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Abstract: We compute the algebraic entropy of a class of integrable Volterra-like five-point differential-
difference equations recently classified using the generalised symmetry method. We show that, when
applicable, the results of the algebraic entropy agrees with the result of the generalised symmetry
method, as all the equations in this class have vanishing entropy.
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1. Introduction

One of the most important topics in modern mathematical physics is the study of the so-called
integrable systems. Roughly speaking integrable systems are important both from a theoretical and
a practical point of view as they can be regarded as universal models for physics going beyond the
linear regime [1]. The birth of the modern theory of integrable systems is usually recognized in the
seminal works of Zabusky and Kruskal [2], Gardner, Greene, Kruskal and Miura [3] and Lax [4] on the
Korteweg-deVries (KdV) equation [5].

The concept of integrability come from classical mechanics and means the existence of a sufficiently
high number of first integrals. To be more specific a Hamiltonian with a Hamiltonian H = H (p, q)
system with N degrees of freedom is said to be integrable if there exist N well defined functionally
independent and Poisson-commuting first integrals [6,7]. We recall that a function is well-defined on
the phase space if it is analytic and single-valued. In the case of systems with infinitely many degrees
of freedom, e.g., partial differential equations like the KdV equation, the existence of infinitely many
conservation laws is then required. One of the most efficient ways to find these infinitely many is the
existence a so-called Lax pair [4]. A Lax pair is an associated overdetermined linear problem whose
compatibility condition is guaranteed if and only if the desired non-linear equation is satisfied.

Currently, a purely algorithmic method to prove or disprove the existence of a Lax pair is
not available, and so many integrability detectors have been developed. Integrability detectors are
algorithmic procedure which are sufficient conditions for integrability, or alternative definitions of
integrability. This means that integrability detectors can be used to prove the integrability of a given
equation without the need of a Lax pair.

One of the fundamental integrability detectors, which works both at continuous and discrete level,
is the generalised symmetry approach. The generalised symmetry approach was mainly developed by the
scientific school of A. B. Shabat in Ufa during the 1980s and has obtained many important results in
the classification of partial differential equations [8–14], differential-difference equations [15–19] and
partial difference equations [20–23].

Another integrability detector is the algebraic entropy test. The algebraic entropy test is specific
to systems with discrete degrees of freedom which can be written as bi-rational maps. A bi-rational
map is a rational map of algebraic varieties ϕ : V →W such that there exists a rational map ψ : W → V
which is the inverse of ϕ were both are defined. Given a bi-rational map, which can represent an
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ordinary difference equation, a differential-difference equation or even a partial difference equation,
the basic idea of algebraic entropy is that, is to examine the growth of the degree of its iterates, and
extract a canonical quantity, which is an index of complexity of the map. This canonical quantity is
what is called the algebraic entropy. The idea of algebraic entropy as measure of the complexity of
the growth of bi-rational maps comes from the notion of complexity introduced by Arnold in [24]
and was discussed for the first time in relation of discrete systems by Veselov [25]. For bi-rational
maps algebraic entropy is often used as a definition of integrability. This statement is usually called the
algebraic entropy conjecture [26].

In this paper we will compute the algebraic entropy of some first order, five-point differential-
difference equation of the form:

dun

dt
= A (un+1, un, un−1) un+2 + B (un+1, un, un−1) un−2

+ C (un+1, un, un−1) ,
un = un (t) , n ∈ Z, t ∈ R, (1)

integrable according to the algebraic entropy criterion. To be more specific we will consider the
algebraic entropy of the only differential-difference equations integrable according to the generalised
symmetry criterion as classified in [18,19]. We will prove that all the bi-rational equations in the
classification given in [18,19] are integrable according to the algebraic entropy criterion. That is we are
going to prove that the algebraic entropy conjecture holds true for differential-difference equations
of the form (1). The plan of the paper is the following: In Section 2 we introduce the explicit form of
the equations we are going to study. Moreover, we will present a new rational form of a new equation
obtained in [18] and we will compute its continuum limit. In Section 3 we will give some details on
how algebraic entropy is computed, then in Section 4 we will show the results for the equations of
Lists 1–6 except the discrete Kaup-Kupershmidt Equation (35). Finally, in Section 5 we will discuss the
results obtained in Sections 4 in the framework of the existing literature and we will give an outlook
on future research in the field.

2. Integrable Volterra-Like Five-Point Differential-Difference Equations

Differential-difference equations of the form (1) are called Volterra-like five-point differential-
difference equations due to the similarity with the well-known three-point Volterra equation

dun

dt
= un (un+1 − un−1) . (2)

Throughout this paper we are going to consider only autonomous equations of the form (1). Therefore,
we will make use of the short-hand notation un+k = uk to simplify the formulæ.

In [18,19] integrable Volterra-like five-point differential-difference equations have been classified
using the existence of a nine-point generalised symmetry as classifying tool. The results of
this classification are two classes of equations. Equations belonging to the first class satisfy the
following conditions:

A 6= α (u1, u0) α (u0, u−1) , B 6= β (u1, u0) β (u0, u−1) . (3)

Equations such that condition (3) does not hold are elements of the second class. Equations of these
two classes are then divided into six smaller lists, which we are going to present. Equations within
each list are related to each other by autonomous non-invertible non-point transformations or by
simple non-autonomous point transformations.

Explicitly, the equations we are going to consider are the following:
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List 1. Equations related to the double Volterra equation:

du0

dt
= u0(u2 − u−2), (4)

du0

dt
= u2

0(u2 − u−2), (5)

du0

dt
= (u2

0 + u0)(u2 − u−2), (6)

du0

dt
= (u2 + u1)(u0 + u−1)− (u1 + u0)(u−1 + u−2), (7)

du0

dt
= (u2 − u1 + a)(u0 − u−1 + a)

+ (u1 − u0 + a)(u−1 − u−2 + a) + b,

(8)

du0

dt
= u2u1u0(u0u−1 + 1)

− (u1u0 + 1)u0u−1u−2 + u2
0(u−1 − u1),

(9)

du0

dt
= u0 [u1(u2 − u0) + u−1(u0 − u−2)] , (10)

du0

dt
= u1u0

2u−1 (u2 − u−2) . (11)

Transformations ũk = u2k or ũk = u2k+1 turn Equations (4)–(6) into the well-known Volterra
equation and its modifications in their standard form. The other equations are related to the
double Volterra Equation (4) through some autonomous non-invertible non-point transformations.
We note that Equation (11) was presented in [27].

