un,m+1 − un,m−1
+ F(−)

m
1 + ε2u2

n,m

un,m+1 − un,m−1
]∂un,m , (14)

a symmetry of YdKN type.
In both cases, (11) and (13), we also searched for other integrable subcases by looking for those

subcases of the functions Bm, Cm, and Bn such that (11) and (13) reduce either to the non-autonomous
Toda lattice or to the non-autonomous Volterra equation. The result was null. In this calculation, we
considered arbitrary expressions for Bn, Bm, and Cm. Still there might be some other integrable
choice. The proof that there is none would require the application of the integrability conditions, as
introduced in Ref. 35, to (11) and (13). However the expressions are too complicate and we have not
been able to deal with them. Moreover (12) and (14) are the most general equations of YdKN type
contained in (11) and (13).

Let us notice that the symmetries (10) and (12) in the n direction are sub-cases of the original
YdKN equation. As F(±)

m depends on the other lattice index, it can be treated like a parameter which
is either 0 or 1.

The explicit identification of the coefficients of the symmetries (10), (12), and (14) is shown in
Table II.
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TABLE II. Identification of the coefficients in the symmetries of the trapezoidal H4 equations with those of the YdKN
equation. In the direction n, the YdKN is autonomous while in the m direction is non-autonomous. Here the symmetries of

tHε
1 in the m direction are the subcase (14) of (13) while those in the n direction are the subcase (12) of (11).

Eq. k a bk ck d ek f

tHε
1 n 0 0 �1 1 0 −ε2α2

2 F(+)
m

m 0 0 ε2F(+)
m 0 0 2

tHε
2 n 0 0 �1 1 εα2

2 F(+)
m α2

2 − εα
2
2

(
4α2 + 8α3 + εα2

2

)
F(+)

m

m 0 0 −εF(+)
m 0 1

2 − ε(α2 + α3)F(−)
m −α3 − ε(α2 + α3)2

tHε
3 n 0 0 −α2

2
1
2α2(1 + α2

2 ) 0 −ε2δ2F(+)
m (1 − α2

2 )2

m 0 0 −ε2F(+)
m

1
2α3 0 −α2

3δ
2

C. H6 equations

In this subsection, we consider the equations of the family H6 introduced in Refs. 7 and 8. We
shall present their non-autonomous form on the lattice Z2

(n,m) as given in Ref. 19

1D2 :
(
F(−)

n+m − δ1F(+)
n F(−)

m + δ2F(+)
n F(+)

m

)
un,m

+
(
F(+)

n+m − δ1F(−)
n F(−)

m + δ2F(−)
n F(+)

m

)
un+1,m +

+
(
F(+)

n+m − δ1F(+)
n F(+)

m + δ2F(+)
n F(−)

m

)
un,m+1

+
(
F(−)

n+m − δ1F(−)
n F(+)

m + δ2F(−)
n F(−)

m

)
un+1,m+1 +

+ δ1

(
F(−)

m un,mun+1,m + F(+)
m un,m+1un+1,m+1

)
+ F(+)

n+mun,mun+1,m+1 + F(−)
n+mun+1,mun,m+1 = 0, (15a)

2D2 :
(
F(−)

m − δ1F(+)
n F(−)

m + δ2F(+)
n F(+)

m − δ1λF(−)
n F(+)

m

)
un,m

+
(
F(−)

m − δ1F(−)
n F(−)

m + δ2F(−)
n F(+)

m − δ1λF(+)
n F(+)

m

)
un+1,m

+
(
F(+)

m − δ1F(+)
n F(+)

m + δ2F(+)
n F(−)

m − δ1λF(−)
n F(−)

m

)
un,m+1

+
(
F(+)

m − δ1F(−)
n F(+)

m + δ2F(−)
n F(−)

m − δ1λF(+)
n F(−)

m

)
un+1,m+1

+ δ1

(
F(−)

n+mun,mun+1,m+1 + F(+)
n+mun+1,mun,m+1

)
+ F(+)

m un,mun+1,m + F(−)
m un,m+1un+1,m+1 − δ1δ2λ = 0, (15b)

3D2 :
(
F(−)

m − δ1F(−)
n F(−)

m + δ2F(+)
n F(+)

m − δ1λF(−)
n F(+)

m

)
un,m

+
(
F(−)

m − δ1F(+)
n F(−)

m + δ2F(−)
n F(+)

m − δ1λF(+)
n F(+)

m

)
un+1,m

+
(
F(+)

m − δ1F(−)
n F(+)

m + δ2F(+)
n F(−)

m − δ1λF(−)
n F(−)

m

)
un,m+1

+
(
F(+)

m − δ1F(+)
n F(+)

m + δ2F(−)
n F(−)

m − δ1λF(+)
n F(−)

m

)
un+1,m+1

+ δ1

(
F(−)

n un,mun,m+1 + F(+)
n un+1,mun+1,m+1

)
+ F(−)

m un,m+1un+1,m+1 + F(+)
m un,mun+1,m − δ1δ2λ = 0, (15c)

