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Abstract

We consider the problem of the continuation with respect to a small parameter ε of spa-
tially localized and time periodic solutions in 1-dimensional dNLS lattices, where ε represents
the strength of the interaction among the sites on the lattice. Specifically, we consider different
dNLS models and apply a recently developed normal form algorithm in order to investigate
the continuation and the linear stability of degenerate localized periodic orbits on lower and
full dimensional invariant resonant tori. We recover results already existing in the literature
and provide new insightful ones, both for discrete solitons and for invariant subtori.

Keywords. Hamiltonian normal forms, resonant tori, perturbation theory, dNLS models, discrete
solitons

1 Introduction
s:0

The discrete nonlinear Schrödinger (dNLS) equation is a paradigmatic physical model in many
different areas of Physics, such as condensed matter, photonic crystals and waveguides. Indeed,
it is a widely investigated nonlinear lattice model (see, e.g., [10, 6, 13, 33, 18]) thanks to the
possibility to mathematically combine rigorous different analytic approaches (e.g., perturbative,
variational, spectral, etc.) and to accurately explore its dynamical features with reliable numerical
methods.

The aim of this work is to investigate with a normal form approach (see [30]) the existence of
spatially localized and time periodic solutions in dNLS models, i.e.,

iψ̇j = ψj − ε (Lψ)j + γψj |ψj |2 , j ∈ J , (1) e.dNLS.eqs

where J is a suitable finite set of indices, with |J | = n, ε ∈ R is a small parameter (since we focus
on the so-called anticontinuum limit), ψj are complex functions and the linear operator L reads

Lψ =

d∑
l=1

κl(∆lψ) , (∆lψ)j := ψj+l − 2ψj + ψj−l , j ∈ J , (2)

where κl are real parameters describing the l-nearest-neighbors coupling. We also consider periodic
boundary conditions as J is taken finite1.

1One can also consider boundary conditions vanishing at infinity as ψ ∈ `2(C) in the case of infinite J . This
case is not properly covered by the normal form technique here proposed: the formal algorithm applies, but the
analytic estimates needs to be extended.
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Since we are mainly interested in periodic solutions ψ(t) of (1) which are spatially localized on
a subset of the lattice, we excite only m sites (with m < n = |J |) and introduce the subset

S := {j1, . . . , jm} ⊂ J , (3) e.S

where we stress that the indexes in S do not have to be necessarily consecutive. Hence, we are
including also configurations where the localization of the amplitude (hence of the energy), is
clustered, with holes separating the different clusters along the lattice.

For ε = 0, the unperturbed excited oscillators {ψ(0)
j }j∈J are set in complete resonance in order

to have a periodic flow on a resonant torus Tm. The typical choice exploited in the literature (see,
e.g., [11, 12, 14, 22, 23, 36, 20, 26, 21]) is the 1 : – : 1 resonance, obtained by choosing a common

amplitude R, or a common frequency ω, for all the {ψ(0)
j }j∈J ; in this way the solution takes the

form of the so-called rotating frame ansatz

ψ(0)(t) = e−iωtφ(0) , t ∈ [0, T = 2π/ω] , (4) e.ansatz

where the unperturbed spatial profile φ(0) and the frequency ω read

φ
(0)
j =

{
Reiθj , j ∈ S ,

0 , j ∈ J \ S ,
ω(R) = 1 + γR2 . (5) e.torus

All these orbits are uniquely defined except for a phase shift θ1, which corresponds to a change
of the initial configuration in the ansatz (4). In order to study the continuation of solutions (4)
at ε 6= 0 with fixed period/frequency, the usual approach is to assume the same ansatz for the
continued solution ψ(ε) = e−iωtφ(ε) and insert it into the dNLS equation (1), thus obtaining a
time-independent stationary equation of the form F (φ, ε) = 0; the last then is studied by meth-
ods of Bifurcation Theory, namely a Lyapunov-Schmidt reduction which exploits the variational
formulation of F (φ, ε) = 0 (see [22, 23, 26, 11, 14]). By restricting to real configurations φl ∈ R
(modulo the phase shift θ1), kernel directions are removed and the Implicit Function Theorem
applies.

Instead of working at the level of the evolution equation (1), one can exploit its Hamiltonian
structure. Indeed the system of equations (1) can be written in Hamiltonian form as a nearly
integrable system

iψ̇j =
∂H

∂ψj
, with H = H0 + εH1 ,

where H0 is the integrable part (a set of decoupled nonlinear oscillators) and εH1 is a small
perturbation (a linear coupling), given by

H0 =
∑
j∈J
|ψj |2 +

γ

2

∑
j∈J
|ψj |4 , H1 =

d∑
l=1

κl
∑
j∈J
|ψj+l − ψj |2 . (6) e.KdNLS

The approach we here propose entirely works at the Hamiltonian level: by exploiting the
nearly integrable structure of the problem, we perform a sequence of near to the identity canonical
transformations that puts the Hamiltonian in normal form up to a certain order in the small
parameter ε. Precisely, the normal form at order r reads H(r) = K(r) + εr+1R(r+1) where K(r)

is already in normal form, while R(r+1) is the remainder. The existence and linear stability of
the so-called discrete solitons (consecutive sites) or multi-pulse discrete solitons (nonconsecutive
sites) is investigated with a resonant normal form algorithm, recently developed for completely
resonant maximal and lower dimensional invariant tori, see [28, 30]. Discrete solitons correspond
to time periodic solutions which, at ε = 0, belong to a completely resonant low-dimensional torus
Tm of the unperturbed Hamiltonian H0; as ε > 0, generically only a finite number of the periodic
orbits survive to the breaking of the resonant torus, and they turn out to be spatially localized on
the few variables defining Tm. The relative equilibria x∗ of K(r) provide accurate approximations
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of the periodic orbits we are looking at. Moreover, the linearization of K(r) allows to investigate
the approximate linear stability of the periodic orbits. Eventually, the effective linear stability can
be derived from Theorem 2.3 of [30], which connects the approximate Floquet exponents with the
unknown true ones and is based on classical results on perturbations of the resolvent.

The present work focuses specifically on periodic solutions which are at leading order degen-
erate. Such a situation is natural in the study of spatially localized time periodic solutions, when
nonconsecutive sites/oscillators are excited in the unperturbed model (see, e.g., [26, 27, 34]), thus
leading generically to d-parameter families of critical points of the time average 〈H1〉; hence con-
tinuation cannot be easily obtained via implicit function theorem. Sometimes degeneracy occurs
also in topologically isolated solutions, due to the semidefinite nature of the critical points. In all
the proposed applications we exhibit how the normal form approach can remove the degeneracy,
thus isolating the correct candidates for continuation.

Our normal form approach also allows to extend the investigation of time periodic localized
structures to 2-dimensional subtori foliated by periodic orbits: this naturally occurs in (1), when
the resonances among the excited frequencies of the unperturbed dynamics differ from the 1 : – : 1,
because different amplitudes have been chosen for the selected sites. Indeed, considering the
1 : – : 1 resonance the Hamiltonian field XH is parallel to the generator XP of the symmetry
XH(ψ(0)(t)) = ωXP (ψ(0)(t)) for t ∈ [0, T ] with P :=

∑
j∈J |ψj |2. The ansatz (4) takes advantage

of this peculiarity, as ψ(0)(t) coincides with the orbit of the symmetry eiϕ (ϕ ∈ R) acting on
the surface of constant energy. Instead, for a generic resonance the symmetry vector field XP

is transversal to XH , hence a given periodic orbit is transported by the action of the symmetry
group and one has to deal with a 2-dimensional resonant subtorus.

Once the degeneracy of the problem has been removed, the constructive algorithm can be
further iterated so as to increase the precision of the periodic orbit’s approximation, provided
that the norm of the remainder decreases. This is shown in Section 4, where we have numerically
explored as a case study a multi-pulse discrete soliton in the standard dNLS model. The numerical
simulations of the normal form at orders r = 2 and r = 3 support what is theoretically predicted
in terms of accuracy of the approximated solutions and of their linear stability.

The goal of the present work is to illustrate with significant examples how to investigate the
dynamics of discrete solitons via normal form in the presence of degeneracy. In order to keep the
presentation as simple as possible we consider models where an explicit normal form up to order
r = 3 (implemented with Mathematica) is sufficient. We report hereafter a summary of the results
obtained for each model considered. Each model is schematically represented in a plot depicting
the configuration of the discrete soliton to be continued together with the geometry of the near-
neighbor interactions. Below each plot we report in a table the candidates for continuation at
different normalization orders in terms of phase-shift angles qj which are introduced in formula
(10). If candidates are not isolated and belong to a one-parameter family, then ϑ represents
the family parameter. Moreover, we denote with the symbol 3 the candidates which can be
continued, with the symbol 7 the ones which cannot be continued and with a question mark ?
those situations where the correspondent normal form step is not enough to obtain information
about the continuation. Finally, the last column classifies the linear stability of the orbit.