List 2. Linearizable equations:

du0

dt
= (T − a)

[
(u1 + au0 + b)(u−1 + au−2 + b)

u0 + au−1 + b
+ u0 + au−1 + b

]
+ cu0 + d,

(12)

du0

dt
=

u2u0

u1
+ u1 − a2

(
u−1 +

u0u−2

u−1

)
+ cu0. (13)

In both equations a 6= 0, in (12) (a + 1)d = bc, and T is the translation operator T fn = fn+1.

Both equations of List 2 are related to the linear equation:

du0

dt
= u2 − a2u−2 +

c
2

u0 (14)

through an autonomous non-invertible non-point transformations. We note that (12) is linked
to (14) with a transformation which is implicit in both directions, see [18] for more details.

List 3. Equations related to a generalised symmetry of the Volterra equation:

du0

dt
= u0 [u1(u2 + u1 + u0)− u−1(u0 + u−1 + u−2)]

+ cu0 (u1 − u−1) ,

(15)

du0

dt
= (u2

0 − a2)
[
(u2

1 − a2)(u2 + u0)− (u2
−1 − a2)(u0 + u−2)

]
+ c(u2

0 − a2) (u1 − u−1) ,

(16)

du0

dt
= (u1 − u0 + a)(u0 − u−1 + a)(u2 − u−2 + 4a + c) + b, (17)

du0

dt
= u0[u1(u2 − u1 + u0)− u−1(u0 − u−1 + u−2)], (18)
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du0

dt
= (u2

0 − a2)
[
(u2

1 − a2)(u2 − u0) + (u2
−1 − a2)(u0 − u−2)

]
, (19)

du0

dt
= (u1 + u0)(u0 + u−1)(u2 − u−2). (20)

These equations are related between themselves by some transformations, for more details
see [19]. Moreover Equations (15)–(17) are the generalised symmetries of some known three-point
autonomous differential-difference equations [28].

List 4. Equations of the relativistic Toda type:

du0

dt
= (u0 − 1)

(
u2(u1 − 1)u0

u1
− u0(u−1 − 1)u−2

u−1
− u1 + u−1

)
, (21)

du0

dt
=

u2u2
1u2

0(u0u−1 + 1)
u1u0 + 1

−
(u1u0 + 1)u2

0u2
−1u−2

u0u−1 + 1

−
(u1 − u−1)(2u1u0u−1 + u1 + u−1)u3

0
(u1u0 + 1)(u0u−1 + 1)

,

(22)

du0

dt
= (u1u0 − 1)(u0u−1 − 1)(u2 − u−2). (23)

Equation (23) was known [29,30] to be is a relativistic Toda type equation. Since in [18] it was
shown that the equations of List 4 are related through autonomous non-invertible non-point
transformations, it was suggested that (21) and (22) should be of the same type. Finally, we note
that Equation (21) appeared in [31] earlier than in [18].

List 5. Equations related to the Itoh-Narita-Bogoyavlensky (INB) equation:

du0

dt
= u0(u2 + u1 − u−1 − u−2), (24)

du0

dt
= (u2 − u1 + a)(u0 − u−1 + a)

+ (u1 − u0 + a)(u−1 − u−2 + a)

+ (u1 − u0 + a)(u0 − u−1 + a) + b,

(25)

du0

dt
= (u2

0 + au0)(u2u1 − u−1u−2), (26)

du0

dt
= (u1 − u0)(u0 − u−1)

(
u2

u1
− u−2

u−1

)
, (27)

du0

dt
= u0(u2u1 − u−1u−2), (28)

du0

dt
= (u1 − u0 + a)(u0 − u−1 + a)(u2 − u1 + u−1 − u−2 + 2a) + b, (29)

du0

dt
= u0(u1u0 − a)(u0u−1 − a)(u2u1 − u−1u−2), (30)

du0

dt
= (u1 + u0)(u0 + u−1)(u2 + u1 − u−1 − u−2). (31)

Equation (24) is the well-known INB equation [32–34]. Equations (25) with a = 0 and (26)
with a = 0 are simple modifications of the INB and were presented in [35,36], respectively.
Equation (26) with a = 1 has been found in [37]. Up to an obvious linear transformation,
it is equation (17.6.24) with m = 2 in [37]. Equation (28) is a well-known modification of INB
Equation (24), found by Bogoyalavlesky himself [32]. Finally, Equation (30) with a = 0 was
considered in [27]. All the equations in this list can be reduced to the INB equation using
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autonomous non-invertible non-point transformations. Moreover, Equations (25), (27) and (28)
are related through non-invertible transformations to the equation:

du0

dt
= (u2 − u0) (u1 − u−1) (u0 − u−2) . (32)

For this reason, as it was done in [23], we will consider Equation (32), as independent. We note
that Equation (32) and its relationship with Equations (25), (27) and (28) were first discussed
in [38].

List 6. Other equations:

du0

dt
= u2

0(u2u1 − u−1u−2)− u0(u1 − u−1), (33)

du0

dt
= (u0 + 1)×[

u2u0(u1 + 1)2

u1
− u−2u0(u−1 + 1)2

u−1
+ (1 + 2u0)(u1 − u−1)

]
,

(34)

du0

dt
= (u2

0 + 1)
(

u2

√
u2

1 + 1− u−2

√
u2
−1 + 1

)
, (35)

du0

dt
= u1u3

0u−1(u2u1 − u−1u−2)− u2
0(u1 − u−1). (36)

Equation (33) has been found in [39] and it is called the discrete Sawada-Kotera equation [39,40].
Equation (36) is a simple modification of the discrete Sawada-Kotera Equation (33). Equation (34)
has been found in [31] and is related to (33). On the other hand, Equation (35) has been found as
a result of the classification in [18] and seems to be a new equation. It was shown in [41] that
Equation (35) is a discrete analogue of the Kaup-Kupershmidt equation [42]. Then we will refer
to Equation (35) as the discrete Kaup-Kupershmidt equation. No transformation into known
equations of Equation (35) is known.