D3 : F(+)
n F(+)

m un,m + F(−)
n F(+)

m un+1,m + F(+)
n F(−)

m un,m+1

+ F(−)
n F(−)

m un+1,m+1 + F(−)
m un,mun+1,m

+ F(−)
n un,mun,m+1 + F(−)

n+mun,mun+1,m+1 +

+ F(+)
n+mun+1,mun,m+1 + F(+)

n un+1,mun+1,m+1

+ F(+)
m un,m+1un+1,m+1 = 0, (15d)



053507-7 Gubbiotti, Scimiterna, and Levi J. Math. Phys. 58, 053507 (2017)

1D4 : δ1

(
F(−)

n un,mun,m+1 + F(+)
n un+1,mun+1,m+1

)
+

+ δ2

(
F(−)

m un,mun+1,m + F(+)
m un,m+1un+1,m+1

)
+

+ un,mun+1,m+1 + un+1,mun,m+1 + δ3 = 0, (15e)

2D4 : δ1

(
F(−)

n un,mun,m+1 + F(+)
n un+1,mun+1,m+1

)
+

+ δ2

(
F(−)

n+mun,mun+1,m+1 + F(+)
n+mun+1,mun,m+1

)
+

+ un,mun+1,m + un,m+1un+1,m+1 + δ3 = 0. (15f)

The three forms of the equation D2, (15a), (15b), and (15c), which we will collectively call iD2

assuming i in { 1, 2, 3 }, possess symmetries in the n and in the m direction. The symmetries Ẑ iD2
j with

i in { 1, 2, 3 } and j = (m, n) are a linear combination of one point and three-point symmetries

Ẑ iD2
j = X̂ iD2

j + K1Ŷ iD2
1 + K2Ŷ iD2

2 , j = n, m, i= 1, 2, 3. (16)

For convenience of presentation, we write them down separately

X̂1D2
n =



(
F(+)

n F(−)
m − δ1F(+)

n F(+)
m

)
(un,m+1 + un−1,m)

un+1,m − un−1,m
+

+

(
F(+)

n F(−)
m − δ1F(+)

n F(+)
m − δ1δ2

)
F(−)

n F(+)
m un−1,m

un+1,m − un−1,m
+

+
(F(+)

n+m − δ1F(+)
m − δ1δ2F(+)

n F(+)
m )un,m + δ2F(−)

m

un+1,m − un−1,m


∂un,m , (17a)

X̂1D2
m =



δ1F(−)
n F(+)

m un,m+1un,m−1 + F(−)
n+m(un,m+1 + un,m−1)

un,m+1 − un,m−1
+

+
δ1F(+)

m un,m+1 + δ1δ2F(−)
n F(+)

m un,m−1 + δ1F(−)
n F(−)

m u2
n,m

un,m+1 − un,m−1
+

+

[
F(+)

n+m + δ1

(
F(+)

n F(−)
m − F(−)

n F(−)
m

)
+ δ1δ2F(−)

n F(−)
m

]
un,m

un,m+1 − un,m−1
−

−
δ2(δ1 − 1)F(−)

n

un,m+1 − un,m−1


∂unm, (17b)

X̂2D2
n =



(
F(−)

n F(−)
m δ1 + F(−)

n F(−)
m δ1δ2 − F(−)

n F(−)
m

)
un+1,m +

(
F(+)

n F(+)
m δ1 − F(+)

n F(−)
m

)
un−1,m

un+1,m − un−1,m
+

+

(
δ1F(−)

n+m − F(−)
m + δ1δ2F(+)

n F(−)
m

)
un,m − (δ1 − 1)F(+)

m

un+1,m − un−1,m


∂un,m , (17c)

X̂2D2
m =



F(−)
n F(−)

m δ1un,m+1un,m−1 +
(
δ1δ2F(−)

n F(−)
m + F(+)

n F(−)
m

)
un,m+1

un,m+1 − un,m−1
+

+
+

(
δ1F(+)

n F(+)
m + F(−)

n F(−)
m − δ1F(−)

n F(−)
m

)
un,m−1

un,m+1 − un,m−1
+

+
δ1F(−)

n F(+)
m u2

n,m +
[
F(+)

n F(−)
m + (δ2 − 1)F(−)

n F(+)
m + F(+)

m

]
un,m

un,m+1 − un,m−1
+

+
δ2(1 − δ2)F(−)

n − δ1λF(+)
n

un,m+1 − un,m−1


∂un,m , (17d)
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X̂3D2
n =



(
δ1F(+)

n F(−)
m + δ1δ2F(+)

n F(−)
m − F(+)

n F(−)
m

)
un+1,m

un+1,m − un−1,m
+

+

(
F(+)

n F(+)
m δ1 − F(−)

n F(−)
m

)
un−1,m

un+1,m − un−1,m
+

+

(
δ1F(−)

n F(−)
m δ2 + F(−)

n δ1 − F(−)
m

)
un,m + (1 − δ1)F(+)

m

un+1,m − un−1,m


∂un,m, (17e)