Two-sites multi-pulse discrete solitons for dNLS S = {−1, 1}

-6 -5 -4 -3 -2 0 2 3 4 5 6-1 1

0

I∗

Normalization order Candidate for continuation Continuation Stability
(q2)

r = 1 ϑ ∈ T ? ?
r = 2 0 3 unstable

π 3 stable
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Three-sites multi-pulse discrete solitons for dNLS S = {−2,−1, 1}

-6 -5 -4 -3 0 2 3 4 5 6-2 -1 1

0

I∗

Normalization order Candidate for continuation Continuation Stability
(q2, q3)

r = 1 (0, ϑ) ∈ T ? ?
(π, ϑ) ∈ T ? ?

r = 2 (0, 0) 3 unstable
(0, π) 3 stable
(π, 0) 3 unstable
(π, π) 3 unstable

Four-sites vortex-like structures in a Zigzag model

-6 -4 -2

0 2

4 6 8

-5 -3 -1

1 3

5 7 9

Normalization order Candidate for continuation Continuation Stability
(q2, q3, q4)

r = 1 (0, 0, 0) 3 ?
(0, 0, π) 3 unstable
(π, 0, 0) 3 unstable
(π, 0, π) ? ?

(ϑ, π, ϑ− π) ∈ T ? ?
(ϑ, π, −π) ∈ T ? ?

r = 2 (0, 0, 0) 3 stable
(π, 0, π) 3 unstable
(0, π, 0) 3 unstable
(0, π, π) 3 unstable
(π, π, 0) 3 unstable
(π, π, π) 3 unstable

Four-sites vortex solutions in a railway dNLS model

-6 -4 -2

0 2

4 6 8

-7 -5 -3

-1 1

3 5 7
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Normalization order Candidate for continuation Continuation Stability
(q2, q3, q4)

r = 1 (0, 0, 0) 3 ?
(π, 0, π) 3 ?

(ϑ, π, −ϑ) ∈ T ? ?
(ϑ, π, ϑ+ π) ∈ T ? ?

(ϑ, −2ϑ, ϑ+ π) ∈ T ? ?
r = 2 (0, 0, 0) 3 ?

(π, 0, π) 3 ?
(0, 0, π) 3 unstable
(0, π, π) 3 unstable
(π, 0, 0) 3 unstable
(π, π, 0) 3 unstable

(π/2, π, 3π/2) ? ?
(3π/2, π, π/2) ? ?

(ϑ, −2ϑ, ϑ+ π) ∈ T ? ?
r = 3 (0, 0, 0) 3 stable

(π, 0, π) 3 unstable
(π/2, π, 3π/2) 7
(3π/2, π, π/2) 7

(π, π, π) 3 unstable
(0, π, 0) 3 unstable

Discrete soliton in dNLS models with purely nonlinear interaction (1:1:1 res.)

-6 -5 -4 -3 -2 2 3 4 5 6-1 0 1

0

I∗

Normalization order Candidate for continuation Continuation Stability
(q2, q3)

r = 1 (0, 0) ? ?
(0, π) ? ?
(π, 0) ? ?
(π, π) 3 unstable

r = 2 (0, 0) ? ?
(0, π) ? ?
(π, 0) ? ?

r = 3 (0, 0) 3 stable
(0, π) 3 unstable
(π, 0) 3 unstable

Discrete soliton in dNLS models with purely nonlinear interaction (2:1:1 res.)

-6 -5 -4 -3 -2 2 3 4 5 6-1 0 1

0

I∗

1 + 2I∗

Normalization order Candidate for continuation Continuation Stability
(q2, q3)

r = 1 (ϑ, 0) ∈ T 3 stable
(ϑ, π) ∈ T 3 unstable
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Discrete soliton in dNLS models with purely nonlinear interaction (2:1:2 res.)

-6 -5 -4 -3 -2 2 3 4 5 6-1 0 1

0

I∗

1 + 2I∗

Normalization order Candidate for continuation Continuation Stability
(q2, q3)

r = 1 (ϑ1, ϑ2) ∈ T2 ? ?
r = 2 (ϑ, 0) ∈ T 3 unstable

(ϑ, π) ∈ T 3 stable

The paper is structured as follows. In Section 2 we review the normal form scheme introduced
in [30] together with the main Theorems about continuation of periodic orbit and its linear stability.
In Section 3 we describe in detail all the above mentioned examples. The results have been obtained
by implementing2 the normal form algorithm in Mathematica. In Section 4 we explore numerically
the approximate solutions in the case study of multi-pulse discrete soliton in the standard dNLS
chain. Section 5 is devoted to some final comments.

2 Theoretical framework
s:1

We here briefly recall the normal form scheme presented in [30], so as to make the paper quite
self-contained. We refer to the quoted paper for all the details. The main feature that we want
to stress is that the normal form algorithm is completely constructive and can be effectively
implemented in a computer algebra system. Thus, in a specific application, one can easily check
all the assumptions in Theorems 2.1 and 2.2. This is what we highlight in section 3 through the
examples presented before.

2.1 Preliminary transformations

The real Hamiltonian (6) is written as a function of the complex amplitudes ψj . Introducing the
real canonical variables

xj =
i√
2

(ψj − ψ̄j) = −
√

2 Im(ψj) , yj =
1√
2

(ψ̄j + ψj) =
√

2 Re(ψj) , (7) e.real.coord

the Hamiltonian reads again H = H0 + εH1 with

H0 =
∑
j∈J

1

2
(x2j + y2j ) +

γ

8
(x2j + y2j )2

H1 =

d∑
l=1

κl
∑
j∈J

(x2j + y2j )−
d∑
l=1

κl
∑
j∈J

(xj+lxj + yj+lyj) .

(8) e.ex.dnls

Since S corresponds to the set of the excited sites, we introduce the following variables

xj =
√

2Ij cos θj , yj = −
√

2Ij sin θj , j ∈ S ,

xj =
1√
2

(ξj + iηj) , yj =
i√
2

(ξj − iηj) , j ∈ J \ S .

2The actual code can be found at https://github.com/marcosansottera/periodic_orbits_NF.
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Thus the Hamiltonian (8) takes the form

H(I, θ, ξ, η, ε) = h0(I) + g0(ξ, η) + εH1(I, θ, ξ, η; ε) , (9) frm:H-modello

with
h0(I) =

∑
j∈S

(
Ij +

γ

2
I2j

)
, g0(ξ, η) =

∑
j∈J\S

(
iξjηj −

γ

2
ξ2j η

2
j

)
,

and H1 that is given by the expression in (8) written in the new variables.

2.2 Normal form algorithm (1 : – : 1 resonance)

According to the geometrical interpretation given in the Introduction, all the unperturbed periodic
orbits foliate a m-dimensional torus Tm of the phase space: the torus corresponds to Ij = I∗ = R2

for j ∈ S and ξj = ηj = 0 for the remaining j ∈ J \ S. Any orbit on such a torus is uniquely
identified by a point in the quotient space Tm−1 = Tm/T; such a point can be well represented
by introducing a set of m− 1 new phase shift angles

qj := θjl+1
− θjl , l = 1, . . . ,m . (10) e.phidef

The definition of these new angles is related to the 1 : – : 1 resonance among the unperturbed
oscillators, thus we will refer to them as resonant variables.

In order to reveal the structure of the dynamics around the unperturbed low-dimensional torus,
we locally expand the Hamiltonian in a neighborhood of it. Specifically, we expand H in power
series of Jj = Ij − I∗ and introduce the resonant angles q̂ = (q1, q), with q1 = θ1 and and q as
in (10), and we complete canonically the transformation with the corresponding actions p̂ = (p1, p);
in particular it follows that p1 =

∑
l∈S Jl. We finally split the Hamiltonian (9) as

H(0) = ωp1 +
∑

j∈J\S

iξjηj + f
(0,0)
4 +

∑
`>4

f
(0,0)
`

+ f
(0,1)
0 + f

(0,1)
1 + f

(0,1)
2 + f

(0,1)
3 + f

(0,1)
4 +

∑
`>4

f
(0,1)
` +O(ε2) ,

(11) e.H.nf.0

where ω(I∗) = 1 + γI∗ is the frequency of any periodic orbit on the unperturbed torus p̂ = 0

and f
(r,s)
` is a polynomial of degree m in p̂ and degree i in (ξ, η) satisfying ` = 2m + i and with

coefficients depending on the angles q̂. The index r identifies the order of normalization (r = 0
corresponding to the original Hamiltonian), while s keeps track of the order in ε.

The standard approach to continue the periodic orbit surviving the breaking of the unperturbed
lower dimensional torus Ij = I∗ consists in averaging the leading term of the perturbation, namely

f
(0,1)
0 (q1, q), with respect to the fast angle q1 and to look for critical points of the averaged function

on the torus Tm−1. The explicit form of f
(0,1)
0 depends on the choice of the set S and of the

coupling H1, but it always consists of trigonometric terms of the form cos(k · q); hence, solutions

of ∇qf (0,1)0 = 0 always include ql ∈ {0, π}, but additional solutions, the so-called phase-shift
solutions, might appear. If the critical points are not degenerate, continuation easily follows from
an implicit function theorem argument. Instead, for the degenerate ones, like d-parameter families
with d ≥ 1, it is necessary to take into account higher order terms in the perturbation.

To this end in [30] we implement a normal form construction for elliptic low dimensional and
completely resonant tori that is reminiscent of the Kolmogorov algorithm, see also [32, 8, 31].