Before going on we would like to present a new rational form of the discrete Kaup-Kupershmidt
Equation (35). That is we have the following proposition:

Proposition 1. There exists a point transformation which brings the discrete Kaup-Kupershmidt Equation (35)
into the following rational form:

dv0

dt
=
(

1 + v2
0

) [1 + v2
1

1− v2
1

v2

1− v2
2
−

1 + v2
−1

1− v2
−1

v−2

1− v2
−2

]
. (37)

Proof. We start with the substitution:
un = sinh (ϕn) , (38)

which brings the discrete Kaup-Kupershmidt equation in hyperbolic form (D. Levi, private
communication):

ϕ̇0 = cosh (ϕn) [cosh (ϕn+1) sinh (ϕn+2)− cosh (ϕn−1) sinh (ϕn−2)] . (39)

Using the hyperbolic identities:

sinh α =
2 tanh (α/2)

1− tanh2 (α/2)
, cosh α =

1 + tanh2 (α/2)
1− tanh2 (α/2)

, (40)
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and putting

tanh
( ϕn

2

)
= vn (41)

Equation (37) follows.

Remark 1. We note that under the scaling:

un(t) = ı

[√
2

2
+

√
2

8
ε2U

(
τ − 2

135
ε5t, x +

4
9

εt
)]

, x = nε, (42)

Equation (37) admits the Kaup-Kaupershmit equation as continuum limit:

Uτ = Uxxxxx + 10UUxxx + 25UxUxx + 20U2Ux, (43)

just as the original (35) equation.

3. Algebraic Entropy

In this section we introduce the basic theoretic and computational notions needed to compute
the algebraic entropy of Volterra-like differential-difference equations. Our introduction to algebraic
entropy is based on the original paper on the algebraic entropy of differential-difference equations [43],
and on the review contained in [44,45]. The computational rules given in this section follow the ones
given in [45,46].

Heuristically integrability deals with the regularity of the solutions of a given system. In this
sense a simple characterisation of chaotic behaviour is when two arbitrarily near initial values give
rise to solutions diverging at infinity. For recurrence relations, i.e., equations where the solution is
given by iteration of a formula, we could just try to compute the iteration to extract information about
integrability, even if we cannot solve the equation explicitly. However it is usually impossible to
calculate explicitly these iterates by hand or even with any state-of-the-art formal calculus software,
simply because the expressions one should manipulate are rational fractions of increasing degree of the
various initial conditions. The complexity and size of the calculation make it impossible to calculate
the iterates. An example to give an idea of how this kind of computation can become unmanageable is
shown in [45].

It was nevertheless observed that “integrable” maps are not as complex as generic ones. This
was done primarily experimentally, by an accumulation of examples, and later by the elaboration
of the concept of algebraic entropy for difference equations [25,47–50]. In [51,52] the method was
developed in the case of quad equations and then used as a classifying tool [26]. Finally in [43] the
same concept was introduced for differential-difference equation and later [53] to the very similar case
of differential-delay equations. For a more complete discussion of the method in the context of the
so-called integrability indicators we refer to [44,45].

As we stated in the introduction algebraic entropy is a measure of the growth of bi-rational maps
with respect to general initial data. This kind of growth is not to be confused with other asymptotic
properties of maps, like asymptotic stability, limit cycles and attractors. The most natural space for
considering bi-rational maps is the projective space over a closed field rather than in the affine space
one. We then transform a recurrence relation into a polynomial map in the homogeneous coordinates
of the proper projective space over some closed field:

ϕ : xi 7→ ϕi (xk) , (44)

with xi, xk ∈ IN where IN is the space of the initial conditions. The recurrence is then obtained by
iterating the polynomial map ϕ. The map ϕ has to be bi-rational in the sense that it has to possesses an
inverse map which is again a rational map.
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The space of the initial condition depends on which type of recurrence relation we are
considering. In the case of differential-difference equation of the discrete k − k′-th order and of
the p-th continuous order:

un+k = fn

({
diun+k−1

dti , . . . ,
diun+k′+1

dti

}p

i=0

; un+k′

)
, k′, k, n ∈ Z, k′ < k (45)

the space of initial conditions is infinite dimensional. Indeed, in the case the order of the equation is
k− k′, we need the initial value of k− k′-tuple as a function of the parameter t, but also the value of all
its derivatives:

IN =

{
diuk−1

dti ,
diuk−2

dti , . . . ,
diuk′

dti ,
}

i∈N0

. (46)

We need all the derivatives of ui (t) and not just the first p because at every iteration the order of
the equation is raised by p. Therefore, to describe infinitely many iterations we need infinitely many
derivatives. To obtain the map one only needs to pass to homogeneous coordinates in the equation
and in (46).

Remark 2. We remark that if we restrict to computing a finite number of iterates of a differential-difference
equation of discrete k− k′-th order and of the p-th continuous order (45) then the space of initial conditions is
finite dimensional. Indeed, let us assume that we wish to compute the Nth iterate of a differential-difference
Equation (45), then at most we will need the derivatives of order N (p + 1). That is, we need to consider the
following restricted space of initial conditions:

IN (N) =

{
diuk−1

dti ,
diuk−2

dti , . . . ,
diuk′

dti ,
}N(p+1)

i=0
. (47)

If we factor out any common polynomial factors we can say that the degree with respect to the
initial conditions is well defined. We can therefore form the sequence of degrees of the iterates of the
map ϕ and call it dN = deg ϕN :

1, d1, d2, d3, d4, d5, . . . , dN , . . . . (48)

The degree of the bi-rational projective map ϕ has to be understood as the maximum of the total
polynomial degree in the initial conditions IN of the entries of ϕ. The same definition in the affine case
just translates to the maximum of the degree of the numerator and of the denominator of the Nth iterate
in terms of the affine initial conditions. Degrees in the projective and in the affine setting can be
different, but the global behaviour will be the same due to the properties of homogenization and
de-homogenization.

The sequence of degree (48) is fixed in a given system of coordinates, but it is not invariant with
respect to changes of coordinates. Therefore we need to introduce a canonical measure of the growth.
It turn out that a good definition is the following one: Consider the following number

ηϕ = lim
N→∞

1
N

log dN , (49)

called the algebraic entropy of the map ϕ. When no confusion is possible about the map ϕ we will
usually omit the subscript ϕ in (49).