X̂3D2
m =



(1 − δ1 − δ1δ2) F(+)
n F(−)

m un,m+1

un,m+1 − un,m−1
+

+

(
F(−)

n F(−)
m − F(+)

n F(+)
m δ1

)
un,m−1 + δ2F(−)

n

un,m+1 − un,m−1
+

+

(
F(+)

m − δ1F(+)
n − δ1δ2F(+)

n F(+)
m

)
un,m

un,m+1 − un,m−1
−

−
λδ1(1 − δ1 − δ1δ2)F(+)

n

un,m+1 − un,m−1


∂unm, (17f)

Ŷ 1D2
1 =

(
F(+)

n F(+)
m + F(+)

n F(−)
m + F(−)

n F(+)
m

)
un,m∂un,m , (18a)

Ŷ 1D2
2 =

[
δ1F(+)

n F(+)
m + [1 − δ1(1 + δ2)]F(−)

n F(+)
m + F(+)

n F(−)
m

]
∂un,m , (18b)

Ŷ 2D2
1 =

[(
F(+)

n F(+)
m + F(+)

n F(−)
m + F(−)

n F(+)
m

)
un,m−

− λF(+)
n F(−)

m + λ[1 − δ1(1 + δ2)]F(−)
n F(−)

m

]
∂un,m , (18c)

Ŷ 2D2
2 =

[
δ1F(+)

n F(+)
m + F(+)

n F(−)
m [1 − δ1(1 + δ2)]F(−)

n F(−)
m

]
∂un,m , (18d)

Ŷ 3D2
1 =

[(
F(+)

n F(+)
m + F(+)

n F(−)
m + F(−)

n F(+)
m

)
un,m−

− λF(−)
n F(−)

m + λ[1 − δ1(1 + δ2)]F(−)
n F(−)

m

]
∂un,m , (18e)

Ŷ 3D2
2 =

[
δ1F(+)

n F(+)
m + [1 − δ1(1 + δ2)]F(+)

n F(−)
m − F(−)

n F(−)
m

]
∂un,m . (18f)

The identification of the resulting symmetries of equations iD2 with the YdKN equation in the
form (4) is displayed in Table III.

The D3 Equation (15d) admits the symmetries ẐD3
j with j = (m, n), where (note that equation D3

(15d) is invariant under the exchange n↔m so the symmetry XD3
m (20b) can be obtained from the

symmetry XD3
n (20b) performing such exchange)

ẐD3
j = X̂D3

j + K1ŶD3 , j = n, m, (19)

X̂D3
n =



F(+)
n F(+)

m un+1,mun−1,m + 1
2

(
F(−)

m − F(−)
n F(+)

m

)
un,m(un+1,m + un−1,m)

un+1,m − un−1,m
+

+
F(−)

n F(+)
m u2

n,m +
(
F(−)

m − F(+)
n F(+)

m

)
un,m

un+1,m − un−1,m


∂un,m , (20a)
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TABLE III. Identification of the coefficients of the symmetries of the iD2 equations and value of the constants K1 and K2 in (16) in order to obtain non-autonomous YdKN equations.

Eq. k a bk ck d ek f K1 K2

1D2 n 0 0 0 0 1
2 [δ1(1 + δ2) − 1]F(+)

n F(+)
m + 1

2 F(−)
n F(+)

m − 1
2 F(−)

n F(−)
m −δ2F(−)

m 0 �1/2

m 0 0 −F(−)
n F(+)

m δ1 0 1
2 (δ1(1 − δ2 − 1)F(−)

n F(−)
m − 1

2 F(+)
n F(+)

m − 1
2 δ1F(−)

n F(+)
m δ2(δ1 − 1)F(−)

n 0 �1/2

2D2 n 0 0 0 0 1
2 [1 − δ1(1 + δ2)]F(+)

n F(−)
m + 1

2 F(−)
n F(−)

m − 1
2 δ1F(−)

n F(+)
m (δ1 − 1)F(+)

m 0 �1/2

m 0 0 −δ1F(−)
n F(−)

m 0 1
2 [δ1(1 − δ2) − 1]F(−)

n F(+)
m − 1

2 F(+)
n F(+)

m − 1
2 δ1F(−)

n F(+)
m δ2 [δ1 − 1] F(−)

n + λδ1F(+)
n 0 �1/2

3D2 n 0 0 0 0 1
2 [δ1(1 + δ2) − 1]F(−)

n F(−)
m + 1

2 F(+)
n F(−)

m + 1
2 δ1F(−)

n F(+)
m (1 − δ1)F(+)

m 0 1/2

m 0 0 0 0 1
2 [δ1(1 − δ2) − 1]F(+)

n F(+)
m − 1

2 F(+)
n F(−)

m + 1
2 δ1F(−)

n F(+)
m δ1λ[−δ1(1 + δ2)]F(+)

n − δ2F(−)
n 0 1/2
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X̂D3
m =



F(+)
n F(+)

m un,m+1un,m−1 + 1
2

(
F(−)

n − F(+)
n F(−)

m

)
un,m(un,m+1 + un,m−1)

un,m+1 − un,m−1
+

+
F(+)

n F(−)
m u2

n,m +
(
F(−)

n − F(+)
n F(+)

m

)
un,m

un,m+1 − un,m−1


∂un,m , (20b)

ŶD3 =
[
F(+)

n

(
2F(+)

m + F(−)
m

)
+ F(−)

n

]
un,m∂un,m . (20c)