Shortly, we perform a sequence of canonical transformations which remove f
(0,1)
1 and the part

of f
(0,1)
3 which is linear in the transversal variables (ξ, η), and we average over the fast angle q1

also the terms f
(0,1)
2 and the part of f

(0,1)
4 which is quadratic in p̂ (see [5] for a strictly related

construction applied to the FPU model). First and second order nonresonance conditions between
ω and the linear frequencies Ωj with j ∈ J \ S

k1ω ± Ωj 6= 0 , k1 ∈ Z , (12) melnikov1

k1ω ± Ωl ± Ωk 6= 0 , k1 ∈ Z \ {0} , (13) melnikov2

7



are needed to ensure the existence of such transformations; these are the so-called first and second
Melnikov conditions. As already stressed in [30], we observe that only (12) is strictly necessary to
get the existence (in agreement with other results in the literature), while (13) is needed to study
also the stability. In the dNLS model (9) here considered we have Ωl = Ωk = 1 for all k, l ∈ J \S,
hence (13) is turned into its simplified form k1ω± 2 6= 0. In addition, we perform a translation of
the actions p̂ so as to keep fixed the linear frequency ω; here anharmonicity of h0(I) is relevant,

which corresponds to the so-called twist condition for f
(0,0)
4 (p̂): there exists m > 0 such that

m

n∑
i=1

|vi| ≤
n∑
i=1

|
n∑
j=1

Cijvj | , ∀v ∈ Rn where Cij =
∂2f

(0,0)
4

∂p̂i∂p̂j
. (14) frm:twist

In this way the Hamiltonian is brought in normal form at order r = 1. Iterating r-times the same
procedure, we get the Hamiltonian in normal form at order r ≥ 2, H(r) = K(r) +O(εr+1), with

K(r) = ωp1 +
∑

j∈J\S

iξjηj + f
(r,0)
4 +

∑
`>4

f
(r,0)
` + Z

(r)
0 + Z

(r)
2 + Z

(r)
3 + Z

(r)
4 +

r∑
s=1

∑
`>4

f
(r,s)
` ,

where

Z
(r)
` =

r∑
s=1

f
(r,s)
` , ` = 0, 2, 3, 4 .

A key ingredient in our construction is that the translation which keeps fixed the frequency ω of
the periodic orbit depends on a parameter vector q∗ ∈ Tm−1; in particular, the translation of p̂ is

such that Z
(r)
2 (q∗, p̂, 0; q∗) = 0.

At leading order, periodic orbits of the form

q̇1 = ω , q = q∗ , p̂ = ξ = η = 0 , (15) e.appr.sol

correspond to relative equilibria of the truncated normal form K(r), provided q∗ satisfies

∇qZ(r)
0 (q; q∗)

∣∣∣
q=q∗

= 0 . (16) e.ex.qstar

Then, continuation of the approximate periodic orbit (15) could follow by means of a fixed point
method, once suitable spectral conditions are verified. More precisely, we introduce the smooth
map Υ(x) : U(x∗) ⊂ R2n−1 → V(x∗) ⊂ R2n−1 as

Υ(x(0); ε, q1(0)) =


q1(T )− q1(0)− ωT

q(T )− q(0)
p(T )− p(0)
ξ(T )− ξ(0)
η(T )− η(0)

 , (17) frm:Ups

parameterized by the initial phase q1(0) and ε, with T the period of the periodic orbit; the map
Υ is basically the variation over the period T of the Hamiltonian flow (a part from the coordinate
p1). The main result (proved in [30]) used in the examples is the following

teo:forma-normale-r Theorem 2.1 Consider the map Υ defined in (17) in a neighborhood of the lower dimensional
torus p̂ = 0, ξ = η = 0 and let x∗(ε) = (q∗(ε), 0, 0, 0), with q∗(ε) satisfying (16). Assume that

|Υ(x∗(ε); ε, q1(0))| ≤ C1ε
r+1 , (18) e.small.Ups

where C1 is a positive constant depending on U and r. Assume also that M(ε) := Υ′(x∗(ε); ε, q1(0))
is invertible and there exists α > 0 with 2α < r + 1 such that

|λ| & |ε|α , for all λ ∈ Σ
(
M(ε)

)
. (19) e.small.eig
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Then, there exist C0 > 0 and ε∗ > 0 such that for any 0 ≤ |ε| < ε∗ there exists a unique
x∗p.o.(ε) = (q∗p.o.(ε), p̂p.o.(ε), ξp.o.(ε), ηp.o.(ε)) ∈ U which solves

Υ(x∗p.o.; ε, q1(0)) = 0 , with |x∗p.o. − x∗| ≤ C0ε
r+1−α . (20) e.exist.appr

Moreover, the approximate linear stability of x∗p.o. is encoded in the linear stability of the relative

equilibrium x∗, hence in the Floquet multipliers of the matrix exp
(
L(ε)T

)
, where L := DXK(r)(x∗)

has the block diagonal form

L(ε) =

(
L11(ε) O
O L22(ε)

)
. (21) frm:L11L22

The validity of (19) is checked by exploiting the definition of L. Indeed, as explained in [30],
the matrix M(ε) can be obtained by removing the row and the column corresponding to p1 and
q1 from Φ − Id, where Φ is the monodromy matrix, which is well approximated by exp(LT ).
Hence L provides the scaling in ε of the smallest eigenvalues of M(ε). At the same time, L
provide the approximate linear stability of the periodic orbit. Indeed, thanks to the block-diagonal
structure, its spectrum splits into two different components: Σ(L22) ⊂ iR since the quadratic part

K
(r)
2 (ξ, η) is positive definite for ε small enough (by continuity at ε = 0), while Σ(L11) is generically

made of m − 1 pairs of eigenvalues λj(ε) → 0 as ε → 0 (and of a couple of zero eigenvalues).
Hence approximate linear stability depends only on the internal Floquet-exponents Σ(L11). The
effective linear stability of the periodic orbit can be derived from the approximate spectrum if the
approximate Floquet multipliers are well distinct and the perturbation is sufficiently small, see
Theorem 2.3 in [30], that we report below for completeness.

t.lin.stab.2 Theorem 2.2 Assume that L11(ε) has 2m − 2 distinct nonzero eigenvalues and let c̃ > 0 and
β < r + 1− α, with 2α < r + 1 as in Theorem 2.1, be such that

|λj − λk| > c̃εβ , for all λj , λk ∈ Σ(L11(ε)) \ {0} . (22) e.dist.eig

Then there exists ε∗ > 0 such that if |ε| < ε∗ and µ = eλT ∈ Σ(exp(L11(ε)T )), there exists one
Floquet multiplier ν of x∗p.o. inside the complex disk Dε(µ) = {z ∈ C : |z − µ| < cεr−α+1}, with
c > 0 a suitable constant independent of µ.

Remark 2.1 In the case of nondegenerate solutions (hence λ = O(
√
ε), so α = 1/2) stronger

results on the localization of the Floquet exponents can be obtained (see for example [17], where
corrections of order O(ε3/2) are shown to hold, thus improving the above claim).

3 Applications to dNLS models
s:2

In the present section we show how the results already illustrated in the Introduction have been
obtained exploiting the normal form construction with the aid of a computer algebra system. We
will mainly restrict to the so-called focusing case in (6), i.e., with γ = 1 (assuming implicitly

ε > 0), which implies f
(0,0)
4 positive definite. We choose values of I∗ such that (12) and (13) are

satisfied up to the required normalization order: this is not difficult, since with the previous choice
γ = 1 the frequency ω = 1 + I∗ is larger than the linear frequencies Ωl = 1 and (12) is easily
satisfied, while κ1ω − 2 = 0 can be obtained only for κ1 = 1, hence 3 it suffices I∗ 6= 1 to fulfil
(13). Furthermore, we will usually take J = {−N, . . . , N} with N ≤ 10 and S involving at most
4 sites: this choice allows to explore meaningful configurations with at most r = 3 normal form
steps, thus keeping the presentation more compact and easy to follow.

Actually, the results here presented have been obtained via an implementation of the normal
form algorithm in Mathematica that can be found at https://github.com/marcosansottera/

periodic_orbits_NF.

3However, it might happen that even for I∗ = 1 the normal form scheme works as well; this occurs if the resonant
monomial, causing the zero denominator in the construction, is absent.
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3.1 Multi-pulse solutions in the standard dNLS model

We start with the well known standard dNLS model, where only κ1 = 1 in (6), namely only
nearest-neighbors interactions are active. We are going to consider two different kind of sets S,
both dealing with problem of degeneracy due to nonconsecutive excited sites. In the first case we
take only two nonconsecutive sites S = {−l, l}, with l ≥ 1, the larger is the distance 2l among the
sites, the greater is the number of normal form steps needed to remove the degeneracy, i.e., r = 2l.
In the second case we take 3 sites, giving an asymmetric configuration S = {−2,−1, 1}. This is
the easiest asymmetric example which exhibits degeneracy, due to the lack of the interaction at
order ε between the second and the fourth site. In agreement with the existing literature (see,
e.g., [10, 22, 13]), it will be shown that only standard in/out-of-phase solutions do exist. Linear
stability analysis provides a scaling of the Floquet exponents coherent with the literature and
Theorem 2.2 can be always applied in our examples. In addition, the normal form remarkably
shows the effect of switching from focusing to defocusing dNLS, obtained by changing the sign
of γ: nondegenerate saddle and center eigenspaces exchange their stability, while degenerate ones
keep unchanged their stability whenever the order of degeneracy is even, as with S = {−2,−1, 1}.