Algebraic entropy for bi-rational maps has the following properties [44,45,47]:

1. The algebraic entropy as given by (49) always exists.
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2. The algebraic entropy has the following upper bound:

ηϕ ≤ log deg ϕ. (50)

3. If ηϕ = 0, i.e., the algebraic entropy is zero, then

dN ∼ Nν, with ν ∈ N0, as N → ∞. (51)

4. The algebraic entropy is a bi-rational invariant of bi-rational maps. That is, if two bi-rational maps ϕ

and ψ are conjugated by a bi-rational map χ,

ϕ = χ ◦ ψ ◦ χ−1 (52)

then:
ηϕ = ηψ. (53)

Properties 1 and 2 tell us that the definition of algebraic entropy is well posed, as it always exists and
that its value cannot exceed the logarithm of the degree of the map itself. Property 3 gives us the
characterisation of the maps with zero algebraic entropy, that is it states that maps with zero algebraic
entropy have polynomial growth. Property 4 tells us that the algebraic entropy is a canonical measure
of growth for bi-rational maps.

We will then have the following classification of equations according to their Algebraic
Entropy [26]:

Linear growth: The equation is linearizable.
Polynomial growth: The equation is integrable.
Exponential growth: The equation is chaotic.

In our the following sections we will be dealing with differential-difference equations of first
continuous order and fourth discrete order of the particular form:

un+2 = f
(

un+1, un, un−1, un−2,
dun

dt

)
. n ∈ Z, (54)

To practically compute the algebraic entropy we introduce some technical methods to reduce
the computational complexity [45,46]. First, we fix the desired number of iterations to be some fixed
N ∈ N. Following Remark 2 this means that we need only finitely many initial conditions given by (47).
Then we assume that the space of initial conditions is linearly parametrised in the appropriate projective
space, i.e., in inhomogenous coordinates it has the following form:

ui =
αit + βi
α0t + β0

, ui ∈ IN (N). (55)

We will assume that the parameter t is the same which describes the “time” evolution of the problem.
To simplify the problem we choose all the parameters involved in the equations to be integers.
Moreover, to avoid accidental factorisations which may alter the results we choose these integers to
be prime numbers. A final simplification to speed up the computations is given by considering the
factorisation of the iterates in some finite field Kr, with r prime number.

Remark 3. Several equations in Lists 1–6, e.g., (8) or (17), depend on some parameters. Depending on the
value of the parameters their integrability properties can be, in principle, different. As was done in [23], in order
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to avoid ambiguities, we use some simple autonomous transformations to fix the values of some parameters.
The remaining free parameters are then treated as free coefficients and then fixed to integers following the above
discussion. We will describe these subcases when needed in the next section.

Using the rules above we are able to avoid accidental cancellations and produce a finite sequence
of degrees:

1, d1, d2, d3, d4, d5, . . . , dN . (56)

A standard way to extract the asymptotic behaviour from a finite sequence like (56) is to compute
its generating function. A generating function is a function g = g (s) such that the coefficients of its
Taylor series

g(z) =
∞

∑
l=0

dlzl (57)

up to order N coincides with the finite sequence (56). Generating functions are ubiquitous objects
in mathematical sciences which have application is statistics [54], combinatorics [55], orthogonal
polynomial theory [56] and networks [57,58].

If a generating function is rational, as is safe to assume, it can be computed exactly using a finite
number of iterates using the method of Padé approximants [59,60].

Once obtained a generating function is predictive tool. Indeed one can readily compute the
successive terms in the Taylor expansion for (57) and confront them with the degrees calculated with
the iterations. This means that the assumption that the value of the algebraic entropy given by the
approximate method is in fact very strong and very unlikely the real value will differ from it.

Having a rational generating function will also yield the value of the Algebraic Entropy from the
modulus of the smallest pole of the generating function:

ηϕ = log min
{
|z| ∈ R+

∣∣∣∣ 1
g (z)

= 0
}

. (58)

From the generating function one can also find an asymptotic fit for the degrees (56). This can be done
by using the inverse Z-transform [61,62]. Assume we are given a function f = f (ζ) of a complex
variable ζ ∈ C analytic in a region |ζ| > r for some r ∈ R+. We define its inverse Z-transform of such
function f to be the sequence:

Z−1 [ f (ζ)]l ≡
1

2πı

∮
C

f (ζ) ζ l−1dζ, l ∈ N. (59)

In Equation (59) the contour C ⊂ C is a counterclockwise closed path enclosing the origin and entirely
in the region of convergence of f . From the definition of inverse Z-transform (59) it can be readily
proved that the sequence {dl}l∈N corresponding to the generating function (57) is given by:

dl = Z−1
[

g
(

1
ζ

)]
l
. (60)

We note that the general asymptotic behaviour of the sequence {dl}l∈N0
can be obtained even

without computing the inverse Z-transform. This is the content of the following proposition:

Proposition 2 ([63]). Assume that a sequence {dl}l∈N0
possesses a generating function of radius of convergence

ρ > 0 and of the following form:

g = A (z) + B (z)
(

1− z
ρ

)−β

, β ∈ R \ {−n}n∈N . (61)
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where A and B are analytic functions for |z| < r such that B(ρ) 6= 0. Then the asymptotic behaviour of the
sequence {dl}l∈N0

as l → ∞ is given by:

dl ∼
B (ρ)

Γ (β)
lβ−1ρ−l , l → ∞, (62)

where Γ(z) is the Euler Gamma function. If additionally ρ ≡ 1, then

dl ∼ lβ−1, l → ∞, (63)

i.e., the growth is asymptotically polynomial of degree β− 1.

The interested reader may found a proof of Proposition 2 in the case of rational generating
functions, i.e., β ∈ N in Appendix A.

4. Results

In this section we describe the results of the procedure outlined in Section 3 for the
differential-difference equations of Lists 1–6. Specifically, as described in Remark 3, we will underline
the particular cases in which the parametric equations can be divided. We notice that certain equations
are symmetric under the involution

un → ũn = u−n. (64)

This implies that the recurrence defined by solving the equation with respect to u2 and u−2 is the same.
For equations satisfying this property the growth of the degree of the iterates can be computed just
in one direction, as the growth in the other direction will be the same. Computations are performed
using the python program for differential-difference equations presented in [46]. We remark that this
program was already employed to discuss the integrability of some three-point differential-difference
equations in [64].

4.1. List 1

4.1.1. Equation (4)

Equation (4) is symmetric and has the following growth of degrees:

1, 2, 2, 4, 4, 7, 7, 11, 11, 16, 16, 22, 22 . . . . (65)

The generating function corresponding to the growth (65) is:

g(z) = − z4 − 2z2 + z + 1
(z− 1)3(z + 1)2 . (66)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (4) has quadratic growth.