The two forms of D4 possess only the following three-point generalized symmetries

X̂1D4
n =



−δ1F(+)
n un+1,mun−1,m −

1
2 un,m(un+1,m + un−1,m)

un+1,m − un−1,m
+

+
−δ1F(−)

n u2
n,m + δ2δ3F(+)

m

un+1,m − un−1,m


∂un,m , (20d)

X̂1D4
m =



F(−)
m un,m+1un,m−1 + 1

2 un,m(un,m+1 + un,m−1)

un,m+1 − un,m−1
+

+
δ2F(+)

m u2
n,m − δ1δ3F(+)

n

un,m+1 − un,m−1


∂un,m , (20e)

X̂2D4
n =



−δ1δ2F(+)
n F(+)

m un+1,mun−1,m + 1
2 un,m(un+1,m + un−1,m)

un+1,m − un−1,m
+

+
−δ1δ2F(−)

n F(+)
m u2

n,m + δ3

un+1,m − un−1,m


∂un,m , (20f)

X̂2D4
m =



δ2F(+)
n+mun,m+1un,m−1 + 1

2 un,m(un,m+1 + un,m−1)

un,m+1 − un,m−1
+

+
δ2F(−)

n+mu2
n,m − δ1δ3F(+)

n

un,m+1 − un,m−1


∂un,m (20g)

but no point symmetries. Again the fluxes of the symmetries (20) can be readily identified
with some specific form of the non-autonomous YdKN Equations (4) and the explicit form of the
coefficients are shown in Table IV.

TABLE IV. Identification of the coefficients of the symmetries (20) for D3, 1D4, and 2D4 with those of a non-autonomous
YdKN.

Eq. k a bk ck d ek f K1

D3 n 0 0 F(+)
n F(+)

m 0 1
2

(
F(+)

n F(−)
m + F(−)

n F(−)
m − F(+)

n F(+)
m

)
0 0

m 0 0 F(+)
n F(+)

m 0 1
2

(
F(−)

n F(+)
m + F(−)

n F(−)
m − F(+)

n F(+)
m

)
0 0

1D4 n 0 0 −δ1

(
F(+)

n F(+)
m + F(+)

n F(−)
m

)
− 1

2 0 δ2δ3F(+)
m -

m 0 0 δ2

(
F(+)

n F(+)
m + F(−)

n F(+)
m

)
1
2 0 −δ1δ3F(+)

n -

2D4 n 0 0 −F(+)
n F(+)

m δ1δ2
1
2 0 δ3 -

m 0 0 δ2

(
F(+)

n F(+)
m + F(−)

n F(−)
m

)
1
2 0 −δ1δ3F(+)

n -
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III. SYMMETRIES AND MASTER SYMMETRIES

In Sec. II A–II C, we saw that the fluxes of all the one-point and three-point symmetries of
the H4 and H6 equations are eventually related either to the YdKN (2) or to the non-autonomous
YdKN Equation (4). In this section, we are interested in studying the integrability properties of these
equations. Following the ideas in Ref. 23, we can use the method of the so-called master symmetries.

Master symmetries are a particular kind of evolution equations which depend on the field un,m,
on the lattice variables, and/or on their evolution variable which can generate the whole hierarchy
of symmetries of a given equation starting from a simple one. The notion of master symmetry has
been introduced in Ref. 12, see also Refs. 11, 13, 14, and 27. Here we just present the method we
can use to construct the master symmetries of the non-autonomous YdKN equation and its sub-cases
following.3,15,23,35

Let us consider differential-difference equations of the Volterra type (1) and its generalized
symmetry, possibly dependent on the lattice variable n and on its symmetry variable τ,

un,τ = ϕn(τ, un+k , un+k−1, . . . , un+k′+1, un+k′), k ′ < k. (21)

Let us define a Lie algebra structure on the set of functions ϕn of the form (21). For any functions ϕ(1)
n

and ϕ(2)
n , we introduce the equations un,τ1 = ϕ

(1)
n and un,τ2 = ϕ

(2)
n and the corresponding total derivatives

Dτi defined as

Dτi =
∂

∂τi
+

∑
j∈Z

ϕ(i)
n+j

∂

∂un+j
, (22)

where ϕ(1)
n and ϕ(2)

n depend on different symmetry variables τ1 and τ2 and on uα with α in n + k1

≥ α ≥ n + k ′1 and n + k2 ≥ α ≥ nk ′2, respectively. A new function is then defined by a Lie bracket [, ],

ϕ(3)
n = [ϕ(1)

n , ϕ(2)
n ]=Dτ2ϕ

(1)
n − Dτ1ϕ

(2)
n . (23)

It is obviously skew-symmetric
[ϕ(1)

n , ϕ(2)
n ]=−[ϕ(2)

n , ϕ(1)
n ], (24)

and as one can check by a direct calculation, it satisfies the Jacobi identity

[[ϕ(1)
n , ϕ(2)

n ], ϕ(3)
n ]= [[ϕ(1)

n , ϕ(3)
n ], ϕ(2)

n ] + [ϕ(1)
n , [ϕ(2)

n , ϕ(3)
n ]]. (25)

A differential-difference of the form

un,τ = g(un+k , un+k−1, . . . , un+k′+1, un+k′), k ′ < k (26)

will be a generalized symmetry for a Volterra-like Equation (1) if its right hand side commutes with
the right hand side of the Volterra-like equation, i.e., [gn, f n] = 0. This generalized symmetry will
reduce to a one-point symmetry if k = k ′ = 0 and it is called non-trivial if k > 1 and k ′ <−1.