Two-sites multi-pulse discrete solitons for dNLS S = {−1, 1}

-6 -5 -4 -3 -2 0 2 3 4 5 6-1 1

0

I∗

In the first case, the perturbation H1, given by the nearest neighbors interactions, reads

H1 = 2
∑
j∈S

Ij + 2
∑

j∈J\S

iξjηj −
∑
j∈J

(xj+1xj + yj+1yj)

where the products xj+1xj + yj+1yj are of the following types

xj+1xj + yj+1yj = i(ξj+1ηj + ξjηj+1) , if j and j + 1 6∈ S ,

xj+1xj + yj+1yj =
√
Ij (cos(θj)(ξj+1 + iηj+1)− i sin(θj)(ξj+1 − iηj+1)) , if j ∈ S ,

xj+1xj + yj+1yj =
√
Ij+1 (cos(θj+1)(ξj + iηj)− i sin(θj+1)(ξj − iηj)) , if j + 1 ∈ S ,

thus no term of the form cos(θl − θ−l) appears at order O(ε). Expanding H0 and H1 in Taylor
series of the actions around I∗, forgetting constant terms and introducing the resonant angles
q̂ = (q1, q) and their conjugated actions p̂ = (p1, p), i.e.,{

q1 = θ−l ,

q2 = θl − θ−l ,

{
p1 = Jl + J−l ,

p2 = Jl ,

we can rewrite the initial Hamiltonian as

H(0) = ωp1 +
∑

j∈J\S

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
1 (q̂, ξ, η)

+ f
(0,1)
2 (p̂, ξ, η) + f

(0,1)
3 (q̂, p̂, ξ, η) +

∑
`≥5

f
(0,1)
` (q̂, p̂, ξ, η) ,

with ω = 1 + I∗. Notice that f
(0,1)
0 and f

(0,1)
4 are missing and that f

(0,1)
2 does not depend on q̂:

this is due to the lack of coupling terms xjxj+1 + yjyj+1 with both j and j + 1 belonging to S.
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For l = 1, S = {−1, 1} and the normal form at order one gives Z
(1)
0 = f

(1,1)
0 (q) ≡ 0, hence any

q2 ∈ T is a critical point and the problem is trivially degenerate.

The normal form at order two gives Z
(2)
0 = f

(2,2)
0 = 2ε2 cos(q2), thus

∇qZ(2)
0 = −2ε2 sin(q2) = 0 ,

provides only the standard solutions q2 ∈ {0, π}. In order to conclude the existence of these two
in/out-of-phase configurations, we need to check condition (19) with α < 3

2 , explicit symbolic
computations performed with Mathematica gives α = 1. The stability analysis shows that q2 = 0
(the so-called Page mode) is the unstable configuration, while q2 = π (the so-called Twist mode)
is the stable one, with approximated Floquet exponents

λ0 = ±
(

2ε− ε3

(I∗)2

)
, λπ = ±i

(
2ε+

ε3

(I∗)2

)
.

Theorem 2.2 applies with β = 1 < 2 = r + 1 − α, hence Floquet multipliers are ε2-close to the
approximate ones eλT (where T is the period).

For l > 1, the procedure for the continuation is clearly the same: it turns out that degeneracy

persists up to order r = 2l − 1, namely f
(s,1)
0 ≡ 0 for s ≤ 2l − 1. At order r = 2l one has

Z
(r)
0 = f

(r,r)
0 such that

∇qZ(r)
0 = c(I∗)εr sin(q2) = 0 ,

with c(I∗) a constant depending on I∗, which again provides only standard solutions q2 = {0, π}.
Existence of these two in/out-of-phase configurations is ensured by (19) with α = r/2 < (r+ 1)/2.
Stable and unstable configurations are expected to be respectively q2 = π and q2 = 0, with
approximate Floquet exponents of order O(εl).

Three-sites multi-pulse discrete solitons for dNLS S = {−2,−1, 1}

-6 -5 -4 -3 0 2 3 4 5 6-2 -1 1

0

I∗

The perturbation H1, given by the nearest neighbors interactions, reads

H1 = 2
∑
j∈S

Ij + 2
∑

j∈J\S

iξjηj −
∑
j∈J

(xj+1xj + yj+1yj)

where the products xj+1xj + yj+1yj are of the following types

xj+1xj + yj+1yj = i(ξj+1ηj + ξjηj+1) , if j and j + 1 6∈ S ,

xj+1xj + yj+1yj =
√
Ij
(
cos(θj)(ξj+1 + iηj+1)− i sin(θj)(ξj+1 − iηj+1)

)
, if j ∈ S , j + 1 6∈ S ,

xj+1xj + yj+1yj =
√
Ij+1

(
cos(θj+1)(ξj + iηj)− i sin(θj+1)(ξj − iηj)

)
, if j 6∈ S , j + 1 ∈ S ,

x−2x−1 + y−2y−1 = 2
√
I−2I−1 cos(θ−2 − θ−1)

Expanding H0 and H1 in Taylor series of the actions around I∗, forgetting constant terms and
introducing the resonant angles q̂ = (q1, q) and their conjugated actions p̂ = (p1, p)

q1 = θ−2 ,

q2 = θ−1 − θ−2 ,
q3 = θ1 − θ−1 ,


p1 = J−2 + J−1 + J1 ,

p2 = J−1 + J1 ,

p3 = J1 ,
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we can rewrite the initial Hamiltonian as

H(0) = ωp1 +
∑

j∈J\S

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
0 (q2) + f

(0,1)
1 (q̂, ξ, η)

+ f
(0,1)
2 (q, p̂, ξ, η) + f

(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q, p̂) +

∑
`≥5

f
(0,1)
` (q̂, p̂, ξ, η) ,

with ω = (1 + I∗). The normal form at order one gives Z
(1)
0 = f

(1,1)
0 = −2εI∗ cos(q2), thus the

critical points q∗ of on the torus T2 are two disjoint one-parameter families P1(ϑ) = (0, ϑ) and
P2(ϑ) = (π, ϑ), where ϑ = q3.

The normal form at order two gives Z
(2)
0 = Z

(1)
0 + f

(2,2)
0 with

f
(2,2)
0 = ε2

(
4 cos(q2) + 2 cos(q3)− 1

2
cos(2q2)

)
,

thus the critical points are the four in/out-of-phase solutions (q2, q3) ∈ {(0, 0), (0, π), (π, 0), (π, π)}.
In order to conclude the existence of these configurations, we need to check condition (19) with
α < 3

2 , explicit symbolic computations with Mathematica gives α = 1. Linear stability analysis
provides (0, π) as the only stable configurations with approximate Floquet exponents

λ(0,π) =


±i

(
2
√
I∗ε+

ε3/2

4
√
I∗

+ o(ε3/2)

)
,

±i
√

3

(
ε− ε2

8I∗
+ o(ε2)

)
,

while the other three configurations are all unstable, with

λ(0,0) =

{
±i
(

2
√
I∗ε+ o(

√
ε)
)
,

±
√

3ε+ o(ε) ,
λ(π,0) =

{
±2
√
I∗ε+ o(

√
ε) ,

±
√

3ε+ o(ε) ,
λ(π,π) =

{
±2
√
I∗ε+ o(

√
ε) ,

±i
(√

3ε+ o(ε)
)
.

.

Approximate linear stability corresponds to effective linear stability, since Theorem 2.2 applies
with β = 1 < 2 = r + 1 − α, hence Floquet multipliers are located ε2-close to the approximate
ones and fulfil the usual symmetries of the spectrum of a symplectic matrix.

Remark 3.1 It is interesting to investigate what happens to the Floquet exponents once the sign
of the nonlinear coefficient γ is changed. It turns out, as already stressed in the literature, that
eigenvalues of order O(

√
ε) switch from real to imaginary and vice versa, hence stable and unstable

eigenspaces are exchanged. However, eigenvalues of order O(ε) keep their nature. This is the effect
of a cancellation of γ in front of the equation −2ε2 sin(q3), as already stressed in the “seagull”
example in [30]. Hence the new stable configuration would be in this case (π, π).

3.2 Four-sites vortex-like solutions in a Zigzag dNLS cell

-6 -4 -2

0 2

4 6 8

-5 -3 -1

1 3

5 7 9
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Let us consider the Hamiltonian system (6) with κ1 = κ2 = 1, namely the so-called Zigzag model.
This is a particular case of two coupled one-dimensional dNLS models, where the Zigzag coupling
provides a one-dimensional Hamiltonian systems. We want to investigate the continuation of
vortex-like localized structures given by four consecutive excited sites; hence the low dimensional
resonant torus is Il = I∗ for l ∈ S = {0, 1, 2, 3} and ξl = ηl = 0 for l ∈ J \S. These configurations
have been the object of investigation of [27] where nonexistence of four-sites solutions with phase
differences ql different from {0, π} have been obtained with a Lyapunov-Schmidt reduction. We
here show how to recover the same results via normal form and we correct a minor statement on
the nondegeneracy of the isolated configurations.