4.1.2. Equation (5)

Equation (5) is symmetric and has the following growth of degrees:

1, 3, 3, 7, 7, 13, 13, 21, 21, 31, 31, 43, 43 . . . . (67)

The generating function corresponding to the growth (67) is:

g(z) = − z4 − 2z2 + 2z + 1
(z− 1)3(z + 1)2 . (68)
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All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (5) has quadratic growth.

4.1.3. Equation (6)

Equation (6) is symmetric and has the same growth of degrees as Equation (5). Therefore we have
that Equation (6) has zero entropy and quadratic growth.

4.1.4. Equation (7)

Equation (7) is symmetric and has the following growth of degrees:

1, 2, 3, 5, 6, 8, 10, 14, 16, 20, 23, 29, 32, 38, 42, 50, 54 . . . . (69)

The generating function corresponding to the growth (69) is:

g(z) = − z7 + z6 − z5 − z4 + z3 + z + 1
(z− 1)3(z + 1)2(z2 + 1)

. (70)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (7) has quadratic growth.

4.1.5. Equation (8)

Equation (8) depends on the parameter a. Using a simple scaling if a 6= 0 it is possible to set a = 1.
For this reason we can consider the two cases a = 1 and a = 0. If a = 1 Equation (8) is asymmetric, but
it has the following growth of degrees in both directions:

1, 2, 3, 5, 6, 8, 10, 14, 16, 20, 23, 29, 32, 38,

42, 50, 54, 62, 67, 77, 82, 92, 98, 110, 116 . . . .
(71)

The generating function corresponding to the growth (71) is:

g(z) = − z7 + z6 − z5 − z4 + z3 + z + 1
(z− 1)3(z + 1)2(z2 + 1)

. (72)

If a = 0 Equation (8) is symmetric, but its growth of degrees is still given by the sequence (71) and
fitted by the generating function (72). Therefore in both cases the entropy is zero since all the poles of
g lie on the unit circle. Moreover, due to the presence of the factor (z− 1)3 following Proposition 2 we
have that Equation (8) has quadratic growth for all values of a.

4.1.6. Equation (9)

Equation (9) is symmetric and has the following growth of degrees:

1, 5, 8, 14, 19, 28, 35, 47, 56, 71, 82, 100, 113 . . . . (73)

The generating function corresponding to the growth (73) is:

g(z) = − z5 − 2z3 + z2 + 4z + 1
(z− 1)3(z + 1)2 . (74)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (9) has quadratic growth.
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4.1.7. Equation (10)

Equation (10) is symmetric and has the following growth of degrees:

1, 3, 4, 6, 8, 12, 15, 19, 24, 29, 34, 40, 47, 54, 61, 69, 78, 87, 96, 106, 117 . . . . (75)

The generating function corresponding to the growth (75) is:

g(z) = − z9 − 3z8 + 4z7 − 4z6 + 4z5 − 3z4 + 2z3 − z2 + 1
(z− 1)3(z2 + 1)

. (76)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (10) has quadratic growth.

4.1.8. Equation (11)

Equation (11) is symmetric and has the following growth of degrees:

1, 5, 7, 13, 18, 27, 34, 45, 54, 69, 80, 97, 110,

131, 146, 169, 186, 213, 232, 261, 282 . . . .
(77)

The generating function corresponding to the growth (77) is:

g(z) = − z9 − z8 + z6 − z5 + 2z4 + 2z3 + z2 + 4z + 1
(z− 1)3(z + 1)2(z2 + 1)

. (78)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (11) has quadratic growth.

4.2. List 2

4.2.1. Equation (12)

Equation (12) depends on four parameters a, b, c and d linked among themselves by the condition
(a + 1) d = bc. Using a linear transformation un,m → αun,m + β we need to consider only three
different cases:

1. a 6= 0, a 6= −1, b = 0, d = 0,
2. a = −1, b = 1, c = 0,
3. a = −1, b = 0.

Recall that a 6= 0 in all cases. See [23] for more details. In all the three cases Equation (12) is
asymmetric. However, it has the same growth of degrees in both directions and in all the three cases:

1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37 . . . . (79)

The generating function corresponding to the growth (79) is:

g(z) = − z7 + z6 − z5 − z4 + z3 + z + 1
(z− 1)3(z + 1)2(z2 + 1)

. (80)

In all cases the entropy is zero since all the poles of g lie on the unit circle. Moreover, due to the
presence of the factor (z− 1)2 following Proposition 2 we have that Equation (12) has linear growth
for all values of the parameters.
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4.2.2. Equation (13)

Equation (13) is not symmetric, but in both directions has the following growth of degrees:

1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 29, 31 . . . . (81)

The generating function corresponding to the growth (81) is:

g(z) =
z2 + 3z + 1

(z− 1)2(z + 1)
. (82)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)2 following Proposition 2 we have that Equation (13) has linear growth.

4.3. List 3

4.3.1. Equation (15)

Equation (15) is symmetric and has the following growth of degrees:

1, 3, 6, 10, 16, 22, 29, 37, 46, 56, 67, 79, 92 . . . . (83)

The generating function corresponding to the growth (83) is:

g(z) = − z6 − 2z5 + z4 + 1
(z− 1)3 . (84)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (15) has quadratic growth.

4.3.2. Equation (16)

Equation (16) depends on the parameter a. Using a simple scaling if a 6= 0 it is possible to set
a = 1. For this reason we can consider the two cases a = 1 and a = 0. Equation (16) is symmetric for
both a = 1 and a = 0. Moreover, in both cases it has the following growth of degrees:

1, 5, 11, 21, 31, 43, 57, 73, 91, 111, 133, 157, 183 . . . . (85)

The generating function corresponding to the growth (85) is:

g(z) = −2z5 − 4z4 + 2z3 − z2 + 2z + 1
z− 1)3 . (86)

Therefore in both cases the entropy is zero since all the poles of g lie on the unit circle. Moreover, due to
the presence of the factor (z− 1)3 following Proposition 2 we have that Equation (16) has quadratic
growth for all values of a.

4.3.3. Equation (17)

Equation (17) is not symmetric, but it has the same growth of degrees in both directions:

1, 3, 4, 7, 10, 15, 19, 25, 31, 39, 46, 55, 64 . . . . (87)

The generating function corresponding to the growth (87) is:

g(z) = − z5 − z4 + 2z3 − z2 + z + 1
(z− 1)3(z + 1)(z2 + 1)

. (88)
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All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (17) has quadratic growth.