A differential-difference (21) is called a master symmetry for a Volterra-like Equation (1) if the
function

g= [ϕn, fn] (27)

is the right hand side of a nontrivial generalized symmetry. The function ϕn satisfies then the following
equation:

[[ϕn, fn], fn]= 0. (28)

Eq. (23) has always the trivial solution: ϕn = gn. The master symmetry corresponds to a nontrivial
solution of (28).

A practical way of computing master symmetries of (1) is given by considering symmetry (21)
of the form

un,τ = nfn (un+1, un, un−1) , (29)

where f n is the right hand side of (1). If f n depends on some constants, say αi, i= 1, . . . , K , we replace
such constants by functions of the master symmetry variable τ,

αi→ κi = κi (τ) , i= 1, . . . , M. (30)

Then we can impose the condition that symmetry (29) is actually a master symmetry, i.e., satisfies
(23). Due to the definition of the total derivative Dτ (22), the annihilation will yield a set of first order
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differential equations for the new functions κi (τ) with the initial conditions given by the original
value αi,

κ′i (τ)=Gi (κ1 (τ) , . . . , κK (τ)) , i= 1, . . . , K , (31a)

κi (0)= αi. (31b)

Then the symmetries for the original Equation (1) are obtained from the master symmetry (29) by
putting τ = 0 in the resulting symmetry.

Let us construct the master symmetries of the non-autonomous YdKN Equation (4) as this
differential difference equation appears in all symmetries of the generalized ABS equations we are
considering. We proceed with the method we discussed above. Using the fact that bk , ck , and ek are
two periodic, i.e.,

bk = b + (−1)k β, ck = c + (−1)kγ, ek = e + (−1)kη, (32)

and substituting the coefficients a, b, c, γ, d, e, η, and f with the function of τ, we obtain the following
expression for (5):

Ak(qk , τ) = a(τ)q2
k + 2

[
b(τ) + (−1)kk β(τ)

]
qk

+ c(τ) + (−1)kγ(τ), (33a)

Bk(qk , τ) =
[
b(τ) − (−1)k β(τ)

]
q2

k + d(τ)qk

+ e(τ) − (−1)kη(τ), (33b)

Ck(qk , τ) =
[
c(τ) − (−1)kγ(τ)

]
q2

k

+ 2
[
e(τ) + (−1)kη(τ)

]
qk + f (τ), (33c)

from which we may build up the τ-dependent version of (4),

qk t =
Ak(qk , τ)qk+1qk−1 + Bk(qk , τ)(qk+1 + qk−1) + Ck(qk , τ)

qk+1 − qk−1
. (34)

We then make ansatz (29) for the master symmetry, i.e.,

qkτ = n
Ak(qk , τ)qk+1qk−1 + Bk(qk , τ)(qk+1 + qk−1) + Ck(qk , τ)

qk+1 − qk−1
. (35)

Commuting the flows of Dt and Dτ , we obtain a five-point symmetry, g(1)
n , according to (27). This

obtained function has a purely three-point part which is of the same form (34) but with different
coefficients. Annihilating this part, we obtain some equations for the coefficients a, b, β, c, γ, d, e,
η, and f,

aτ (τ)= a (τ) d (τ) + 2β2 (τ) − 2b2 (τ) , (36a)

bτ (τ)=−b (τ) c (τ) + β (τ) γ (τ) + a (τ) e (τ) , (36b)

βτ (τ)= c (τ) β (τ) − b (τ) γ (τ) − a (τ) η (τ) , (36c)

cτ (τ)= 2b (τ) e (τ) − d (τ) c (τ) − 2β (τ) η (τ) , (36d)

γτ (τ)= 2β (τ) e (τ) − d (τ) γ (τ) − 2η (τ) b (τ) , (36e)

dτ (τ)=−c2 (τ) + a (τ) f (τ) + γ2 (τ) , (36f)

eτ (τ)=−c (τ) e (τ) − γ (τ) η (τ) + b (τ) f (τ) , (36g)

ητ (τ)= γ (τ) e (τ) − β (τ) f (τ) + c (τ) η (τ) , (36h)

fτ (τ)= f (τ) d (τ) − 2e2 (τ) + 2η2 (τ) . (36i)
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TABLE V. The value of the coefficients of master symmetry (35) obtained by solving system (37) in the case of the trapezoidal
H4 Equations (9).