Here the perturbation, involving nearest and next-to-nearest neighbors interactions, reads

H1 = 4
∑
j∈S

Ij + 4
∑

j∈J\S

iξjηj − 2
∑
j∈J

(
(xj+1xj + yj+1yj) + (xj+2xj + yj+2yj)

)
where, as in the previous examples, the products in the last sum must be expressed in the (I, θ, ξ, η)
variables. Expanding H0 and H1 in Taylor series of the actions around I∗, forgetting constant
terms and introducing the resonant angles q̂ = (q1, q) and their conjugated actions p̂ = (p1, p)

q1 = θ0 ,

q2 = θ1 − θ0 ,
q3 = θ2 − θ1 ,
q4 = θ3 − θ2 ,

,


p1 = J0 + J1 + J2 + J3 ,

p2 = J1 + J2 + J3 ,

p3 = J2 + J3 ,

p4 = J3 .

,

we can rewrite the initial Hamiltonian in the form

H(0) = ωp1 +
∑

j∈J\S

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
0 (q) + f

(0,1)
1 (q̂, ξ, η)

+ f
(0,1)
2 (q, p̂, ξ, η) + f

(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q, p̂, ξ, η) +

∑
`≥5

f
(0,1)
` (q̂, p̂, ξ, η) ,

with ω = (1 + I∗). The normal form at order one gives

Z
(1)
0 = f

(1,1)
0 (q) = 2I∗ε

(
cos(q2) + cos(q3) + cos(q4) + cos(q2 + q3) + cos(q3 + q4)

)
,

thus there are four isolated solutions (0, 0, 0), (0, 0, π), (π, 0, 0), (π, 0, π), and two one-parameter
families P1(ϑ) = (ϑ, π, ϑ− π) and P2(ϑ) = (ϑ, π,−ϑ). In order to apply Theorem 2.1 with r = 1,
critical points need to be not degenerate; by calculating the determinant in correspondence of
the q∗-values determined above, we see that nondegeneracy is fulfilled only in three of the four
isolated solutions (0, 0, 0), (0, 0, π), (π, 0, 0), while the fourth isolated configuration (π, 0, π) and
the two families are degenerate. In particular, the topologically isolated configuration (π, 0, π) is

a degenerate minimizer of Z
(1)
0 , since along the tangent direction (π + t,−2t, π + t) it is possible

to observe a growth as O(t4); this represents an example of degenerate isolated configuration.
In order to conclude the continuation of the three nondegenerate in/out-of-phase configurations
to effective periodic orbits of the system, we need to check condition (19) with α < 1, explicit
symbolic computations with Mathematica give α = 1/2.

For the degenerate configurations we have to compute the normal form at order two. The

equation for the critical points of Z
(2)
0 takes the form

F (q2, q3, q4, ε) = F0(q2, q3, q4) + εF1(q2, q3, q4) = 0,

with F : T3×U(0)→ R3 (we here omit the explicit expression of F1). We observe that the vectors

∂ϑP1 =

1
0
1

 and ∂ϑP2 =

 1
0
−1
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generate the Kernel of DqF0(q)
∣∣∣
q=Pj(ϑ)

with j = 1, 2. The necessary condition to continue the

degenerate solutions of F0(q) = 0 to solutions of F (q, ε) = 0 is then F1(Pj(ϑ)) ⊥ ∂ϑPj(ϑ), i.e.,

〈F1(P1(ϑ)), ∂ϑP1〉 = 4 sin(2ϑ) , 〈F1(P2(ϑ)), ∂ϑP2〉 = −4 sin(ϑ) ,

and we can deduce that the two families Pj(ϑ) break down and only four configurations (0, π, π),

(π, π, 0), (0, π, 0), (π, π, π) are solutions of F (q, ε). Hence the critical points of Z
(2)
0 are given only

by in/out-of phase configurations. To prove the existence of these configurations we need to check
condition (19) with α < 3

2 , explicit symbolic computations with Mathematica give α = 1.
Concerning the linear stability analysis, we summarize below the results for the different cases.

Isolated and nondegenerate solutions. The three configurations (0, 0, 0) , (0, 0, π) , (π, 0, 0)
have all approximate Floquet exponents of order O(

√
ε) and can be computed directly from the

normal form at order one. Specifically, (0, 0, 0) is the unique stable configuration, with

λ1,2(ε) = ±2
√

2i

(√
I∗
√
ε+

ε3/2√
I∗

+ o(ε3/2)

)
,

λ3,4(ε) = ±i

(
2
√

2
√
I∗
√
ε+

5ε3/2√
2
√
I∗

+ o(ε3/2)

)
,

λ5,6(ε) = ±i

(
2
√
I∗
√
ε+

ε3/2√
I∗

+ o(ε3/2)

)
.

while the other two configurations are unstable with

λ(0,0,π) =


±i
(

25/4
√
I∗
√
ε+ o(

√
ε)
)
,

±25/4
√
I∗
√
ε+ o(

√
ε) ,

±i
(

2
√
I∗
√
ε+ o(

√
ε)
)
,

λ(π,0,0)


±i
(

25/4
√
I∗
√
ε+ o(

√
ε)
)
,

±25/4
√
I∗
√
ε+ o(

√
ε) ,

±i
(

2
√
I∗
√
ε+ o(

√
ε)
)
.

.

Concerning the effective stability of (0, 0, 0), since there are two couples of exponents which coincide
at order O(

√
ε), but different at order O(ε3/2), we have to take β = 3/2 in the assumption of

Theorem 2.2. Being r + 1 − α = 3 − 1
2 = 5

2 , the statement ensures existence of two couples of

distinct Floquet multipliers which are ε5/2-close to eλT on the unitary circle, which means linear
stability of the solution. Instead, for the other two unstable configurations we have β = 1

2 and
r + 1− α = 3

2 .

Isolated and degenerate solution. The (π, 0, π) solution is unstable with

λ(π,0,π) =


±23/2

√
I∗
√
ε+ o(

√
ε) ,

±2
√
I∗
√
ε+ o(

√
ε) ,

±i (2ε+ o(ε)) .

Again, Theorem 2.2 applies with β = 1 and r + 1− α = 2.

Degenerate solutions of the two families. The remaining four configurations lying on the two
families P1,2 have two couples of Floquet exponents of order O(

√
ε) and one couple of exponents of

order O(ε) due to the degenerate direction. In all the cases it is possible to verify the applicability
of Theorem 2.2 with β = 1 and r+1−α = 2, since the three couples of eigenvalues are all different
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at leading order, precisely

λ(π,π,π) =


±i (2ε+ o(ε)) ,

±i

(√
I∗
√

2(
√

5− 1)
√
ε+ o(

√
ε)

)
,

±
√
I∗
√

2(
√

5 + 1)
√
ε+ o(

√
ε) ,

λ(0,π,0) =


±2ε

±i

(√
I∗
√

2(
√

5− 1)
√
ε+ o(

√
ε)

)
,

±
√
I∗
√

2(
√

5 + 1)
√
ε+ o(

√
ε) ,

λ(0,π,π) =


±i (2ε+ o(ε)) ,

±i
(

2
√
I∗
√
ε+ o(

√
ε)
)
,

±2
√

2I∗
√
ε+ o(

√
ε) ,

λ(π,π,0) =


±i (2ε+ o(ε)) ,

±i
(

2
√
I∗
√
ε+ o(

√
ε)
)
,

±2
√

2I∗
√
ε+ o(

√
ε) .

3.3 Nonexistence of minimal square-vortexes in a dNLS railway-model

-6 -4 -2

0 2

4 6 8

-7 -5 -3

-1 1

3 5 7

We here consider a minor variation of the Hamiltonian system (6), the so-called railway-model. It
consists of two coupled dNLS models, where only nearest neighbors interactions are active. The
model, labeling the sites of the lattice according to the picture with J = {−N, . . . , N + 1}, is
described by the Hamiltonian

H(0) =
∑
j∈J

(
1

2
(x2j + y2j ) +

γ

8
(x2j + y2j )2

)
+ 3ε

∑
j∈J

1

2
(x2j + y2j )

− ε
∑
j∈J

(xj+1xj−1 + yj+1yj−1)− ε
bN+1

2 c∑
j=−bN−1

2 c

(x2jx2j−1 + y2jy2j−1) .

(23) e.railway.ham

We want to investigate the continuation of the minimal vortex configuration, namely the localized
structures given by four consecutive excited sites, that we here take as S = {−1, 0, 1, 2}, with
phase differences between the neighboring ones all equal to π/2. The existence of such rotating
structures has been shown in proper two-dimensional lattices in [23], by expanding at very high
perturbation orders the Kernel equation obtained with a Lyapunov-Schmidt reduction. On the
other hand, in [26] similar structures have been proved not to exists in the one-dimensional dNLS
lattice (8) with κ1 = κ3 = 1, which at first orders in the perturbation parameter ε exhibits

the same averaged term f
(1,1)
0 (q) as the two-dimensional problem, hence the same critical points.

The present railway-model represents a natural hybrid setting between one and two-dimensional
square lattices. Here, by exploiting our normal form construction, we show the nonexistence of
the minimal vortex solution; this new result enforces the proper two-dimensional nature of these
kind of localized solutions.