4.3.4. Equation (18)

Equation (18) is symmetric and has the same growth of degrees as Equation (15). Therefore we
have that Equation (18) has zero entropy and quadratic growth.

4.3.5. Equation (19)

Equation (19) depends on the parameter a. Using a simple scaling if a 6= 0 it is possible to set
a = 1. For this reason we can consider the two cases a = 1 and a = 0. Equation (19) is symmetric
for both a = 1 and a = 0. However, in both cases Equation (19) has the same growth of degrees as
Equation (16). Therefore we have that Equation (19) has zero entropy and quadratic growth for all
values of a.

4.3.6. Equation (20)

Equation (20) is symmetric and has the following growth of degrees:

1, 3, 4, 7, 10, 15, 19, 25, 31, 39, 46, 55, 64 . . . . (89)

The generating function corresponding to the growth (89) is:

g(z) = − z5 − z4 + 2z3 − z2 + z + 1
(z− 1)3(z + 1)(z2 + 1)

. (90)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (20) has quadratic growth.

4.4. List 4

4.4.1. Equation (21)

Equation (21) is symmetric and has the following growth of degrees:

1, 5, 10, 16, 26, 38, 51, 65, 82, 102, 123, 145, 170, 198, 227, 257 . . . . (91)

The generating function corresponding to the growth (91) is:

g(z) = − z8 − 2z7 + 2z6 − 2z5 + z4 + 2z3 − z2 + 2z + 1
(z− 1)3(z2 + 1)

. (92)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (21) has quadratic growth.

4.4.2. Equation (22)

Equation (22) is symmetric and has the following growth of degrees:

1, 9, 19, 37, 55, 75, 101, 129, 163, 199, 237,

281, 327, 379, 433, 489, 551, 615, 685, 757 . . . .
(93)

The generating function corresponding to the growth (93) is:

g(z) = −2z9 − 2z8 − z6 + z5 + 8z3 + 2z2 + 7z + 1
(z− 1)3(z4 + z3 + z2 + z + 1)

. (94)
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All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (22) has quadratic growth.

4.4.3. Equation (23)

Equation (23) is symmetric and has the following growth of degrees:

1, 5, 7, 13, 19, 29, 37, 49, 61, 77, 91, 109, 127 . . . . (95)

The generating function corresponding to the growth (95) is:

g(z) = − z5 − z4 + 4z3 − 2z2 + 3z + 1
(z− 1)3(z + 1)(z2 + 1)

. (96)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (23) has quadratic growth.

4.5. List 5

4.5.1. Equation (24)

Equation (24) is symmetric and has the following growth of degrees:

1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 23, 27, 31 . . . . (97)

The generating function corresponding to the growth (97) is:

g(z) = − z4 − z3 + 1
(z− 1)3(z2 + z + 1)

. (98)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (24) has quadratic growth.

4.5.2. Equation (25)

Equation (25) depends on the parameter a. Using a simple scaling if a 6= 0 it is possible to set
a = 1. For this reason we can consider the two cases a = 1 and a = 0. If a = 1 Equation (25) is
asymmetric, but it has the following growth of degrees in both directions:

1, 2, 2, 4, 5, 7, 8, 11, 12, 16, 18, 22, 24, 30, 31,

38, 41, 47, 50, 59, 60, 70, 74, 82, 86, 98, 99 . . . .
(99)

The generating function corresponding to the growth (99) is:

g(z) = − z13 + z10 + z9 − z7 + 2z5 + z4 + z3 + z2 + 2z + 1
(z− 1)3(z + 1)2(z2 − z + 1)(z2 + z + 1)2 . (100)

If a = 0 Equation (25) is symmetric, but its growth of degrees is still given by the sequence (99) and
fitted by the generating function (100). Therefore in both cases the entropy is zero since all the poles of
g lie on the unit circle. Moreover, due to the presence of the factor (z− 1)3 following Proposition 2 we
have that Equation (25) has quadratic growth for all values of a.
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4.5.3. Equation (26)

Equation (26) depends on the parameter a. Using a simple scaling if a 6= 0 it is possible to set
a = 1. For this reason we can consider the two cases a = 1 and a = 0. Equation (26) is symmetric for
both a = 1 and a = 0. Moreover, in both cases it has the following growth of degrees:

1, 4, 6, 10, 16, 22, 29, 37, 46, 56, 67, 79, 92 . . . . (101)

The generating function corresponding to the growth (101) is:

g(z) = − (z2 − z + 1)(z4 − z3 − 2z2 + 2z + 1)
(z− 1)3 . (102)

If a = 0 Equation (26) is symmetric, but its growth of degrees is still given by the sequence (101) and
fitted by the generating function (102). Therefore in both cases the entropy is zero since all the poles of
g lie on the unit circle. Moreover, due to the presence of the factor (z− 1)3 following Proposition 2 we
have that Equation (26) has quadratic growth for all values of a.

4.5.4. Equation (27)

Equation (27) is symmetric and has the following growth of degrees:

1, 4, 7, 10, 15, 21, 27, 36, 45, 54, 65, 77, 89, 104, 119, 134, 151, 169, 187, 208 . . . . (103)

The generating function corresponding to the growth (103) is:

g(z) = − (z4 + z + 1)(z3 − z2 + z + 1)
(z− 1)3(z + 1)(z2 − z + 1)(z2 + z + 1)

. (104)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (27) has quadratic growth.

4.5.5. Equation (32)

Equation (32) is symmetric and has the following growth of degrees:

1, 3, 1, 4, 5, 5, 6, 13, 7, 15, 17, 17, 19, 31,

21, 34, 37, 37, 40, 57, 43, 61, 65, 65, 69 . . . .
(105)

The generating function corresponding to the growth (105) is:

g(z) = − z10 + z9 + z7 − z6 + z5 + z4 + 3z + 1
(z− 1)3(z + 1)2(z2 − z + 1)(z2 + z + 1)2 . (106)

All the poles of g lie on the unit circle, so that the entropy is zero. Using the Z-transform we obtain the
following expression for the degrees:

dn =
n2

9
+

5n
9

+
191
108

+
5 (−1)n

12
+

(−1)n n
6

+

√
3

36
sin
(nπ

3

)
−
√

3
(

5n
54

+
7

36

)
sin
(

2nπ

3

)
+

1
12

cos
(nπ

3

)
+

(
5n
18

+
79
108

)
cos

(
2nπ

3

)
.