Eq. Dir. c (τ) γ (τ) d (τ)

tHε
1 n −1

τ+1 0 1
τ+1

m ε2

2
ε2

2 0

tHε
2 n −1

τ+1 0 1
τ+1

m − ε2 − ε2 0

tHε
3 n

α2
2

(
α2

2−1
)
e
− 1

2 τα2
(
α2

2−1
)

e
−τα2

(
α2

2−1
)
−α2

2

0 1
2

α2
(
1−α2

2

) [
e
−τα2

(
α2

2−1
)
+α2

2

]

+e
−τα2

(
α2

2−1
)
−α2

2

m − ε
2e
− 1

2 α3τ

2 − ε
2e
− 1

2 α3τ

2
α3
2

Eq. Dir. e (τ) η (τ) f (τ)

tHε
1 n 0 0 −ε2α2

2 F(+)
m (τ + 1)

m 0 0 2

tHε
2 n εα2

2F(+)
m (τ + 1) 0 −α2

2

[
−1 + α2

2F(+)
m (τ + 1)2ε2 + 4F(+)

m (α2 + 2α3) ε
]

(τ + 1)

m 1
2 + 1

4 (τ − 2α2 − 2α3) ε − 1
4 (τ − 2α2 − 2α3) ε − 1

4 (τ − 2α2 − 2α3)2ε − α3 −
1
2τ

tHε
3 n 0 0

ε2δ2F(+)
m

(
α2

2−1
) (

e
−τα2

(
α2

2−1
)
−α2

2
)

e
−1/2τα2

(
α2

2−1
)

m 0 0 −α2
3δ

2e
1
2 α3τ

If the coefficients satisfy system (36) then it is easy to show that the obtained g(1)
n is a generalized

symmetry depending on five points. We remark that system (36) in its generality is impossible to
solve, but since the right hand is a polynomial, we are ensured that such solution always exists in a
neighbourhood of τ = 0.

The solutions with the initial conditions given by Tables I–IV will then yield explicit form of the
master symmetries in all the relevant sub-cases. By using the master symmetry constructed above, we
can construct infinite hierarchies of many-point generalized symmetries of the H4 and H6 equations
in both directions. Furthermore, since for every H4 and H6 equation we have a= b= β = 0, we can
in fact use the reduced system where a (τ)= b (τ)= β (τ)= 0,

cτ (τ)=−d (τ) c (τ) , (37a)

γτ (τ)=−d (τ) γ (τ) , (37b)

dτ (τ)=−c2 (τ) + γ2 (τ) , (37c)

eτ (τ)=−c (τ) e (τ) − γ (τ) η (τ) , (37d)

ητ (τ)= γ (τ) e (τ) + c (τ) η (τ) , (37e)

fτ (τ)= f (τ) d (τ) − 2e2 (τ) + 2η2 (τ) . (37f)

The same comments made for (36) apply also to (37). As an example in Table V, we list the
form of the τ-dependent coefficients in the case of the trapezoidal H4 Equations (9). We leave to the
reader the construction of the master symmetries in the remaining simple cases.

IV. ALGEBRAIC ENTROPY FOR THE NON-AUTONOMOUS YDKN EQUATION
AND ITS SUBCASES

In Secs. II and III, we constructed the three-point generalized symmetries and master symmetries
of the H4 and H6 equations which are eventually related either to YdKN (2) or to the non-autonomous
YdKN Equation (4).
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It was remarked in the Introduction that the non-autonomous YdKN Equation (4) passes the
necessary condition for the integrability which is an indication of the integrability of such class of
equation. In this paper, we have shown that (4) are symmetries of the H4 and H6 equations. In this
section, we give further evidence that the non-autonomous YdKN might be an integrable differential-
difference equation based on the algebraic entropy test5 for differential-difference equations.

We recall briefly how to compute the algebraic entropy9,30 in the case of differential-difference
equations of the form

dun

dt
= fn (un+1, un, un−1) .

First of all we assume that the equation is solvable for un+1 uniquely. This is a condition on fn.
Then, starting from the initial conditions at n = �1, 0, we compute u1 by substituting all relevant t
derivatives of u

�1 and u0. Knowing u1 we can then calculate u2 and so on. Calculating the successive
terms becomes rapidly very cumbersome if we consider the initial conditions to be independent and
arbitrary. However a great simplification in the explicit calculations is obtained if instead of a generic
initial condition one parameterizes the curve of the initial condition rationally using the variable t,

u−1 =
A−1t + B−1

At + B
, u0 =

A0t + B0

At + B
. (38)

We can then proceed and calculate N iterates, for a sufficiently large positive integer N. At every
passage l, we take the maximum of the degrees in t between the numerator, unum

l , and the denominator,
uden

l ,

dl =max
{
unum

l , uden
l

}
, (39)

and, after N iterates, we end up with the sequence of the degrees of the iterates

1, 1, d1, d2, . . . , dN . (40)

The next step is then extracting the value of the algebraic entropy which is defined as

η = lim
l→∞

1
l

log dl. (41)

This will in principle need the knowledge of the full sequence, but we know just the first N terms.
However, we have a standard heuristic method to extract such asymptotic quantity from the finite
sequence (40): we can find a generating function of the sequence using rational functions

g(s)=
∞∑

l=0

dls
l. (42)

The method has already been shown to work remarkably well for maps and lattice equations16,29 and
leads to extremely simple rational fractions with integer coefficients. This approximation can be used
as a predictive tool. Indeed, one can readily compute the successive terms in the Taylor expansion for
(42) and confront them with the degrees calculated with the iterations. This means that the assumption
that the value of the algebraic entropy given by the approximate method is in fact very strong and
very unlikely the real value will differ from it.