We introduce action-angle variables (I, θ) and complex coordinates (ξ, η) and we expand H0

and H1 in Taylor series of the actions around I∗; forgetting constant terms and introducing the
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resonant angles q̂ = (q1, q) and their conjugated actions p̂ = (p1, p)
q1 = θ−1 ,

q2 = θ0 − θ−1 ,
q3 = θ1 − θ0 ,
q4 = θ2 − θ1 ,


p1 = J−1 + J0 + J1 + J2 ,

p2 = J0 + J1 + J2 ,

p3 = J1 + J2 ,

p4 = J2 ,

,

we can rewrite the initial Hamiltonian as

H(0) = ωp1 +
∑

j∈J\S

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
0 (q2, q3, q4) + f

(0,1)
1 (q̂, ξ, η)

+ f
(0,1)
2 (q, p̂, ξ, η) + f

(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q, p̂, ξ, η) +

∑
`≥5

f
(0,1)
` (q̂, p̂, ξ, η) ,

with as usual ω = (1 + I∗). The normal form at order one

Z
(1)
0 = f

(1,1)
0 = 2I∗ε

(
cos(q2) + cos(q2 + q3) + cos(q3 + q4) + cos(q4)

)
gives the two isolated critical points (0, 0, 0), (π, 0, π), and three one-parameter families

P1(ϑ) = (ϑ, π,−ϑ) , P2(ϑ) = (ϑ, π, ϑ+ π) , P3(ϑ) = (ϑ,−2ϑ, ϑ+ π) .

This is in agreement with the existing literature, see also the example in [28]. Let us notice that
the three families intersect in the two vortexes configurations ±

(
π
2 , π,−

π
2

)
. These are completely

degenerate configurations, since the Kernel admits three independent directions ∂θPj on the tan-

gent space to the torus T3; hence D2
qZ

(1)
0

(
π
2 , π,−

π
2

)
≡ 0. It is immediate to verify that the two

isolated configurations are nondegenerate, hence we can apply Theorem 2.1 with r = 1. For the
three degenerate families Pj we have to compute the normal form at order two. Similarly to the

previous example on the Zigzag model, the equation for the critical points of Z
(2)
0 takes the form

F (q2, q3, q4, ε) = F0(q2, q3, q4) + εF1(q2, q3, q4) = 0,

with F : T3 × U(0)→ R3. In this case there are three vectors

∂ϑP1 =

 1
0
−1

 , ∂ϑP2 =

1
0
1

 ∂ϑP3 =

 1
−2
1


that generate the Kernel of DqF0(q)

∣∣∣
q=Pj(ϑ)

with j = 1, 2, 3. The necessary condition for the

solutions of F0 to be also solutions of F is F1(Pj(ϑ)) ⊥ ∂ϑPj(ϑ); it turns out that F1(P1(ϑ)) ≡ 0,
hence nothing can be concluded on P1 (similarly to what already observed also in the dNLS cell
in [28]), while for the other two families we get (apart from a prefactor ε2)

〈F1(P2(ϑ)), ∂ϑP2〉 = 4 sin(2ϑ) , F1(P3(ϑ)), ∂ϑP3〉 = 4 sin(2ϑ) ,

and we can deduce that the two families P2,3(ϑ) break down and either the four solutions (0, π, π),
(π, π, 0), (0, 0, π), (π, 0, 0) or the two vortexes

(
π
2 , π,

3π
2

)
and

(
3π
2 , π,

π
2

)
are allowed. The continu-

ation of the four in/out-of-phase configurations to periodic orbits is ensured by (19) with α < 3
2 ,

explicit symbolic calculations gives α = 1. In the two vortexes, instead, condition (19) is not ful-

filled, since P1(ϑ) is still a 1-parameter family of solutions for ∇qZ(2)
0 = 0. Hence, a third normal

form step is needed to study the continuation of the configurations in P1(ϑ), vortexes included.

The equation for the critical points of Z
(3)
0 takes the form

F (q2, q3, q4, ε) = F0(q2, q3, q4) + εF1(q2, q3, q4) + ε2F2(q2, q3, q4) = 0 ,
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with

〈F2(P1(ϑ)), ∂ϑP1〉 =
4

I∗
sin(ϑ) .

The normal form at order three allows to prove the nonexistence of the two vortex configurations,
being sin(ϑ) = 0 only for ϑ = 0, π. Instead, the continuation of the last two in/out-of-phase
solutions (π, π, π) and (0, π, 0) is ensured by (19) with α = 2, explicit computations gives α = 3/2.

Concerning the linear stability analysis, we summarize below the results for the different cases.

Isolated and nondegenerate solutions. The two configurations (0, 0, 0), (π, 0, π) have all
approximate Floquet exponents of order O(

√
ε). In particular (0, 0, 0) is the unique stable config-

uration, with Floquet exponents

λ1,2(ε) = ±i

(
2
√
I∗
√
ε+

6

(I∗)5/2
ε7/2 + o(ε7/2)

)
,

λ3,4(ε) = ±i

(
2
√
I∗
√
ε− ε5/2

(I∗)3/2
+ o(ε5/2)

)
,

λ5,6(ε) = ±i

(
2
√

2
√
I∗
√
ε+

√
2ε3/2√
I∗

+ o(ε3/2)

)
.

which split only at order ε5/2. This leads to β = 5/2 in the assumption of Theorem 2.2. Since
r+1−α = 4− 1

2 = 7
2 , the statement ensures existence of two couples of distinct Floquet multipliers

which are ε7/2-close to eλT on the unitary circle, which means linear stability of the solution. Also
the Floquet exponents of the unstable configurations coincide at leading order

λ(π,0,π) =


±2
√
I∗
√
ε+ o(

√
ε) ,

±2
√
I∗
√
ε+ o(

√
ε) ,

±2
√

2
√
I∗
√
ε+ o(

√
ε) ,

so that the normal form at order three is necessary to localize their deformation; this however
does not affect the instability of the true periodic orbit.

Degenerate solutions of the family P1. The (π, π, π) and (0, π, 0) solutions are unstable and
have approximate Floquet exponents

λ(0,π,0) =


±i
(

2
√
I∗
√
ε+ o(

√
ε)
)
,

±2
√
I∗
√
ε+ o(

√
ε) ,

±i
(

2√
I∗
ε3/2 + o(ε3/2)

)
,

λ(π,π,π) =


±i
(

2
√
I∗
√
ε+ o(

√
ε)
)
,

±2
√
I∗
√
ε+ o(

√
ε) ,

± 2√
I∗
ε3/2 + o(ε3/2) ,

also in this case a normal form at order three is needed in order to apply Theorem 2.2 with β = 3
2

and r + 1− α = 5
2 .

Degenerate solutions of the family P2 and P3. The four configurations lying on the two
families P2 and P3 all have the same two couples of Floquet exponents of order O(

√
ε) and the

same one couple of exponents of order O(ε) related to the degenerate direction

λ =


±i
(

25/4
√
I∗
√
ε+ o(

√
ε)
)
,

±25/4
√
I∗
√
ε+ o(

√
ε) ,

±i (2ε+ o(ε)) .

In these cases, a normal form at order one is enough since it is possible to verify the applicability
of Theorem 2.2 with β = 1 and r + 1− α = 2. Indeed, all the couples of eigenvalues are different
at leading order.
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Remark 3.2 The continuation of these localized solutions only requires to compute the normal
form at order one or two, as previously explained. Instead, the study of the stability of these
solutions require, for some configurations, the computation of the normal form at order three
in order to apply Theorem 2.2. Indeed in these cases, the eigenvalues split at order 5/2. This
highlights the power of the normal form approach, which allows to increase the accuracy of the
approximation beyond the minimal order needed to ensure existence of the continuation.

3.4 Discrete solitons in the dNLS model with purely nonlinear coupling

-6 -5 -4 -3 -2 2 3 4 5 6-1 0 1

0

I∗

We consider here a dNLS model slightly different from (6), with purely nonlinear coupling and, in
its simplest form, only nearest-neighbors interactions are active. It is well known that in this model
single-site discrete solitons (such as breathers in Klein-Gordon models) are strongly localized, with
tails decaying more than exponentially fast (see, e.g., [7, 29]).

Specifically, we consider a perturbation H1 of the form

H1 =
∑
j∈J
|ψj+1 − ψj |4 ,

where J = {−N, . . . , N}. We want to investigate the continuation of localized structure given by
three consecutive sites, hence corresponding to the set S = {−1, 0, 1}. The perturbation H1 is
given by the quartic nearest neighbors interaction, which in real coordinates reads

H1 =
1

2

∑
j∈J

(x2j + y2j )2 +
∑
j∈J

(xj+1xj + yj+1yj)
2 −

∑
j∈J

(x2j + y2j )(xj+1xj + yj+1yj)

−
∑
j∈J

(x2j + y2j )(xj−1xj + yj−1yj) +
1

2

∑
j∈J

(x2j+1 + y2j+1)(x2j + y2j ) .