(107)
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Therefore the growth (107) is quadratic as n→ ∞, but we notice also the unusual presence of oscillating
term proportional to (−1)n n which explains the high oscillations of the sequence (105). A similar
occurrence was found in [65] on the degree pattern of some linearisable quad-equations.

4.5.6. Equation (28)

Equation (28) is symmetric and has the following growth of degrees:

1, 3, 4, 7, 11, 15, 20, 25, 31, 38, 45, 53, 62, 71, 81, 92, 103, 115, 128, 141, 155 . . . . (108)

The generating function corresponding to the growth (108) is:

g(z) = − z8 − z7 − z6 + z5 + z3 − z2 + z + 1
(z− 1)3(z2 + z + 1)

. (109)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (28) has quadratic growth.

4.5.7. Equation (29)

Equation (29) depends on the parameter a. Using a simple scaling if a 6= 0 it is possible to set
a = 1. For this reason we can consider the two cases a = 1 and a = 0. Equation (29) is not symmetric
for both a = 1 and a = 0. However, in both cases it has the following growth of degrees:

1, 3, 6, 9, 13, 19, 24, 31, 40, 48, 57, 69, 79, 91, 106, 119, 133, 151, 166, 183, 204 . . . . (110)

The generating function corresponding to the growth (110) is:

g(z) = − z9 + z7 + z6 + 3z5 + 2z4 + 2z3 + 3z2 + 2z + 1
(z− 1)3(z + 1)(z2 − z + 1)(z2 + z + 1)2)

. (111)

Therefore in both cases the entropy is zero since all the poles of g lie on the unit circle. Moreover, due
to the presence of the factor (z− 1)3 following Proposition 2 we have that Equation (29) has quadratic
growth for all values of a.

4.5.8. Equation (30)

Equation (30) depends on the parameter a. Using a simple scaling if a 6= 0 it is possible to set
a = 1. For this reason we can consider the two cases a = 1 and a = 0. Equation (30) is symmetric for
both a = 1 and a = 0. When a = 1 Equation (30) has the following growth of degrees:

1, 7, 15, 24, 35, 51, 66, 85, 109, 132, 157, 189, 218,

251, 291, 328, 367, 415, 458, 505, 561, 612, 665 . . . .
(112)

The generating function corresponding to the growth (112) is:

ga=1(z) = −
z10 + 2z7 + 5z6 + 8z5 + 5z4 + 8z3 + 8z2 + 6z + 1

(z− 1)3(z + 1)(z2 − z + 1)(z2 + z + 1)2 . (113)

When a = 0 Equation (30) has the following growth of degrees:

1, 7, 15, 23, 33, 48, 63, 84, 107, 130, 155, 182, 211,

248, 287, 324, 363, 404, 447, 500, 555, 606, 659,

714, 771, 840, 911, 976, 1043, 1112, 1183, 1268, 1355 . . . .

(114)
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The generating function corresponding to the growth (112) is:

ga=0(z) = −

(
2z16 − 3z15 + 2z14 − z13 + 2z12 − 2z11 − z10 + 6z9

+z8 + 6z7 + 3z6 + 10z5 + 5z4 + 5z3 + 3z2 + 5z + 1

)
(z− 1)3(z + 1)(z2 − z + 1)2(z2 + z + 1)2 . (115)

All the poles of ga=1 and ga=0 lie on the unit circle, so that the entropy is zero in both cases.
Moreover, due to the presence of the factor (z− 1)3 following Proposition 2 we have that Equation (30)
has quadratic growth in both cases.

4.5.9. Equation (31)

Equation (31) is symmetric and has the same growth of degrees as Equation (29). Therefore we
have that Equation (31) has zero entropy and quadratic growth.

4.6. List 6

4.6.1. Equation (33)

Equation (33) is symmetric and has the following growth of degrees:

1, 4, 6, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92 . . . . (116)

The generating function corresponding to the growth (116) is:

g(z) = − z5 − 3z4 + 4z3 − 3z2 + z + 1
(z− 1)3 . (117)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (33) has quadratic growth.

4.6.2. Equation (34)

Equation (34) is symmetric and has the following growth of degrees:

1, 6, 13, 25, 42, 61, 85, 111, 139, 171, 207, 245, 287, 333, 381, 433, 489, 547 . . . . (118)

The generating function corresponding to the growth (118) is:

g(z) = −2z10 − z9 − 3z7 + z4 + 4z3 + 2z2 + 4z + 1
(z− 1)3(z2 + z + 1)

. (119)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (34) has quadratic growth.

4.6.3. Equation (35)

We proved that Equation (35) can be brought in in rational form (38), but this form is not bi-rational.
So we cannot apply the algebraic entropy method to this equation.

4.6.4. Equation (36)

Equation (36) is symmetric and has the following growth of degrees:

1, 7, 15, 24, 35, 49, 67, 86, 107, 132, 159, 188, 219, 254, 291, 330, 371, 416, 463 . . . . (120)
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The generating function corresponding to the growth (120) is:

g(z) = − z11 − 2z10 + z9 + 2z6 − 2z5 + z4 + z3 + 2z2 + 5z + 1
(z− 1)3(z + 1)(z2 + 1)

. (121)

All the poles of g lie on the unit circle, so that the entropy is zero. Moreover, due to the presence of the
factor (z− 1)3 following Proposition 2 we have that Equation (36) has quadratic growth.

5. Discussion

In the previous section we computed the algebraic entropy of all the integrable Volterra-like
five-point differential-difference equations recently classified in [18,19]. When possible, we showed
that the method of algebraic entropy and the method of generalised symmetries agree. That is, we
showed that all the equations that are integrable according to the generalised symmetry test are also
integrable according to the algebraic entropy method, i.e., the algebraic entropy is zero. The algebraic
entropy method is unfortunately unable to treat the semi-discrete Kaup-Kaupershmidt Equation (35).
This is because the generalised symmetry approach, differently from the algebraic entropy, makes no
assumption on the nature of the recurrence and algebraic or even transcendental terms are allowed.
That is, we proved that the for integrable Volterra-like five-point differential-difference equations the
following version of the algebraic entropy conjecture holds true:

Conjecture 1. The condition that algebraic entropy is zero is equivalent to the definition of integrability for
bi-rational maps.