Having a rational generating function will also yield the value of the algebraic entropy from the
modulus of the smallest pole of the generating function

η = log min
{
|s| ��� lim

σ→s
|g(σ)| =∞

}
. (43)

From the generating function, one can also find an asymptotic fit for degrees (39). This can be done
by using the Z-transform10,21 because it can be readily proved that

dn =Z
[
g

(
1
ζ

)]

n
, (44)

where Z[f (ζ)]n is the Z-transform of the function f (ζ). For more details on how the method is
implemented see Ref. 17.
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We look for the sequence of degrees of the iterate map for the non-autonomous YdKN Equation
(4) and its particular cases found in Sec. II. We find for all the cases, except the symmetries of rHε

1 ,
i.e., for symmetries (12) and (14) of tHε

1 and for the symmetries of the iD2 equations, the following
values:

1, 1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, 133, 157 . . . . (45)

This sequence has the following generating function:

g(z)=
1 − 2z + 3z2

(1 − z)2,
(46)

which gives the following quadratic fit for sequence (45),

dl = l(l − 1) + 1, (47)

therefore, the algebraic entropy is zero.
For the symmetry in the n direction (6a) of the equation rHε

1 , we have the somehow different
situation that the sequence growth is different depending on whether we consider the even or odd
values of the m variable

m= 2k 1, 1, 3, 7, 10, 17, 23, 33, 42, 55, 67, 83, 98, 117 . . . , (48a)

m= 2k + 1 1, 1, 3, 4, 9, 13, 21, 28, 39, 49, 63, 76, 93, 109 . . . . (48b)

These sequences have the following generating functions and asymptotic fits:

m= 2k,
g(z)=

2z5 − 3z4 + 3z3 + z2 − z + 1

(1 − z)3(z + 1)
,

dl =
3
4

l2 − l −
5(−1)l − 21

8
,

(49a)

m= 2k + 1,
g(z)=

(z2 + z + 1)(2z2 − 2z + 1)

(1 − z)3(z + 1)
,

dl =
3
4

l2 −
3
2

l −
5(−1)l − 19

8
.

(49b)

The symmetry in the m direction (8b) of the equation rHε
1 has the same behaviour obtained by

exchanging m with n in formulae (48) and (49).
The symmetry of the equation tHε

1 in the n direction has almost the same growth as that obtained

for m odd (48b) and (49b); however, the fit dl =
3
4 l2− 5

4 l + (−1)l l
4 + (−1)l+15

8 presents a term l(�1)l, new
in this kind of results. For m even, we have the same growth as (45). The symmetry of the equation
tHε

1 in the m direction has the same growth as the even one of tHε
1 (48a) and (49a). For symmetries

(16) of the iD2 equation, we have different growth according to the even or odd values of the m and
n variables. These sequences are slightly lower than in the case of equations Hε

1 , however, always
corresponding to a quadratic asymptotic fit.

This shows that the whole family of the non-autonomous YdKN is integrable according to the
algebraic entropy test. For completeness, let us just mention that symmetries (17) of the iD2 equations
have a sequence growth of the same order than those considered above, i.e., quadratic growth and
thus null entropy.

Let us show the validity of the algebraic entropy test by the calculation of a symmetry for a
non-integrable subcase of tHε

1 . As the symmetries of the tHε
1 equation depend on arbitrary functions,

not all of them will produce an integrable flux. Let us consider the case of flux (11) when ε = 0, Bn(x)
= �1/x, γm = δm = 0, and α = 1. We have the following symmetry:

X̂P
n =

un+1,mun−1,m − u2
n,m

un+1,m − 2un,m + un−1,m
∂un,m . (50)
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Following Ref. 35, the necessary condition for the flux of (50) dun,m
dt = X̂P

n un,m to be integrable is that
given

p1 = log
∂fn
∂un+1

= 2 log

(
un,m − un−1,m

un+1,m − 2un,m + un−1,m

)
, (51)

we must have

dp1

dt
=

−2u2
n,m + 4un,mun+1,m − 2u2

n+1,m(
un+2,m − 2un+1,m + un,m

) (
−un+1,m + 2un,m − un−1,m

)
−

2
(
un−1,m − un+1,m

) (
−un+1,m + un,m

)(
un+1,m − 2un,m + un−1,m

)2

+
2u2

n,m − 2un,mun+1,m − 2un−1,mun,m + 2un−1,mun+1,m(
un,m − 2un−1,m + un−2,m

) (
−un+1,m + 2un,m − un−1,m

)
= (T − 1)gn (52)

for any function gn defined on a finite portion of the lattice, for example, such that gn = gn(un+1,m, un,m,
un�1,m, un�2,m). We search the function gn using the partial sum method35 and we find an obstruction
at the third passage. Then the function gn does not exists and therefore we conclude that the flux of
(50) is a non-integrable differential-difference equation.