Expanding H0 and H1 in Taylor series of the actions around I∗, forgetting constant terms and
introducing the resonant angles and their conjugated actions

q1 = θ−1 ,

q2 = θ0 − θ−1 ,
q3 = θ1 − θ0 ,

,


p1 = J−1 + J0 + J1 ,

p2 = J0 + J1 ,

p3 = J1 ,

we can rewrite the initial Hamiltonian as

H(0) = ωp1 +
∑

j∈J\S

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
0 (q) + f

(0,1)
1 (q̂, ξ, η) + f

(0,1)
2 (q̂, p̂, ξ, η)

+ f
(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q̂, p̂, ξ, η) +

∑
`≥5

f
(0,1)
` (q̂, p̂, ξ, η) ,

where ω = 1 + I∗. The normal form at order one gives

Z
(1)
0 = f

(1,1)
0 = 8 (I∗)

2
ε (cos(2q2)− cos(q2) + cos(2q3)− cos(q3)) ,

thus the critical points are the four isolated solutions (0, π), (π, 0), (0, π) and (π, π). However (as
already noticed in the isolated configurations of the Zigzag model) the nondegeneracy condition
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is fulfilled only in the last configuration (π, π). The remaining ones are all degenerate extremizer

of Z
(1)
0 ; indeed along the tangent direction related to the zero variable(s) it is possible to observe

an asymptotic growth as O(t4). These represent further examples of critical points which are
degenerate, although being isolated.

The normal form at order two is not sufficient to remove the degeneration for the other config-

urations, as Z
(2)
0 = Z

(1)
0 (1 + εg(q)) (the explicit expression of g(q) is not relevant) thus the critical

points have exactly the same asymptotic behavior near q2,3 = 0 and continuation is not granted
since (19) is not satisfied.

The normal form at order three allows to prove the existence of the degenerate configurations
since (19) with α = 3/2 is satisfied.

The approximate stability analysis easily shows that (0, 0) is the only stable configuration,
with both Floquet exponents of order O(ε3/2), precisely

λ1,2(ε) = ±2iI∗
(
ε3/2 + ε5/2 + o(ε5/2)

)
,

λ3,4(ε) = ±2iI∗
(√

3ε3/2 +
1√
3
ε5/2 + o(ε5/2)

)
.

Theorem 2.2 applies after r = 3 normal form steps with β = 3/2 < 5/2 = r + 1 − α, hence
Floquet multipliers are O(ε5/2)-close to the approximate ones. The other three configurations are
all unstable, with

λ(0,π) , λ(π,0) =

{
±i
(
7
√

6I∗ε3/2 + o(ε3/2)
)
,

±4
√

2I∗
√
ε+ o(

√
ε) ,

λ(π,π) =

{
±4I∗

√
ε+ o(

√
ε) ,

±4
√

3I∗
√
ε+ o(

√
ε) .

3.5 Other resonances and persistence of two dimensional tori.

We consider the standard dNLS model (8) with κ1 = 1 and κl = 0 for any 2 ≤ l ≤ d. At variance
with most of the literature on localized solutions, we now consider a resonant torus with resonance
different from the classical 1 : – : 1. In this case, the action of the symmetry group is transversal
to the action of the periodic flow on the unperturbed torus; hence, any periodic orbit surviving
to the continuation is not isolated, being part of a 2-dimensional torus foliated by periodic orbits,
obtained by the action of the symmetry on one of the continued periodic orbit. The objects which
survive are then 2-dimensional resonant subtori of the given resonant torus Il = I∗ , l ∈ S and
ξl = ηl = 0 , l ∈ J \ S.

The normal form allows to approximate, at any finite order, the subtori surviving to the
breaking of the original unperturbed resonant torus; these approximated invariant objects are
then used to prove the persistence of the considered subtorus. The persistence of nondegenerate
tori in Hamiltonian systems with symmetries (and even in more generic dynamical systems) is
a known subject, see, e.g., [3, 2, 1]. Unlike the quoted works, our approach allows to treat
both nondegenerate and degenerate subtori thus leading to new and more complete results. Let
us remark that the continuation is here made at fixed period and not at fixed values of the
independent conserved quantities.

We now show how to construct the leading order approximation of these subtori in both
a nondegenerate and a degenerate case, in the easiest case of three consecutive excited sites
S = {−1, 0, 1}, always assuming γ = 1. Focusing on these examples, we also explain how to
modify the proof of Theorem 2.1 in terms of the map Υ, so as to prove the persistence of these
family of localized and time periodic structures in dNLS models.
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3.5.1 Nondegenerate case.

-6 -5 -4 -3 -2 2 3 4 5 6-1 0 1

0

I∗

1 + 2I∗

Consider the set S = {−1, 0, 1} with excited actions equal to {I∗, 1 + 2I∗, 1 + 2I∗}, so that at
ε = 0 the flow lies on a resonant torus with frequencies ω̂ = ω(1, 2, 2), where ω = 1 + I∗. After
expanding H0 and H1 in Taylor series of the actions around I∗l , with l = S, we introduce the
resonant angles q̂ = (q1, q) and their conjugated actions p̂ = (p1, p) as follows

q1 = θ−1 ,

q2 = θ0 − 2θ1 ,

q3 = θ1 − θ0 ,


p1 = J−1 + 2J0 + 2J1 ,

p2 = J0 + J1 ,

p3 = J1 .

so that we can rewrite the initial Hamiltonian in the form

H(0) = ωp1 +
∑

j∈J\S

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
0 (q̂) + f

(0,1)
1 (q̂, ξ, η)+

+ f
(0,1)
2 (q̂, p̂, ξ, η) + f

(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q̂, p̂, ξ, η) +

∑
`≥5

f
(0,1)
` (q̂, p̂, ξ, η) .

The normal form at order one gives

Z
(1)
0 = f

(1,1)
0 = −2ε(1 + 2I∗) cos(q3) ,

whose critical points are only q3 = 0, π, which correspond to two invariant subtori, foliated by
periodic orbits (q1 = ωt+q1(0), q2 = q2(0)). Let us stress that the absence of the resonant angle q2
has not to be interpreted as the effect of a proper degeneracy, since we expect a finite number of 2-
dimensional subtori to be continued; thus the two subtori are clearly nondegenerate. The subtorus
q3 = π is linearly unstable, its approximate Floquet exponents are λ = ±2

√
1 + 2I∗

√
ε + o(

√
ε),

while q3 = 0 is linearly elliptic, with

λ1,2(ε) = ±i

(
2
√

1 + 2I∗
√
ε+

ε3/2√
1 + 2I∗

+ +o(ε3/2)

)
.

Theorem 2.2 can be applied also in this case with β = 1/2 < r+ 1−α = 1, obtaining the effective
linear stability of the torus.

In order to prove the persistence of the obtained subtori, one can keep both q1(0) and q2(0) as
parameters in the map Υ introduced in (17), and forget the variation of the second action p2 (since
in this case we have two independent constant of motion); hence Υ : R2n−2 → R2n−2. Coherently
with such a definition of Υ, and under the same assumptions of Theorem 2.1 on the spectrum of
M(ε) = Υ′(x∗), existence and approximation of the considered subtori are derived via the same
Newton-Kantorovich method. In our case existence can be obtained since α = 1

2 <= 1 for the
smallest eigenvalue of M(ε).

3.5.2 Degenerate case

-6 -5 -4 -3 -2 2 3 4 5 6-1 0 1

0

I∗

1 + 2I∗
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Consider the set S = {−1, 0, 1} with excited actions equal to {I∗, 1 + 2I∗, I∗}, so that at ε = 0
the flow lies on a resonant torus with frequencies ω̂ = ω(1, 2, 1), where again ω = 1 + I∗. After
expanding H0 and H1 in Taylor series of the actions around I∗l , with l = S, we introduce the
resonant angles q̂ = (q1, q) and their conjugated actions p̂ = (p1, p) as

q1 = θ−1 ,

q2 = θ0 − 2θ−1 ,

q3 = θ1 − θ−1 ,


p1 = J−1 + 2J0 + J1 ,

p2 = J0 ,

p3 = J1 ,

so that we can rewrite the initial Hamiltonian in the form

H(0) = ωp1 +
∑

j∈J\S

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
0 (q̂) + f

(0,1)
1 (q̂, ξ, η)

+ f
(0,1)
2 (q̂, p̂, ξ, η) + f

(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q̂, p̂, ξ, η) +

∑
`≥5

f
(0,1)
` (q̂, p̂, ξ, η) .

Unlike the previous example, the normal form at order one gives Z
(1)
0 ≡ 0, since the two

resonant oscillators at sites {−1, 1} are not interacting at order O(ε). The normal form at order
two gives

Z
(2)
0 = f

(2,2)
0 =

2(I∗)2

(1 + I∗)2
ε2 cos(q3) ,

whose critical points are q∗3 = 0, π. Explicit calculations with Mathematica, provide the expected
value of α = 1 < 3

2 , this allows to prove the continuation of the subtori. The subtorus q∗3 = 0 is
linearly unstable, while q∗3 = π is linearly stable with

λ1,2(ε) = ±i

(
2I∗

1 + I∗
ε+

2I∗
(
5 + 22I∗ + 24(I∗)2

)
ε3

(1 + I∗)5
+ o(ε3)

)
.

Theorem 2.2 can be applied with β = 1 < r+ 1−α = 2, thus proving the effective linear stability.