Except for the two known non-trivially linearisable Equations (12) and (13) the growth is always
quadratic. Equation (32) possesses an interesting non-standard highly oscillating growth, observed for
the first time in differential-difference equations. Nevertheless the asymptotic growth is still quadratic.

In the case of two-dimensional difference equation it is known that the only possible polynomial,
i.e., integrable, growth is quadratic [49]. Integrable higher order maps can exhibit higher rate of
growth, see e.g., [66–68]. Despite being infinite-dimensional all the integrable Volterra-like five-point
differential-difference equations possess this “minimal” integrable growth.

In the case of difference equations it has been observed that degree growth greater than quadratic
is related to a procedure called deflation [66]. That is, a five-point equation is reduced to a four-point
one using a non-point potential-like transformations of the form:

vn =
a1unun+1 + a2un+1 + a3un + a4

b1unun+1 + b2un+1 + b3un + b4
. (122)

The deflation transformation (122) is non-point as it depends on un and its shift un+1. Moreover, it is
potential as it is a generalisation of the usual potential transformation:

vn = un+1 − un, (123)

which is obtained for a11 = a4 = b1 = b2 = b3 = 0 and a2 = −a3 = b4 = 1. The inflation
transformation includes also the so-called discrete Cole-Hopf transformation [28,69]:

vn =
un+1

un
. (124)

Let us notice, that the inflated version of a differential-difference equation is not always a differential-
difference equation of the same kind. For instance let us consider the linear semi-discrete heat equation:

dvn

dt
= vn+1. (125)
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It is well-known [28,69] that the discrete Cole-Hopf transformation (124) brings the semi-discrete heat
Equation (125) into the semi-discrete Burgers equation:

dun

dt
= un (un+1 − un) . (126)

First note that, even though Equation (125) is bi-rational, Equation (126) is not. This already means
that there is no guarantee to preserve bi-rationality using the inflation transformation (122) even in
simple cases like the discrete Cole-Hopf transformation (124). If we iterate the discrete Cole-Hopf
transformation:

un =
wn+1

wn
, (127)

we obtain:
wn

dwn+1

dt
− wn+1

dwn

dt
= wn+2wn − w2

n+1. (128)

Therefore the resulting equation is not bi-rational and not even in the form:

dwn

dt
= f (wn+k, . . . , wn+k′) . k < k′ ∈ Z, (129)

So Equation (128) belongs to a completely different kind of differential-difference equations. These
facts makes very difficult to make predictions on the integrability properties of the inflated forms of
differential-difference equations.

Finally, we notice that another interesting problem is to study the integrability properties of
the stationary reductions of the integrable Volterra-like five-point differential-difference equations.
The stationary reduction of a bi-rational five-point differential-difference equation is a fourth-order
difference equation, i.e., a four-dimensional map of the projective space into itself. It will be important
to understand how integrability arises inside these families of equations and if it fits with known cases
of integrable families of fourth-order differential difference equations [67,68,70].
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Appendix A. Proof of Proposition 2

We carry out the proof in the case when β ∈ N as we are interested in rational generating functions.
A similar argument, with the proper care in choosing an suitable path can be carried out in the general
case β ∈ R \ {−n}n∈N. To this end the interested reader can consult the paper [63].

From Equation (60) and the definition of inverse Z-transform (59) applied to Equation (61)
we have:

dl =
1

2πı

∮
C

[
A
(

1
ζ

)
+ B

(
1
ζ

)(
1− 1

ρζ

)−β
]

ζ l−1dζ, (A1)

where we can choose C to be the circle of radius 1/ρ + ε for a given ε > 0. Then ζ = 1/ρ is the greatest
pole of g (1/ζ). This implies that the dominant behaviour as l → ∞ of dl is given from the residue of
the pole in ζ = 1/ρ:

dl ∼ Resζ=1/ρ

{[
A
(

1
ζ

)
+ B

(
1
ζ

)(
1− 1

ρζ

)−β
]

ζ l−1

}
, l → ∞. (A2)
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From the analyticity of A (z) we obtain:

dl ∼ Resζ=1/ρ

{
B
(

1
ζ

)(
1− 1

ρζ

)−β

ζ l−1

}
, l → ∞. (A3)

We introduce the change of variables χ = ζ − 1/ρ, so that (A3) becomes:

dl ∼ Resχ=0

{
B̃ (χ)

(1 + ρχ)l+β−1

ρl+β−1χβ

}
, l → ∞, (A4)

where we defined:

B̃ (χ) = B
(

ρ

1 + ρχ

)
. (A5)

Since B is an analytic function for |z| < ρ we obtain that B̃ is analytic function in a neighbourhood of
χ = 0, that is:

B̃ (χ) =
∞

∑
k=0

dk B̃
dχk (0) χk. (A6)

Moreover, using the binomial expansion we get:

(1 + ρχ)l+β−1 =
l+β−1

∑
k=0

(
l + β− 1

k

)
ρkχk. (A7)

Plugging Equations (A6) and (A7) inside Equation (A4) we obtain using the definition of residue:

dl ∼
β−1

∑
k=0

dk B̃
dχk (0)

(
l + β− 1
β− 1− k

)
ρ−l−k, l → ∞. (A8)

In the sum in the right hand side of (A8) the dominant term is obtained for k = 0, therefore we
can write:

dl ∼ B (ρ)

(
β + l − 1

β− 1

)
ρ−l , l → ∞, (A9)

where we used that B̃ (0) = B (ρ). From the definition of binomial coefficient we have:(
β + l − 1

β− 1

)
=

(l + β− 1)!
(β− 1)!l!

. (A10)

Using the Stirling’s expansion as l → ∞ we obtain:

l! ∼
√

2πl
(

l
e

)l
, (A11a)

(l + β− 1)! ∼
√

2π(l + β− 1)
(

l + β− 1
e

)l+β−1

∼
√

2πl
(

l
e

)l+β−1
.

(A11b)

Inserting in (A10): (
β + l − 1

β− 1

)
∼ lβ−1

(β− 1)!
, l → ∞. (A12)
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Finally using this estimate in (A9) we obtain:

dl ∼
B (ρ) lβ−1

(β− 1)!
ρ−l . l → ∞, (A13)

Formula (A13) is just (62) in the case β ∈ N and the proof for this case is complete.
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