Using the algebraic entropy test on the flux of (50), we find the following values for the degrees
of the iterates:

1, 1, 3, 9, 27, 81, 273, 729 . . . , (53)

which gives us the following generating function

g(s)=
1 − 2s
1 − 3s

, (54)

and the entropy is clearly nonvanishing η = log 3. So the non-integrability result obtained by the
approximate algebraic entropy method agrees with those obtained by applying the formal generalized
symmetry method.

V. CONCLUSIONS

In this note, we constructed the symmetries of the equations belonging to the Boll classification7,8

and showed that they are integrable (by the algebraic entropy test) and related to particular cases of the
non-autonomous YdKN Equation (4).26 This was already known for the rhombic H4 equations32 and
here we show the explicit identification of the symmetries obtained in that paper with the coefficients
of the non-autonomous YdKN equation.

We finally note that, as was proved in Ref. 23 for YdKN (2), no equation belonging to the Boll
classification has a symmetry which corresponds to the general non-autonomous YdKN Equation
(4). In all the cases of the Boll classification, one has a = bk = 0.

In Ref. 31, it was shown that the QV equation introduced by Viallet

QV : p4 + p3
(
un,m + un,m+1 + un+1,m + un+1,m+1

)
+

+ p2,1
(
un,mun+1,m + un,m+1un+1,m+1

)
+

+ p2,2
(
un,mun,m+1 + un+1,mun+1,m+1

)
+

+ p2,0 (un,mun+1,m+1 + un,m+1un+1,m) +

+ p1 (un,mun,m+1un+1,m + un,mun+1,mun+1,m+1 +

+ un,mun,m+1un+1,m+1 + un,m+1un+1,mun+1,m+1) +

+ p0 un,mun,m+1un+1,mun+1,m+1 = 0 (55)

possesses the Klein symmetry and admits a symmetry of the form of the YdKN
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X̂V
n =

h
un+1,m − un−1,m

−
1
2
∂un+1,m h, (56)

where

h(un,m, un+1,m; p1, p2,i, p3, p4)=QV∂un,m+1∂un+1,m+1 QV +

−
(
∂un,m+1 QV

) (
∂un+1,m+1 QV

)
. (57)

The connection formulae between the coefficient of QV and YdKN (2) are

a= p2
1 − p2,1p0, b=

1
2

[p1(p2,0 + p2,2 − p2,1) − p3p0],

c= p2,0p2,2 − p3p1, d =
1
2

[p2
2,2 − p2

2,1 + p2
2,0 − p0p4],

e=
1
2

[p3(p2,2 − p2,1 + p2,0) − p1p4], f = p2
3 − p2,1p4. (58)

This is a set of coupled nonlinear algebraic equations between the 7 parameters pi of QV and the
6 ones (a, . . . , f ) of the YdKN. Eq. (58) tells us that the YdKN with coefficients given by (58) is
a three-point generalized symmetry of QV . If a solution of (58) exists, i.e., one is able to express
the pi in terms of (a, · · · , f ), then QV , maybe after a reparameterization, turns out to be a Bäcklund
transformation of the YdKN.4,22

From the results obtained in this paper, one is lead to conjecture a non-autonomous generalization
of the QV equation. We have many possible ways of proposing such a generalization. A first possibility
is to generalize the original Klein symmetry

Q
(
un+1,m, un,m, un+1,m+1, un,m+1;−(−1)n, (−1)m)

=

τQ
(
un,m, un+1,m, un,m+1, un+1,m+1; (−1)n, (−1)m)

,

Q
(
un,m+1, un+1,m+1, un,m, un,m+1; (−1)n,−(−1)m)

=

τ′Q
(
un,m, un+1,m, un,m+1, un+1,m+1; (−1)n, (−1)m)

, (59)

where (τ, τ′)=±1 and Q (x, u, y, z, (−1)n, (−1)m) is a multilinear function of its arguments with non-
autonomous coefficients in the form of 2-periodic functions in n and m, i.e., of the form α + β(−1)n +
γ(−1)m + δ(−1)n+m, with α, β, γ, and δ constants. This discrete symmetry is shared by all of the Boll
systems and in the autonomous case reduces to the usual Klein symmetry.

A second possibility is to ask the function Q (x, u, y, z; (−1)n, (−1)m) to respect a strict Klein
symmetry just as in (55). Choosing the coefficients, for example, as

p0 = 1 + (−1)n, p1 = (−1)n, p2,1 =−1 + (−1)n, p2,2 = (−1)n,

p2,0 = 1 + 2(−1)n, p3 = 1 + (−1)n, p4 = 4 + 2(−1)n,

(58) provides a non-autonomous YdKN. In this case, by performing the algebraic entropy test the
equation turns out to be integrable. Its generalized symmetries, however, are not necessarily in the
form of a non-autonomous YdKN equation. A different non-autonomous choice of the coefficients
of (55), such that (58) is satisfied for the coefficients of the non-autonomous YdKN, gives, by the
algebraic entropy test, a non-integrable equation.

The proof of the existence of a non-autonomous generalization of QV together with the deriva-
tion of an effective Bäcklund transformation and Lax pair for the YdKN and its non-autonomous
counterpart is work in progress.
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