4 Numerical simulations: a case study.
s:3

In this section, we numerically investigate some aspects of the normal form construction, previously
applied to different dNLS models and spatial configurations, focusing on a single case study: the
multi-pulse solution in the standard dNLS model with 14 sites, three of which are the excited
ones, namely S = {−2,−1, 1}. In particular we numerically highlight

(i) the increase of the approximation accuracy as the order of the normal form is increased, by
comparing r = 2 with r = 3;

(ii) the linear stability properties of the approximate periodic orbit in the stable case q∗ = (0, π)
and in two different unstable ones, q∗ = (0, 0) and q∗ = (π, π), both having only one unstable
direction, but different orders in ε.

4.1 Accuracy of the approximate periodic orbit

As a first test we check the accuracy of the linearly stable approximate periodic orbit q∗ = (0, π)
by integrating it over the period T , and reporting the maximum discrepancy for the vectors q̂, p̂,
ξ and η. The results for two different normalization orders (r = 2, 3) and two values of the small
parameter (ε = 10−2, 10−3) are presented in the following table.

r = 2, ε = 10−2 r = 2, ε = 10−3 r = 3, ε = 10−2 r = 3, ε = 10−3

|q̂(T )− q̂(0)| 4.5610550× 10−6 4.696846× 10−9 2.139612× 10−7 2.1812791× 10−11

|p̂(T )− p̂(0)| 1.4179260× 10−7 1.474040× 10−11 5.553497× 10−9 7.4915977× 10−14

|ξ(T )− ξ(0)| 1.0245355× 10−5 9.149083× 10−9 4.112023× 10−7 5.7256727× 10−31

|η(T )− η(0)| 5.1555903× 10−7 9.519083× 10−11 1.112160× 10−8 2.2595051× 10−30

21



This simple computation allows to appreciate the gain of accuracy due to the extra normalization
step. This is in agreement with the increase of the order of the remainder of the normal form,
which yields to the estimate (18).

To complete the investigation, in Figures 1, 2 and 3 we have compared the dynamics of some
of the variables of the approximate periodic orbit q∗ = (0, π) over a significant time interval of
order O(ε−1) (setting ε = 10−2), according to the slowest frequency ω =

√
3ε. As expected, the

increase of the normal form order provides a gain of the accuracy of the approximation at least of
a factor O(ε), both in the internal and in the transversal dynamics.
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Figure 1: Time evolution over the interval [0,O(ε−1)] of the normal form variables p2(t) and p3(t).
Comparison between r = 2 (top) and r = 3 (bottom) with ε = 10−2. f.0Pi.comp_p
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Figure 2: Time evolution over the interval [0,O(ε−1)] of the normal form variables q2(t) and q3(t).
Comparison between r = 2 (top) and r = 3 (bottom) with ε = 10−2. f.0Pi.comp_q

Finally, we report in Figure 6 the profile of the approximate solutions in physical variables
(x, y), see (7). In order to visualize the effect of the near to the identity canonical change of
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Figure 3: Time evolution over the interval [0, 600] of the normal form variables x2(t) and x9(t).
Comparison between r = 2 (top) and r = 3 (bottom) with ε = 10−2. f.0Pi.comp_x
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Figure 4: Time evolution over the interval [0,O(ε−1)] of the normal form variables p2(t), p3(t)
(top) and q2(t), q3(t) (bottom) for q∗ = (0, 0) with ε = 10−2. f.00

coordinates that brings the Hamiltonian in normal form, we depict the profiles both in the normal
form variables (where all the sites are sets to zero, except the excited ones) and in the original
ones (obtained by applying all the transformations that put the Hamiltonian in normal form).
Indeed, even if the study of the dynamics is much simpler in normal form variables, it might be
worthwhile to have a representation of the periodic orbit in original variables. Let us remark
that as the deformation due to the change of coordinates is of order O(ε), we only report the
results for r = 2 and ε = 10−2, since the profile obtained for r = 3 can be hardly distinguished.
However, we complete the numerical investigation by reporting in Figure 7 the difference between
the approximate solutions at order r = 1, 2, 3. Precisely we report (in logarithmic scale) the
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Figure 5: Time evolution over the interval [0,O(ε−
1
2 )] of the normal form variables p2(t), p3(t)

(top) and q2(t), q3(t) (bottom) for q∗ = (π, π) with ε = 10−2. f.PiPi
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Figure 6: Profile of the candidate periodic orbit obtained with r = 2 and ε = 10−2. In red the
profile in normal form coordinates, in blue the profile in the original ones. In the upper panel
the two profiles seem to superimpose; however the magnification in the lower panels allow to
appreciate the deformation due to the canonical transformation. This is particular evident for the
sites −3,−2,−1, 1 and 2, namely the excited ones and their nearest neighbors, as expected. fig:profilo

absolute value of the differences at each site (in original coordinates) between the solutions at
order 1 and 2, and the ones at order 2 and 3, both for ε = 10−2, 10−3 (obviously neglecting the
zero datas). This allows to highlight the rate of convergence obtained with a low order normal
form, despite the asymptotic character of the normal form construction. Indeed, let us stress
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Figure 7: Absolute value of the difference, in logarithmic scale, between the approximate periodic
orbits at order r = 1 and 2 (+ symbols) and the ones at order r = 2 and 3 (× symbols), for
ε = 10−2 (left) and ε = 10−3 (right). Obviously we report only the non zero datas. fig:delta

again that the normal form construction is not convergent. However, being an asymptotic series,
a suitable truncation (below an optimal order that depends on the size of the smal parameter)
provides an accurate approximation of the desired object, i.e. of the periodic orbit.

4.2 Linear stability of the approximate periodic orbit

Looking at Figures 1 and 2, independently of the normalization order considered, it is evident
both the linear stability of the orbit, over the time interval according to the slowest frequency, and
the effect of the two frequencies, which have a different scaling in ε, as illustrated in the previous
section. In particular, the variables p3 and q3 clearly show the periodic effect mainly due to the
frequency

√
3ε, while the variables p2 and q2 clearly have a faster oscillation of the order of the

frequency 2
√
ε (actually p2 have a quasi-periodic dynamics which exhibits both the frequencies).

In a similar way, Figures 4 and 5 show the effect of instability of the approximate periodic orbit,
over two different time scales. Indeed, in Figure 4 the exponentially fast separation from the
approximate periodic orbit requires time of order O(ε−1), coherently with the real eigenvalues√

3ε of the q∗ = (0, 0) solution. On the other hand, in Figure 5 the departure is much faster and

occurs already on a time scale of order O(ε−
1
2 ), coherently with the real eigenvalues 2

√
ε of the

q∗ = (π, π) solution.

5 Conclusions
s:4

In this paper we applied an abstract result on the break down of a completely resonant torus
in nearly integrable Hamiltonian system, to revisit the existence of time periodic and spatially
localized solutions in dNLS lattices, such as discrete solitons or multi-pulse solitons. We considered
several different dNLS models, starting from the standard one, moving to coupled dNLS chains
(Zigzag or railway models) up to model with a purely nonlinear interaction. In all these cases we
showed that for ε small enough, i.e., in the limit of small coupling, this class of solutions are at
leading order degenerate; hence a first order average is not conclusive. The normal form scheme
developed in [30] and the main Theorems on existence and linear stability there included, allow to
investigate, with the help of a computer algebra system, different kind of degenerate configurations,
thus confirming the practical applicability of the abstract algorithm. At the same time, it allows to
shed some light on a wider class of localized periodic solutions, leading to the (expected) existence
of 2-dimensional resonant tori, thanks to the action of the Gauge symmetry of the dNLS models.
These are special localized solutions that typically do not exist in Klein-Gordon lattices: indeed,
the presence of the full Fourier spectrum of the unperturbed oscillators provides nondegenerate
configurations even for a resonant modulus Mω different from the 1 : – : 1 (see for example
[15, 16, 24]). Actually, the application of the present approach to multibreathers in weakly coupled
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chain of oscillators is limited by the need to explicitly transform the excited oscillators to action-
angle variables; this is a problem which might be overcome with special choices of the nonlinear
potential, like the Morse potential, or with a preliminary dNLS normal form approximation of the
nonlinear lattice (as in [19, 25]). The possibility to explore localized time periodic structures in
other dNLS-like models could be even considered, like the Salerno model whose nearly integrable
structure might be thought as a perturbation of both the decoupled nonlinear oscillators of the
dNLS and of the celebrated Ablowitz-Ladik model. However, also in this case nontrivial technical
difficulties may arise due to the nonstandard Poisson structure of the Salerno model and to the
absence of explicit action-angle coordinates for the Ablowitz-Ladik model. Another example of
Hamiltonian Lattice where we expect that this approach might led to interesting results is the
FPU model. A recent work [5] has shown how to deal with the original FPU model in order to split
the variables describing a low dimensional elliptic invariant torus from the variables describing the
transversal dynamics; the same strategy might be adapted in order to study completely resonant
low dimensional tori and the corresponding periodic orbits, possibly at the thermodynamic limit.

Our approach could also allow to investigate the long-time stability of periodic solutions: indeed
a preliminary normal form construction, at suitable order r depending on the degeneracy degree of
the orbit, gives the linearization around the approximate solution the right shape for a subsequent
stability analysis, e.g., with perturbation methods like Birkhoff normal forms (see also [9, 4] for
related studies).

Finally, a different direction of future development could be to extend the scheme in order to
study the existence of degenerate quasi-periodic solutions (degenerate KAM-subtori, as in [35]),
both from an abstract point of view and in terms of applications to physical models.
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